

Source attribution of near-surface ozone trends in the United States during 1995–2019

Pengwei Li¹, Yang Yang^{1*}, Hailong Wang², Su Li¹, Ke Li¹, Pinya Wang¹, Baojie Li¹, Hong Liao¹

¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science

Nanjing, Jiangsu, China

²Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA

17

18

19

20

21 **Abstract**

22 Emissions of ozone (O_3) precursors in the United States have decreased
23 in recent decades, and near-surface O_3 concentrations showed a significant
24 decrease in summer but an increase in winter. In this study, an O_3 source
25 tagging technique is utilized in a chemistry-climate model to investigate the
26 source contributions to O_3 mixing ratios in the U.S. from various emitting sectors
27 and regions of nitrogen oxides (NO_x) and reactive carbon species during 1995–
28 2019. We show that domestic emission reductions from energy and surface
29 transportation are primarily responsible for the decrease in summertime O_3
30 during 1995–2019. However, in winter, the emission control also weakens the
31 NO_x titration process, resulting in considerable increases in O_3 levels from
32 natural sources. Additionally, increases in aviation and shipping emissions and
33 transpacific transport of O_3 from Asia largely contribute to the winter O_3 increase.
34 We also found that changes in large-scale circulation favoring O_3 transport from
35 upper atmosphere and foreign transport from Asia also explain 15% of the
36 increase in the U.S. near-surface O_3 levels in winter.

37 **1. Introduction**

38 Ozone (O_3) near the surface has a significant impact on air quality and
39 public health (Haagen-Smit, 1952; Fleming et al., 2018). Since the increase in
40 anthropogenic emissions of O_3 precursors from preindustrial times, O_3 has now
41 become the third most important anthropogenic greenhouse gas in the
42 troposphere (Myhre et al., 2013). Major sources of O_3 in the troposphere
43 include the transport from the stratosphere and formation through
44 photochemical reactions within the troposphere involving two chemically
45 distinct groups of precursors: nitrogen oxides (NO_x) and reactive carbon
46 species, including carbon monoxide (CO), methane (CH_4), and non-methane
47 volatile organic compounds (NMVOCs) (Atkinson, 2000). O_3 precursors come
48 from a variety of sectors, and its relatively long lifetime of about 22 days
49 (Stevenson et al. 2006) favors the long-range transport of O_3 . Due to the
50 nonlinearity of the O_3 production and its associated dependence on precursor
51 emissions (Seinfeld and Pandis, 2006), attributing O_3 pollution to its sources is
52 complicated.

53 Since the 1980s, O_3 precursor emissions have significantly reduced in the
54 United States (Duncan et al., 2016; Xing et al., 2013; Zhang et al., 2016; Zhang
55 et al., 2021). However, due to the nonlinear production chemistry of O_3 ,
56 complex seasonal meteorological influence, and long-range transport from
57 foreign source regions, domestic emissions reductions do not imply a decrease
58 in seasonal and annual O_3 concentrations. According to remote surface
59 measurements (Cooper et al., 2020) and aircraft observations (Gaudel et al.,
60 2020), the Sixth Assessment Report of the Intergovernmental Panel on Climate
61 Change (Szopa et al., 2021) showed a decreasing trend in annual mean O_3
62 concentrations in the western U.S. but an increasing trend in the eastern U.S.
63 since the mid-1990s. On the seasonal timescale, surface observations and
64 modeling results showed that O_3 concentrations over the U.S. had decreased

65 in summer due to the reductions in domestic anthropogenic emissions and
66 increased in winter related to the weakened NO_x titration since the late 1980s
67 (Cooper et al., 2012; Lin et al., 2017). It also shows that the increased
68 background O₃, especially due to an increased transport from Asia, can partly
69 offset the benefit of domestic emissions control over the western U.S. in
70 summer.

71 Source apportionment is a useful method for quantifying contributions to
72 air pollutants from specific source regions and/or sectors, which is beneficial to
73 emission control strategies (Yang et al., 2018). One method of obtaining an O₃
74 source-receptor relationship is to zero out or perturb emissions from a given
75 source region or sector in sensitivity simulations along with a baseline
76 simulation, which gives information about the response of O₃ to changes in
77 precursor emissions (e.g., Fiore et al., 2009; Hoor et al., 2009). However,
78 emission perturbation method requires many additional model simulations
79 when being used to estimate the impacts of changes in multiple sources (Koo
80 et al., 2009; Wang et al., 2014). The perturbation method may invalidate the
81 assumption of a linear relationship between the magnitude of the emission
82 perturbation and the magnitude of the O₃ change considering the nonlinearity
83 in O₃ chemistry, especially if large perturbations (e.g. zeroing out regional or
84 sector-wide emissions) are used. The tagging approach produces information
85 about the contribution of precursor emissions to the total amount of O₃ (Butler
86 et al., 2020). The perturbation and tagging methods are two different methods
87 answering different scientific questions, with the first for the impacts and the
88 last for the contributions (Grewe et al. 2010, Emmons et al. 2012, Clappier et
89 al. 2017 and Thunis et al., 2019). Both of these two methods can be used for
90 specific purpose to provide a comprehensive understanding of source-receptor
91 relationships between precursor emissions and O₃ concentrations.

92 The source tagging method has been widely adopted in regional air quality

93 models to examine the O₃ attribution in the U.S., China, and/or Europe (Gao et
94 al., 2016; Collet et al., 2018; Lupaşcu and Butler, 2019). In some regional
95 models, O₃ apportionment is based on the ratio of chemical indicators to
96 determine the regime of O₃ generation (e.g., VOC-limited or NO_x-limited
97 regimes) and then attribute the generation of O₃ to the tag carried by a certain
98 precursor (VOCs or NO_x), which however cannot simultaneously attribute O₃
99 production to NO_x and VOCs, respectively (Dunker et al., 2002; Kwok et al.,
100 2015), while some models do not use the chemical indicators (Lupaşcu and
101 Butler, 2019; Mertens et al., 2020). In addition, due to the limitation in domain
102 size of regional air quality models, they are difficult to account for contributions
103 of intercontinental transport from several sources outside the model domain.
104 Recently, O₃ tagging techniques have been implemented in the global models
105 (e.g., Sudo and Akimoto, et al., 2007; Zhang et al., 2008; Emmons et al., 2012;
106 Grewe et al. 2017; Butler et al., 2018; Han et al., 2018; Bates and Jacob, 2020).
107 However, in many global models, O₃ is tagged by the production regions rather
108 than the precursor emission regions, so that O₃ can only be attributed to the
109 area where O₃ is generated, rather than the source of precursor emissions.

110 Here, based on a state-of-the-art tagging system implementation in a
111 global chemistry–climate model, the trends of near-surface O₃ mixing ratios in
112 the U.S. during 1995–2019 and the source attributions of the O₃ variations to
113 various emission sectors and regions of NO_x and reactive carbon species are
114 investigated in this study. Mechanisms of explaining the O₃ trends that involve
115 changes in anthropogenic emissions and large-scale circulations are also
116 explored.

117 **2. Methods**

118 **2.1 Model Description**

119 Tropospheric O₃ mixing ratios are simulated using the Community
120 Atmosphere Model version 4 with Chemistry (CAM4-chem) (Lamarque et al.,

121 2012; Tilmes et al., 2015), which is the atmospheric chemistry component of
122 the Community Earth System Model (CESM), at a horizontal resolution of 1.9°
123 latitude by 2.5° longitude with 26 vertical levels extending to 40 km above the
124 surface. The height of bottom layer is about 120 m and there are about 4 layers
125 under 2 km. The model configuration uses a comprehensive tropospheric
126 chemistry mechanism based on the Model for Ozone and Related chemical
127 Tracers version 4 (MOZART-4) (Emmons et al., 2010, 2012). Model
128 configurations simulate wet deposition of gas species using the Neu and
129 Prather (2011) scheme. Dry deposition is represented following the resistance
130 approach originally described in Wesely (1989). Stratosphere-troposphere
131 exchange of O₃ is treated by setting O₃ to stratospheric values as their
132 climatological means over 1996–2005 at the tropopause (Lamarque et al.,
133 2012), which is affected by atmospheric circulation and experiences the same
134 loss rates as O₃ in the troposphere (Tilmes et al., 2016). Sea surface
135 temperatures and sea ice concentrations in our simulations are prescribed at
136 present-day climatological conditions. The zonal and meridional wind fields are
137 nudged towards the MERRA-2 (Modern Era Retrospective-Analysis for
138 Research and Applications Version 2) reanalysis (Gelaro et al., 2017) at a 6-
139 hourly relaxation timescale in this study to better constrain large-scale
140 circulations by observations. The CAM4-chem performance in simulating
141 tropospheric O₃ and precursors has been fully evaluated in Tilmes et al. (2015).

142 **2.2 Ozone Source Tagging Technique**

143 The novel O₃ source tagging technique implemented in the model was
144 developed by Butler et al. (2018), which can provide a separate source
145 apportionment of tropospheric O₃ to the two distinct groups of precursor
146 emissions, i.e., NO_x and reactive carbon (CO, CH₄ and NMVOCs). The portion
147 of tropospheric O₃ that is attributable to the stratosphere-troposphere exchange
148 can also be quantified using this unique tagging technique. The source

149 attribution of O_3 requires two separate model runs with the tagging applied to
150 NO_x and reactive carbon species, respectively. Details of the O_3 tagging
151 technique are described in Butler et al. (2018).

152 In this study, near-surface O_3 is attributed to emission sectors and regions.
153 Emissions from individual sectors, including agriculture (AGR), energy (ENE),
154 industry (IND), residential, commercial and other (RCO), surface transportation
155 (TRA), waste management (WST), international shipping (SHP) and biomass
156 burning (BMB) emissions, as well as chemical production in the stratosphere
157 (STR) and extra chemical production (XTR, a small amount of O_3 produced due
158 to the self-reaction of OH radicals and the reactions of HO_2 with certain organic
159 peroxy radicals) are tagged for both NO_x and reactive carbon species. Aircraft
160 (AIR), soil (SOIL) and lightning (LGT) sources are separately tagged for NO_x
161 emissions, while solvents (SLV) and biogenic (BIO) sources are separately
162 tagged for NMVOCs emissions.

163 For the regional source attribution, we separately tag anthropogenic
164 sources from Africa (AFR), Central America (CAM), Europe (EUR), Middle East
165 (MDE), North America (NAM), East Asia (EAS), South Asia (SAS), Southeast
166 Asia (SEA) and rest of the world (ROW) (see Fig. 1 for the region map) and
167 natural sources (BMB, SOIL, LGT, BIO, STR and XTR). Additional tags for
168 methane (CH_4) and carbon monoxide (CO) are applied in both of the reactive
169 carbon tagging simulations that are used to attribute O_3 to emission sectors and
170 regions. We do not tag CH_4 by individual sources and the contributions of CH_4
171 from various sources are lumped in this study. It is because CH_4 has a relative
172 long lifetime in the troposphere and it is well mixed in the troposphere due to its
173 exceptionally low reactivity, which can contribute to O_3 formation at any location
174 in the troposphere where photochemical conditions are favorable (Fiore et al.,
175 2008). CO also has a longer lifetime and lower reactivity than most NMVOCs.
176 The lumped CO is tagged in the simulations for emission sectors, but not

177 specifically tagged in the simulations for emission regions due to the
178 computational limit.

179 **2.3 Emissions and Observation**

180 The global anthropogenic emissions, including NO_x, CO, NMVOCs, SO₂,
181 and NH₃, over 1990–2019 are from the Community Emissions Data System
182 (CEDS) version 20210205 (Hoesly et al., 2018) (See Table S1 and Figs. S1–
183 S3). Biomass burning emissions are obtained from the CMIP6 (Coupled Model
184 Intercomparison Project Phase 6) over 1990–2014 (van Marle et al., 2017) and
185 the emissions for the following five years (2015–2019) are interpolated from the
186 SSP2-4.5 forcing scenario (O'Neill et al., 2016). NO_x emitted from soils and
187 biogenic NMVOCs from vegetation are prescribed as in Tilmes et al. (2015) and
188 are kept at the present-day (2000) climatological levels during simulations.
189 Lightning emissions of NO_x are estimated online using the parameterization
190 based on simulated cloud top heights from Price et al. (1997), which is scaled
191 to provide a global annual emission of 3–5 Tg N yr⁻¹ (Lamarque et. al., 2012).
192 CH₄ is fixed at a global average level of 1760 parts per billion (ppb, volume ratio
193 in this study) during simulations.

194 Many studies have reported that the previous CEDS version 20160726
195 (hereafter CEDS₂₀₁₆) has large biases in the regional emission estimates (e.g.,
196 Cheng et al., 2021; Fan et al., 2018). In this study, the CEDS version 20210205
197 is used (hereafter CEDS₂₀₂₁), which builds on the extension of the CEDS
198 system described in McDuffie et al. (2020) and extends the anthropogenic
199 emissions to year 2019. It updates country-level emission inventories for North
200 America, Europe and China and has considered the significant emission
201 reductions in China since the clean air actions in recent years. The global total
202 NO_x emission from CEDS₂₀₂₁ is lower than that of CEDS₂₀₁₆ after 2006 and it
203 shows a fast decline since then. In 2014, the global total anthropogenic
204 emission of NO_x in CEDS₂₀₂₁ is about 10% lower than the CEDS₂₀₁₆ estimate.

205 This difference is mainly reflected in the NO_x emissions in China and India.
206 CEDS₂₀₂₁ has a lower estimate of the global NMVOCs emission than CEDS₂₀₁₆
207 by more than 10% during the recent decades, attributed to lower emissions
208 from Africa, Central and South America, the Middle East and India. The using
209 of the CEDS₂₀₂₁ emission inventory in this study could reduce the contributions
210 of NO_x emissions from East Asia and South Asia to the U.S. O₃ mixing ratios
211 and trends, as compared to CEDS₂₀₁₆. However, recent study reported a
212 difference in aviation emission distribution of NO_x between CMIP5 and CMIP6
213 related to an error in data pre-processing in CEDS, leading to a northward shift
214 of O₃ burden in CMIP6 (Thor et al., 2023). Therefore, the contribution of the
215 aircraft emissions of NO_x to the O₃ mixing ratios could be overestimated at high
216 latitude regions.

217 Surface O₃ measurements in the U.S. are obtained from the U.S.
218 Environmental Protection Agency (EPA). Linear trends of surface O₃ are
219 calculated separately for boreal summer (June-July-August, JJA) and winter
220 (December-January-February, DJF). Seasonal mean for any site that has less
221 than 50% data availability in any month of a season is discarded following Lin
222 et al. (2017). O₃ trends is calculated only when the seasonal data availability is
223 greater than 85% during the analyzed period (more than 22 years). Trends in
224 this study are calculated based on the linear least-squares regressions and the
225 statistical significance is identified through the F test with the 95% confidence
226 level.

227 **2.4 Experimental Design**

228 In this study, four groups of experiments are conducted, each group
229 includes both NO_x tagging simulation and reactive carbon tagging simulation.
230 Two BASE experiment groups include simulations with emission sectors and
231 regions, respectively, tagged for the two chemical distinct precursors. The
232 BASE experiments are performed with time-varying anthropogenic emissions

233 and winds nudged to MERRA-2 reanalysis. The other two groups of sensitivity
234 experiments (MET) are the same as BASE experiments, except that the
235 anthropogenic emissions are held at year 2019 level during simulations. All
236 experiments are performed over 1990–2019, with the first 5 years treated as
237 model spin-up and the last 25 years used for analysis. The BASE experiments
238 are analyzed to quantify the source attributions of O₃ in the U.S., unless stated
239 otherwise. We note that although the wind fields are nudged at a 6-hourly
240 relaxation timescale, the atmospheric dynamics could also be slightly different
241 between simulations, leading to the slight changes in the contributions from the
242 same tags between simulations.

243 **2.5 Model Evaluation**

244 Figure 2 compares the simulated near-surface O₃ mixing ratios with those
245 from observations in 1995 and 2019, respectively. In general, the model
246 overestimates O₃ mixing ratios in the U.S. in both summer and winter by 10–
247 40%. It can capture the seasonal pattern of O₃ that high mixing ratios in summer
248 and low mixing ratios in winter. The spatial distributions can also be roughly
249 captured by the model, with statistically significant correlation coefficients
250 between simulations and observations in the range of 0.21–0.45. From 1995 to
251 2019, the O₃ mixing ratios in the U.S. decreased in summer and increased in
252 winter presented in observations. The model can produce the sign of the
253 changes, but has large biases in magnitudes, which will be discussed in the
254 following section.

255

256 **3 Results**

257 **3.1 Ground-level ozone trends in the U.S.**

258 Emissions of O₃ precursors have substantially reduced since 1995 in both
259 the western U.S. (WUS, 100–125°W, 30–45°N) and eastern U.S. (EUS, 70–
260 100°W, 30–45°N), primarily owing to the reductions in anthropogenic

261 emissions (Figs. S1–S3). However, the simulated annual near-surface O₃
262 mixing ratios present opposite trends between WUS and EUS, with increases
263 in EUS but weak decreases in WUS, which also exist in observations (Fig. 3a).

264 The simulated contrasting trends in annual mean O₃ mixing ratios between
265 the WUS and EUS are dominated by the strong decreases in O₃ mixing ratios
266 in summer across the U.S. (Fig. 3b) and increased O₃ levels in winter over the
267 central-eastern U.S. during 1995–2019 (Fig. 3c). The opposite trends between
268 summer and winter have also been noted in many previous studies (e.g.,
269 Copper et al., 2012; Lin et al., 2017, Jaffe et al., 2018). The model reproduces
270 the observed O₃ trend over EUS in summer and roughly captures the O₃ trend
271 over WUS in winter (Table 1). The decreasing trend over WUS in summer and
272 increasing trend over EUS in winter, however, are largely overestimated in the
273 model, partly attributed to the coarse model resolution. The model also tends
274 to overestimate the weakening of NO_x titration in winter, leading to the biases.
275 For spring and autumn, they are the transition between summer and winter,
276 having the similar spatial pattern of O₃ trends as annual average, and will not
277 be concerned in this study.

278 **3.2 Source attribution of ozone trends to emission sectors**

279 During 1995–2019, summer and winter NO_x emissions from energy and
280 surface transport sectors have significantly decreased in both WUS and EUS,
281 followed by industry and residential sectors, while those from aircraft have
282 increased slightly (Fig. 4). Emissions of NMVOCs from surface transportation,
283 solvents, industry, residential and waste sectors have decreased across the
284 U.S., while those from energy and agriculture have increased. CO emissions
285 have also significantly decreased over this time period.

286 The time series of the source sector contributions to O₃ mixing ratios from
287 NO_x and reactive carbon emissions are shown in Fig. 5 and the O₃ trends in the
288 U.S. attributed to different emission source sectors are shown in Fig. 6. In

289 summer, the O_3 attributed to NO_x emissions from energy and surface
290 transportation decreased at the rate of 2.0 ± 0.2 and 1.6 ± 0.2 ppb/decade in WUS
291 and 3.2 ± 0.2 and 1.7 ± 0.2 ppb/decade in EUS, respectively (Figs. 6a and 6c).
292 On the contrary, the O_3 contributed by aircraft NO_x emissions increased by 0.4
293 ± 0.0 ppb/decade in both WUS and EUS. Along with the reductions in
294 anthropogenic emissions, natural emissions are becoming increasingly
295 important as sources for O_3 formation near the surface. Although NO_x
296 emissions from soil are held at the present-day climatological levels, they
297 account for 0.7 ± 0.1 and 1.7 ± 0.1 ppb/decade increase in WUS and EUS,
298 respectively, during 1995–2019, related to the changing O_3 production
299 efficiency under the more NO_x -sensitive condition. Note that, during 1995–2019,
300 the molar ratio (mol N /mol C) of emitted NO_x to NMVOCs reduced from 0.11 to
301 0.07 in WUS and from 0.14 to 0.07 in EUS, confirming the enhanced NO_x -
302 sensitive condition during the analyzed time period. In recent decades, global
303 emissions from international shipping have increased rapidly (Eyring et al.,
304 2005; Müller-Casseres et al., 2021), but have declined near the coast of the
305 United States. Due to a strong chemical sink associated with photolysis of O_3
306 with subsequent production of hydroxyl radical (OH) from water vapor in
307 summer (Johnson et al., 1999), the effect of increased international shipping
308 emissions over the remote ocean regions on the continental U.S. was blunted.
309 But the increase in shipping emissions inland tends to increase O_3 mixing ratios
310 in eastern U.S. (Fig. S4).

311 In summer, biogenic sources dominate the emissions of NMVOCs in the
312 U.S. (Fig. S3). As the O_3 decreases, mainly due to the reductions in domestic
313 NO_x emissions, the contributions from biogenic emissions of NMVOCs have a
314 decreasing trend in the U.S. during 1995–2019 (Figs. 6b and 6d), even though
315 biogenic emissions were fixed during simulations. This also applies to CH_4 , of
316 which the mixing ratio was kept constant. This does not actually mean that CH_4

317 and biogenic NMVOCs themselves contributed to the overall O₃ trend through
318 changing the precursor levels since they were kept constant during simulations;
319 rather, mainly due to the reductions in NO_x emissions, O₃ production efficiency
320 by reactive carbon species decreases, leading to decreasing trends of O₃
321 contribution by CH₄ and biogenic NMVOCs. In conjunction with NO_x emission
322 reductions, decreases in NMVOCs emissions from surface transportation and
323 industry sectors contribute negative O₃ trends of -0.3 ± 0.0 and -0.1 ± 0.0
324 ppb/decade, respectively, in both WUS and EUS in summer (Figs 6b and 6d),
325 which are offset by the increases in NMVOCs emissions from energy and
326 agriculture sectors. Although the O₃ production efficiency of CO is relatively low,
327 the contributions of CO to O₃ mixing ratios largely decreased with trends of $-$
328 0.6 ± 0.1 and -0.5 ± 0.1 ppb/decade in WUS and EUS, respectively, due to the
329 massive reduction in anthropogenic emissions of CO (Fig. S1).

330 In winter, through the weakened NO_x titration process (Gao et al., 2013;
331 Simon et al., 2015), the NO_x emission control causes an increase in O₃ levels
332 during 1995–2019, especially the contribution from surface transportation
333 (0.4 ± 0.0 ppb/decade in WUS and 0.8 ± 0.1 ppb/decade in EUS) (Figs. 6e and
334 6g). Although aircraft NO_x emissions slightly increased, O₃ attributed to aircraft
335 NO_x emissions shows positive trends as large as 0.4 ± 0.0 and 0.6 ± 0.0
336 ppb/decade in WUS and EUS, respectively. It is because aircraft emissions are
337 injected directly into the upper troposphere and lower stratosphere in a low
338 ambient NO_x condition and have a much higher O₃ enhancement efficiency
339 than surface emissions (Hodnebrog et al., 2011). It can be confirmed that the
340 NO_x from aircraft contributes to the increase in O₃ mixing ratios at 250 hPa in
341 high latitude regions of the Northern Hemisphere during 1995–2019 (Fig. S5).
342 The decrease in near-shore shipping emissions weakened the NO_x titration,
343 together with the weakened O₃ chemical sink from water vapor in winter,
344 leading to large increasing trends of O₃ by 0.8 ± 0.1 and 1.0 ± 0.1 ppb/decade,

345 respectively, in the WUS and EUS during 1995–2019. Although most natural
346 emissions do not change during the simulations, the net O₃ chemical production
347 is more sensitive to NO_x under the emission control condition, resulting in the
348 increasing O₃ trends contributed by the soil and lightning NO_x emissions. Due
349 to the weakened NO_x titration in winter, the contribution of stratospheric
350 intrusion increases at a rate of 0.6±0.1 and 1.0±0.1 ppb/decade over WUS and
351 EUS, respectively, when stratospheric contribution to the near-surface O₃ is
352 relatively high (Butler et al., 2018). Along with the weakened NO_x titration,
353 contributions from reactive carbon emissions to the near-surface O₃ in the U.S.
354 also increase for most species and sectors (Figs. 6f and 6h).

355 **3.3 Source attribution of ozone trends to emission regions**

356 Time series of the source region contributions to near-surface O₃ mixing
357 ratios are shown in Fig. 7 and the O₃ trends in the U.S. attributed to different
358 emission source regions are presented in Fig. 8. In summer, domestic
359 anthropogenic NO_x emissions (excluding those from soil) within North America
360 account for 49% of the near-surface O₃ mixing ratio averaged over the U.S.
361 (WUS+EUS) in 1995–2019. The domestic emission reduction is the dominant
362 factor causing the decline in surface O₃ mixing ratios, with contributions of –
363 4.4±0.2 and –5.7±0.3 ppb/decade to the trends over WUS and EUS,
364 respectively, during 1995–2019 (Figs. 8a and 8c). Reductions in the NMVOCs
365 emissions from North American anthropogenic sources also decrease O₃
366 mixing ratios (Figs. 8b and 8d), accompanying with the domestic NO_x emission
367 control. The increase in NO_x emissions from Asia contributes 0.7±0.1
368 ppb/decade to the total O₃ increasing trend in WUS, partly offsetting the
369 negative impact of domestic emission reductions, but has a weak impact in EUS,
370 which is consistent with previous studies (Lin et al., 2017).

371 In winter, domestic anthropogenic NO_x emissions only account for 19% of
372 the surface O₃ mixing ratio in the U.S. over 1995–2019, while NO_x sources from

373 lightning, rest of the world (mainly from the international shipping), and Asia
374 contribute 17%, 14%, and 11%, respectively. O_3 from stratospheric intrusion
375 contributes 21% of the near-surface O_3 in the U.S. in winter. During 1995–2019,
376 the significant increase in wintertime surface O_3 mixing ratios are not directly
377 linked to the reductions in domestic anthropogenic emissions (Figs. 8e and 8g).
378 However, the domestic emission control weakens the NO_x titration, resulting in
379 considerable increases in O_3 originating from the natural sources, including O_3
380 from stratospheric intrusion, lightning and soil emissions. The natural sources
381 combined contribute to positive O_3 trends of 1.2 ± 0.2 and 2.4 ± 0.3 ppb/decade
382 in WUS and EUS, respectively. If the O_3 increase is attributed to NMVOCs
383 emissions, the combined natural source contribution is even larger (1.4 ± 0.2 in
384 WUS and 2.5 ± 0.2 ppb/decade in EUS) (Figs. 8f and 8h). O_3 produced by CH_4
385 increases at rates of 1.3 ± 0.1 and 2.1 ± 0.1 ppb/decade in WUS and EUS,
386 respectively, due to the weakened NO_x titration. Increases in aviation and
387 shipping emissions together explain the 1.2 ± 0.1 and 1.5 ± 0.1 ppb/decade of O_3
388 trends in WUS and EUS, respectively (Figs. 6e and 6g). Long-range transport
389 of O_3 produced from Asian NO_x emissions enhances the wintertime O_3
390 increasing trends by 0.9 ± 0.1 and 1.2 ± 0.1 ppb/decade in WUS and EUS,
391 respectively, which are equally contributed by sources from East Asia, South
392 Asia, and Southeast Asia (Figs. 8e and 8g).

393 **3.4. Impact of variations in large-scale circulations on ozone trends**

394 Many studies have reported that O_3 spatial distribution is strongly
395 modulated by changes in large-scale circulations (e.g., Shen and Mickley, 2017;
396 Yang et al., 2014, 2022). Based on our MET experiments with anthropogenic
397 emissions kept unchanged, the changes in large-scale circulations show a
398 weak influence on the U.S. O_3 trends in summer (Fig. 9a) but cause a significant
399 O_3 rise in the central U.S. in winter (Fig. 9b). Averaged over the U.S., the near-
400 surface O_3 mixing ratio in winter increases at the rate of 0.7 ± 0.3 ppb/decade

401 during 1995–2019 in MET experiments. It suggests that the variation in large-
402 scale circulations is responsible for 15% of the increasing trend in wintertime
403 O₃ mixing ratio by 4.7 ± 0.3 ppb/decade in the U.S. during 1995–2019 simulated
404 in BASE experiment.

405 The changes in atmospheric circulation pattern support the above finding.
406 Compared to 1995–1999, anomalous northerly winds locate over high latitudes
407 of North America in 2015–2019 (Fig. 9c), strengthening the prevailing northerly
408 winds in winter. In addition, an anomalous subsidence occurs over the central
409 U.S. in 2015–2019, compared to 1995–1999 (Fig. 9d). The anomalous
410 subsidence transport O₃ from high altitudes and even stratosphere to the
411 surface and the strengthened winds transport O₃ from remote regions (e.g., O₃
412 produced by Asian NO_x emission) to the central U.S., both contributing to
413 0.2 \pm 0.1 ppb/decade of the O₃ increase over the U.S. (Fig. 10). The finding is
414 consistent with Lin et al. (2015) that variations in the circulation facilitate O₃
415 transport from upper altitudes to the surface, as well as foreign contributions
416 from Asia. The anomalous atmospheric circulation is likely linked to the location
417 of the midlatitude jet stream, which is influenced by ENSO cycle.

418

419 **4. Conclusions and discussions**

420 Using a global chemistry–climate model equipped with an O₃ source
421 tagging technique, we examine the long-term trends and source apportionment
422 of O₃ in the continental U.S. over 1995–2019 to various emission source
423 sectors and regions in this study. This model can capture the O₃ decreasing
424 trend over the EUS in summer and increasing trend over the WUS in winter
425 during this time period, but largely overestimates the decreasing trend over
426 WUS in summer and increasing trend over EUS in winter.

427 In summer, our simulation results show that the decline in surface O₃ is
428 dominated by the rapid reductions in NO_x emissions from energy and surface

429 transportation sectors, contributing to O_3 decreases at a rate of -2.0 and -1.6
430 ppb/decade in WUS and -3.2 and -1.7 ppb/decade in EUS, respectively. As
431 the anthropogenic NO_x decreases, the more NO_x -sensitive condition leads to a
432 positive O_3 trend of 0.7 and 1.7 ppb/decade in WUS and EUS, respectively,
433 contributed by the NO_x emissions from soil. Due to the reductions in NO_x
434 emissions, the O_3 production efficiency by reactive carbon species also
435 decreased, leading to the decreasing contributions to O_3 from reactive carbon
436 species in summer during 1995–2019. Even though biogenic NMVOCS
437 emissions and CH_4 mixing ratio were fixed during simulations, their
438 contributions also decreased related to the weakened O_3 production efficiency
439 by these precursors. Source region tagging suggests that the domestic
440 emission reductions are primarily responsible for the decreasing trend in
441 summertime near-surface O_3 mixing ratios in the U.S. during 1995–2019.

442 The mechanisms of wintertime O_3 increases over the U.S. are more
443 complicated. First, the domestic emission control weakens the NO_x titration,
444 resulting in considerable increases in O_3 originating from natural sources,
445 including O_3 from stratospheric intrusion, lightning, soil and biogenic emissions.
446 The natural sources combined contribute a positive O_3 trend of more than 1 and
447 2 ppb/decade in WUS and EUS, respectively. Second, increases in aviation and
448 shipping emissions together explain the 1.2 and 1.5 ppb/decade of O_3 trends in
449 WUS and EUS, respectively. Third, long-range transport of O_3 produced from
450 Asian NO_x emissions enhances the wintertime O_3 increasing trends by 0.9 and
451 1.2 ppb/decade in WUS and EUS, respectively. Fourth, the variation of
452 horizontal and vertical transport O_3 associated with the changes in large-scale
453 circulation contributes to the near-surface O_3 increases over the U.S. by 15%
454 in winter during 1995–2019.

455 Compared to observations, the decreasing trend of O_3 mixing ratios over
456 WUS in summer and increasing trend over EUS in winter are overestimated in

457 the CAM4-chem model. Because most O₃ monitors are located in urban areas
458 and these areas generate strong O₃ during the day and have strong oxidation
459 titration at night, the daily and grid averaged O₃ mixing ratios output by the
460 model could be inconsistent with the urban observations. The overestimate of
461 O₃ trend in the EUS might be related to a potential biased model representation
462 of vertical mixing in winter. Large uncertainties existing in the emissions also
463 result in the biases in the O₃ simulation. Lin et al. (2017) found that the
464 contribution from increasing Asian emissions offset that from the U.S. emission
465 reductions, resulting in a weak O₃ trend in WUS. In this study, the Asian NO_x
466 emissions only contribute to 0.6 ppb/decade of the total positive trend in WUS
467 in summer, much lower than the 3.7 ppb/decade decrease attributable to the
468 domestic emission reductions, suggesting that the Asian contribution to the O₃
469 trends in WUS is possibly underestimated in this study. We also found that the
470 model did not capture the significant increase in summertime O₃ levels in China
471 in recent years, which could explain the low contribution from Asian sources.
472 Additionally, international shipping can have a disproportionately high influence
473 on tropospheric O₃ due to the dispersed nature of NO_x emissions (Butler et al.,
474 2020; Kasibhatla et al., 2000; von Glasow et al., 2003), together with the
475 weakened NO_x titration, resulting in the overestimation of O₃ trends. The fixed
476 CH₄ mixing ratio during simulations also biased the modeled O₃ trends, which
477 deserves further investigation with the varying CH₄ levels in future studies. The
478 coarse model resolution also contributed to the biases. The overestimate of O₃
479 trend over EUS in winter, likely related to the bias in NO_x titration, implies the
480 overestimate of source contributions to the trends in magnitude.

481 Compared with Butler et al. (2018), the simulation in this study shares
482 similar source sector contributions to the zonal average of O₃ mixing ratios at
483 the surface and 400 hPa in 2010 (Figs. S7 and S8 in this study and Figs. 5 and
484 6 in Butler et al. (2018)). The contributions from the stratosphere and lightning

485 NO_x are relatively higher in this study than Butler et al. (2018). This may be
486 related to the different anthropogenic emission inventories used, causing
487 different O₃ production/loss efficiencies by natural precursors. When comparing
488 the contributions from different source regions to surface O₃ mixing ratios in
489 North America, NO_x emissions from East Asia, South Asia, North America, and
490 Europe contributed 2.2, 1.1, 8.3, and 0.7 ppb of the surface O₃ in North America,
491 respectively (Fig. S9) in this study, which are also similar to those from Fig. 4 in
492 Butler et al. (2020). Both studies show the contributions of anthropogenic
493 NMVOCs to surface O₃ mixing ratios in North America are less than 10 ppb.

494

495

496 **Author contributions.** YY designed the research; PL and SL performed
497 simulations; PL analyzed the data. All authors including HW, KL, PW, BL, and
498 HL discussed the results and wrote the paper.

499

500 **Code and data availability.** The CESM is maintained by NCAR and is provided
501 freely to the community. The ozone tagging code has been described by Butler
502 et al. (2018). The MERRA-2 reanalysis data are from NASA GESDISC data
503 (<https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I6NVANA.5.12.4/>,
504 last access: 1 August 2022). The surface O₃ measurements in U.S. are
505 obtained from the U.S. Environmental Protection Agency
506 (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Daily, last access: 1
507 August 2022). The modeling results are made available at
508 <https://doi.org/10.5281/zenodo.6891316> (last access: 1 August 2022).

509

510 **Acknowledgments**

511 HW acknowledges the support by the U.S. Department of Energy (DOE), Office
512 of Science, Office of Biological and Environmental Research (BER), as part of
513 the Earth and Environmental System Modeling program. The Pacific Northwest
514 National Laboratory (PNNL) is operated for DOE by the Battelle Memorial
515 Institute under contract DE-AC05-76RLO1830.

516

517 **Financial support.** This study was supported by the National Key Research
518 and Development Program of China (grant 2020YFA0607803), Jiangsu
519 Science Fund for Distinguished Young Scholars (grant BK20211541) and the
520 Jiangsu Science Fund for Carbon Neutrality (grant BK20220031).

521

522 **Competing interests.** The authors declare that they have no conflict of interest.
523

524 **References**

525

526 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, *Atmos. Environ.*, 34,
527 2063-2101, [https://doi.org/10.1016/S1352-2310\(99\)00460-4](https://doi.org/10.1016/S1352-2310(99)00460-4), 2000.

528

529 Bates, K. H. and Jacob, D. J.: An Expanded Definition of the Odd Oxygen
530 Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and
531 Stratospheric Influence, *Geophys. Res. Lett.*, 47, e2019GL084486,
532 <https://doi.org/10.1029/2019gl084486>, 2020.

533

534 Butler, T., Lupascu, A., and Nalam, A.: Attribution of ground-level ozone to
535 anthropogenic and natural sources of nitrogen oxides and reactive carbon in a
536 global chemical transport model, *Atmos. Chem. Phys.*, 20, 10707-10731,
537 <https://doi.org/10.5194/acp-20-10707-2020>, 2020.

538

539 Butler, T., Lupascu, A., Coates, J., and Zhu, S.: TOAST 1.0: Tropospheric
540 Ozone Attribution of Sources with Tagging for CESM 1.2.2, *Geosci. Model Dev.*,
541 11, 2825–2840, <https://doi.org/10.5194/gmd-11-2825-2018>, 2018.

542

543 Castellanos, P. and Boersma, K. F.: Reductions in nitrogen oxides over Europe
544 driven by environmental policy and economic recession, *Sci. Rep.*, 2, 265,
545 <https://doi.org/10.1038/srep00265>, 2012.

546

547 Cheng, J., Tong, D., Liu, Y., Yu, S., Yan, L., Zheng, B., Geng, G., He, K., and
548 Zhang, Q.: Comparison of current and future PM_{2.5} air quality in China under
549 CMIP6 and DPEC emission scenarios, *Geophys. Res. Lett.*, 48,
550 e2021GL093197, <https://doi.org/10.1029/2021GL093197>, 2021.

551

552 Collet, S., Kidokoro, T., Karamchandani, P., Jung, J., and Shah, T.: Future year
553 ozone source attribution modeling study using CMAQ-ISAM, *J. Air Waste
554 Manag. Assoc.*, 68, 1239-1247,
555 <https://doi.org/10.1080/10962247.2018.1496954>, 2018.

556

557 Cooper, O. R., Gao, R.-S., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-
558 term ozone trends at rural ozone monitoring sites across the United States,
559 1990-2010, *J. Geophys. Res. Atmos.*, 117, D22307,
560 <https://doi.org/10.1029/2012JD018261>, 2012.

561

562 Cooper, O. R., Schultz, M. G., Schröder, S., Chang, K.-L., Gaudel, A., Gerardo,
563 Benítez, C., Cuevas, E., Fröhlich, M., Galbally, I. E., Kubistin, D., Lu, X., Audra,
564 McClure-Begley, A., Molloy, S., Nédélec, P., O'Brien, J., Oltmans, S. J., Irina,
565 Petropavlovskikh, I., Ries, L., Senik, I., Sjöberg, K., Solberg, S., Spain, T. G.,

566 Spangl, W., Steinbacher, M., Tarasick, D., Thouret, V., and Xu, X.: Multi-decadal
567 surface ozone trends at globally distributed remote locations, *Elem. Sci. Anth.*,
568 8, 23, <https://doi.org/10.1525/elementa.420>, 2020.

569

570 Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source apportionment
571 and sensitivity analysis: two methodologies with two different purposes, *Geosci.*
572 *Model Dev.*, 10, 4245–4256, <https://doi.org/10.5194/gmd-10-4245-2017>, 2017.

573

574 Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D.
575 G., Hurwitz, M. M., and Pickering, K. E.: A space-based, high-resolution view of
576 notable changes in urban NO_x pollution around the world (2005–2014), *J. J.*
577 *Geophys. Res. Atmos.*, 21, 976–996, <https://doi.org/10.1002/2015JD024121>,
578 2016.

579

580 Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: Comparison of
581 Source Apportionment and Source Sensitivity of Ozone in a Three-Dimensional
582 Air Quality Model, *Environ. Sci. Technol.*, 36, 2953–2964,
583 <https://doi.org/10.1021/es011418f>, 2002.

584

585 Emmons, L. K., Hess, P. G., Lamarque, J.-F., and Pfister, G. G.: Tagged ozone
586 mechanism for MOZART-4, CAM-chem and other chemical transport models,
587 *Geosci. Model Dev.*, 5, 1531–1542, <https://doi.org/10.5194/gmd-5-1531-2012>,
588 2012.

589

590 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore,
591 D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X.,
592 Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and
593 evaluation of the Model for Ozone and Related chemical Tracers, version 4
594 (MOZART-4), *Geosci. Model Dev.*, 3, 43–67, <https://doi.org/10.5194/gmd-3-43-2010>, 2010.

596

597 Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions from
598 international shipping: 1. The last 50 years, *J. Geophys. Res.*, 110, D17305,
599 <https://doi.org/10.1029/2004JD005619>, 2005.

600

601 Fan, T., Liu, X., Ma, P.-L., Zhang, Q., Li, Z., Jiang, Y., Zhang, F., Zhao, C., Yang,
602 X., Wu, F., and Wang, Y.: Emission or atmospheric processes? An attempt to
603 attribute the source of large bias of aerosols in eastern China simulated by
604 global climate models, *Atmos. Chem. Phys.*, 18, 1395–1417,
605 <https://doi.org/10.5194/acp-18-1395-2018>, 2018.

606

607 Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:

608 Characterizing the tropospheric ozone response to methane emission controls
609 and the benefits to climate and air quality, *J. Geophys. Res.*, 113, D08307,
610 <https://doi.org/10.1029/2007JD009162>, 2008.

611

612 Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P.,
613 Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A.,
614 Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., van Dingenen,
615 R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J.,
616 Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine,
617 D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W.,
618 Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle,
619 K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S.,
620 and Zuber, A.: Multimodel estimates of intercontinental source-receptor
621 relationships for ozone pollution, *J. Geophys. Res.*, 114, D04301 ,
622 <https://doi.org/10.1029/2008JD010816>, 2009.

623

624 Fleming, Z. L., Doherty, R. M., Schneidemesser, E. V., Malley, C. S., Cooper, O.
625 R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G., Lefohn, A. S.,
626 Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric Ozone
627 Assessment Report: Present-day ozone distribution and trends relevant to
628 human health, *Elem. Sci. Anth.*, 6, 12, <https://doi.org/10.1525/elementa.273>,
629 2018.

630

631 Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., and Shao, P.: A case study of
632 surface ozone source apportionment during a high concentration episode,
633 under frequent shifting wind conditions over the Yangtze River Delta, China, *Sci.
634 Total Environ.*, 544, 853-863, <https://doi.org/10.1016/j.scitotenv.2015.12.039>,
635 2016.

636

637 Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J. F., and Liu, Y.: The impact of
638 emission and climate change on ozone in the United States under
639 representative concentration pathways (RCPs), *Atmos. Chem. Phys.*, 13, 9607-
640 9621, <https://doi.org/10.5194/acp-13-9607-2013>, 2013.

641

642 Gaudel, A., Cooper, O. R. , Chang, K. L., Bourgeois, I., Ziemke, J. R., Strode,
643 S. A., Oman, L. D., Sellitto, P., Nédélec, P., Bolt, R., Thouret, V. and Granier,C.:
644 Aircraft observations since the 1990s reveal increases of tropospheric ozone at
645 multiple locations across the Northern Hemisphere, *Sci. Adv.*, 6, eaba8272,
646 <https://doi.org/10.1126/sciadv.aba8272>, 2020.

647

648 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
649 Randles, C. A., Darmenov, A., Bosilovich, M. G., Re- icle, R., Wargan, K., Coy,

650 L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M.,
651 Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka,
652 G., Pawson, S., Putman, W., Riener, M., Schubert, S. D., Sienkiewicz, M.,
653 and Zhao, B.: The Modern-Era Retrospective Analysis for Research and
654 Applications, Version 2 (MERRA-2), *J. Climate*, 30, 5419–5454,
655 <https://doi.org/10.1175/JCLI-D-16-0758.1>, 2017.

656

657 Grewe, V., Tsati, E., Mertens, M., Frömming, C., and Jöckel, P.: Contribution of
658 emissions to concentrations: the TAGGING 1.0 submodel based on the
659 Modular Earth Submodel System (MESSy 2.52), *Geosci. Model Dev.*, 10,
660 2615–2633, <https://doi.org/10.5194/gmd-10-2615-2017>, 2017.

661

662 Haagen-Smit, A. J.: Chemistry and Physiology of Los Angeles Smog, *Ind. Eng.*
663 *Chem.*, 44, 1342–1346, <https://doi.org/10.1021/ie50510a045>, 1952.

664

665 Hodnebrog, Ø., Berntsen, T. K., Dessens, O., Gauss, M., Grewe, V., Isaksen, I.
666 S. A., Koffi, B., Myhre, G., Olivié, D., Prather, M. J., Pyle, J. A., Stordal, F., Szopa,
667 S., Tang, Q., van Velthoven, P., Williams, J. E., and Ødemark, K.: Future impact
668 of non-land based traffic emissions on atmospheric ozone and OH – an
669 optimistic scenario and a possible mitigation strategy, *Atmos. Chem. Phys.*, 11,
670 11293–11317, <https://doi.org/10.5194/acp-11-11293-2011>, 2011.

671

672 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
673 Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C.,
674 Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C.
675 P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic
676 emissions of reactive gases and aerosols from the Community Emissions Data
677 System (CEDS), *Geosci. Model Dev.*, 11, 369–408,
678 <https://doi.org/10.5194/gmd-11-369-2018>, 2018.

679

680 Han, H., Liu, J., Yuan, H., Zhuang, B., Zhu, Y., Wu, Y., Yan, Y., and Ding, A.:
681 Characteristics of intercontinental transport of tropospheric ozone from Africa
682 to Asia, *Atmos. Chem. Phys.*, 18, 4251–4276, <https://doi.org/10.5194/acp-18-4251-2018>, 2018.

684

685 Hoor, P., Borken-Kleefeld, J., Caro, D., Dessens, O., Endresen, Ø., Gauss, M.,
686 Grewe, V., Hauglustaine, D. A., Isaksen, I. S. A., Jöckel, P., Lelieveld, J., Myhre,
687 G., Meijer, E. W., Olivié, D., Prather, M. J., Poberaj, C. S., Shine, K. P., Staehelin,
688 J., Tang, Q., Aardenne, J. v., Velthoven, P. F. J. v., and Sausen, R.: The impact
689 of traffic emissions on atmospheric ozone and OH: results from QUANTIFY,
690 *Atmos. Chem. Phys.*, 9, 3113–3116, <https://doi.org/10.5194/acp-9-3113-2009>,
691 2009.

692
693 Jaffe, D. A., Cooper, O. R., Fiore, A. M., Henderson, B. H., Tonnesen, G. S.,
694 Russell, A. G., Henze, D. K., Langford, A. O., Lin, M., and Moore, T.: Scientific
695 assessment of background ozone over the U.S.: Implications for air quality
696 management, *Elem. Sci. Anth.*, 6, 56, [https://doi.org/](https://doi.org/https://doi.org/10.1525/elementa.309)
697 <https://doi.org/10.1525/elementa.309>, 2018.

698
699 Johnson, C., Collins, W., Stevenson, D., and Derwent, R.: Relative roles of
700 climate and emissions changes on future tropospheric oxidant concentrations,
701 *J. Geophys. Res.*, 104, 18631–18645, <https://doi.org/10.1029/1999JD900204>,
702 1999.

703
704 Kasibhatla, P., Levy, H., Moxim, W. J., Pandis, S. N., Corbett, J. J., Peterson,
705 M. C., Honrath, R. E., Frost, G. J., Knapp, K., Parrish, D. D., and Ryerson, T.
706 B.: Do emissions from ships have a significant impact on concentrations of
707 nitrogen oxides in the marine boundary layer?, *Geophys. Res. Lett.*, 27, 2229–
708 2232, <https://doi.org/10.1029/2000gl011387>, 2000.

709
710 Koo, B., Wilson, G. M., Morris, R., Dunker, A. M., and Yarwood, G.: Comparison
711 of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air
712 Quality Model, *Environ. Sci. Technol.*, 43, 6669–6675,
713 <https://doi.org/10.1021/es9008129>, 2009.

714
715 Kwok, R. H. F., Baker, K. R., Napelenok, S. L., and Tonnesen, G. S.:
716 Photochemical grid model implementation and application of VOC, NO_x, and
717 O₃ source apportionment, *Geosci. Model Dev.*, 8, 99–114,
718 <https://doi.org/10.5194/gmd-8-99-2015>, 2015.

719
720 Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt,
721 F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch,
722 P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive
723 atmospheric chemistry in the Community Earth System Model, *Geosci. Model
724 Dev.*, 5, 369–411, <https://doi.org/10.5194/gmd-5-369-2012>, 2012.

725
726 Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J., Tarasick,
727 D., and Rieder, H. E.: Climate variability modulates western U.S. ozone air
728 quality in spring via deep stratospheric intrusions, *Nat. Commun.*, 6, 7105,
729 <https://doi.org/10.1038/ncomms8105>, 2015.

730
731 Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G. S.: US
732 surface ozone trends and extremes from 1980 to 2014: quantifying the roles of
733 rising Asian emissions, domestic controls, wildfires, and climate, *Atmos. Chem.*

734 Phys., 17, 2943–2970, <https://doi.org/10.5194/acp-17-2943-2017>, 2017.

735

736 Lupaşcu, A. and Butler, T.: Source attribution of European surface O₃ using a
737 tagged O₃ mechanism, Atmos. Chem. Phys., 19, 14535–14558,
738 <https://doi.org/10.5194/acp-19-14535-2019>, 2019.

739

740 Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., and Sausen, R.: Attributing
741 ozone and its precursors to land transport emissions in Europe and Germany,
742 Atmos. Chem. Phys., 20, 7843–7873, <https://doi.org/10.5194/acp-20-7843-2020>, 2020.

744

745 McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
746 Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global
747 anthropogenic emission inventory of atmospheric pollutants from sector- and
748 fuel-specific sources (1970–2017): an application of the Community Emissions
749 Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442,
750 <https://doi.org/10.5194/essd-12-3413-2020>, 2020.

751

752 Müller-Casseres, E., Edelenbosch, O. Y., Szklo, A., Schaeffer, R., and van
753 Vuuren, D. P.: Global futures of trade impacting the challenge to decarbonize
754 the international shipping sector, Energy, 237, 121547,
755 <https://doi.org/10.1016/j.energy.2021.121547>, 2021

756

757 Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D.
758 Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G.
759 Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural
760 Radiative Forcing. In: Climate Change 2013: The Physical Science Basis.
761 Contribution of Working Group I to the Fifth Assessment Report of the
762 Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
763 Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
764 Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
765 New York, NY, USA, 2013.

766

767 Neu, J. L. and Prather, M. J.: Toward a more physical representation of
768 precipitation scavenging in global chemistry models: cloud overlap and ice
769 physics and their impact on tropospheric ozone, Atmos. Chem. Phys. Discuss.,
770 11, 24413–24466, <https://doi.org/10.5194/acpd-11-24413-2011>, 2011

771

772 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt,
773 G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R.,
774 Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project
775 (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482,

776 <https://doi.org/10.5194/gmd-9-3461-2016>, 2016.

777

778 Price, C., Penner, J., and Prather, M.: NO_x from lightning 1, Global distribution
779 based on lightning physics, *J. Geophys. Res.*, 102, 5929–5941,
780 <https://doi.org/10.1029/96JD03504>, 1997.

781

782 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From
783 Air Pollution to Climate Change*, J. Wiley, Hoboken, N.J., 2006.

784

785 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the
786 United States over a period of decreasing NO_x and VOC emissions, *Environ.
787 Sci. Technol.*, 49, 186-195, <https://doi.org/10.1021/es504514z>, 2015.

788

789 Shen, L. and Mickley, L. J.: Effects of El Niño on summertime ozone air quality
790 in the eastern United States, *Geophys. Res. Lett.*, 44, 12543–12550,
791 <https://doi.org/10.1002/2017GL076150>, 2017.

792

793 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P.
794 C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J.,
795 Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M.,
796 Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz,
797 L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-F., Lawrence, M. G.,
798 Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S.,
799 Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S.
800 E., Sudo, K., and Szopa, S.: Multimodel ensemble simulations of present-day
801 and near-future tropospheric ozone, *J. Geophys. Res.*, 111, D08301.
802 <https://doi.org/10.1029/2005JD006338>, 2006.

803

804 Sudo, K., and Akimoto, H.: Global source attribution of tropospheric ozone:
805 Long-range transport from various source regions, *J. Geophys. Res.*, 112,
806 D12302, <https://doi.org/10.1029/2006JD007992>, 2007.

807

808 Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W.D., Fuzzi,
809 S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N. and Zanis,
810 P., 2021: Short-Lived Climate Forcers. In *Climate Change 2021: The Physical
811 Science Basis. Contribution of Working Group I to the Sixth Assessment Report
812 of the Intergovernmental Panel on Climate Change* [Masson-Delmotte, V., Zhai,
813 P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
814 L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock,
815 T.K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou B. (eds.)]. Cambridge
816 University Press, Cambridge, United Kingdom and New York, NY, USA, pp.
817–922, doi:10.1017/9781009157896.008, 2021.

818

819 Thor, R. N., Mertens, M., Matthes, S., Righi, M., Hendricks, J., Brinkop, S., Graf,
820 P., Grewe, V., Jöckel, P., and Smith, S.: An inconsistency in aviation emissions
821 between CMIP5 and CMIP6 and the implications for short-lived species and
822 their radiative forcing, *Geosci. Model Dev.*, 16, 1459–1466,
823 <https://doi.org/10.5194/gmd-16-1459-2023>, 2023.

824

825 Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E.,
826 Wesseling, J., Belis, C., Pirovano, G., Janssen, S., Guerreiro, C., and Peduzzi,
827 E.: Source apportionment to support air quality planning: Strengths and
828 weaknesses of existing approaches, *Environ. Int.*, 130, 104825,
829 <https://doi.org/10.1016/j.envint.2019.05.019>, 2019.

830

831 Tilmes, S., Lamarque, J. F., Emmons, L. K., Kinnison, D. E., Marsh, D., Garcia,
832 R. R., Smith, A. K., Neely, R. R., Conley, A., Vitt, F., Val Martin, M., Tanimoto,
833 H., Simpson, I., Blake, D. R., and Blake, N.: Representation of the Community
834 Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate
835 Model Initiative (CCMI), *Geosci. Model Dev.*, 9, 1853–1890,
836 <https://doi.org/10.5194/gmd-9-1853-2016>, 2016.

837

838 Tilmes, S., Lamarque, J. F., Emmons, L. K., Kinnison, D. E., Ma, P. L., Liu, X.,
839 Ghan, S., Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W.,
840 Moore, F., Spackman, J. R., and Val Martin, M.: Description and evaluation of
841 tropospheric chemistry and aerosols in the Community Earth System Model
842 (CESM1.2), *Geosci. Model Dev.*, 8, 1395–1426, <https://doi.org/10.5194/gmd-8-1395-2015>, 2015.

844

845 van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field,
846 R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop,
847 G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic
848 global biomass burning emissions for CMIP6 (BB4CMIP) based on merging
849 satellite observations with proxies and fire models (1750–2015), *Geosci. Model
850 Dev.*, 10, 3329–3357, <https://doi.org/10.5194/gmd-10-3329-2017>, 2017.

851

852 von Glasow, R., Lawrence, M. G., Sander, R., and Crutzen, P. J.: Modeling the
853 chemical effects of ship exhaust in the cloud-free marine boundary layer, *Atmos.
854 Chem. Phys.*, 3, 233–250, <https://doi.org/10.5194/acp-3-233-2003>, 2003.

855

856 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., Qian, Y.,
857 Ghan, S. J., and Beagley, N.: Using an explicit emission tagging method in
858 global modeling of source-receptor relationships for black carbon in the Arctic:
859 Variations, sources, and transport pathways, *J. Geophys. Res. Atmos.*, 119,

860 12888-12909, <https://doi.org/10.1002/2014JD022297>, 2014.

861

862 Wesely, M. L.: Parameterizations for surface resistance to gaseous dry
863 deposition in regional-scale numerical models, *Atmos. Environ.*, 23, 1293–1304,
864 [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4), 1989.

865

866 Xing, J., Pleim, J. E., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and Wei,
867 C.: Historical gaseous and primary aerosol emissions in the United States from
868 1990 to 2010, *Atmos. Chem. Phys.*, 13, 7531–7549,
869 <https://doi.org/10.5194/acp-13-7531-2013>, 2013.

870

871 Yang, Y., Li, M., Wang, H., Li, H., Wang, P., Li, K., Gao, M., and Liao, H.: ENSO
872 modulation of summertime tropospheric ozone over China, *Environ. Res. Lett.*,
873 17, 034020, <https://doi.org/10.1088/1748-9326/ac54cd>, 2022.

874

875 Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on
876 interannual variations of summertime surface-layer ozone concentrations over
877 China, *Atmos. Chem. Phys.*, 14, 6867–6879, <https://doi.org/10.5194/acp-14-6867-2014>, 2014.

879

880 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., and Rasch,
881 P. J.: Source apportionments of aerosols and their direct radiative forcing and
882 long-term trends over continental United States, *Earth's Future*, 6, 793–808,
883 <https://doi.org/10.1029/2018EF000859>, 2018.

884

885 Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K.
886 W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E.,
887 Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and
888 Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of
889 recent Asian emission increases on air quality in North America: an integrated
890 analysis using satellite, aircraft, ozonesonde, and surface observations, *Atmos.*
891 *Chem. Phys.*, 8, 6117–6136, <https://doi.org/10.5194/acp-8-6117-2008>, 2008.

892

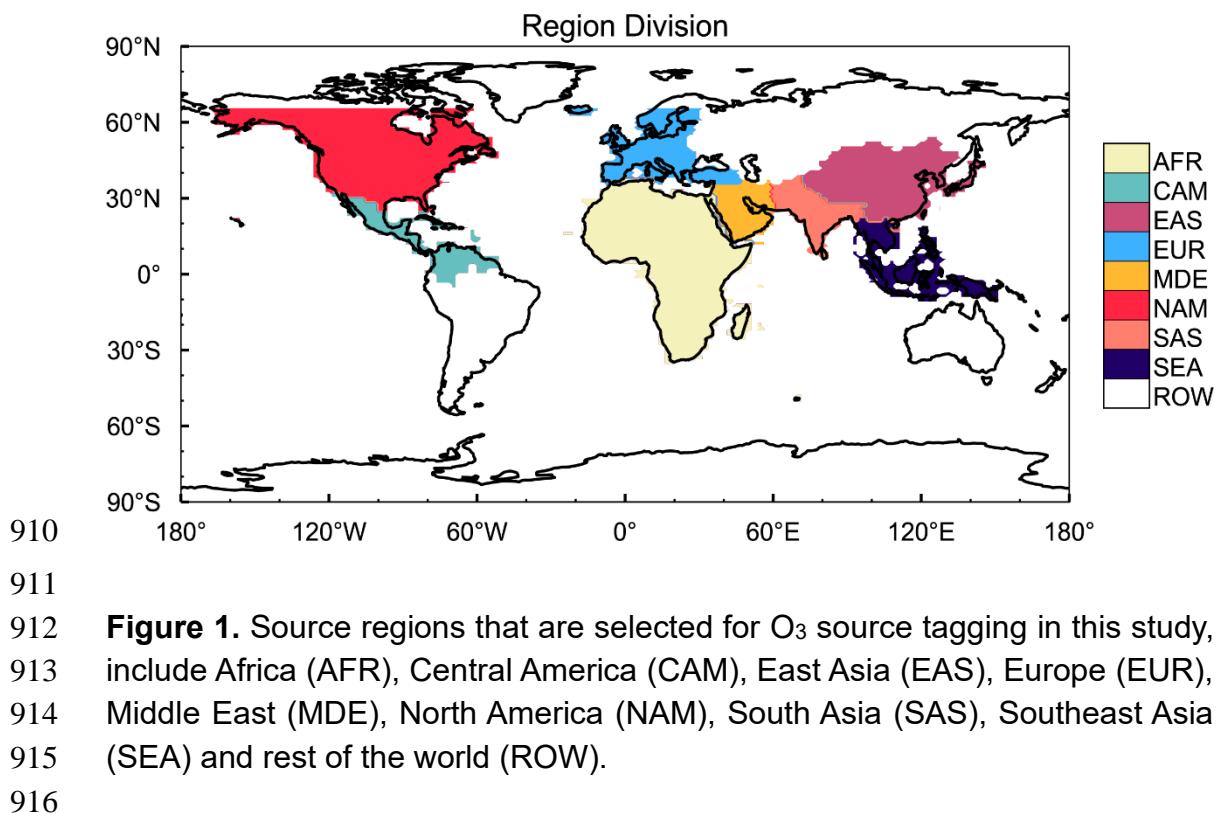
893 Zhang, Y., Cooper, O. R., Gaudel, A., Nedelev, P., Ogino, S. Y., Thompson, A.
894 M., and West, J. J.: Tropospheric ozone change from 1980 to 2010 dominated
895 by equatorward redistribution of emissions, *Nat. Geosci.*, 9, 875–879,
896 <https://doi.org/10.1038/ngeo2827>, 2016.

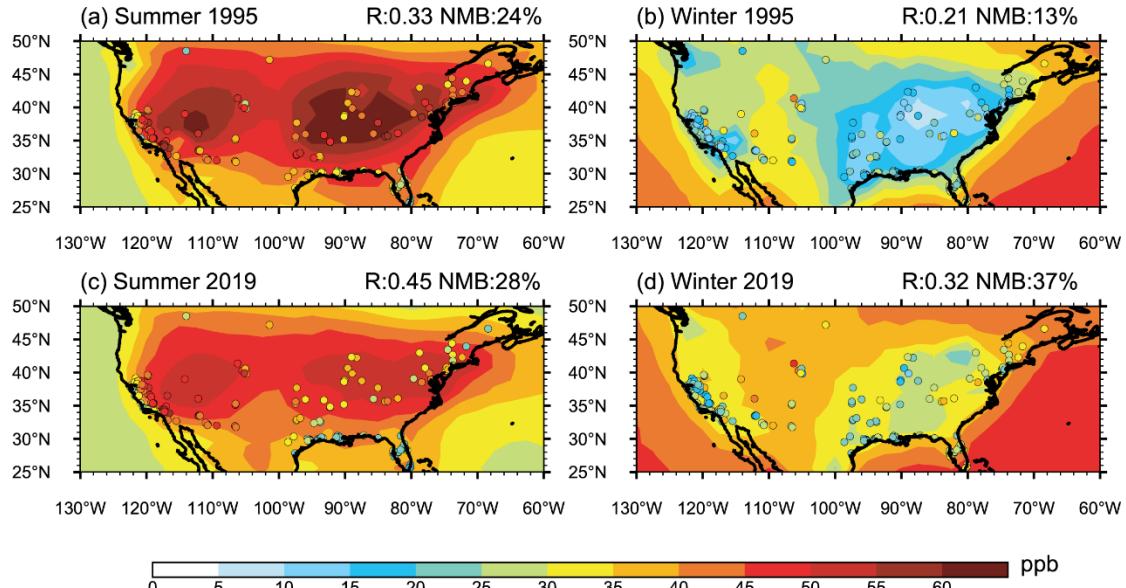
897

898 Zhang, Y., West, J. J., Emmons, L. K., Flemming, J., Jonson, J. E., Lund, M. T.,
899 Sekiya, T., Sudo, K., Gaudel, A., Chang, K. L., Nédélec, P., and Thouret, V.:
900 Contributions of World Regions to the Global Tropospheric Ozone Burden
901 Change From 1980 to 2010, *Geophys. Res. Lett.*, 48, e2020GL089184,

902 <https://doi.org/10.1029/2020GL089184>, 2021.

903 **Table 1.** O₃ trends (ppb/decade) over eastern U.S. and western U.S. in winter
904 (December-January-February, DJF) and summer (June-July-August, JJA) from
905 observations and model simulations.

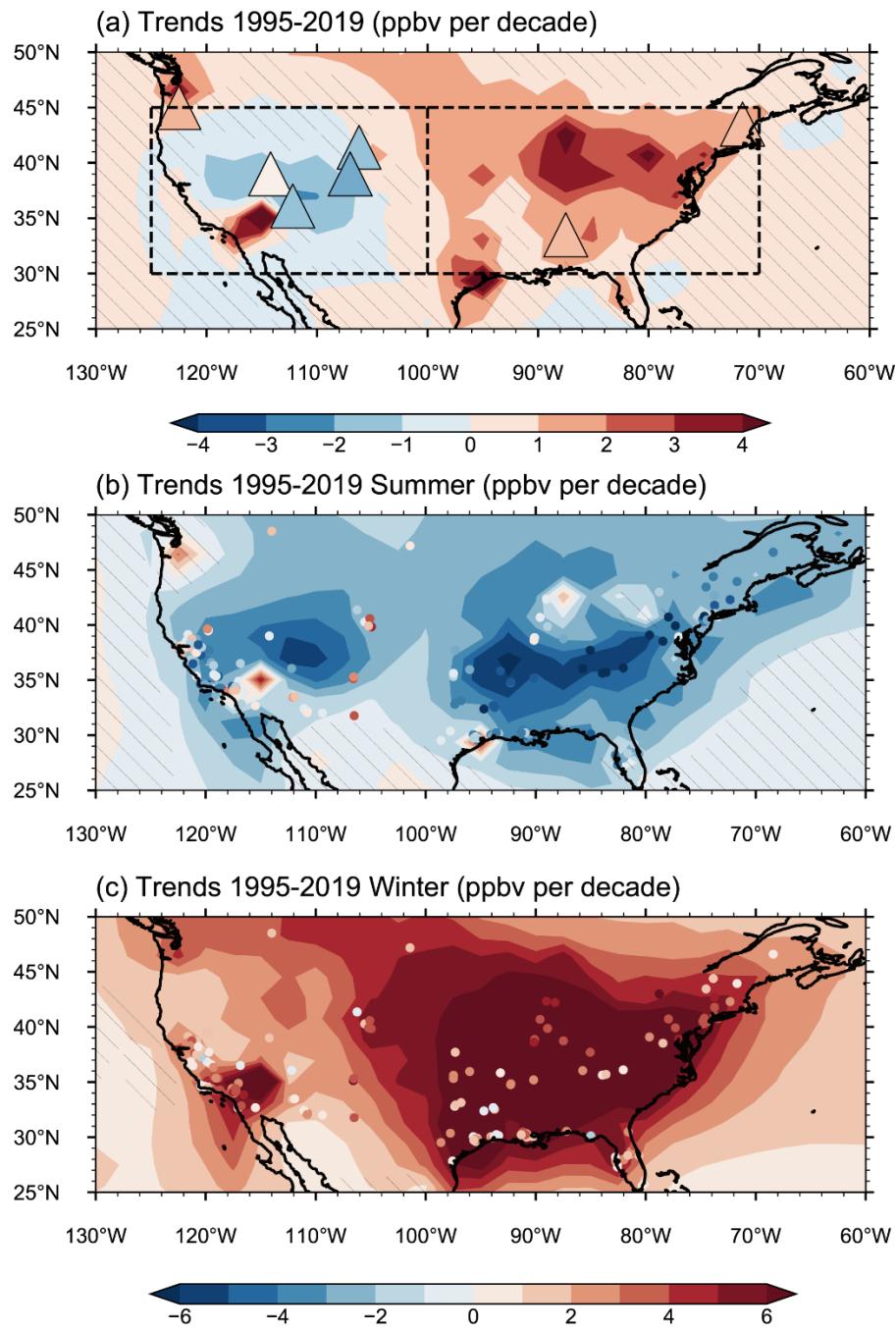

906


Season	Source	eastern U.S.	western U.S.
DJF	Observation	2.1 ± 0.29	2.2 ± 0.23
DJF	Model	6.1 ± 0.40	3.2 ± 0.28
JJA	Observation	-3.0 ± 0.41	-0.5 ± 0.42
JJA	Model	-3.0 ± 0.29	-2.3 ± 0.20

907

908

909

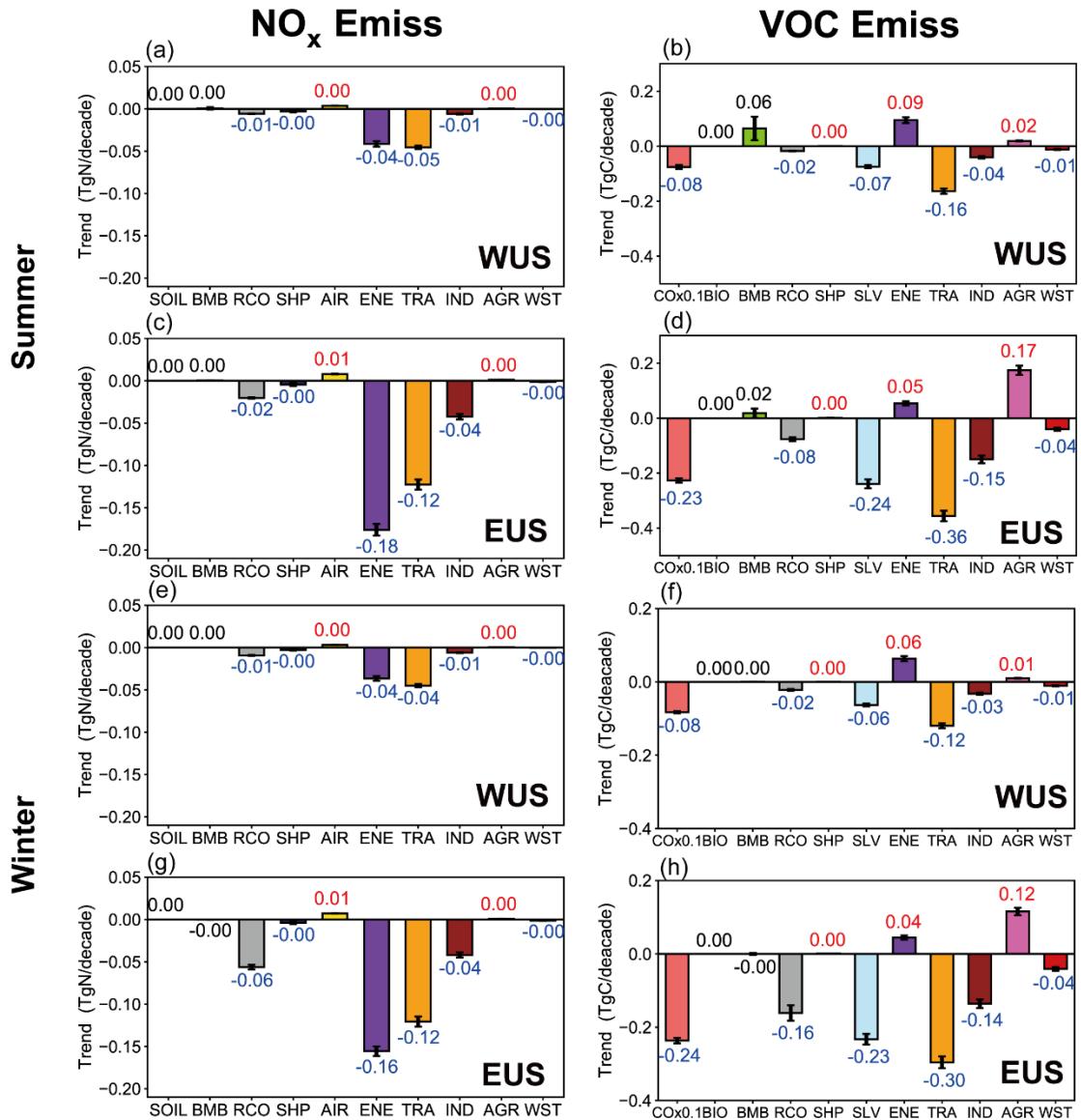

917

918

919 **Figure 2.** The simulated (contours) and observed (scatters) seasonal mean
920 near-surface O₃ mixing ratios over the United States in JJA (left) and DJF (right)
921 and in 1995 (top) and 2019 (bottom). The correlation coefficient and normalized
922 mean bias (NMB, $\frac{\sum (\text{Model} - \text{Observation})}{\sum \text{Observation}} \times 100\%$) are
923 shown on top right of each panel.

924

925



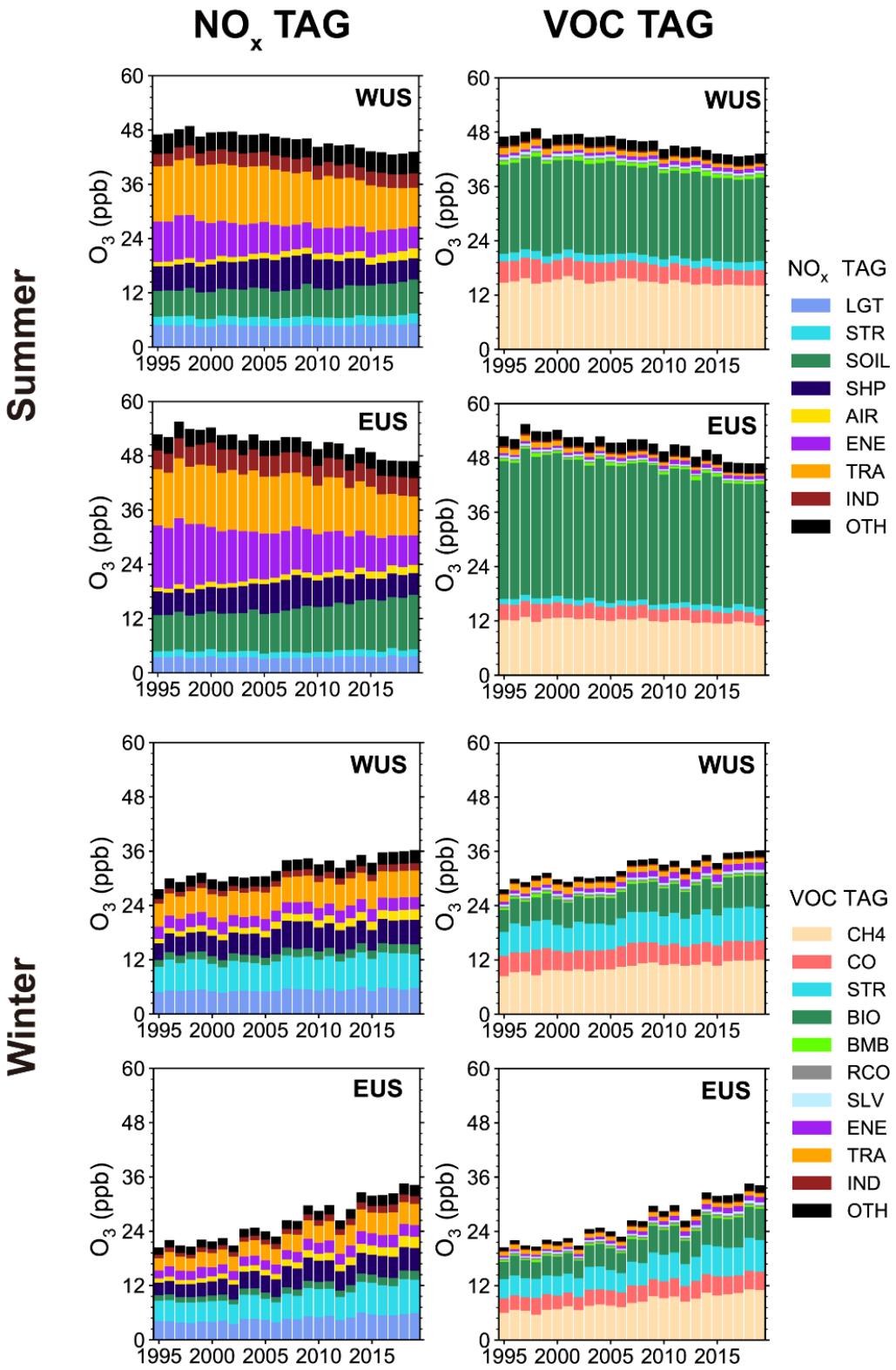
926

927

928 **Figure 3.** Linear trends (ppb/decade) of simulated (contours) and observed
 929 (color-filled markers) (a) annual, (b) JJA and (c) DJF mean near-surface O₃
 930 mixing ratios during 1995–2019. Areas without hatches indicate statistical
 931 significance with 95% confidence. The boxes in (a) mark the western U.S.
 932 (WUS, 100–125°W, 30–45°N) and eastern U.S. (EUS, 70–100°W, 30–45°N),
 933 respectively. The observed annual O₃ mixing ratio trends in (a) are derived from
 934 IPCC AR6, based on Cooper et al. (2020) and Gaudel et al. (2020) over 1995–
 935 2017. The observed seasonal O₃ mixing ratio trends in (b) and (c) are calculated
 936 based on the U.S. EPA O₃ measurements over 1995–2019.

937

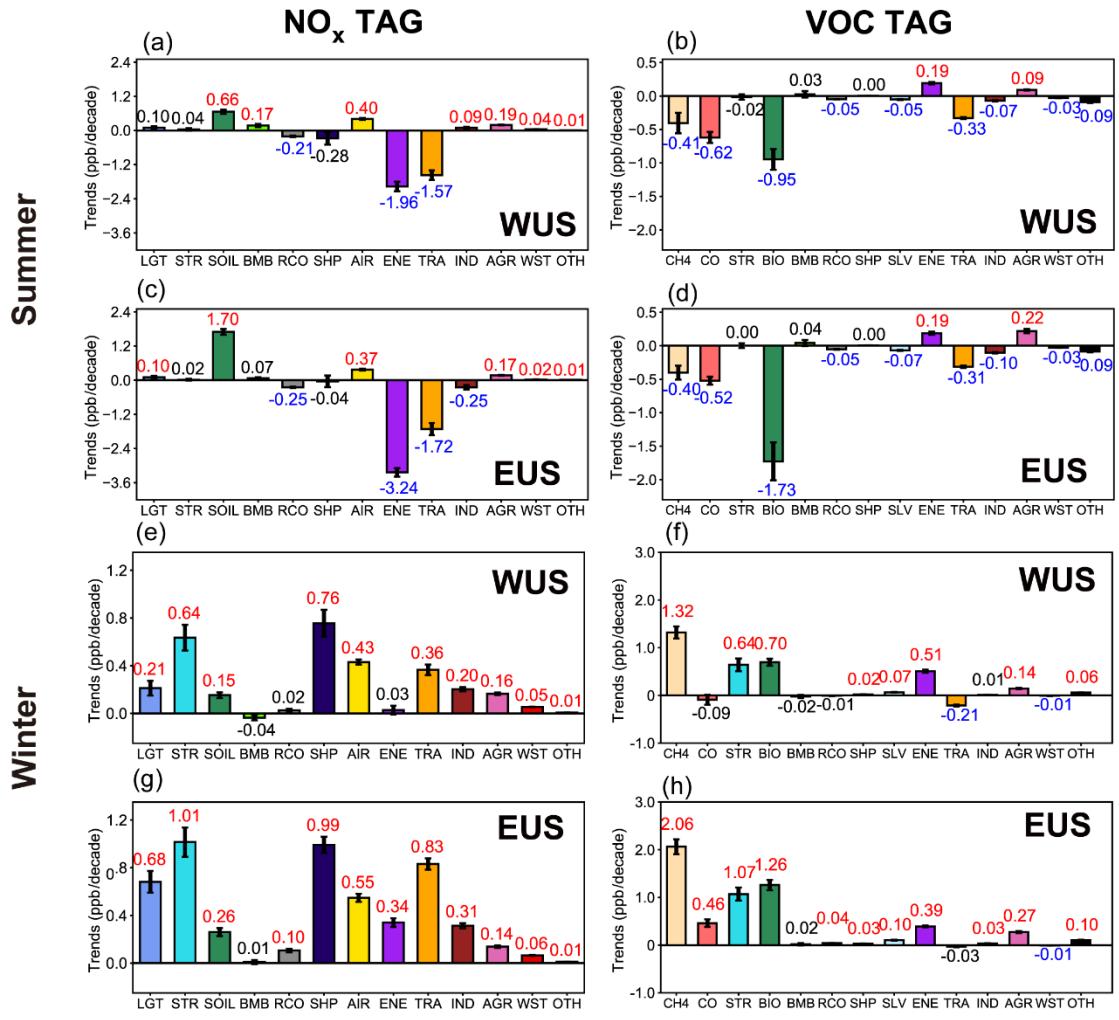
938


939

940

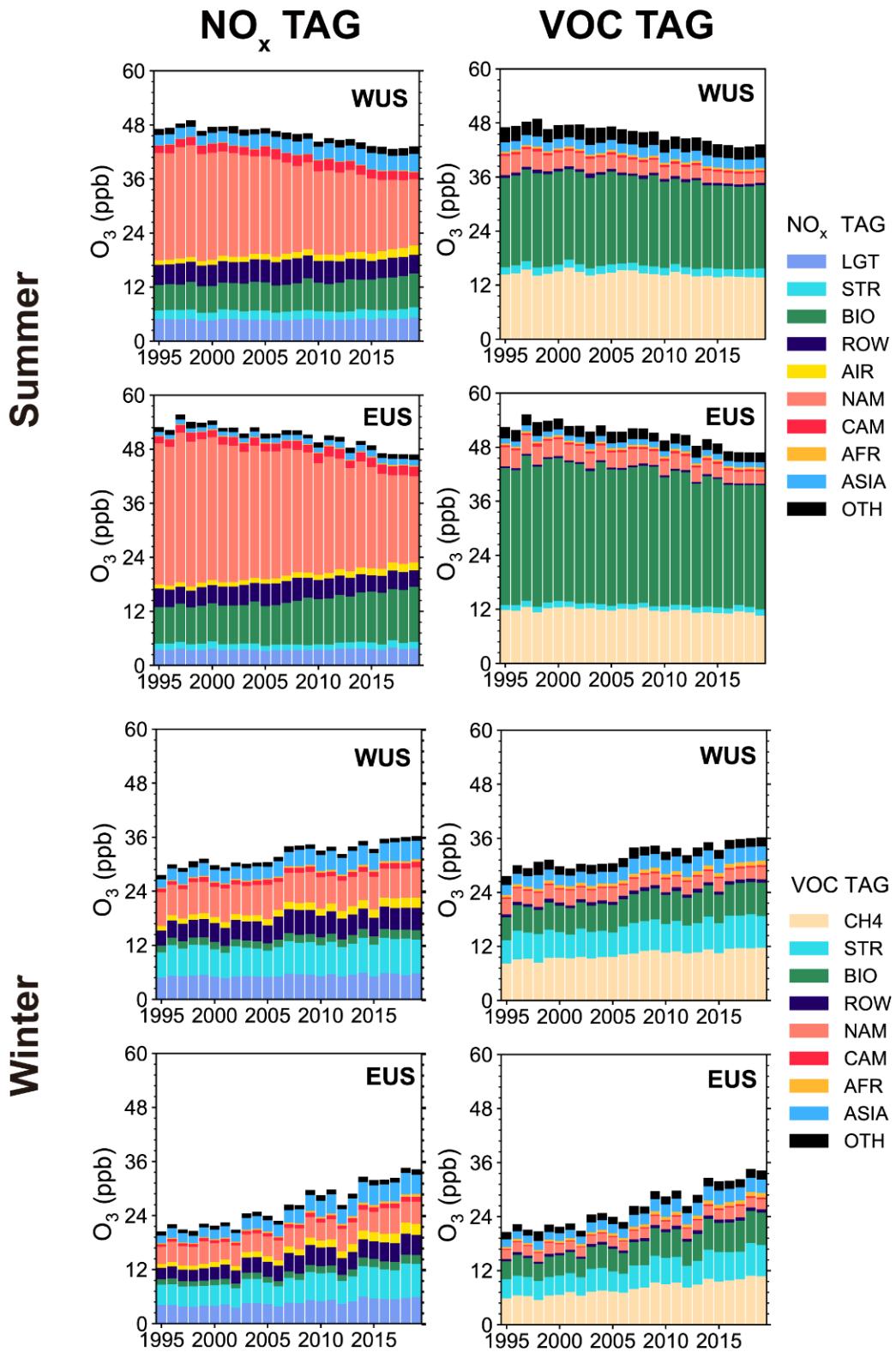
941

942


Figure 4. Linear trends of NO_x and reactive carbon emissions from various sectors in summer and winter over WUS and EUS. The increasing and decreasing trends marked with red and blue values, respectively, indicate statistical significance with 95% confidence.

944

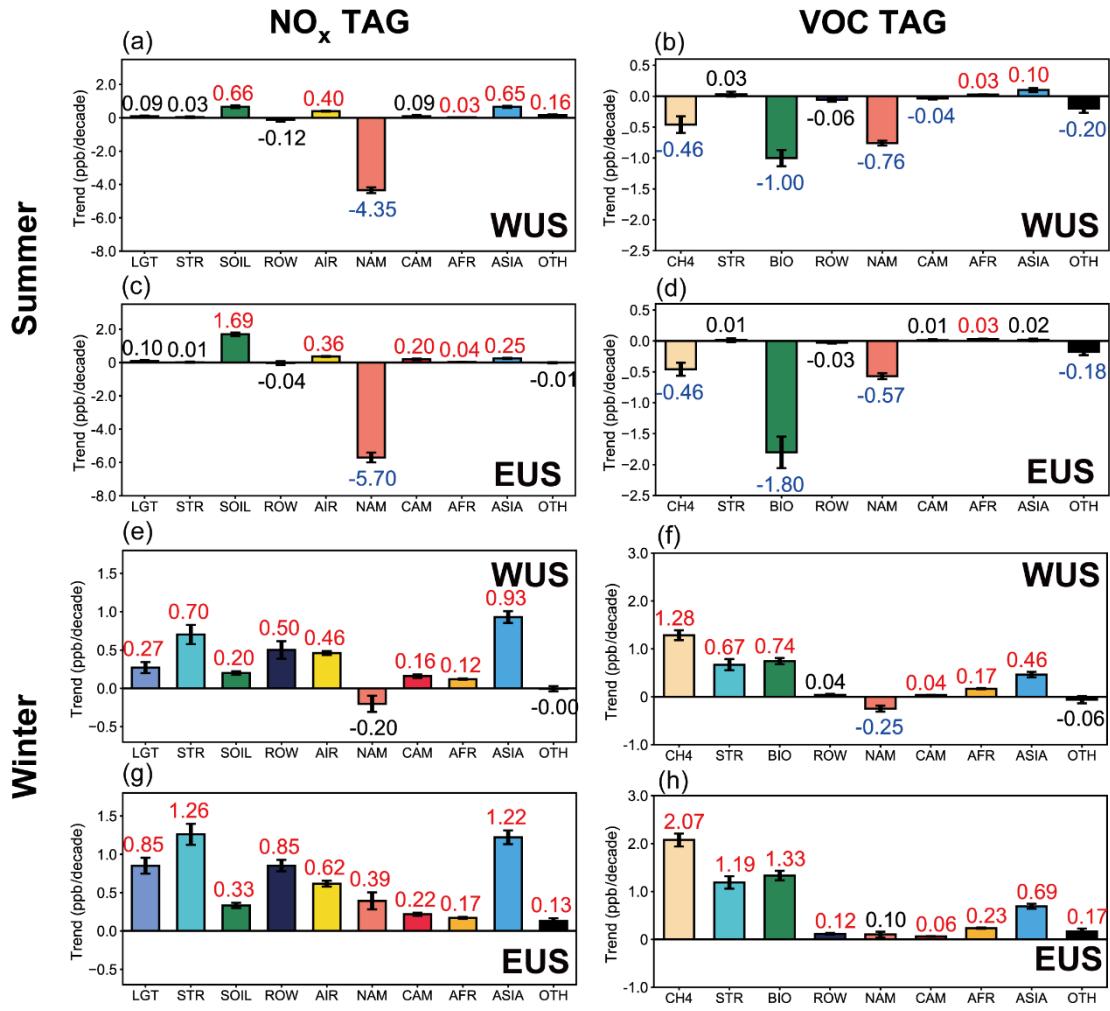
945


946 **Figure 5.** Time series of near-surface O₃ mixing ratios (ppb) averaged over
 947 WUS and EUS contributed by NO_x and reactive carbon emissions from
 948 different sectors in summer and winter during 1995–2019. Sources with small
 949 contributions are combined and shown as OTH.

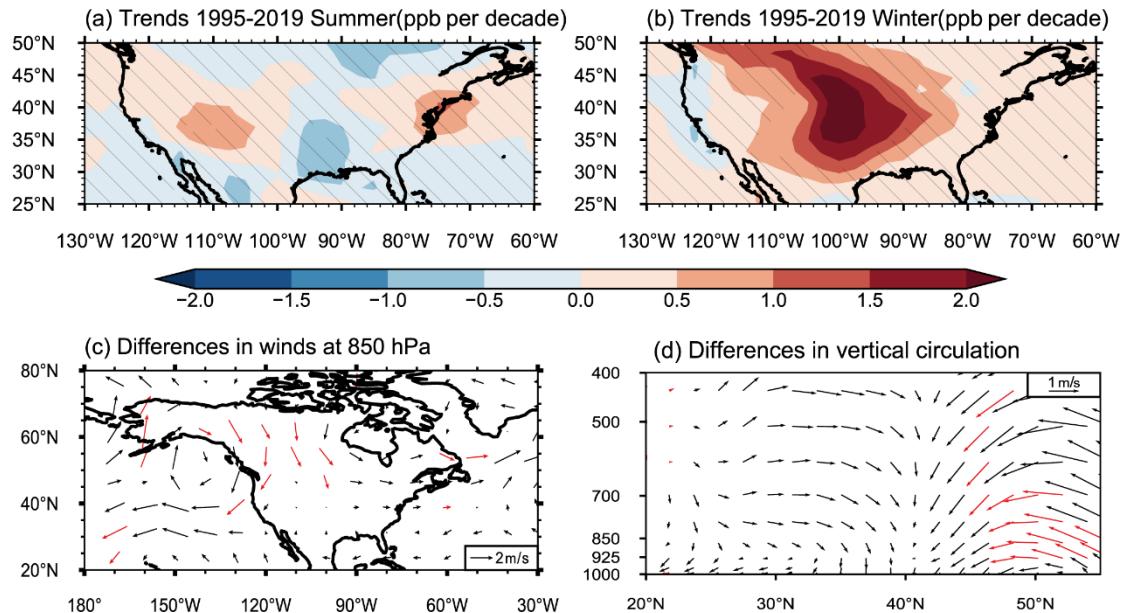
950

951

952 **Figure 6.** Linear trends (ppb/decade) of near-surface O₃ mixing ratios in
953 summer and winter over WUS and EUS contributed by the NO_x (left) and
954 reactive carbon (right) emissions from various sectors (color bars). The
955 increasing and decreasing trends marked with red and blue color numbers,
956 respectively, indicate statistical significance with 95% confidence. Other
957 sources having small contributions are combined and shown as OTH.



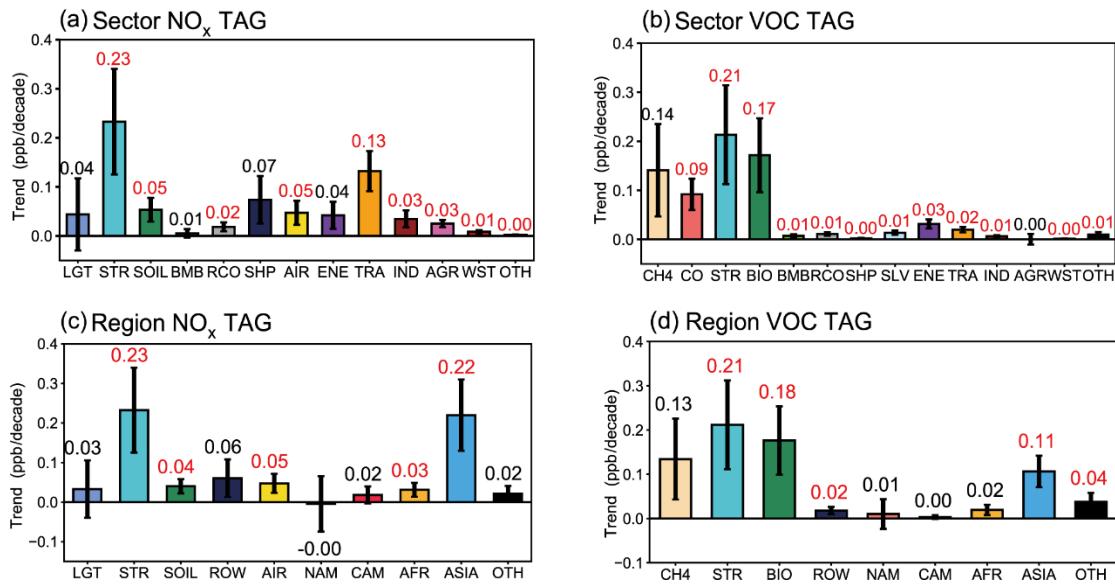
958


959

960 **Figure 7.** Time series of near-surface O₃ mixing ratios (ppb) averaged over
 961 WUS and EUS contributed by NO_x and reactive carbon emissions from different
 962 source regions in summer and winter during 1995–2019. Sources with small
 963 contributions are combined and shown as OTH.

964
965
966
967
968
969
970
971
972

Figure 8. Linear trends (ppb/decade) of near-surface O₃ mixing ratios in summer and winter over WUS and EUS contributed by the NO_x (left) and reactive carbon (right) emissions from various source regions (color bars). The increasing and decreasing trends marked with red and blue color numbers, respectively, indicate statistical significance with 95% confidence. Contributions from source regions EAS, SAS and SEA are combined to ASIA. Other sources having small contributions are combined and shown as OTH.


973
974

975 **Figure 9.** Linear trends (ppb/decade) of simulated (a) JJA and (b) DJF mean
976 near-surface O₃ mixing ratios during 1995–2019. Differences between the first
977 (1995–1999) and last (2015–2019) five years during 1995–2019 (last–first) in
978 DJF mean (c) 850 hPa horizontal winds and (d) meridional winds and vertical
979 velocity averaged over 90–105°W. Areas without hatches in (a) and (b) and
980 red arrows in (c) and (d) indicate statistical significance with 95% confidence.
981 All results are from the MET experiments.
982

983

984

985 **Figure 10.** Linear trends (ppb/decade) of near-surface O₃ mixing ratios in
 986 winter over the U.S, contributed by the NO_x (a,c) and reactive carbon (b,d)
 987 emissions from various source sectors (a,b) and regions (c,d). The increasing
 988 and decreasing trends marked with red and blue color numbers, respectively,
 989 indicate statistical significance with 95% confidence. Contributions from
 990 source regions EAS, SAS and SEA are combined to ASIA. Some sources
 991 having small contributions are combined and shown as OTH.
 992

