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General comment

In the manuscript named „Possible evidence of increased global cloudiness due to aerosol-cloud 
interactions“, the authors use machine learning (ML) models trained on a low-aerosol subset of the 
observational data set to predict warm cloud fraction in these pristine conditions on the basis of four
meteorological parameters. The ML models are then applied to predict warm cloud fraction in 
polluted conditions and used as a pristine aerosol counterfactuals, where the difference between 
these counterfactuals and the observed warm cloud fraction is quantified as ΔCF and assumed to be 
due to aerosol-cloud interactions (ACI). The authors then use the ΔCF to estimate an effective 
radiative forcing due to aerosol-driven changes in warm cloud fraction, which is found to be -.42 W 
m², in line with other recent estimates.

The topic of constraining ERFaci and the cloud fraction adjustment from observations is highly 
relevant for climate research (and for the readers of ACP), and as progress constraining ERFaci has 
been limited over the past decades, new methods of quantifying ERFaci (e.g. exploiting novel ML 
techniques) should in my opinion be encouraged. While the underlying idea of the authors falls into 
this category and clearly has merit, I see a number of critical issues and unclarities with the research
presented here, and the manuscript leaves the impression of being put together hastily (unit missing,
equation missing etc.). Some of the critical issues are 

1) sampling issues: The data sets are divided into a clean and a polluted data set, but only trained on
the clean data. This is problematic in regions where the aerosol features e.g. a clear seasonal cycle, 
as data from the polluted season will not be included or underrepresented in the training data. As CF
and its meteorological controls have seasonalities as well, realistic predictions of CF during the 
polluted season can not be expected if this season is largely omitted during training. This is 
particularly the case, as ML models completely incapable of extrapolation are used. I will go into 
detail into issues with data sampling below.

2) If I understand the manuscript correctly, ΔCF is quantified for the polluted conditions only 
(trained on clean, applied to polluted situations?), however, as the clean conditions are also part of 
today’s aerosol distribution omitting them in the ΔCF estimation would lead to an overestimation of
the overall ERFaci, as ΔCF would be about 0 in the clean conditions. 

3) Lack of transparency/details: The manuscript lacks relevant information into how the models are 
set up (hyperparameters, sampling strategy of the train/test split). This is important, because this 
affects the reproducibility of the research, but also because it hides possible reasons for the 
inexplicably high skill of the ML models in the testing with the independent data. 

These aspects are likely to influence the results and conclusions drawn in this manuscript, and as 
such I cannot recommend this manuscript to be published before major revisions and additional 
tests are completed. 



Major points

 Sampling biases

◦ Aerosol seasonality: As mentioned in the general comment, I am quite worried about the
ML models ability to quantify ΔCF and ERFaci in all regions with a pronounced aerosol 
seasonality. One example for this would be the Southeast Atlantic, where seasonally 
overlying aerosol plumes from biomass burning in central Africa are a common feature 
between July and September/October. During this time of year, CF is highest (stability is
highest and SSTs are lowest). If aerosol seasonality is not explicitly considered during 
the data split, it is likely that training data during the polluted season is sparse, and the 
highest CF conditions not represented in the training data. It can not be expected that the
models perform well in predicting prestine counterfactuals in a season that is 
underrepresented during training. Considering these aspects, I would expect this issue to 
be amplified in the Southeast Atlantic, and hence I am not surprised to see this region as 
an outlier with respect to the estimated  ΔCF and ERFaci. I do not agree with the 
interpretation of the authors given in L.223 – 236 or other text passages in the 
manuscript interpreting this region. 

◦ On a similar note, sampling representativeness between clean and polluted data will also 
be an issue in any coastal region where the aerosol loading is strongly correlated with 
the outflow of continental aerosols (i.e. dynamics). Low aerosol conditions are unlikely 
to provide representative environmental conditions to high aerosol conditions in such 
regions, the ΔCF estimation (and ERFaci) would seem to be less robust here. The 
authors discuss this a bit in L.195 (f), but discard this issue and it remains unclear to me 
why they believe this is not a problem. Overall, this study needs to more clearly address 
and discuss these issues, as they only describe the uncertainties their method reduces but
not the ones it introduces. 

 Lack of transparency/details, unrealistic model performance: It is really unfortunate that the 
authors do not provide the necessary methodological details to be able to reproduce and 
fully understand their workflow and results. Even though the authors consider their machine 
learning methods to be “simple”, their setup is not trivial and its details can influence the 
results. It is necessary that the authors provide the exact model settings (i.e. 
hyperparameters), how they are determined, but also provide details on how training and test
data is split. This is especially important, as the models perform much better than one would
expect for such a complex problem (predicting CF). 98-99% explained variance seems 
completely unreasonable, and a clear sign of the models overfitting to the data. For example,
the explained variance in Chen et al. (2022, nature), who use random forests to predict large-
scale CF with 114 meteorologic parameters is 56%. The authors cite a study with 
comparable skill, however, in that study a highly nonlinear polynomial fit of the fourth 
power (known to overfit data) is applied to highly aggregated (binned) data, and no 
independent test skill is reported, so this is just another example of models overfitting the 
data. Also, the skill increase from the MVLR (0-40% explained variance in the MVLR and 
> 98% in ML) is suspect to say the least. In my experience, a much smaller performance 
increase from MVLR to decision trees is to be expected, and this is backed by e.g. Fuchs et 



al. (2018, ACP), who report an R² between 0.45 and 0.7 for the decision trees and 0.3-0.5 for
an MVLR, and Dadashazar et al. (2021, ACP), who report an R² in predicting cloud droplet 
number concentration between 0.43 and 0.47 for the decision trees and 0.25-0.28 for an 
MVLR. One should note that the MVLR results are fairly close to what is reported in this 
study, however, the ML results are obviously not.

I can speculate that the reason for these high model skills could be that splitting training and 
test data is done randomly (and not in two completely separated time periods (e.g. 2 years 
training, 1 year testing)), and that the models then learn the training data by heart. Because 
training is done on 80% and testing on 20% of the data, and autocorrelation of CF and the 
predictors is high at the daily time scale, the task becomes very easy for the decision trees, 
as the test data is not independent from the training data and they are very powerful in 
learning data by heart. However, this remains speculation, because the authors have not 
added the necessary information on the model setup in the manuscript.

This (very likely) wrong skill estimate is then used to confirm the hypothesis that “a 
majority of the variation in clean, "pristine" aerosol scenes are due to the environment” as 
“the explained variance scores would be lower as variation due to aerosol would not be 
learned by the models” (L.304 and L.308-309), which in general I would agree with, but not 
based on the research presented here. It would be much easier to trust the results if the 
model setup were described completely, and the training and test split done as described 
above (and considered to be good practice for temporally structured data; Roberts et al. 
(2017, ecography, doi: 10.1111/ecog.02881)). Additionally, it would be appreciated if the 
authors would do an additional test on how well the models can predict polluted situations in
the year left out for testing.   

 It is unfortunate that the authors do not provide any detailed information on the aerosol 
(MODIS AI) thresholds derived from the SPRINTARS model. The authors only vaguely 
state that “We choose a selection of scenes with a distribution of AI similar to the pre-
industrial values for that region from SPRINTARS [...] (L.103-104)”. As the definition of AI
values interpreted as pre-industrial proxy is critical for the results, it is necessary that the 
authors provide a precise statement on how this is determined and ideally a map of this 
threshold, and information on how much data is in the prestine and polluted groups. 

 If I understand the method described in L.150 correctly, ΔCF is only estimated for the 
“polluted” situations that should represent present-day conditions. However, I don’t think 
that is reasonable, as the „prestine“ conditions used as a proxy for pre-industrial conditions 
are still part of the aerosol distribution in the present-day. Neglecting this leads to an 
overestimation of  ΔCF, because ΔCF should be close to 0 for the „prestine“ conditions and 
thus decrease the overall average ΔCF. Will this make a significant difference in the end? 
There is no way for the reader to know, as the AI thresholds used are not provided, and 
hence it remains unclear how much data is assigned to the prestine and polluted groups in 
each region. 

 I see the interpretation of the ML models as „True“ and the MVLR as “False” (e.g. L. 182) 
to be problematic. It is also unfair to compare sorted regional ΔCF values of the 3 ML 
models to the MVLR to show how similar the ML models are compared to the MVLR (Fig. 
11). Clearly the 3 ML models chosen in this study are closely related in the way the learn 



(all are ensembles of decision trees), and hence they are expected to more or less lead to the 
same learned patterns. It would be more interesting to use e.g. a simple neural network as an
additional comparison, as this represents a different way of mapping the model input to the 
output than the decision trees. Also, a simple neural network does not have similar 
overfitting issues, as it cannot learn training data by heart as easily as the decision trees.

 The authors hypothesize that a “good” ML model will be 1) physically realistic, and 2) 
observational scale independent. In my opinion, the authors do not show convincing results 
to support either hypothesis. 1): The only results that can be interpreted as a sign of the 
models being physically realistic is presented in Fig. 10. However, in the text this is treated 
as an outlook, and it is not even clear in which region the results were produced 
(“example”). It is certainly not physically realistic that 4 large-scale environmental controls 
explain more than 90% of daily CF variability. 2): The authors use two different initial cloud
fraction scales (12 and 96 km) which are then both aggregated to 15°x15°. The analysis is 
then conducted on the same scale, and all predictor data seems to be identical as well. While 
this is an interesting experiment, it does not seem to be a convincing argument that the 
results are scale independent.

 While this manuscript is focused on the cloud fraction adjustment to aerosols, this is not 
reflected by the introduction, where the cloud fraction adjustement and current approaches 
to quantify it and its radiative forcing are not discussed. Actually, the LWP adjustment is 
discussed in much more detail. I recommend that the authors provide a better overview of 
past observational research done on the cloud fraction adjustment and provide sources for 
the statement in L. 25.

Minor points

 L.8: units missing for the cooling estimate

 L.28-31: Cloud fraction retrieval is also not straight forward, as it depends on an optical 
depth threshold and is affected by surface reflectance etc.. A change in optical depth due to 
the Twomey effect could thus also lead to an artificial increase in CF for thin clouds 
(Mieslinger et al. 2022, ACP).

 L157: Equation is missing

 L.171-174: Sentence is quite hard to read.

 L.176-178: Confusing sentence

 L.229-231: I don’t quite understand why only cloudy scenes are used, and don’t understand 
the authors reasoning given here: “we do not want to possibly conflate cloud feedbacks 
(how cloud formation has changed due to global warming) with aerosol-cloud interactions 
(how aerosol loading has increased or decreased cloud extent.)[sic]”, as cloud feedbacks are 
not constrained to changes in cloud formation, but rather describe the change in overall 
cloudiness (could also be due to a longer lifetime or larger spatial extent of the clouds).

 L.231-232: Is there a source for the statement that the observational record includes a 
reduction in warm cloud cover in the south Atlantic? If not, I don’t understand how the 
authors can claim that “our models have succeeded in identifying a reduction in warm cloud 
cover in the south Atlantic”. The authors then go on with this claim a few lines further 



down: “It is possible in future climates that more regions will experience the same 
conditions that have led to a reduction of cloud fraction seen at this south Atlantic region”

 L.233-234: Technically, this is not true for all machine learning models, as some do have the
capability for a limited extrapolation (e.g. MVLR, simple neural networks), but this is true 
for tree-based ML models which can only interpolate on the training data. 

 L.319: I don’t undestand what the authors mean with this sentence.

 L.348-351: The authors use the average model predicted cloud fraction of the prestine 
situations used for training (Fig. 8 and 9) and interpret this as a sign that the models are 
consistent with each other and represent physics internally (in the conclusion). This is not 
related to physics or a sign of consistency of what the models represent at all though, but 
just the fact that any statistical or ML model will quickly learn the average predictand value 
during training. I believe that these Figures and the discussion on it (also in L. 308-310 and 
the conclusions) add nothing to this paper and should be removed.

 Figures 2-5: I would recommend that the range on the colorbars should be equally far 
positive/negative, as one naturally compares the hue of the colors, but in these figures the 
change of the hue for positive/negative values is different by a factor of 4. 

 The difference between ΔCF of the Northern and Southern Hemispheres is interesting, and I 
think this should be discussed with more detail. I would especially be interested if there is a 
hemispheric difference between the AI threshold used in this study.

Specific points

 L.37: „environment“ is used as a term for meteorological factors (excluding aerosol), 
however this is not clear as aerosols are also a component of the environment

 L.52: to constrain
 L.54: Adjust citation style
 L.75: 2 Methods 3 Data
 L.134: Grammar
 L.146: „split into by 20%“
 L.235: „until our we“
 L.321: EIS has not been introduced so far
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