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Abstract

Emissions of ozone (O3s) precursors in the United States have decreased
in recent decades, and near-surface O3 concentrations showed a significant
decrease in summer but an increase in winter. In this study, an Os source
tagging technique is utilized in a chemistry-climate model to investigate the
source contributions to Oz mixing ratios in the U.S. from various emitting sectors
and regions of nitrogen oxides (NOx) and reactive carbon species during 1995—
2019. We show that domestic emission reductions from energy and surface
transportation are primarily responsible for the decrease in summertime O3
during 1995-2019. However, in winter, the emission control also weakens the
NOx titration process, resulting in considerable increases in O3 levels from
natural sources. Additionally, increases in aviation and shipping emissions and
transpacific transport of Os from Asia largely contribute to the winter Os increase.
We also found that changes in large-scale circulation favoring Os transport from
upper atmosphere and foreign transport from Asia also explain 15% of the

increase in the U.S. near-surface O3 levels in winter.
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1. Introduction

Ozone (O3) near the surface has a significant impact on air quality and
public health (Haagen-Smit, 1952; Fleming et al., 2018). Since the increase in
anthropogenic emissions of O3 precursors from preindustrial times, O3z has now
become the third most important anthropogenic greenhouse gas in the
troposphere (Myhre et al., 2013). Major sources of Os in the troposphere
include the transport from the stratosphere and formation through
photochemical reactions within the troposphere involving two chemically
distinct groups of precursors: nitrogen oxides (NOx) and reactive carbon
species, including carbon monoxide (CO), methane (CH4), and non-methane
volatile organic compounds (NMVOCs) (Atkinson, 2000). Os precursors come
from a variety of sectors, and its relatively long lifetime of about 22 days
(Stevenson et al. 2006) favors the long-range transport of Os. Due to the
nonlinearity of the Os production and its associated dependence on precursor
emissions (Seinfeld and Pandis, 2006), attributing Os pollution to its sources is
complicated.

Since the 1980s, O3 precursor emissions have significantly reduced in the
United States (Duncan et al., 2016; Xing et al., 2013; Zhang et al., 2016; Zhang
et al., 2021). However, due to the nonlinear production chemistry of Os,
complex seasonal meteorological influence, and long-range transport from
foreign source regions, domestic emissions reductions do not imply a decrease
in seasonal and annual Os concentrations. According to remote surface
measurements (Cooper et al., 2020) and aircraft observations (Gaudel et al.,
2020), the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (Szopa et al., 2021) showed a decreasing trend in annual mean O3
concentrations in the western U.S. but an increasing trend in the eastern U.S.
since the mid-1990s. On the seasonal timescale, surface observations and

modeling results showed that Os concentrations over the U.S. had decreased
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in summer due to the reductions in domestic anthropogenic emissions and
increased in winter related to the weakened NOx titration since the late 1980s
(Cooper et al.,, 2012; Lin et al,, 2017). It also shows that the increased
background O3, especially due to an increased transport from Asia, can partly
offset the benefit of domestic emissions control over the western U.S. in
summer.

Source apportionment is a useful method for quantifying contributions to
air pollutants from specific source regions and/or sectors, which is beneficial to
emission control strategies (Yang et al., 2018). One method of obtaining an O3
source-receptor relationship is to zero out or perturb emissions from a given
source region or sector in sensitivity simulations along with a baseline
simulation, which gives information about the response of O3 to changes in
precursor emissions (e.g., Fiore et al., 2009; Hoor et al., 2009). However,
emission perturbation method requires many additional model simulations
when being used to estimate the impacts of changes in multiple sources (Koo
et al., 2009; Wang et al., 2014). The perturbation method may invalidate the
assumption of a linear relationship between the magnitude of the emission
perturbation and the magnitude of the Os change considering the nonlinearity
in O3z chemistry, especially if large perturbations (e.g. zeroing out regional or
sector-wide emissions) are used. The tagging approach produces information
about the contribution of precursor emissions to the total amount of O3 (Butler
et al., 2020). The perturbation and tagging methods are two different methods
answering different scientific questions, with the first for the impacts and the
last for the contributions (Grewe et al. 2010, Emmons et al. 2012, Clappier et
al. 2017 and Thunis et al., 2019). Both of these two methods can be used for
specific purpose to provide a comprehensive understanding of source-receptor
relationships between precursor emissions and O3 concentrations.

The source tagging method has been widely adopted in regional air quality
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models to examine the Os attribution in the U.S., China, and/or Europe (Gao et
al., 2016; Collet et al., 2018; Lupascu and Butler, 2019). In some regional
models, O3 apportionment is based on the ratio of chemical indicators to
determine the regime of Os generation (e.g., VOC-limited or NOx-limited
regimes) and then attribute the generation of Os to the tag carried by a certain
precursor (VOCs or NOx), which however cannot simultaneously attribute Os
production to NOx and VOCs, respectively (Dunker et al., 2002; Kwok et al.,
2015), while some models do not use the chemical indicators (Lupascu and
Butler, 2019; Mertens et al., 2020). In addition, due to the limitation in domain
size of regional air quality models, they are difficult to account for contributions
of intercontinental transport from several sources outside the model domain.
Recently, Os tagging techniques have been implemented in the global models
(e.g., Sudo and Akimoto, et al., 2007; Zhang et al., 2008; Emmons et al., 2012;
Grewe et al. 2017; Butler et al., 2018; Han et al., 2018; Bates and Jacob, 2020).
However, in many global models, Os is tagged by the production regions rather
than the precursor emission regions, so that Os can only be attributed to the
area where Os is generated, rather than the source of precursor emissions.

Here, based on a state-of-the-art tagging system implementation in a
global chemistry—climate model, the trends of near-surface O3z mixing ratios in
the U.S. during 1995-2019 and the source attributions of the Os variations to
various emission sectors and regions of NOx and reactive carbon species are
investigated in this study. Mechanisms of explaining the Os trends that involve
changes in anthropogenic emissions and large-scale circulations are also
explored.
2. Methods
2.1 Model Description

Tropospheric O3 mixing ratios are simulated using the Community

Atmosphere Model version 4 with Chemistry (CAM4-chem) (Lamarque et al.,
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2012; Tilmes et al., 2015), which is the atmospheric chemistry component of
the Community Earth System Model (CESM), at a horizontal resolution of 1.9°
latitude by 2.5° longitude with 26 vertical levels extending to 40 km above the
surface. The height of bottom layer is about 120 m and there are about 4 layers
under 2 km. The model configuration uses a comprehensive tropospheric
chemistry mechanism based on the Model for Ozone and Related chemical
Tracers version 4 (MOZART-4) (Emmons et al.,, 2010, 2012). Model
configurations simulate wet deposition of gas species using the Neu and
Prather (2011) scheme. Dry deposition is represented following the resistance
approach originally described in Wesely (1989). Stratosphere-troposphere
exchange of Os is treated by setting Os to stratospheric values as their
climatological means over 1996-2005 at the tropopause (Lamarque et al.,
2012), which is affected by atmospheric circulation and experiences the same
loss rates as Os in the troposphere (Tilmes et al.,, 2016). Sea surface
temperatures and sea ice concentrations in our simulations are prescribed at
present-day climatological conditions. The zonal and meridional wind fields are
nudged towards the MERRA-2 (Modern Era Retrospective-Analysis for
Research and Applications Version 2) reanalysis (Gelaro et al., 2017) at a 6-
hourly relaxation timescale in this study to better constrain large-scale
circulations by observations. The CAM4-chem performance in simulating
tropospheric O3 and precursors has been fully evaluated in Tilmes et al. (2015).
2.2 Ozone Source Tagging Technique

The novel Os source tagging technique implemented in the model was
developed by Butler et al. (2018), which can provide a separate source
apportionment of tropospheric O3 to the two distinct groups of precursor
emissions, i.e., NOx and reactive carbon (CO, CH4 and NMVOCs). The portion
of tropospheric Os that is attributable to the stratosphere-troposphere exchange

can also be quantified using this unique tagging technique. The source
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attribution of Os requires two separate model runs with the tagging applied to
NOx and reactive carbon species, respectively. Details of the Os tagging
technique are described in Butler et al. (2018).

In this study, near-surface Os is attributed to emission sectors and regions.
Emissions from individual sectors, including agriculture (AGR), energy (ENE),
industry (IND), residential, commercial and other (RCO), surface transportation
(TRA), waste management (WST), international shipping (SHP) and biomass
burning (BMB) emissions, as well as chemical production in the stratosphere
(STR) and extra chemical production (XTR, a small amount of O3 produced due
to the self-reaction of OH radicals and the reactions of HO2 with certain organic
peroxy radicals) are tagged for both NOx and reactive carbon species. Aircraft
(AIR), soil (SOIL) and lightning (LGT) sources are separately tagged for NOx
emissions, while solvents (SLV) and biogenic (BIO) sources are separately
tagged for NMVOCs emissions.

For the regional source attribution, we separately tag anthropogenic
sources from Africa (AFR), Central America (CAM), Europe (EUR), Middle East
(MDE), North America (NAM), East Asia (EAS), South Asia (SAS), Southeast
Asia (SEA) and rest of the world (ROW) (see Fig. 1 for the region map) and
natural sources (BMB, SOIL, LGT, BIO, STR and XTR). Additional tags for
methane (CH4) and carbon monoxide (CO) are applied in both of the reactive
carbon tagging simulations that are used to attribute O3 to emission sectors and
regions. We do not tag CH4 by individual sources and the contributions of CH4
from various sources are lumped in this study. It is because CH4 has a relative
long lifetime in the troposphere and it is well mixed in the troposphere due to its
exceptionally low reactivity, which can contribute to O3 formation at any location
in the troposphere where photochemical conditions are favorable (Fiore et al.,
2008). CO also has a longer lifetime and lower reactivity than most NMVOCs.

The lumped CO is tagged in the simulations for emission sectors, but not
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specifically tagged in the simulations for emission regions due to the
computational limit.
2.3 Emissions and Observation

The global anthropogenic emissions, including NOx, CO, NMVOCs, SOz,
and NHs, over 1990-2019 are from the Community Emissions Data System
(CEDS) version 20210205 (Hoesly et al., 2018) (See Table S1 and Figs. S1-
S3). Biomass burning emissions are obtained from the CMIP6 (Coupled Model
Intercomparison Project Phase 6) over 1990-2014 (van Marle et al., 2017) and
the emissions for the following five years (2015-2019) are interpolated from the
SSP2-4.5 forcing scenario (O'Neill et al., 2016). NOx emitted from soils and
biogenic NMVOCs from vegetation are prescribed as in Tilmes et al. (2015) and
are kept at the present-day (2000) climatological levels during simulations.
Lightning emissions of NOx are estimated online using the parameterization
based on simulated cloud top heights from Price et al. (1997), which is scaled
to provide a global annual emission of 3—5 Tg N yr~! (Lamarque et. al., 2012).
CHa is fixed at a global average level of 1760 parts per billion (ppb, volume ratio
in this study) during simulations.

Many studies have reported that the previous CEDS version 20160726
(hereafter CEDS2016) has large biases in the regional emission estimates (e.g.,
Cheng et al., 2021; Fan et al., 2018). In this study, the CEDS version 20210205
is used (hereafter CEDS2021), which builds on the extension of the CEDS
system described in McDuffie et al. (2020) and extends the anthropogenic
emissions to year 2019. It updates country-level emission inventories for North
America, Europe and China and has considered the significant emission
reductions in China since the clean air actions in recent years. The global total
NOx emission from CEDS2021 is lower than that of CEDS2016 after 2006 and it
shows a fast decline since then. In 2014, the global total anthropogenic

emission of NOx in CEDS2021 is about 10% lower than the CEDS2016 estimate.
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This difference is mainly reflected in the NOx emissions in China and India.
CEDS2021 has a lower estimate of the global NMVOCs emission than CEDS2016
by more than 10% during the recent decades, attributed to lower emissions
from Africa, Central and South America, the Middle East and India. The using
of the CEDS2021 emission inventory in this study could reduce the contributions
of NOx emissions from East Asia and South Asia to the U.S. O3z mixing ratios
and trends, as compared to CEDSz2016. However, recent study reported a
difference in aviation emission distribution of NOx between CMIPS and CMIP6
related to an error in data pre-processing in CEDS, leading to a northward shift
of Oz burden in CMIP6 (Thor et al., 2023). Therefore, the contribution of the
aircraft emissions of NOx to the O3z mixing ratios could be overestimated at high
latitude regions.

Surface Os measurements in the U.S. are obtained from the U.S.
Environmental Protection Agency (EPA). Linear trends of surface Os are
calculated separately for boreal summer (June-July-August, JJA) and winter
(December-January-February, DJF). Seasonal mean for any site that has less
than 50% data availability in any month of a season is discarded following Lin
et al. (2017). Os trends is calculated only when the seasonal data availability is
greater than 85% during the analyzed period (more than 22 years). Trends in
this study are calculated based on the linear least-squares regressions and the
statistical significance is identified through the F test with the 95% confidence
level.

2.4 Experimental Design

In this study, four groups of experiments are conducted, each group
includes both NOx tagging simulation and reactive carbon tagging simulation.
Two BASE experiment groups include simulations with emission sectors and
regions, respectively, tagged for the two chemical distinct precursors. The

BASE experiments are performed with time-varying anthropogenic emissions
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and winds nudged to MERRA-2 reanalysis. The other two groups of sensitivity
experiments (MET) are the same as BASE experiments, except that the
anthropogenic emissions are held at year 2019 level during simulations. All
experiments are performed over 1990-2019, with the first 5 years treated as
model spin-up and the last 25 years used for analysis. The BASE experiments
are analyzed to quantify the source attributions of Oz in the U.S., unless stated
otherwise. We note that although the wind fields are nudged at a 6-hourly
relaxation timescale, the atmospheric dynamics could also be slightly different
between simulations, leading to the slight changes in the contributions from the
same tags between simulations.
2.5 Model Evaluation

Figure 2 compares the simulated near-surface O3z mixing ratios with those
from observations in 1995 and 2019, respectively. In general, the model
overestimates Os mixing ratios in the U.S. in both summer and winter by 10—
40%. It can capture the seasonal pattern of Oz that high mixing ratios in summer
and low mixing ratios in winter. The spatial distributions can also be roughly
captured by the model, with statistically significant correlation coefficients
between simulations and observations in the range of 0.21-0.45. From 1995 to
2019, the O3 mixing ratios in the U.S. decreased in summer and increased in
winter presented in observations. The model can produce the sign of the
changes, but has large biases in magnitudes, which will be discussed in the

following section.

3 Results
3.1 Ground-level ozone trends in the U.S.

Emissions of O3 precursors have substantially reduced since 1995 in both
the western U.S. (WUS, 100-125°W, 30—45°N) and eastern U.S. (EUS, 70—

100°W, 30-45°N), primarily owning to the reductions in anthropogenic
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emissions (Figs. S1-S3). However, the simulated annual near-surface Os
mixing ratios present opposite trends between WUS and EUS, with increases
in EUS but weak decreases in WUS, which also exist in observations (Fig. 3a).

The simulated contrasting trends in annual mean O3 mixing ratios between
the WUS and EUS are dominated by the strong decreases in O3 mixing ratios
in summer across the U.S. (Fig. 3b) and increased Os levels in winter over the
central-eastern U.S. during 1995-2019 (Fig. 3c). The opposite trends between
summer and winter have also been noted in many previous studies (e.g.,
Copper et al., 2012; Lin et al., 2017, Jaffe et al., 2018). The model reproduces
the observed Os trend over EUS in summer and roughly captures the Os trend
over WUS in winter (Table 1). The decreasing trend over WUS in summer and
increasing trend over EUS in winter, however, are largely overestimated in the
model, partly attributed to the coarse model resolution. The model also tends
to overestimate the weakening of NOx titration in winter, leading to the biases.
For spring and autumn, they are the transition between summer and winter,
having the similar spatial pattern of O3 trends as annual average, and will not
be concerned in this study.
3.2 Source attribution of ozone trends to emission sectors

During 1995-2019, summer and winter NOx emissions from energy and
surface transport sectors have significantly decreased in both WUS and EUS,
followed by industry and residential sectors, while those from aircraft have
increased slightly (Fig. 4). Emissions of NMVOCs from surface transportation,
solvents, industry, residential and waste sectors have decreased across the
U.S., while those from energy and agriculture have increased. CO emissions
have also significantly decreased over this time period.

The time series of the source sector contributions to Oz mixing ratios from
NOx and reactive carbon emissions are shown in Fig. 5 and the O3 trends in the

U.S. attributed to different emission source sectors are shown in Fig. 6. In
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summer, the Os attributed to NOx emissions from energy and surface
transportation decreased at the rate of 2.0+0.2 and 1.6£0.2 ppb/decade in WUS
and 3.2+0.2 and 1.7+0.2 ppb/decade in EUS, respectively (Figs. 6a and 6c).
On the contrary, the Os contributed by aircraft NOx emissions increased by 0.4
+ 0.0 ppb/decade in both WUS and EUS. Along with the reductions in
anthropogenic emissions, natural emissions are becoming increasingly
important as sources for Os formation near the surface. Although NOx
emissions from soil are held at the present-day climatological levels, they
account for 0.7+0.1 and 1.7+0.1 ppb/decade increase in WUS and EUS,
respectively, during 1995-2019, related to the changing Os production
efficiency under the more NOx-sensitive condition. Note that, during 1995-2019,
the molar ratio (mol N /mol C) of emitted NOx to NMVOCs reduced from 0.11 to
0.07 in WUS and from 0.14 to 0.07 in EUS, confirming the enhanced NOx-
sensitive condition during the analyzed time period. In recent decades, global
emissions from international shipping have increased rapidly (Eyring et al.,
2005; Muller-Casseres et al., 2021), but have declined near the coast of the
United States. Due to a strong chemical sink associated with photolysis of O3
with subsequent production of hydroxyl radical (OH) from water vapor in
summer (Johnson et al., 1999), the effect of increased international shipping
emissions over the remote ocean regions on the continental U.S. was blunted.
But the increase in shipping emissions inland tends to increase O3z mixing ratios
in eastern U.S. (Fig. S4).

In summer, biogenic sources dominate the emissions of NMVOCs in the
U.S. (Fig. S3). As the Os decreases, mainly due to the reductions in domestic
NOx emissions, the contributions from biogenic emissions of NMVOCs have a
decreasing trend in the U.S. during 1995-2019 (Figs. 6b and 6d), even though
biogenic emissions were fixed during simulations. This also applies to CHa, of

which the mixing ratio was kept constant. This does not actually mean that CHas
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and biogenic NMVOCs themselves contributed to the overall O3 trend through
changing the precursor levels since they were kept constant during simulations;
rather, mainly due to the reductions in NOx emissions, O3 production efficiency
by reactive carbon species decreases, leading to decreasing trends of Os
contribution by CH4 and biogenic NMVOCs. In conjunction with NOx emission
reductions, decreases in NMVOCs emissions from surface transportation and
industry sectors contribute negative Os trends of —-0.3+0.0 and —0.1£0.0
ppb/decade, respectively, in both WUS and EUS in summer (Figs 6b and 6d),
which are offset by the increases in NMVOCs emissions from energy and
agriculture sectors. Although the O3 production efficiency of CO is relatively low,
the contributions of CO to Os mixing ratios largely decreased with trends of —
0.6+0.1 and -0.5+0.1 ppb/decade in WUS and EUS, respectively, due to the
massive reduction in anthropogenic emissions of CO (Fig. S1).

In winter, through the weakened NOx titration process (Gao et al., 2013;
Simon et al., 2015), the NOx emission control causes an increase in O3 levels
during 1995-2019, especially the contribution from surface transportation
(0.4+0.0 ppb/decade in WUS and 0.8+0.1 ppb/decade in EUS) (Figs. 6e and
6g). Although aircraft NOx emissions slightly increased, O3 attributed to aircraft
NOx emissions shows positive trends as large as 0.4+0.0 and 0.6%£0.0
ppb/decade in WUS and EUS, respectively. It is because aircraft emissions are
injected directly into the upper troposphere and lower stratosphere in a low
ambient NOx condition and have a much higher Os enhancement efficiency
than surface emissions (Hodnebrog et al., 2011). It can be confirmed that the
NOx from aircraft contributes to the increase in O3z mixing ratios at 250 hPa in
high latitude regions of the Northern Hemisphere during 1995-2019 (Fig. S5).
The decrease in near-shore shipping emissions weakened the NOx titration,
together with the weakened Os chemical sink from water vapor in winter,

leading to large increasing trends of O3 by 0.8+0.1 and 1.0+£0.1 ppb/decade,
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respectively, in the WUS and EUS during 1995-2019. Although most natural
emissions do not change during the simulations, the net Oz chemical production
is more sensitive to NOx under the emission control condition, resulting in the
increasing Os trends contributed by the soil and lightning NOx emissions. Due
to the weakened NOx titration in winter, the contribution of stratospheric
intrusion increases at a rate of 0.6+0.1 and 1.0+0.1 ppb/decade over WUS and
EUS, respectively, when stratospheric contribution to the near-surface Os is
relatively high (Butler et al., 2018). Along with the weakened NOx titration,
contributions from reactive carbon emissions to the near-surface Oz in the U.S.
also increase for most species and sectors (Figs. 6f and 6h).
3.3 Source attribution of ozone trends to emission regions

Time series of the source region contributions to near-surface O3z mixing
ratios are shown in Fig. 7 and the Os trends in the U.S. attributed to different
emission source regions are presented in Fig. 8. In summer, domestic
anthropogenic NOx emissions (excluding those from soil) within North America
account for 49% of the near-surface O3z mixing ratio averaged over the U.S.
(WUS+EUS) in 1995-2019. The domestic emission reduction is the dominant
factor causing the decline in surface Os mixing ratios, with contributions of —
4.4+0.2 and -5.7+0.3 ppb/decade to the trends over WUS and EUS,
respectively, during 1995-2019 (Figs. 8a and 8c). Reductions in the NMVOCs
emissions from North American anthropogenic sources also decrease Os
mixing ratios (Figs. 8b and 8d), accompanying with the domestic NOx emission
control. The increase in NOx emissions from Asia contributes 0.7+0.1
ppb/decade to the total Os increasing trend in WUS, partly offsetting the
negative impact of domestic emission reductions, but has a weak impact in EUS,
which is consistent with previous studies (Lin et al., 2017).

In winter, domestic anthropogenic NOx emissions only account for 19% of

the surface O3 mixing ratio in the U.S. over 1995-2019, while NOx sources from
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lightning, rest of the world (mainly from the international shipping), and Asia
contribute 17%, 14%, and 11%, respectively. O3z from stratospheric intrusion
contributes 21% of the near-surface Os in the U.S. in winter. During 1995-2019,
the significant increase in wintertime surface Oz mixing ratios are not directly
linked to the reductions in domestic anthropogenic emissions (Figs. 8e and 89).
However, the domestic emission control weakens the NOx titration, resulting in
considerable increases in O3 originating from the natural sources, including O3
from stratospheric intrusion, lightning and soil emissions. The natural sources
combined contribute to positive Os trends of 1.2+0.2 and 2.4+0.3 ppb/decade
in WUS and EUS, respectively. If the Os increase is attributed to NMVOCs
emissions, the combined natural source contribution is even larger (1.4+0.2 in
WUS and 2.5+0.2 ppb/decade in EUS) (Figs. 8f and 8h). O3z produced by CH4
increases at rates of 1.3x0.1 and 2.1+0.1 ppb/decade in WUS and EUS,
respectively, due to the weakened NOx titration. Increases in aviation and
shipping emissions together explain the 1.2+0.1 and 1.5+0.1 ppb/decade of O3
trends in WUS and EUS, respectively (Figs. 6e and 6g). Long-range transport
of O3 produced from Asian NOx emissions enhances the wintertime O3
increasing trends by 0.9+0.1 and 1.2+0.1 ppb/decade in WUS and EUS,
respectively, which are equally contributed by sources from East Asia, South
Asia, and Southeast Asia (Figs. 8e and 8g).
3.4. Impact of variations in large-scale circulations on ozone trends
Many studies have reported that Os spatial distribution is strongly
modulated by changes in large-scale circulations (e.g., Shen and Mickley, 2017;
Yang et al., 2014, 2022). Based on our MET experiments with anthropogenic
emissions kept unchanged, the changes in large-scale circulations show a
weak influence on the U.S. Os trends in summer (Fig. 9a) but cause a significant
Os rise in the central U.S. in winter (Fig. 9b). Averaged over the U.S., the near-

surface O3 mixing ratio in winter increases at the rate of 0.7+0.3 ppb/decade
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during 1995-2019 in MET experiments. It suggests that the variation in large-
scale circulations is responsible for 15% of the increasing trend in wintertime
O3 mixing ratio by 4.7+0.3 ppb/decade in the U.S. during 1995-2019 simulated
in BASE experiment.

The changes in atmospheric circulation pattern support the above finding.
Compared to 1995-1999, anomalous northerly winds locate over high latitudes
of North America in 2015-2019 (Fig. 9c), strengthening the prevailing northerly
winds in winter. In addition, an anomalous subsidence occurs over the central
U.S. in 2015-2019, compared to 1995-1999 (Fig. 9d). The anomalous
subsidence transport Os from high altitudes and even stratosphere to the
surface and the strengthened winds transport Oz from remote regions (e.g., Os
produced by Asian NOx emission) to the central U.S., both contributing to
0.2+0.1 ppb/decade of the Os increase over the U.S. (Fig. 10). The finding is
consistent with Lin et al. (2015) that variations in the circulation facilitate Oz
transport from upper altitudes to the surface, as well as foreign contributions
from Asia. The anomalous atmospheric circulation is likely linked to the location

of the midlatitude jet stream, which is influenced by ENSO cycle.

4. Conclusions and discussions

Using a global chemistry—climate model equipped with an Os source
tagging technique, we examine the long-term trends and source apportionment
of Os in the continental U.S. over 1995-2019 to various emission source
sectors and regions in this study. This model can capture the O3 decreasing
trend over the EUS in summer and increasing trend over the WUS in winter
during this time period, but largely overestimates the decreasing trend over
WUS in summer and increasing trend over EUS in winter.

In summer, our simulation results show that the decline in surface Os is

dominated by the rapid reductions in NOx emissions from energy and surface
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transportation sectors, contributing to Os decreases at a rate of —2.0 and —-1.6
ppb/decade in WUS and -3.2 and —1.7 ppb/decade in EUS, respectively. As
the anthropogenic NOx decreases, the more NOx-sensitive condition leads to a
positive Os trend of 0.7 and 1.7 ppb/decade in WUS and EUS, respectively,
contributed by the NOx emissions from soil. Due to the reductions in NOx
emissions, the Os production efficiency by reactive carbon species also
decreased, leading to the decreasing contributions to Os from reactive carbon
species in summer during 1995-2019. Even though biogenic NMVOCs
emissions and CHs mixing ratio were fixed during simulations, their
contributions also decreased related to the weakened Os production efficiency
by these precursors. Source region tagging suggests that the domestic
emission reductions are primarily responsible for the decreasing trend in
summertime near-surface Os mixing ratios in the U.S. during 1995-2019.

The mechanisms of wintertime Os increases over the U.S. are more
complicated. First, the domestic emission control weakens the NOx titration,
resulting in considerable increases in Os originating from natural sources,
including Os from stratospheric intrusion, lightning, soil and biogenic emissions.
The natural sources combined contribute a positive Oz trend of more than 1 and
2 ppb/decade in WUS and EUS, respectively. Second, increases in aviation and
shipping emissions together explain the 1.2 and 1.5 ppb/decade of Os trends in
WUS and EUS, respectively. Third, long-range transport of O3 produced from
Asian NOx emissions enhances the wintertime O3 increasing trends by 0.9 and
1.2 ppb/decade in WUS and EUS, respectively. Fourth, the variation of
horizontal and vertical transport O3 associated with the changes in large-scale
circulation contributes to the near-surface Os increases over the U.S. by 15%
in winter during 1995-2019.

Compared to observations, the decreasing trend of O3 mixing ratios over

WUS in summer and increasing trend over EUS in winter are overestimated in
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the CAM4-chem model. Because most Oz monitors are located in urban areas
and these areas generate strong Os during the day and have strong oxidation
titration at night, the daily and grid averaged Os mixing ratios output by the
model could be inconsistent with the urban observations. The overestimate of
Os trend in the EUS might be related to a potential biased model representation
of vertical mixing in winter. Large uncertainties existing in the emissions also
result in the biases in the Os simulation. Lin et al. (2017) found that the
contribution from increasing Asian emissions offset that from the U.S. emission
reductions, resulting in a weak O3 trend in WUS. In this study, the Asian NOx
emissions only contribute to 0.6 ppb/decade of the total positive trend in WUS
in summer, much lower than the 3.7 ppb/decade decrease attributable to the
domestic emission reductions, suggesting that the Asian contribution to the Os
trends in WUS is possibly underestimated in this study. We also found that the
model did not capture the significant increase in summertime O3 levels in China
in recent years, which could explain the low contribution from Asian sources.
Additionally, international shipping can have a disproportionately high influence
on tropospheric O3 due to the dispersed nature of NOx emissions (Butler et al.,
2020; Kasibhatla et al., 2000; von Glasow et al., 2003), together with the
weakened NOx titration, resulting in the overestimation of Os trends. The fixed
CH4 mixing ratio during simulations also biased the modeled Os trends, which
deserves further investigation with the varying CHa levels in future studies. The
coarse model resolution also contributed to the biases. The overestimate of O3
trend over EUS in winter, likely related to the bias in NOx titration, implies the
overestimate of source contributions to the trends in magnitude.

Compared with Butler et al. (2018), the simulation in this study shares
similar source sector contributions to the zonal average of O3 mixing ratios at
the surface and 400 hPa in 2010 (Figs. S7 and S8 in this study and Figs. 5 and

6 in Butler et al. (2018)). The contributions from the stratosphere and lightning
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NOx are relatively higher in this study than Butler et al. (2018). This may be
related to the different anthropogenic emission inventories used, causing
different O3 production/loss efficiencies by natural precursors. When comparing
the contributions from different source regions to surface O3 mixing ratios in
North America, NOx emissions from East Asia, South Asia, North America, and
Europe contributed 2.2, 1.1, 8.3, and 0.7 ppb of the surface Oz in North America,
respectively (Fig. S9) in this study, which are also similar to those from Fig. 4 in
Butler et al. (2020). Both studies show the contributions of anthropogenic

NMVOCs to surface O3 mixing ratios in North America are less than 10 ppb.
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903 Table 1. Os trends (ppb/decade) over eastern U.S. and western U.S. in winter
904 (December-January-February, DJF) and summer (June-July-August, JJA) from
905 observations and model simulations.

906
Season Source eastern U.S. western U.S.

DJF Observation 2.1+0.29 2.2+0.23
DJF Model 6.1 £0.40 3.2+0.28
JUJA Observation -3.0£0.41 -0.5+042
JJA Model -3.0+0.29 -2.3+0.20

907

908

909
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Figure 1. Source regions that are selected for O3 source tagging in this study,
include Africa (AFR), Central America (CAM), East Asia (EAS), Europe (EUR),
Middle East (MDE), North America (NAM), South Asia (SAS), Southeast Asia
(SEA) and rest of the world (ROW).
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Figure 2. The simulated (contours) and observed (scatters) seasonal mean
near-surface O3 mixing ratios over the United States in JJA (left) and DJF (right)
and in 1995 (top) and 2019 (bottom). The correlation coefficient and normalized
mean bias (NMB, > (Model — Observation) / > Observationx 100%) are

shown on top right of each panel.
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Figure 3. Linear trends (ppb/decade) of simulated (contours) and observed
(color-filled markers) (a) annual, (b) JJA and (c) DJF mean near-surface O3
mixing ratios during 1995-2019. Areas without hatches indicate statistical
significance with 95% confidence. The boxes in (a) mark the western U.S.
(WUS, 100-125°W, 30-45°N) and eastern U.S. (EUS, 70-100°W, 30-45°N),
respectively. The observed annual O3 mixing ratio trends in (a) are derived from
IPCC ARG, based on Cooper et al. (2020) and Gaudel et al. (2020) over 1995—
2017. The observed seasonal O3 mixing ratio trends in (b) and (c) are calculated

based on the U.S. EPA O3 measurements over 1995-2019.
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Figure 4. Linear trends of NOx and reactive carbon emissions from various
sectors in summer and winter over WUS and EUS. The increasing and
decreasing trends marked with red and blue values, respectively, indicate
statistical significance with 95% confidence.
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respectively, indicate statistical significance with 95% confidence. Other
sources having small contributions are combined and shown as OTH.
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Figure 8. Linear trends (ppb/decade) of near-surface O3 mixing ratios in
summer and winter over WUS and EUS contributed by the NOx (left) and
reactive carbon (right) emissions from various source regions (color bars). The
increasing and decreasing trends marked with red and blue color numbers,
respectively, indicate statistical significance with 95% confidence. Contributions
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having small contributions are combined and shown as OTH.
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Figure 10. Linear trends (ppb/decade) of near-surface O3 mixing ratios in
winter over the U.S, contributed by the NOx (a,c) and reactive carbon (b,d)
emissions from various source sectors (a,b) and regions (c,d). The increasing
and decreasing trends marked with red and blue color numbers, respectively,
indicate statistical significance with 95% confidence. Contributions from
source regions EAS, SAS and SEA are combined to ASIA. Some sources
having small contributions are combined and shown as OTH.
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