

Source attribution of near-surface ozone trends in the United States during 1995–2019

Pengwei Li¹, Yang Yang^{1*}, Hailong Wang², Su Li¹, Ke Li¹, Pinya Wang¹, Baojie Li¹, Hong Liao¹

¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, School of Environmental Science

Nanjing, Jiangsu, China

²Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA

17

18

19

20

21 **Abstract**

22 Emissions of ozone (O_3) precursors in the United States have decreased
23 in recent decades, and near-surface O_3 concentrations showed a significant
24 decrease in summer but an increase in winter. In this study, an O_3 source
25 tagging technique is utilized in a chemistry-climate model to investigate the
26 source contributions to O_3 ~~concentrations~~mixing ratios in the U.S. from various
27 emitting sectors and regions of nitrogen oxides (NO_x) and reactive carbon
28 species during 1995–2019. We show that domestic emission reductions from
29 energy and surface transportation are primarily responsible for the decrease in
30 summertime O_3 during 1995–2019. However, in winter, the emission control
31 also weakens the NO_x titration process, resulting in considerable increases in
32 O_3 levels from natural sources. Additionally, increases in aviation and shipping
33 ~~activities~~emissions and transpacific transport of O_3 from Asia largely contribute
34 to the winter O_3 increase. ~~Changes~~We also found that changes in large-scale
35 circulation ~~favoring~~ O_3 transport from upper atmosphere and foreign transport
36 ~~from Asia~~also explain 15% of the O_3 increasing trend~~increase in the U.S. near-~~
37 ~~surface O_3 levels in winter.~~

38 **1. Introduction**

39 Ozone (O_3) near the surface has a significant impact on air quality and
40 public health (Haagen-Smit, 1952; Fleming et al., 2018). Since the increase in
41 anthropogenic emissions of O_3 precursors from preindustrial times, O_3 has now
42 become the third most important anthropogenic greenhouse gas in the
43 troposphere (Myhre et al., 2013). Major sources of O_3 in the troposphere
44 include the transport from the stratosphere and formation through
45 photochemical reactions within the troposphere involving two chemically
46 distinct groups of precursors: nitrogen oxides (NO_x) and reactive carbon
47 species, including carbon monoxide (CO), methane (CH_4), and non-methane
48 volatile organic compounds (NMVOCs) (Atkinson, 2000). O_3 precursors come
49 from a variety of sectors, and its relatively long lifetime of about 22 days
50 (Stevenson et al. 2006) favors the long-range transport of O_3 . Due to the
51 nonlinearity of the O_3 production and its associated dependence on precursor
52 emissions (Seinfeld and Pandis, [1997](#)[2006](#)), attributing O_3 pollution to its
53 sources is complicated.

54 Since the 1980s, O_3 precursor emissions have significantly reduced in the
55 United States (Duncan et al., 2016; Xing et al., 2013; Zhang et al., 2016; Zhang
56 et al., 2021). However, due to the nonlinear production chemistry of O_3 ,
57 complex seasonal meteorological influence, and long-range transport from
58 foreign source regions, domestic emissions reductions do not imply a decrease
59 in seasonal and annual O_3 concentrations. According to remote surface
60 measurements (Cooper et al., 2020) and aircraft observations (Gaudel et al.,
61 2020), the Sixth Assessment Report of the Intergovernmental Panel on Climate
62 Change (Szopa et al., 2021) showed a decreasing trend in annual mean O_3
63 concentrations in the western U.S. but an increasing trend in the eastern U.S.
64 since the mid-1990s. On the seasonal timescale, surface observations and
65 modeling results showed that O_3 concentrations over the U.S. had decreased

66 in summer due to the reductions in domestic anthropogenic emissions and
67 increased in winter related to the weakened NO_x titration since the late 1980s
68 (Cooper et al., 2012; Lin et al., 2017). It also shows that the increased
69 background O₃, especially due to an increased transport from Asia, can partly
70 offset the benefit of domestic emissions control over the western U.S. in
71 summer.

72 Source apportionment is a useful method for quantifying contributions to
73 air pollutants from specific source regions and/or sectors, which is beneficial to
74 emission control strategies (Yang et al., 2018). One method of obtaining an O₃
75 source-receptor relationship is to zero out or perturb emissions from a given
76 source region or sector in sensitivity simulations along with a baseline
77 simulation, which gives information about the response of O₃ to changes in
78 precursor emissions (e.g., Fiore et al., 2009; Hoor et al., 2009). However,
79 emission perturbation method requires many additional model simulations
80 when being used to estimate the ~~contributions~~impacts of changes in multiple
81 sources (Koo et al., 2009; Wang et al., 2014)~~and the~~. The perturbation method
82 may invalidate the assumption of a linear relationship between the magnitude
83 of the emission perturbation and the magnitude of the O₃ change considering
84 the nonlinearity in O₃ chemistry, especially if large perturbations (e.g. zeroing
85 out regional or sector-wide emissions) are used. The tagging approach
86 produces information about the contribution of precursor emissions to the total
87 amount of O₃ (Butler et al., 2020). The perturbation and tagging methods are
88 two different methods answering different scientific questions, with the first for
89 the impacts and the last for the contributions (Grewe et al. 2010, Emmons et al.
90 2012, Clappier et al. 2017 and Thunis et al., 2019). Both of these two methods
91 can be used for specific purpose to provide a comprehensive understanding of
92 source-receptor relationships between precursor emissions and O₃
93 concentrations.

94 The source tagging method has been widely adopted in regional air quality
95 models to examine the O₃ attribution in the U.S., China, and/or Europe ([Collet et al., 2022](#); [Gao et al., 2016](#); [Collet et al., 2018](#); [Lupaşcu and Butler, 2019](#)). In
96 some regional models, O₃ apportionment is based on the ratio of chemical
97 indicators to determine the regime of O₃ generation (e.g., VOC-limited or NO_x-
98 limited regimes) and then attribute the generation of O₃ to the tag carried by a
99 certain precursor (VOCs or NO_x), which however cannot simultaneously
100 attribute O₃ production to NO_x and VOCs, respectively ([Dunker et al., 2002](#);
101 [Kwok et al., 2015](#)), while some models do not use the chemical indicators
102 ([Lupaşcu and Butler, 2019](#); [Mertens et al., 2020](#)). In addition, due to the
103 limitation in domain size of regional air quality models, they are difficult to
104 account for contributions of intercontinental transport from several sources
105 outside the model domain. Recently, O₃ tagging techniques have been
106 implemented in the global models (e.g., [Bates and Jacob, 2020](#); [Han et al., 2018](#);
107 [Sudo and Akimoto, et al., 2007](#); [Zhang et al., 2008](#); [Emmons et al., 2012](#);
108 [Grewe et al. 2017](#); [Butler et al., 2018](#); [Han et al., 2018](#); [Bates and Jacob, 2020](#)).
109 However, in many global models, O₃ is tagged by the production regions rather
110 than the precursor emission regions, so that O₃ can only be attributed to the
111 area where O₃ is generated, rather than the source of precursor emissions.

112 Here, based on a state-of-the-art tagging system implementation in a
113 global chemistry–climate model, the trends of near-surface O₃
114 [concentrationsmixing ratios](#) in the U.S. during 1995–2019 and the source
115 attributions of the O₃ variations to various emission sectors and regions of NO_x
116 and reactive carbon species are investigated in this study. Mechanisms of
117 explaining the O₃ trends that involve changes in anthropogenic emissions and
118 large-scale circulations are also explored.

119 **2. Methods**

120 **2.1 Model Description**

122 Tropospheric O₃ ~~concentrations~~mixing ratios are simulated using the
123 Community Atmosphere Model version 4 with Chemistry (CAM4-chem)
124 (Lamarque et al., 2012; Tilmes et al., 2015), which is the atmospheric chemistry
125 component of the Community Earth System Model (CESM), at a horizontal
126 resolution of 1.9° latitude by 2.5° longitude with 26 vertical levels extending to
127 40 km above the surface. The height of bottom layer ~~near the surface~~ is about
128 120 m and there are about 4 layers under 2 km. The model configuration uses
129 a comprehensive tropospheric chemistry mechanism based on the Model for
130 Ozone and Related chemical Tracers version 4 (MOZART-4) (Emmons et al.,
131 2010, 2012). Model configurations simulate wet deposition of gas species using
132 the Neu and Prather (2012) scheme. Dry deposition is represented following
133 the resistance approach originally described in Wesely (1989). Stratosphere-
134 troposphere exchange of O₃ is treated by setting O₃ to stratospheric values as
135 their climatological means over 1996–2005 at the tropopause (Lamarque et al.,
136 2012), which is affected by atmospheric circulation and experiences the same
137 loss rates as O₃ in the troposphere (Tilmes et al., 2016). Sea surface
138 temperatures and sea ice concentrations in our simulations are prescribed at
139 present-day climatological conditions. The zonal and meridional wind fields are
140 nudged towards the MERRA-2 (Modern Era Retrospective-Analysis for
141 Research and Applications Version 2) reanalysis (Gelaro et al., 2017) at a 6-
142 hourly relaxation timescale in this study to better constrain large-scale
143 circulations by observations. The CAM4-chem performance in simulating
144 tropospheric O₃ and precursors has been fully evaluated in Tilmes et al. (2015).

145 **2.2 Ozone Source Tagging Technique**

146 The novel O₃ source tagging technique implemented in the model was
147 developed by Butler et al. (2018), which can provide a separate source
148 apportionment of tropospheric O₃ to the two distinct groups of precursor
149 emissions, i.e., NO_x and reactive carbon (CO, CH₄ and NMVOCs). The portion

150 of tropospheric O₃ that is attributable to the stratosphere-troposphere exchange
151 can also be quantified using this unique tagging technique. The source
152 attribution of O₃ requires two separate model runs with the tagging applied to
153 NO_x and reactive carbon species, respectively. Details of the O₃ tagging
154 technique are described in Butler et al. (2018).

155 In this study, near-surface O₃ is attributed to emission sectors and regions.
156 Emissions from individual sectors, including agriculture (AGR), energy (ENE),
157 industry (IND), residential, commercial and other (RCO), surface transportation
158 (TRA), waste management (WST), international shipping (SHP) and biomass
159 burning (BMB) emissions, as well as chemical production in the stratosphere
160 (STR) and extra chemical production (XTR, a small amount of O₃ produced due
161 to the self-reaction of OH radicals and the reactions of HO₂ with certain organic
162 peroxy radicals) are tagged for both NO_x and reactive carbon species. Aircraft
163 (AIR), soil (SOIL) and lightning (LGT) sources are separately tagged for NO_x
164 emissions, while solvents (SLV) and biogenic (BIO) sources are separately
165 tagged for NMVOCs emissions.

166 For the regional source attribution, we separately tag anthropogenic
167 sources from Africa (AFR), Central America (CAM), Europe (EUR), Middle East
168 (MDE), North America (NAM), East Asia (EAS), South Asia (SAS), Southeast
169 Asia (SEA) and rest of the world (ROW) (see Fig. 1 for the region map) and
170 natural sources (BMB, SOIL, LGT, BIO, STR and XTR). Additional tags for
171 methane (CH₄) and carbon monoxide (CO) are applied in both of the reactive
172 carbon tagging simulations that are used to attribute O₃ to emission sectors and
173 regions. We ~~does do~~ not tag CH₄ by individual sources and ~~its contribution is~~
174 ~~the contributions of CH₄ from various sources are~~ lumped ~~in this study~~. It is
175 because CH₄ ~~is often considered separately from NMVOCs. It~~ has a relative
176 long lifetime in the troposphere and it is well mixed in the troposphere due to its
177 exceptionally low reactivity, which can contribute to O₃ formation at any location

178 in the troposphere where photochemical conditions are favorable (Fiore et al.,
179 2008). CO also has a longer lifetime and lower reactivity than most NMVOCs,
180 ~~separately tagging of CO is more conducive to distinguish its contribution to O₃~~
181 ~~from other NMVOCs. Therefore, the. The~~ lumped ~~total~~ CO is ~~separately~~ tagged
182 in the ~~sector attribution~~ simulations for emission sectors, but ~~the CO is~~ not
183 specifically tagged in the ~~regional attribution~~ simulations for emission regions
184 due to the computational limit.

185 **2.3 Emissions and Observation**

186 The global anthropogenic emissions, including NO_x, CO, NMVOCs, SO₂,
187 and NH₃, over 1990–2019 are from the Community Emissions Data System
188 (CEDS) version 20210205 (Hoesly et al., 2018) (See Table S1 and Figs. S1–
189 S3). Biomass burning emissions are obtained from the CMIP6 (Coupled Model
190 Intercomparison Project Phase 6) over 1990–2014 (van Marle et al., 2017) and
191 the emissions for the following five years (2015–2019) are interpolated from the
192 SSP2-4.5 forcing scenario (O'Neill et al., 2016). NO_x emitted from soils and
193 biogenic NMVOCs from vegetation are prescribed as in Tilmes et al. (2015) and
194 are kept at the present-day (2000) climatological levels during simulations.
195 Lightning emissions of NO_x are estimated online using ~~onlinethe~~
196 parameterization based on simulated cloud top heights from Price et al. (1997),
197 which is scaled to provide a global annual emission of 3–5 Tg N yr⁻¹ ~~as~~
198 ~~(Lamarque et. al. 2012). CH₄ mixing ratio~~ is fixed at a global average level of
199 ~~17501760~~ parts per billion (ppb, volume ratio in this study) during simulations.

200 Many studies have reported that the previous CEDS version 20160726
201 (hereafter CEDS₂₀₁₆) has large biases in the regional emission estimates (e.g.,
202 Cheng et al., 2021; Fan et al., 2018). In this study, the CEDS version 20210205
203 is used (hereafter CEDS₂₀₂₁), which builds on the extension of the CEDS
204 system described in McDuffie et al. (2020) and extends the anthropogenic
205 emissions to year 2019. It updates country-level emission inventories for North

206 America, Europe and China and has considered the significant emission
207 reductions in China since the clean air actions in recent years. The global total
208 NO_x emission from CEDS₂₀₂₁ is lower than that of CEDS₂₀₁₆ after 2006 and it
209 shows a fast decline since then. In 2014, the global total anthropogenic
210 emission of NO_x in CEDS₂₀₂₁ is about 10% lower than the CEDS₂₀₁₆ estimate.
211 This difference is mainly reflected in the NO_x emissions in China and India.
212 CEDS₂₀₂₁ has a lower estimate of the global NMVOCs emission than CEDS₂₀₁₆
213 by more than 10% during the recent decades, attributed to lower emissions
214 from Africa, Central and South America, the Middle East and India. The using
215 of the CEDS₂₀₂₁ emission inventory in this study could reduce the contributions
216 of NO_x emissions from East Asia and South Asia to the U.S. O₃ mixing ratios
217 and trends, as compared to CEDS₂₀₁₆. However, recent study reported a
218 difference in aviation emission distribution of NO_x between CMIP5 and CMIP6
219 related to an error in data pre-processing in CEDS, leading to a northward shift
220 of O₃ burden in CMIP6 (Thor et al., 2023). Therefore, the contribution of the
221 aircraft emissions of NO_x to the O₃ mixing ratios could be overestimated at high
222 latitude regions.

223 Surface O₃ measurements in the U.S. are obtained from the U.S.
224 Environmental Protection Agency (EPA). Linear trends of surface O₃ are
225 calculated separately for boreal summer (June-July-August, JJA) and winter
226 (December-January-February, DJF). Seasonal mean for any site that has less
227 than 50% data availability in any month of a season is ~~not calculated~~~~discarded~~
228 ~~following Lin et al. (2017)~~. O₃ trends ~~at sites~~ is ~~shown~~~~calculated~~ only when the
229 ~~seasonal~~ data availability is greater than 85% during the analyzed period ~~(more~~
230 ~~than 22 years)~~. Trends in this study are calculated based on the linear least-
231 squares regressions and the statistical significance is identified through the F
232 test with the 95% confidence level.

233 **2.4 Experimental Design**

234 In this study, four groups of experiments are conducted, each group
235 includes both NO_x tagging simulation and reactive carbon tagging simulation.
236 Two BASE experiment groups include simulations with emission sectors and
237 regions, respectively, tagged for the two chemical distinct precursors. The
238 BASE experiments are performed with time-varying anthropogenic emissions
239 and winds nudged to MERRA-2 reanalysis. The other two groups of sensitivity
240 experiments (MET) are the same as BASE experiments, except that the
241 anthropogenic emissions are held at year 2019 level during simulations. All
242 experiments are performed over 1990–2019, with the first 5 years treated as
243 model spin-up and the last 25 years used for analysis. The BASE experiments
244 are analyzed to quantify the source attributions of O₃ in the U.S., unless stated
245 otherwise. We note that although the wind fields are nudged at a 6-hourly
246 relaxation timescale, the atmospheric dynamics could also be slightly different
247 between simulations, leading to the slight changes in the contributions from the
248 same tags between simulations.

249 **2.5 Model Evaluation**

250 Figure S42 compares the simulated near-surface O₃ concentrationsmixing
251 ratios with those from observations in 1995 and 2019, respectively. In general,
252 the model overestimates O₃ concentrationsmixing ratios in the U.S. in both
253 summer and winter by 10–40%. It can capture the seasonal pattern of O₃
254 seasonality that high concentrationsmixing ratios in summer and low
255 concentrationsmixing ratios in winter. The spatial distributions can also be
256 roughly captured by the model, with statistically significant correlation
257 coefficients between simulations and observations in the range of 0.21–0.45.
258 From 1995 to 2019, the O₃ concentrationsmixing ratios in the U.S. decreased
259 in summer and increased in winter presented in observations. The model can
260 produce the sign of the changes, but has large biases in magnitudes, which will
261 be discussed in the following section.

262

263 **3 Results**

264 **3.1 Ground-level ozone trends in the U.S.**

265 Emissions of O₃ precursors have substantially reduced since 1995 in both
266 the western U.S. (WUS, 100–125°W, 30–45°N) and eastern U.S. (EUS, 70–
267 100°W, 30–45°N), primarily owing to the reductions in anthropogenic
268 emissions (Figs. S1–S3). However, the simulated annual near-surface O₃
269 ~~concentrationsmixing ratios~~ present opposite trends between WUS and EUS,
270 with increases in EUS but weak decreases in WUS, which also exist in
271 observations (Fig. 2a3a).

272 ~~Looking at different seasons, we found the~~ The simulated contrasting
273 trends in annual mean O₃ ~~concentrationsmixing ratios~~ between the WUS and
274 EUS are dominated by the strong decreases in O₃ ~~concentrationsmixing ratios~~
275 in summer across the U.S. (Fig. 3b) and increased O₃ levels in winter over the
276 central-eastern U.S. during 1995–2019. (Fig. 3c). The opposite trends between
277 summer and winter have also been noted in many previous studies (e.g.,
278 Copper et al., 2012; Lin et al., 2017, Jaffe et al., 2018). The model reproduces
279 the observed O₃ trend over EUS in summer and roughly captures the O₃ trend
280 over WUS in winter (Table S11). The decreasing trend over WUS in summer
281 and increasing trend over EUS in winter, however, are largely overestimated in
282 the model, partly attributed to the coarse model resolution. The model also
283 tends to overestimate the weakening of NO_x titration in winter, leading to the
284 biases. For spring and autumn, they are the transition between summer and
285 winter, having the similar spatial pattern of O₃ trends as annual average, and
286 will not be concerned in this study.

287 **3.2 Source attribution of ozone trends to emission sectors**

288 During 1995–2019, summer and winter NO_x emissions from energy and
289 surface transport sectors have significantly decreased in both WUS and EUS,

290 followed by industry and residential sectors, while those from aircraft have
291 increased slightly (Fig. 34). Emissions of NMVOCs from surface transportation,
292 solvents, industry, residential and waste sectors have decreased across the
293 U.S., while those from energy and agriculture have increased. CO emissions
294 have also significantly decreased over this time period.

295 ~~The O₃ trends in the U.S. attributed to different emission source sectors~~
296 ~~are shown in Fig. 5.~~ The time series of the source sector contributions to O₃
297 mixing ratios from NO_x and reactive carbon emissions are shown in Figs. 4,
298 ~~respectivelyFig. 5 and the O₃ trends in the U.S. attributed to different emission~~
299 ~~source sectors are shown in Fig. 6.~~ In summer, the O₃ attributed to NO_x
300 emissions from energy and surface transportation ~~NO_x-emissions~~ decreased at
301 the rate of 2.0±0.472 and 1.6±0.472 ppb/decade in WUS and 3.2±0.452 and
302 1.7±0.212 ppb/decade in EUS, respectively (Figs. 5a6a and 5c6c). On the
303 contrary, the O₃ contributed by aircraft NO_x emissions increased by 0.4±0.030
304 ppb/decade in both WUS and EUS. Along with the reductions in anthropogenic
305 emissions, natural emissions are becoming increasingly important as sources
306 for O₃ formation near the surface. Although NO_x emissions from soil are held at
307 the present-day climatological levels, they account for 0.7±0.081 and 1.7±0.101
308 ppb/decade increase in WUS and EUS, respectively, during 1995–2019, related
309 to the changing O₃ production efficiency under the more NO_x-sensitive
310 condition. Note that, during 1995–2019, the molar ratio (mol N /mol C) of
311 emitted NO_x to NMVOCs reduced from 0.11 to 0.07 in ~~the~~ WUS and from 0.14
312 to 0.07 in ~~the~~ EUS, confirming the enhanced NO_x-sensitive condition during the
313 analyzed time period. In recent decades, global emissions from international
314 shipping have increased rapidly (Eyring, et al., 2005; Müller-Casseres et al.,
315 2021), but have declined near the coast of the United States. Due to a strong
316 chemical sink associated with photolysis of O₃ with subsequent production of
317 hydroxyl radical (OH) from water vapor in summer (Johnson et al., 1999), the

318 effect of increased international shipping emissions ~~efover~~ the ~~far-shereremote~~
319 ocean regions on the continental ~~United States~~ U.S. was blunted. But the
320 increase in shipping emissions inland tends to increase O₃
321 concentrationsmixing ratios in eastern U.S. (Fig. S5S4).

322 In summer, biogenic sources dominate the emissions of NMVOCs in the
323 U.S. (Fig. S3). As the O₃ decreases, mainly due to the reductions in domestic
324 NO_x emissions, the contributions from biogenic emissions of NMVOCs have a
325 decreasing trend in the U.S. during 1995–2019 (Figs. 5b6b and 5d6d), even
326 though biogenic emissions were fixed during simulations. This also applies to
327 CH₄, of which the concentrationmixing ratio was kept constant. This does not
328 actually mean that CH₄ and biogenic NMVOCs themselves contributed to the
329 overall O₃ trend through changing the precursor levels since they were kept
330 constant during simulations; rather, mainly due to the reductions in NO_x
331 emissions, O₃ production efficiency by reactive carbon species decreases,
332 leading to decreasing trends of O₃ contribution by CH₄ and biogenic NMVOCs.
333 In conjunction with NO_x emission reductions, decreases in NMVOCs emissions
334 from surface transportation and industry sectors contribute negative O₃ trends
335 of -0.3 ± 0.0 and -0.1 ± 0.0 ppb/decade, respectively, in both WUS and EUS, in
336 summer (Figs 6b and 6d), which are offset by the increases in NMVOCs
337 emissions from energy and agriculture sectors. Although the O₃ production
338 efficiency of CO is relatively low, the contributions of CO to O₃
339 concentrationsmixing ratios largely decreased with trends of -0.6 ± 0.1 and $-$
340 0.5 ± 0.1 ppb/decade in WUS and EUS, respectively, due to the massive
341 reduction in anthropogenic emissions of CO (Fig. S1).

342 In winter, through the weakened NO_x titration process (Gao et al., 2013;
343 Simon et al., 2015), the NO_x emission control causes an increase in O₃ levels
344 during 1995–2019, especially the contribution from surface transportation
345 (0.4 \pm 0.0 ppb/decade in WUS and 0.8 \pm 0.1 ppb/decade in EUS) (Figs. 5e6e and

346 ~~5e6g~~). Although aircraft NO_x emissions slightly increased, ~~but~~ O₃ attributed to
347 aircraft NO_x emissions shows positive trends as large as 0.4±0.0 and 0.6±0.0
348 ppb/decade in WUS and EUS, respectively. It is because aircraft emissions are
349 injected directly into the upper troposphere and lower stratosphere in a low
350 ambient NO_x condition and have a much higher O₃ enhancement efficiency
351 than surface emissions (Hodnebrog et al., 2011). It can be confirmed that the
352 NO_x from aircraft contributes to the increase in O₃ ~~concentrations~~mixing ratios
353 at 250 hPa in high latitude regions of the Northern Hemisphere during 1995–
354 2019 (Fig. ~~S6S5~~). The decrease in near-shore shipping emissions weakened
355 the NO_x titration, together with the weakened O₃ chemical sink from water vapor
356 in winter, leading to large increasing trends of O₃ by 0.8±0.1 and 1.0±0.1
357 ppb/decade, respectively, in the WUS and EUS during 1995–2019. Although
358 most natural emissions do not change during the simulations, the net O₃
359 chemical production is more sensitive to NO_x under the emission control
360 condition, resulting in the increasing O₃ trends contributed by the soil and
361 lightning NO_x emissions. Due to the weakened NO_x titration in winter, the
362 contribution of stratospheric intrusion increases at a rate of 0.6±0.1 and 1.0±0.1
363 ppb/decade over WUS and EUS, respectively, when stratospheric contribution
364 to the near-surface O₃ is relatively high (Butler et al., 2018). Along with the
365 weakened NO_x titration, contributions from reactive carbon emissions to the
366 near-surface O₃ in the U.S. also increase for most species and sectors (Figs.
367 ~~5f6f~~ and ~~5h6h~~).

368 **3.3 Source attribution of ozone trends to emission regions**

369 ~~The Time series of the source region contributions to near-surface O₃~~
370 ~~mixing ratios are shown in Fig. 7 and the~~ O₃ trends in the U.S. attributed to
371 different emission source regions are presented in Fig. ~~7. Time series of the~~
372 ~~source contributions are shown in Figs. 68~~. In summer, domestic anthropogenic
373 NO_x emissions (excluding those from soil) within North America account for 49%

374 of the near-surface O₃ ~~concentrationmixing ratio~~ averaged over the U.S.
375 (WUS+EUS) in 1995–2019. The domestic emission reduction is the dominant
376 factor causing the decline in surface O₃ ~~concentrationmixing ratios~~, with
377 contributions of -4.4 ± 0.222 and -5.7 ± 0.3 ppb/decade to the trends over WUS
378 and EUS, respectively, during 1995–2019 (Figs. 7a8a and 7e8c). Reductions in
379 the NMVOCs emissions from North American anthropogenic sources also
380 decrease O₃ ~~concentrationmixing ratios~~ (Figs. 7b8b and 7d8d), accompanying
381 with the domestic NO_x emission control. The increase in NO_x emissions from
382 Asia contributes 0.7 ± 0.1 ppb/decade to the total O₃ increasing trend in WUS,
383 partly offsetting the negative impact of domestic emission reductions, but has a
384 weak impact in EUS, which is consistent with previous studies (Lin et al., 2017).

385 In winter, domestic anthropogenic NO_x emissions only account for 19% of
386 the surface O₃ ~~concentrationmixing ratio~~ in the U.S. over 1995–2019, while NO_x
387 sources from lightning, rest of the world (mainly from the international shipping),
388 and Asia contribute 17%, 14%, and 11%, respectively, ~~and~~. O₃ from
389 stratospheric intrusion contributes 21% of the near-surface O₃ in the U.S. (Fig.
390 6). in winter. During 1995–2019, the significant increase in wintertime surface
391 O₃ ~~concentrationmixing ratios~~ are not directly linked to the reductions in
392 domestic anthropogenic emissions (Figs. 7e8e and 7g8g). However, the
393 domestic emission control weakens the NO_x titration, resulting in considerable
394 increases in O₃ originating from the natural sources, including O₃ from
395 stratospheric intrusion, lightning and soil emissions. The natural sources
396 combined contribute to positive O₃ trends of 1.2 ± 0.2 and 2.4 ± 0.3 ppb/decade
397 in WUS and EUS, respectively. If the O₃ increase is attributed to NMVOCs
398 emissions, the combined natural source contribution is even larger (1.4 ± 0.2 in
399 WUS and 2.5 ± 0.2 ppb/decade in EUS) (Figs. 7f8f and 7h8h). O₃ produced by
400 CH₄ increases at rates of 1.3 ± 0.1 and 2.1 ± 0.1 ppb/decade in WUS and EUS,
401 respectively, due to the weakened NO_x titration. Increases in aviation and

402 shipping emissions together explain the 1.2 ± 0.1 and 1.5 ± 0.1 ppb/decade of O₃
403 trends in WUS and EUS, respectively (Figs. 5e6e and 5g6g). Long-range
404 transport of O₃ produced from Asian NO_x emissions enhances the wintertime
405 O₃ increasing trends by 0.9 ± 0.1 and 1.2 ± 0.1 ppb/decade in WUS and EUS,
406 respectively, which are equally contributed by sources from East Asia, South
407 Asia, and Southeast Asia (Figs. 7e8e and 7g8g).

408 **3.4. Impact of variations in large-scale circulations on ozone trends**

409 Many studies have reported that O₃ spatial distribution is strongly
410 modulated by changes in large-scale circulations (e.g., Shen and Mickley, 2017;
411 Yang et al., 2014, 2022). Based on our MET experiments with anthropogenic
412 emissions kept unchanged, the changes in large-scale circulations show a
413 weak influence on the U.S. O₃ trends in summer (Fig. 8a9a) but cause a
414 significant O₃ rise in the central U.S. in winter (Fig. 8b9b). Averaged over the
415 U.S., the near-surface O₃ concentrationmixing ratio in winter increases at the
416 rate of 0.7 ± 0.3 ppb/decade during 1995–2019 in MET experiments, accounting
417 for 15% of the trend of 4.7 ± 0.3 ppb/decade in BASE experiments. It suggests
418 that the variation in large-scale circulations is responsible for 15% of the
419 increase in wintertime O₃ concentrations in the U.S. over 1995–2019. Variations
420 in the circulation facilitate O₃ transport from upper altitudes to the surface, as
421 well as foreign contributions from Asia, which is consistent with the finding in
422 Lin et al. (2015). The O₃ increasing trend in winter over the U.S. attributing to
423 stratospheric injection and Asian NO_x emissions due to dynamics are both
424 0.2 ± 0.1 ppb/decade (Fig. 8e). Therefore, changes in anthropogenic emissions
425 are the main factor affecting O₃ trends. increasing trend in wintertime O₃ mixing
426 ratio by 4.7 ± 0.3 ppb/decade in the U.S. during 1995–2019 simulated in BASE
427 experiment.

428 The changes in atmospheric circulation pattern support the above finding.
429 Compared to 1995–1999, anomalous northerly winds locate over high latitudes

430 of North America in 2015–2019 (Fig. 8e9c), strengthening the prevailing
431 northerly winds in winter. ~~The strengthened winds transport O₃ from remote~~
432 ~~regions (e.g., Asia) to the central U.S. (Fig. 8g).~~ In addition, an anomalous
433 subsidence ~~also~~ occurs over the central U.S. in 2015–2019, compared to 1995–
434 1999 (Fig. 8d), ~~leading to an 9d).~~ The anomalous ~~downward~~subsidence
435 transport ~~of~~ O₃ from high altitudes and even stratosphere to the surface (Figs.
436 8g and 8h).~~and the strengthened winds transport O₃ from remote regions (e.g.,~~
437 ~~O₃ produced by Asian NO_x emission) to the central U.S., both contributing to~~
438 ~~0.2±0.1 ppb/decade of the O₃ increase over the U.S. (Fig. 10).~~ The ~~horizontal~~
439 ~~and vertical~~finding is consistent with Lin et al. (2015) that variations in the
440 circulation facilitate O₃ transport ~~of O₃ together contribute from upper altitudes~~
441 to the ~~near~~ surface O₃ increases in winter during 1995–2019 associated with
442 ~~the changes in large-scale circulations, as well as foreign contributions from~~
443 ~~Asia~~. The anomalous atmospheric circulation is likely linked to the location of
444 the midlatitude jet stream, which is influenced by ENSO cycle (Lin et al., 2015).
445

446 4. Conclusions and discussions

447 Using a global chemistry–climate model equipped with an O₃ source
448 tagging technique, we examine the long-term trends and source apportionment
449 of O₃ in the continental U.S. over 1995–2019 to various emission source
450 sectors and regions in this study. This model can capture the O₃ decreasing
451 trend over the EUS in summer and increasing trend over the WUS in winter
452 during this time period, but largely overestimates the decreasing trend over
453 WUS in summer and increasing trend over EUS in winter.

454 In summer, our simulation results show that the decline in surface O₃ is
455 dominated by the rapid reductions in NO_x emissions from energy and surface
456 transportation sectors, contributing to O₃ decreases at a rate of –2.0 and –1.6
457 ppb/decade in WUS and –3.2 and –1.7 ppb/decade in EUS, respectively. As

458 the anthropogenic NO_x decreases, the more NO_x-sensitive condition leads to a
459 positive O₃ trend of 0.7 and 1.7 ppb/decade in WUS and EUS, respectively,
460 contributed by the NO_x emissions from soil. Due to the reductions in NO_x
461 emissions, the O₃ production efficiency by reactive carbon species also
462 decreased, leading to the decreasing contributions to O₃ from reactive carbon
463 species in summer during 1995–2019. Even though biogenic NMVOCs
464 emissions and CH₄ mixing ratio were fixed during simulations, their
465 contributions also decreased related to the weakened O₃ production efficiency
466 by these precursors. Source region tagging suggests that the domestic
467 emission reductions are primarily responsible for the decreasing trend in
468 summertime near-surface O₃ ~~concentrationsmixing ratios~~ in the U.S. during
469 1995–2019.

470 The mechanisms of wintertime O₃ increases over the U.S. are more
471 ~~complexcomplicated~~. First, the domestic emission control weakens the NO_x
472 titration, resulting in considerable increases in O₃ originating from natural
473 sources, including O₃ from stratospheric intrusion, lightning, soil and biogenic
474 emissions. The natural sources combined contribute a positive O₃ trend of more
475 than 1 and 2 ppb/decade in WUS and EUS, respectively. Second, increases in
476 aviation and shipping emissions together explain the 1.2 and 1.5 ppb/decade
477 of O₃ trends in WUS and EUS, respectively. Third, long-range transport of O₃
478 produced from Asian NO_x emissions enhances the wintertime O₃ increasing
479 trends by 0.9 and 1.2 ppb/decade in WUS and EUS, respectively. Fourth, the
480 variation of horizontal and vertical transport O₃ associated with the changes in
481 large-scale circulation contributes to the near-surface O₃ increases over the
482 U.S. by 15% in winter during 1995–2019.

483 ~~The overestimate of O₃ trend in the EUS might be related to a potential~~
484 ~~biased model representation of vertical mixing in winter.~~ Compared to
485 observations, the decreasing trend of O₃ ~~concentrationsmixing ratios~~ over WUS

486 in summer and increasing trend over EUS in winter are overestimated in the
487 CAM4-chem model. Because most O₃ monitors are located in urban areas and
488 these areas generate strong O₃ during the day and have strong oxidation
489 titration at night, the daily and grid averaged O₃ ~~concentrations~~mixing ratios
490 output by the model could be inconsistent with the urban observations. The
491 overestimate of O₃ trend in the EUS might be related to a potential biased model
492 representation of vertical mixing in winter. ~~Besides, Large uncertainties existing~~
493 in the emissions also result in the biases in the O₃ simulation. Lin et al. (2017)
494 found that the contribution from increasing Asian emissions offset that from the
495 U.S. emission reductions, resulting in a weak O₃ trend in WUS. In this study,
496 the Asian NO_x emissions only contribute to 0.6 ppb/decade of the total positive
497 trend in WUS in summer, much lower than the 3.7 ppb/decade decrease
498 attributable to the domestic emission reductions, suggesting that the Asian
499 contribution to the O₃ trends in WUS is ~~likely~~possibly underestimated in this
500 study. ~~The bias of~~We also found that the model did not capture the significant
501 increase in summertime O₃ simulation levels in China ~~may also lead to a bias in~~
502 ~~the wintertime O₃ trend over EUS in recent years, which could explain the low~~
503 ~~contribution from Asian sources.~~ Additionally, international shipping can have a
504 disproportionately high influence on tropospheric O₃ due to the dispersed
505 nature of NO_x emissions (Butler et al., 2020; Kasibhatla et al., 2000; von Glasow
506 et al., 2003), together with the weakened NO_x titration, resulting in the
507 overestimation of O₃ trends. The fixed CH₄ mixing ratio during simulations also
508 biased the modeled O₃ trends ~~in this study~~, which deserves further investigation
509 with the varying CH₄ levels in future studies. The coarse model resolution also
510 contributed to the biases. The overestimate of O₃ trend over EUS in winter,
511 likely related to the bias in NO_x titration, implies the overestimate of source
512 contributions to the trends in magnitude.

513 Compared with Butler et al. (2018), the simulation in this study shares

514 similar source sector contributions to the zonal average of O₃
515 ~~concentrationsmixing ratios~~ at the surface and 400 hPa in 2010 (Figs. S7 and
516 S8 in this study and Figs. 5 and 6 in Butler et al. (2018)). The contributions from
517 the stratosphere and lightning NO_x are relatively higher in this study than Butler
518 et al. (2018). This may be related to the different anthropogenic emission
519 inventories used, causing different O₃ production/loss efficiencies by natural
520 precursors. When comparing the contributions from different source regions to
521 surface O₃ ~~concentrationsmixing ratios~~ in North America, NO_x emissions from
522 East Asia, South Asia, North America, and Europe contributed 2.2, 1.1, 8.3, and
523 0.7 ppb of the surface O₃ in North America, respectively (Fig. S9) in this study,
524 which are also similar to those from Fig. 4 in Butler et al. (2020). Both studies
525 show the contributions of anthropogenic NMVOCs to surface O₃
526 ~~concentrationsmixing ratios~~ in North America are less than 10 ppb.

527 ~~As the results of the study heavily depend on the emission inventory, here~~
528 ~~the potential bias in emissions are also discussed. Compared with the previous~~
529 ~~CEDS version used in this study (hereafter CEDS_{Hoesly}), the updated CEDS~~
530 ~~inventory (hereafter CEDS_{GBD-MAPS}) (McDuffie et al., 2020) incorporates~~
531 ~~updated activity data. For NO_x, the global emission from CEDS_{GBD-MAPS} is~~
532 ~~smaller than that of CEDS_{Hoesly} after 2006 and shows a fast decreasing trend.~~
533 ~~By 2014, global emission of NO_x is about 10 % lower than the CEDS_{Hoesly}~~
534 ~~estimate. These differences are mainly reflected in the industrial and residential~~
535 ~~sectors in China, followed by the transportation sector in India and Africa. For~~
536 ~~global emission of NMVOCs, which remains relatively unchanged between the~~
537 ~~CEDS_{Hoesly} and CEDS_{GBD-MAPS} inventories (Fig. 6 in McDuffie et al. 2020). The~~
538 ~~global NO_x emission from EDGAR v4.3.2 inventory is less than CEDS_{Hoesly}~~
539 ~~(Crippa et al., 2018). This difference in NO_x emissions may reduce O₃ trends in~~
540 ~~U.S. from foreign contributions, especially from East Asia. Recent study also~~
541 ~~reported a difference in NO_x emission distribution between CMIP5 and CMIP6~~

542 related to an error in data pre-processing in CEDS, leading to a northward shift
543 of O₃ burden in CMIP6 (Thor et al., 2023). The aviation emissions should be
544 corrected in future studies of O₃ simulations.

545

546 **Author contributions.** YY designed the research; PL and SL performed
547 simulations; PL analyzed the data. All authors including HW, KL, PW, BL, and
548 HL discussed the results and wrote the paper.

549

550 **Code and data availability.** The CESM is maintained by NCAR and is provided
551 freely to the community. The ozone tagging code has been described by Butler
552 et al. (2018). The MERRA-2 reanalysis data are from NASA GESDISC data
553 (<https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I6NVANA.5.12.4/>,
554 last access: 1 August 2022). The surface O₃ measurements in U.S. are
555 obtained from the U.S. Environmental Protection Agency
556 (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Daily, last access: 1
557 August 2022). The modeling results are made available at
558 <https://doi.org/10.5281/zenodo.6891316> (last access: 1 August 2022).

559

560 **Acknowledgments**

561 HW acknowledges the support by the U.S. Department of Energy (DOE), Office
562 of Science, Office of Biological and Environmental Research (BER), as part of
563 the Earth and Environmental System Modeling program. The Pacific Northwest
564 National Laboratory (PNNL) is operated for DOE by the Battelle Memorial
565 Institute under contract DE-AC05-76RLO1830.

566

567 **Financial support.** This study was supported by the National Key Research
568 and Development Program of China (grant 2020YFA0607803 ~~and~~
569 ~~2019YFA0606800~~), the National Natural Science Foundation of China (grant
570 ~~41975159~~, ~~and~~), Jiangsu Science Fund for Distinguished Young Scholars
571 (grant BK20211541) ~~and~~ the Jiangsu Science Fund for Carbon Neutrality (grant
572 [BK20220031](#)).

573

574 **Competing interests.** The authors declare that they have no conflict of interest.
575

576 **References**

577

578 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, *Atmos. Environ.*, 34,
579 2063-2101, [https://doi.org/10.1016/S1352-2310\(99\)00460-4](https://doi.org/10.1016/S1352-2310(99)00460-4), 2000.

580

581 Bates, K. H. and Jacob, D. J.: An Expanded Definition of the Odd Oxygen
582 Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and
583 Stratospheric Influence, *Geophys. Res. Lett.*, 47, e2019GL084486,
584 <https://doi.org/10.1029/2019GL084486>, 2020.

585

586 Butler, T., Lupascu, A., and Nalam, A.: Attribution of ground-level ozone to
587 anthropogenic and natural sources of nitrogen oxides and reactive carbon in a
588 global chemical transport model, *Atmos. Chem. Phys.*, 20, 10707-10731,
589 <https://doi.org/10.5194/acp-20-10707-2020>, 2020.

590

591 Butler, T., Lupascu, A., Coates, J., and Zhu, ~~A.~~ S.: TOAST 1.0: Tropospheric
592 Ozone Attribution of Sources with Tagging for CESM 1.2.2, *Geosci. Model Dev.*,
593 [11, 2825–2840](https://doi.org/10.5194/gmd-11-2825-2018), <https://doi.org/10.5194/gmd-11-2825-2018>, 2018.

594

595 Castellanos, P. and Boersma, K. F.: Reductions in nitrogen oxides over Europe
596 driven by environmental policy and economic recession, *Sci. Rep.* ~~UK~~, 2, 265,
597 <https://doi.org/10.1038/srep00265>, 2012.

598

599 [Cheng, J., Tong, D., Liu, Y., Yu, S., Yan, L., Zheng, B., Geng, G., He, K., and](https://doi.org/10.1029/2021GL093197)
600 [Zhang, Q.: Comparison of current and future PM_{2.5} air quality in China under](https://doi.org/10.1029/2021GL093197)
601 [CMIP6 and DPEC emission scenarios, *Geophys. Res. Lett.*, 48,](https://doi.org/10.1029/2021GL093197)
602 [e2021GL093197](https://doi.org/10.1029/2021GL093197), <https://doi.org/10.1029/2021GL093197>, 2021.

603

604 Collet, S., Kidokoro, T., Karamchandani, P., Jung, J., and Shah, T.: Future year
605 ozone source attribution modeling study using CMAQ-ISAM, *J&AWMA, Air*
606 *Waste Manag. Assoc.*, 68, 1239-1247,
607 <https://doi.org/10.1080/10962247.2018.1496954>, 2018.

608

609 Cooper, O. R., Gao, R.-S., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-
610 term ozone trends at rural ozone monitoring sites across the United States,
611 1990-2010, *J. Geophys. Res.: Atmospheres, Atmos.*, 117, D22307,
612 <https://doi.org/10.1029/2012JD018261>, 2012.

613

614 Cooper, O. R., Schultz, M. G., Schröder, S., Chang, K.-L., Gaudel, A., Gerardo,
615 Benítez, C., Cuevas, E., Fröhlich, M., Galbally, I. E., Kubistin, D., Lu, X., Audra,
616 McClure-Begley, A., Molloy, S., Nédélec, P., O'Brien, J., Oltmans, S. J., Irina,
617 Petropavlovskikh, I., Ries, L., Senik, I., Sjöberg, K., Solberg, S., Spain, T. G.,

618 Spangl, W., Steinbacher, M., Tarasick, D., Thouret, V., and Xu, X.: Multi-decadal
619 surface ozone trends at globally distributed remote locations, *Elem. Sci. Anth.*,
620 8, 23, <https://doi.org/10.1525/elementa.420>, 2020.

621

622 Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source apportionment
623 and sensitivity analysis: two methodologies with two different purposes, *Geosci.
624 Model Dev.*, 10, 4245–4256, <https://doi.org/10.5194/gmd-10-4245-2017>, 2017.

625

626 ~~Grippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne,
627 J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-
628 Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012
629 within EDGAR v4.3.2, *Earth Syst. Sci. Data*, 10, 1987–2013,
630 <https://doi.org/10.5194/essd-10-1987-2018>, 2018.~~

631

632 ~~de Gouw, J. A., Parrish, D. D., Frost, G. J., and Trainer, M.: Reduced emissions
633 of CO₂, NO_x, and SO₂ from US power plants owing to switch from coal to
634 natural gas with combined cycle technology, *Earth's Future*, 2, 75–82,
635 <https://doi.org/10.1002/2013EF000196>, 2014.~~

636

637 Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D.
638 G., Hurwitz, M. M., and Pickering, K. E.: A space-based, high-resolution view of
639 notable changes in urban NO_x pollution around the world (2005–2014), *J. Geophys.
640 Res. Atmos.*, 21, 976–996, <https://doi.org/10.1002/2015JD024121>,
641 2016.

642

643 ~~Duncan, B. N., Yoshida, Y., de Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z.,
644 Pickering, K. E., and Krotkov, N. A.: The observed response of Ozone
645 Monitoring Instrument (OMI) NO₂ columns to NO_x emission controls on power
646 plants in the United States: 2005–2011, *Atmos. Environ.*, 81, 102–111,
647 <https://doi.org/10.1016/j.atmosenv.2013.08.068>, 2013.~~

648

649 Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: Comparison of
650 Source Apportionment and Source Sensitivity of Ozone in a Three-Dimensional
651 Air Quality Model, *Environ. Sci. Technol.*, 36, 2953–2964,
652 <https://doi.org/10.1021/es011418f>, 2002.

653

654 ~~EIA: US Energy Information Administration: Drilling Productivity Report,
655 available at: <https://www.eia.gov/petroleum/drilling/>, last access: 7 April 2020.~~

656

657 Emmons, L. K., Hess, P. G., Lamarque, J.-F., and Pfister, G. G.: Tagged ozone
658 mechanism for MOZART-4, CAM-chem and other chemical transport models,
659 *Geosci. Model Dev.*, 5, 1531–1542, <https://doi.org/10.5194/gmd-5-1531-2012>,

660 2012.

661

662 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore,
663 D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X.,
664 Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and
665 evaluation of the Model for Ozone and Related chemical Tracers, version 4
666 (MOZART-4), *Geosci. Model Dev.*, 3, 43–67, <https://doi.org/10.5194/gmd-3-43-2010>, 2010.

667

668

669 Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions from
670 international shipping: 1. The last 50 years, *J. Geophys. Res.*, 110, [D17305](#),
671 <https://doi.org/10.1029/2004JD005619>, 2005.

672

673 Fan, T., Liu, X., Ma, P.-L., Zhang, Q., Li, Z., Jiang, Y., Zhang, F., Zhao, C., Yang,
674 X., Wu, F., and Wang, Y.: Emission or atmospheric processes? An attempt to
675 attribute the source of large bias of aerosols in eastern China simulated by
676 global climate models, *Atmos. Chem. Phys.*, 18, 1395–1417,
677 <https://doi.org/10.5194/acp-18-1395-2018>, 2018.

678

679 Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:
680 Characterizing the tropospheric ozone response to methane emission controls
681 and the benefits to climate and air quality, *J. Geophys. Res.*, 113, D08307,
682 <https://doi.org/10.1029/2007JD009162>, 2008.

683

684 Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P.,
685 Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A.,
686 Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., van Dingenen,
687 R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J.,
688 Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine,
689 D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W.,
690 Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle,
691 K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S.,
692 and Zuber, A.: Multimodel estimates of intercontinental source-receptor
693 relationships for ozone pollution, *J. Geophys. Res.*, 114, D04301 ,
694 <https://doi.org/10.1029/2008JD010816>, 2009.

695

696 Fleming, Z. L., Doherty, R. M., Schneidemesser, E. V., Malley, C. S., Cooper,
697 O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G., Lefohn, A.
698 S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric Ozone
699 Assessment Report: Present-day ozone distribution and trends relevant to
700 human health, *Elem. Sci. Anth.*, 6, [p. 12](#), <https://doi.org/10.1525/elementa.273>,
701 2018.

702
703 Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., and Shao, P.: A case study of
704 surface ozone source apportionment during a high concentration episode,
705 under frequent shifting wind conditions over the Yangtze River Delta, China, *Sci.
706 Total Environ.*, 544, 853-863, <https://doi.org/10.1016/j.scitotenv.2015.12.039>,
707 2016.
708
709 Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J. F., and Liu, Y.: The impact of
710 emission and climate change on ozone in the United States under
711 representative concentration pathways (RCPs), *Atmos. Chem. Phys.*, 13, 9607-
712 9621, <https://doi.org/10.5194/acp-13-9607-2013>, 2013.
713
714 Gaudel, A., Cooper, O. R. , Chang, K. L., Bourgeois, I., Ziemke, J. R., Strode,
715 S. A., Oman, L. D., Sellitto, P., Nédélec, P., Bolt, R., Thouret, V. and Granier,C.:
716 Aircraft observations since the 1990s reveal increases of tropospheric ozone at
717 multiple locations across the Northern Hemisphere, *Sci. AdvanceAdv.*, 6,
718 [eaba8272](https://doi.org/10.1126/sciadv.aba8272), <https://doi.org/10.1126/sciadv.aba8272>, 2020.
719
720 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
721 Randles, C. A., Darmenov, A., Bosilovich, M. G., Re- ichle, R., Wargan, K., Coy,
722 L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M.,
723 Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka,
724 G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M.,
725 and Zhao, B.: The Modern-Era Retrospective Analysis for Research and
726 Applications, Version 2 (MERRA-2), *J. Climate*, 30, 5419–5454,
727 <https://doi.org/10.1175/JCLI-D-16-0758.1>, 2017.
728
729 [Grewe, V., Tsati, E., Mertens, M., Frömming, C., and Jöckel, P.: Contribution of
730 emissions to concentrations: the TAGGING 1.0 submodel based on the
731 Modular Earth Submodel System \(MESSy 2.52\), *Geosci. Model Dev.*, 10,
732 2615–2633, <https://doi.org/10.5194/gmd-10-2615-2017>](https://doi.org/10.5194/gmd-10-2615-2017), 2017.
733
734 Haagen-Smit, A. J.: Chemistry and Physiology of Los Angeles Smog, *Ind. Eng.
735 Chem.*, 44, 1342-1346, <https://doi.org/10.1021/ie50510a045>, 1952.
736
737 Hodnebrog, Ø., Berntsen, T. K., Dessens, O., Gauss, M., Grewe, V., Isaksen, I.
738 S. A., Koffi, B., Myhre, G., Olivié, D., Prather, M. J., Pyle, J. A., Stordal, F., Szopa,
739 S., Tang, Q., van Velthoven, P., Williams, J. E., and Ødemark, K.: Future impact
740 of non-land based traffic emissions on atmospheric ozone and OH – an
741 optimistic scenario and a possible mitigation strategy, *Atmos. Chem. Phys.*, 11,
742 11293–11317, <https://doi.org/10.5194/acp-11-11293-2011>, 2011.
743

744 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
745 Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C.,
746 Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C.
747 P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic
748 emissions of reactive gases and aerosols from the Community Emissions Data
749 System (CEDS), Geosci. Model Dev., 11, 369–408,
750 <https://doi.org/10.5194/gmd-11-369-2018>, 2018.

751

752 Han, H., Liu, J., Yuan, H., Zhuang, B., Zhu, Y., Wu, Y., Yan, Y., and Ding, A.:
753 Characteristics of intercontinental transport of tropospheric ozone from Africa
754 to Asia, Atmos. Chem. Phys., 18, 4251–4276, <https://doi.org/10.5194/acp-18-4251-2018>, 2018.

755

756

757 Hoor, P., Borken-Kleefeld, J., Caro, D., Dessens, O., Endresen, Ø., Gauss, M.,
758 Grewe, V., Hauglustaine, D. A., Isaksen, I. S. A., Jöckel, P., Lelieveld, J., Myhre,
759 G., Meijer, E. W., Olivié, D., Prather, M. J., Poberaj, C. S., Shine, K. P., Staehelin,
760 J., Tang, Q., Aardenne, J. v., Velthoven, P. F. J. v., and Sausen, R.: The impact
761 of traffic emissions on atmospheric ozone and OH: results from QUANTIFY,
762 Atmos. Chem. Phys., 9, 3113–3116, <https://doi.org/10.5194/acp-9-3113-2009>,
763 2009.

764

765 Jaffe, D. A., Cooper, O. R., Fiore, A. M., Henderson, B. H., Tonnesen, G. S.,
766 Russell, A. G., Henze, D. K., Langford, A. O., Lin, M., and Moore, T.: Scientific
767 assessment of background ozone over the U.S.: Implications for air quality
768 management, Elem. Sci. Anth. Jaffe, D. A., Cooper, O. R., Fiore, A. M., Henderson,
769 B. H., Tonnesen, G. S., Russell, A. G., Henze, D. K., Langford, A. O., Lin, M.,
770 and Moore, T.: Scientific assessment of background ozone over the U.S.:
771 Implications for air quality management, Elem. Sci. Anth. 6, 56, doi:
772 <https://doi.org/10.1525/elementa.309>, 2018.

773 <https://doi.org/10.1525/elementa.309>, 2018.

774

775 Johnson, C., Collins, W., Stevenson, D., and Derwent, R.: Relative roles of
776 climate and emissions changes on future tropospheric oxidant concentrations,
777 J. Geophys. Res. ~~Atmos.~~, 104, 18631–18645,
778 <https://doi.org/10.1029/1999JD900204>, 1999.

779

780 Kasibhatla, P., Levy, H., Moxim, W. J., Pandis, S. N., Corbett, J. J., Peterson,
781 M. C., Honrath, R. E., Frost, G. J., Knapp, K., Parrish, D. D., and Ryerson, T.
782 B.: Do emissions from ships have a significant impact on concentrations of
783 nitrogen oxides in the marine boundary layer?, Geophys. Res. Lett., 27, 2229–
784 2232, <https://doi.org/10.1029/2000gl011387>, 2000.

785

786 Koo, B., Wilson, G. M., Morris, R., Dunker, A. M., and Yarwood, G.: Comparison
787 of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air
788 Quality Model, *Environ. Sci. Technol.*, 43, 6669–6675,
789 <https://doi.org/10.1021/es9008129>, 2009.

790

791 ~~Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Vreekind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, *Atmos. Chem. Phys.*, 16, 4605–4629, <https://doi.org/10.5194/acp-16-4605-2016>, 2016.~~

792

793

794

795

796

797

798 Kwok, R. H. F., Baker, K. R., Napelenok, S. L., and Tonnesen, G. S.: Photochemical grid model implementation and application of VOC, NO_x, and
799 800 O₃ source apportionment, *Geosci. Model Dev.*, 8, 99–114,
801 <https://doi.org/10.5194/gmd-8-99-2015>, 2015.

802

803 Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, *Geosci. Model Dev.*, 5, 369–411, <https://doi.org/10.5194/gmd-5-369-2012>, 2012.

804

805

806

807

808

809 Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J., Tarasick, D., and Rieder, H. E.: Climate variability modulates western U.S. ozone air quality in spring via deep stratospheric intrusions, *Nat. Commun.*, 6, 7105, <https://doi.org/10.1038/ncomms8105>, 2015.

810

811

812

813

814 Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G. S.: US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate, *Atmos. Chem. Phys.*, 17, 2943–2970, <https://doi.org/10.5194/acp-17-2943-2017>, 2017.

815

816

817

818

819 ~~Lin, M., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O., Levy, H., Johnson, B. J., Naik, V., Oltmans, S. J., and Senff, C. J.: Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions, *J. Geophys. Res. Atmos.*, 117, <https://doi.org/10.1029/2012JD018151>, 2012.~~

820

821

822

823

824

825 Lupaşcu, A. and Butler, T.: Source attribution of European surface O₃ using a tagged O₃ mechanism, *Atmos. Chem. Phys.*, 19, 14535–14558, <https://doi.org/10.5194/acp-19-14535-2019>, 2019.

828
829 Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., and Sausen, R.: Attributing
830 ozone and its precursors to land transport emissions in Europe and Germany,
831 *Atmos. Chem. Phys.*, 20, 7843–7873, <https://doi.org/10.5194/acp-20-7843-2020>, 2020.
832
833
834 McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
835 Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global
836 anthropogenic emission inventory of atmospheric pollutants from sector- and
837 fuel-specific sources (1970–2017): an application of the Community Emissions
838 Data System (CEDS), *Earth Syst. Sci. Data*, 12, 3413–3442,
839 <https://doi.org/10.5194/essd-12-3413-2020>, 2020.
840
841 Müller-Casseres, E., Edelenbosch, O. Y., Szklo, A., Schaeffer, R., and van
842 Vuuren, D. P.: Global futures of trade impacting the challenge to decarbonize
843 the international shipping sector, *Energy*, 237, 121547,
844 <https://doi.org/10.1016/j.energy.2021.121547>, 2021
845
846 Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D.
847 Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G.
848 Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural
849 Radiative Forcing. In: *Climate Change 2013: The Physical Science Basis.*
850 Contribution of Working Group I to the Fifth Assessment Report of the
851 Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
852 Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
853 Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
854 New York, NY, USA, 2013.
855
856 Price, C., Penner, J., and Prather, M.: NO_x from lightning 1, Global distribution
857 based on lightning physics, J. Geophys. Res., 102, 5929–5941,
858 <https://doi.org/10.1029/96JD03504>, 1997.
859
860 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt,
861 G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R.,
862 Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project
863 (ScenarioMIP) for CMIP6, *Geosci. Model Dev.*, 9, 3461–3482,
864 <https://doi.org/10.5194/gmd-9-3461-2016>, 2016.
865
866 Price, C., Penner, J., and Prather, M.: NO_x from lightning 1, Global distribution
867 based on lightning physics, J. Geophys. Res., 102, 5929–5941,
868 <https://doi.org/10.1029/96JD03504>, 1997.
869

870 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
871 Air Pollution to Climate Change, J. Wiley, Hoboken, N.J., 2006.

872

873 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the
874 United States over a period of decreasing NO_x and VOC emissions, Environ.
875 Sci. Technol., 49, 186-195, <https://doi.org/10.1021/es504514z>, 2015.

876

877 Shen, L. and Mickley, L. J.: Effects of El Niño on summertime ozone air quality
878 in the eastern United States, Geophys. Res. Lett., 44, 12543–[5012550](#),
879 <https://doi.org/10.1002/2017GL076150>, 2017.

880

881 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P.
882 C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J.,
883 Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M.,
884 Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz,
885 L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-F., Lawrence, M. G.,
886 Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S.,
887 Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S.
888 E., Sudo, K., and Szopa, S.: Multimodel ensemble simulations of present-day
889 and near-future tropospheric ozone, J. Geophys. Res., 111, D08301.
890 <https://doi.org/10.1029/2005JD006338>, 2006.

891

892 Sudo, K., and Akimoto, H.: Global source attribution of tropospheric ozone:
893 Long-range transport from various source regions, J. Geophys. Res., 112,
894 D12302, <https://doi.org/10.1029/2006JD007992>, 2007.

895

896 Szopa, S., [V. Naik](#), [B. V. Adhikary](#), [P. B. Artaxo](#), [T. P. Berntsen](#), [W. D. T. Collins](#),
897 [S. W. D. Fuzzi](#), [L. S. Gallardo](#), [A. L. Kiendler-Scharr](#), [Z. A. Klimont](#), [H. Z. Liao](#),
898 [N. H. Unger](#), [N. and P. Zanis](#), [P. 2021](#): Short-Lived Climate Forcers. In
899 Climate Change 2021: The Physical Science Basis. Contribution of Working
900 Group I to the Sixth Assessment Report of the Intergovernmental Panel on
901 Climate Change [Masson-Delmotte, [V.](#), [P.](#), [Zhai](#), [A. P. Pirani](#), [S. L. A. Connors](#),
902 [C. S. L. Péan](#), [S. C. Berger](#), [N. S. Caud](#), [Y. N. Chen](#), [L. Y. Goldfarb](#), [M. I. L. Gomis](#),
903 [M. L. Huang](#), [K. M. Leitzell](#), [E. K. Lonnoy](#), [J. B. R. E. Matthews](#), [T. K. J. B. R. Maycock](#), [T. K. Waterfield](#), [O. I. Yelekçi](#), [R. O. Yu](#), [R. and B. Zhou](#) [B.](#)
904 (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New
905 York, NY, USA, pp. 817–922, <https://doi.org/10.1017/9781009157896.008>,
906 2021.

907

908

909 Thor, R. N., Mertens, M., Matthes, S., Righi, M., Hendricks, J., Brinkop, S., Graf,
910 P., Grawe, V., Jöckel, P., and Smith, S.: An inconsistency in aviation emissions
911 between CMIP5 and CMIP6 and the implications for short-lived species and

912 their radiative forcing, *Geosci. Model Dev.*, 16, 1459–1466,
913 <https://doi.org/10.5194/gmd-16-1459-2023>, 2023.

914

915 Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E.,
916 Wesseling, J., Belis, C., Pirovano, G., Janssen, S., Guerreiro, C., and Peduzzi,
917 E.: Source apportionment to support air quality planning: Strengths and
918 weaknesses of existing approaches, *Environ. Int.*, 130, 104825,
919 <https://doi.org/10.1016/j.envint.2019.05.019>, 2019.

920

921 Tilmes, S., Lamarque, J. F., Emmons, L. K., Kinnison, D. E., Marsh, D., Garcia,
922 R. R., Smith, A. K., Neely, R. R., Conley, A., Vitt, F., Val Martin, M., Tanimoto,
923 H., Simpson, I., Blake, D. R., and Blake, N.: Representation of the Community
924 Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate
925 Model Initiative (CCMI), *Geosci. Model Dev.*, 9, 1853–1890,
926 <https://doi.org/10.5194/gmd-9-1853-2016>, 2016.

927

928 Tilmes, S., Lamarque, J. F., Emmons, L. K., Kinnison, D. E., Ma, P. L., Liu, X.,
929 Ghan, S., Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W.,
930 Moore, F., Spackman, J. R., and Val Martin, M.: Description and evaluation of
931 tropospheric chemistry and aerosols in the Community Earth System Model
932 (CESM1.2), *Geosci. Model Dev.*, 8, 1395–1426, <https://doi.org/10.5194/gmd-8-1395-2015>, 2015.

933

934

935 ~~Tilmes, S., Lamarque, J. F., Emmons, L. K., Kinnison, D. E., Ma, P. L., Liu, X.,
936 Ghan, S., Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W.,
937 Moore, F., Spackman, J. R., and Val Martin, M.: Description and evaluation of
938 tropospheric chemistry and aerosols in the Community Earth System Model
939 (CESM1.2), Geosci. Model Dev., 8, 1395–1426, <https://doi.org/10.5194/gmd-8-1395-2015>, 2015.~~

940

941

942 van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field,
943 R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop,
944 G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic
945 global biomass burning emissions for CMIP6 (BB4CMIP) based on merging
946 satellite observations with proxies and fire models (1750–2015), *Geosci. Model
947 Dev.*, 10, 3329–3357, <https://doi.org/10.5194/gmd-10-3329-2017>, 2017.

948

949 von Glasow, R., Lawrence, M. G., Sander, R., and Crutzen, P. J.: Modeling the
950 chemical effects of ship exhaust in the ~~cloudfree~~^{cloud-free} marine boundary
951 layer, *Atmos. Chem. Phys.*, 3, 233–250, <https://doi.org/10.5194/acp-3-233-2003>, 2003.

952

953

954 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., Qian, Y.,
955 Ghan, S. J., and Beagley, N.: Using an explicit emission tagging method in
956 global modeling of source-receptor relationships for black carbon in the Arctic:
957 Variations, sources, and transport pathways, *J. Geophys. Res. Atmos.*, 119,
958 12888-12909, <https://doi.org/10.1002/2014JD022297>, 2014.
959

960 Wesely, M. L.: Parameterizations for surface resistance to gaseous dry
961 deposition in regional-scale numerical models, *Atmos. Environ.*, 23, 1293–1304,
962 [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4), 1989.
963

964 Xing, J., Pleim, J. E., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and Wei,
965 C.: Historical gaseous and primary aerosol emissions in the United States from
966 1990 to 2010, *Atmos. Chem. Phys.*, 13, 7531–7549,
967 <https://doi.org/10.5194/acp-13-7531-2013>, 2013.
968

969 Yang, Y., Li, M., Wang, H., Li, H., Wang, P., Li, K., Gao, M., and Liao, H.: ENSO
970 modulation of summertime tropospheric ozone over China, *Environ. Res. Lett.*,
971 17, 034020, <https://doi.org/10.1088/1748-9326/ac54cd>, 2022.
972

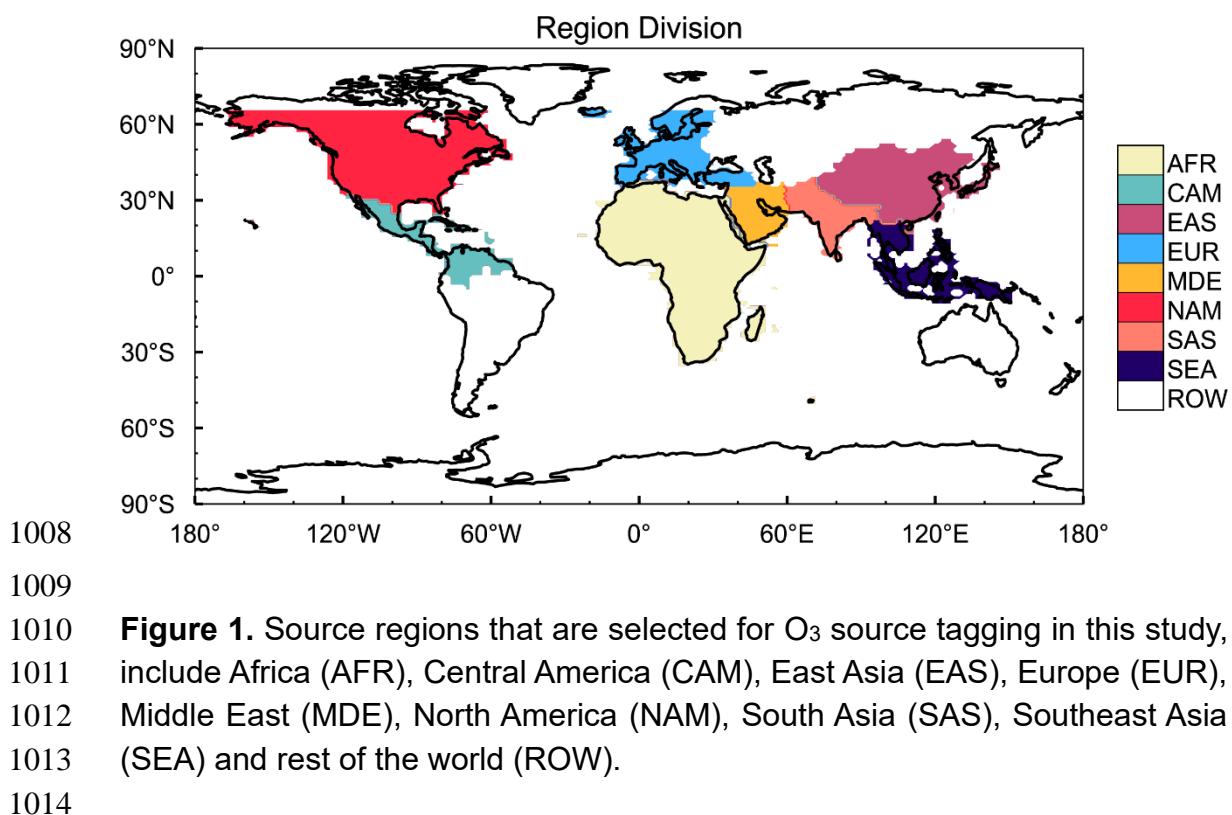
973 Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on
974 interannual variations of summertime surface-layer ozone concentrations over
975 China, *Atmos. Chem. Phys.*, 14, 6867–6879, <https://doi.org/10.5194/acp-14-6867-2014>, 2014.
977

978 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., and Rasch,
979 P. J.: Source apportionments of aerosols and their direct radiative forcing and
980 long-term trends over continental United States, *Earth's Future*, 6, 793–808,
981 <https://doi.org/10.1029/2018EF000859>, 2018.
982

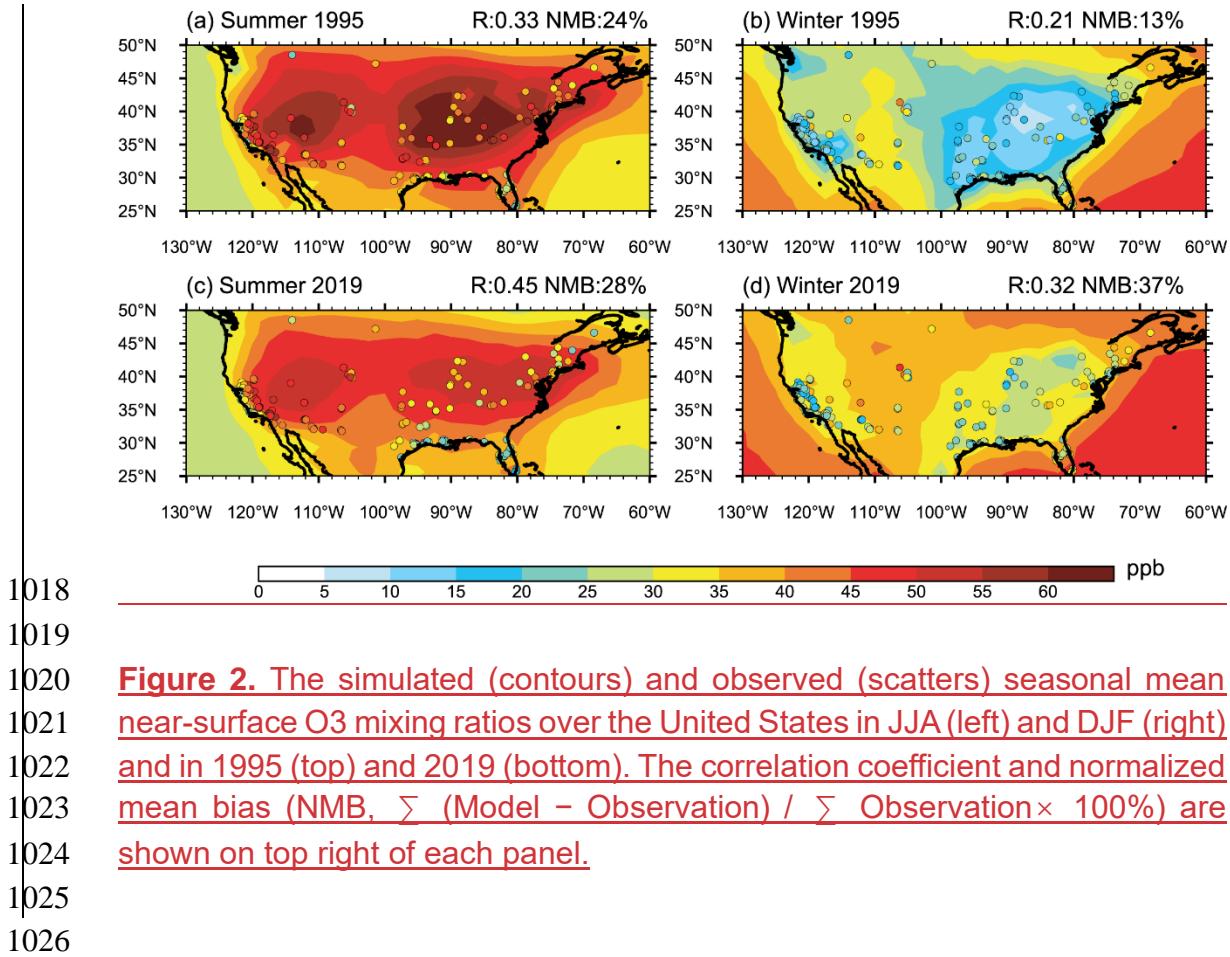
983 Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K.
984 W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E.,
985 Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and
986 Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of
987 recent Asian emission increases on air quality in North America: an integrated
988 analysis using satellite, aircraft, ozonesonde, and surface observations, *Atmos.*
989 *Chem. Phys.*, 8, 6117–6136, <https://doi.org/10.5194/acp-8-6117-2008>, 2008.
990

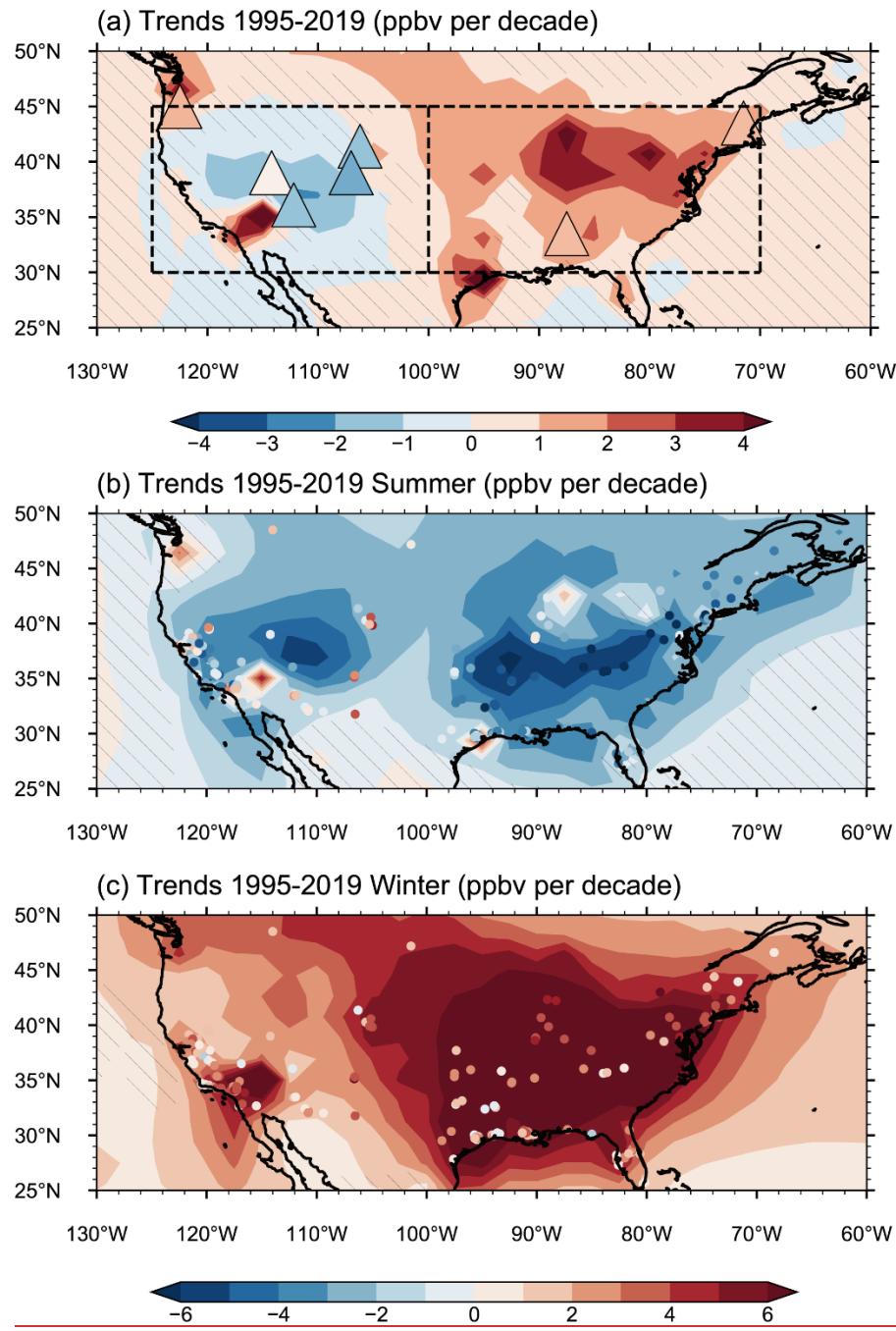
991 Zhang, Y., Cooper, O. R., Gaudel, A., Nedelec, P., Ogino, S. Y., Thompson, A.
992 M., and West, J. J.: Tropospheric ozone change from 1980 to 2010 dominated
993 by equatorward redistribution of emissions, *Nat. Geosci.*, 9, 875-879,
994 <https://doi.org/10.1038/ngeo2827>, 2016.
995

996 Zhang, Y., West, J. J., Emmons, L. K., Flemming, J., Jonson, J. E., Lund, M. T.,
997 Sekiya, T., Sudo, K., Gaudel, A., Chang, K. L., Nédélec, P., and Thouret, V.:
998 Contributions of World Regions to the Global Tropospheric Ozone Burden
999 Change From 1980 to 2010, *Geophys. Res. Lett.*, 48, [e2020GL089184](#),
1000 <https://doi.org/10.1029/2020GL089184>, 2021.



1001 **Table 1.** O₃ trends (ppb/decade) over eastern U.S. and western U.S. in winter
1002 (December-January-February, DJF) and summer (June-July-August, JJA) from
1003 observations and model simulations.


1004


<u>Season</u>	<u>Source</u>	<u>eastern U.S.</u>	<u>western U.S.</u>
<u>DJF</u>	<u>Observation</u>	<u>2.1 ± 0.29</u>	<u>2.2 ± 0.23</u>
<u>DJF</u>	<u>Model</u>	<u>6.1 ± 0.40</u>	<u>3.2 ± 0.28</u>
<u>JJA</u>	<u>Observation</u>	<u>-3.0 ± 0.41</u>	<u>-0.5 ± 0.42</u>
<u>JJA</u>	<u>Model</u>	<u>-3.0 ± 0.29</u>	<u>-2.3 ± 0.20</u>

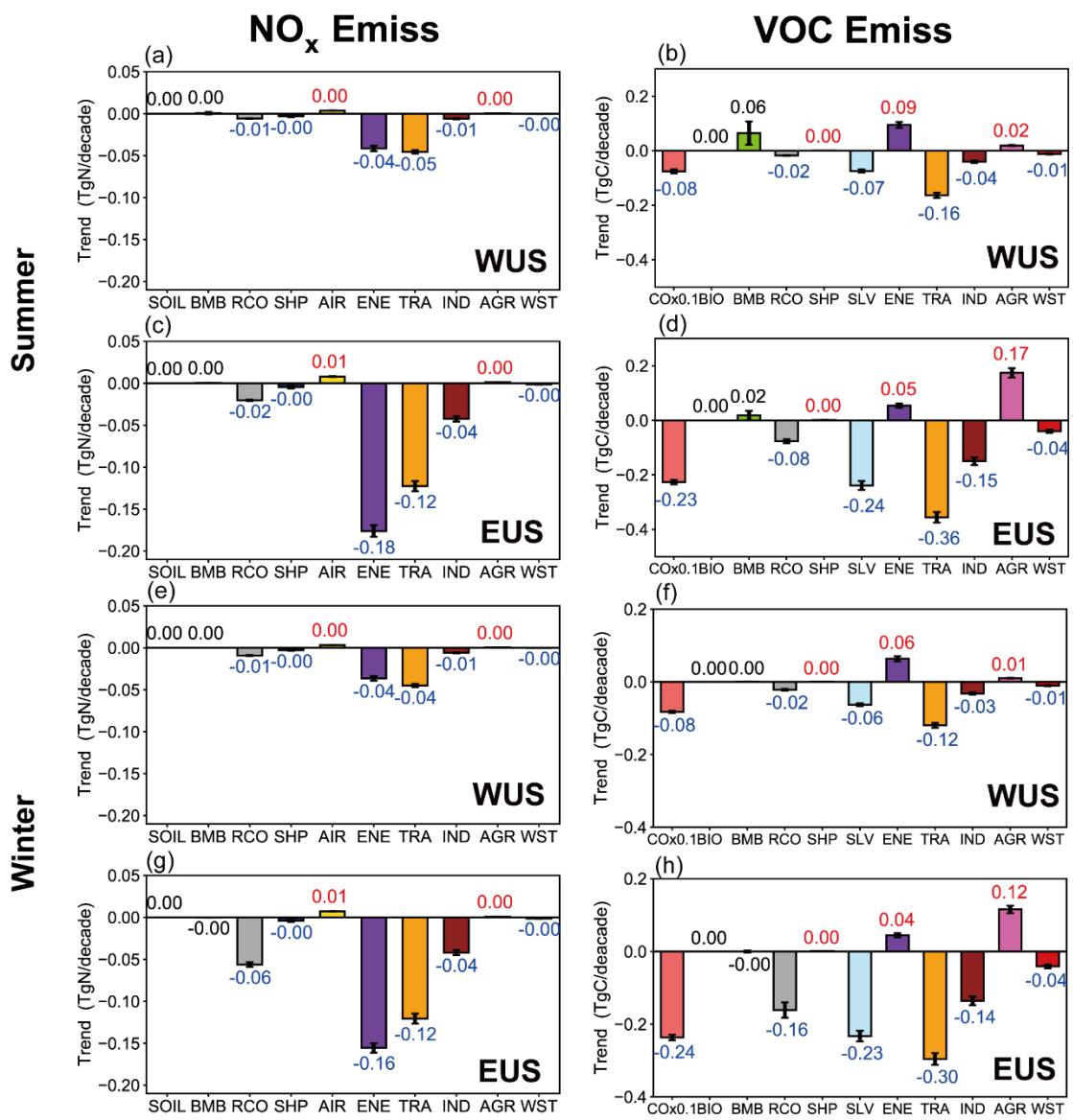
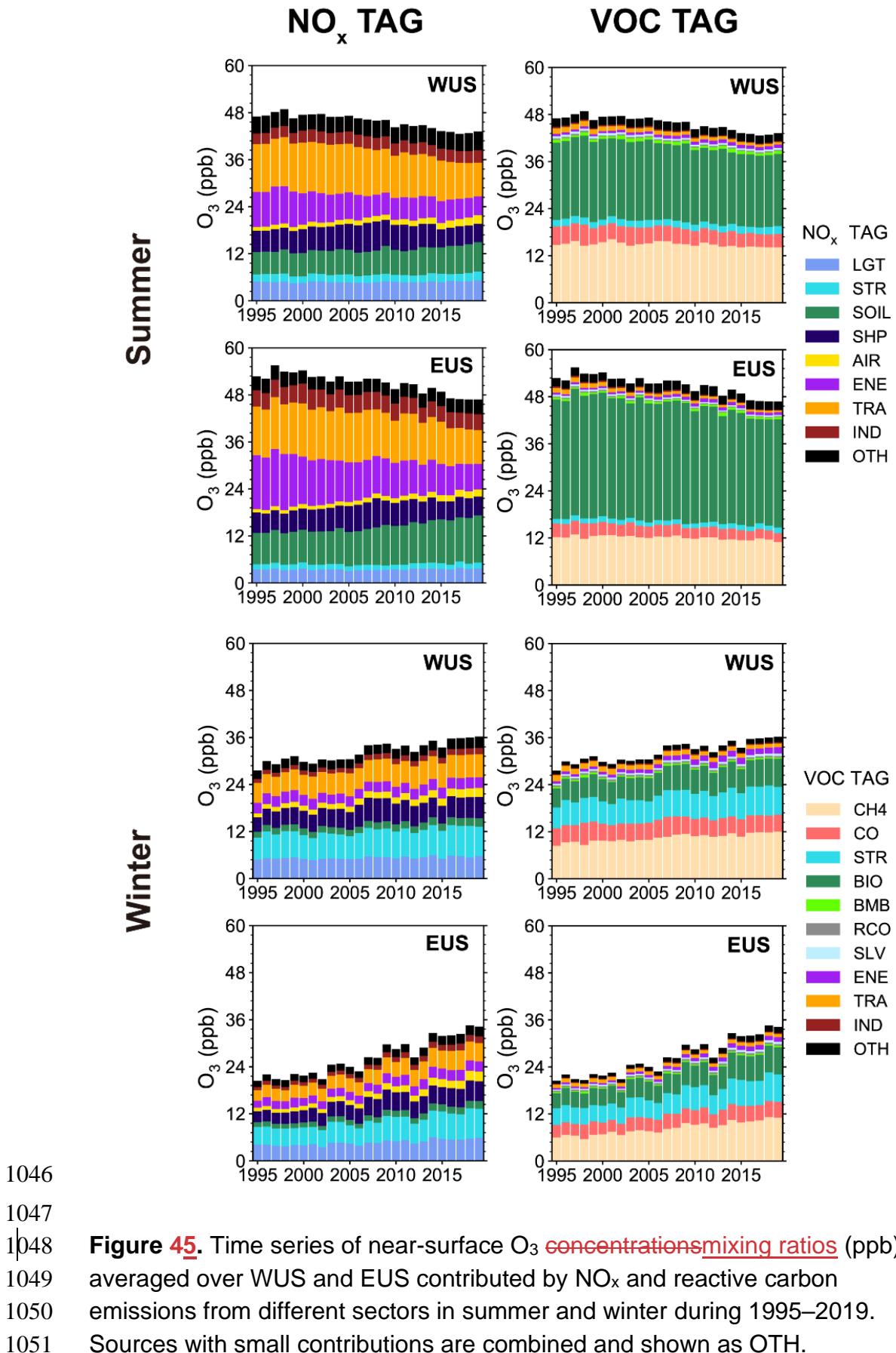


Figure 2.



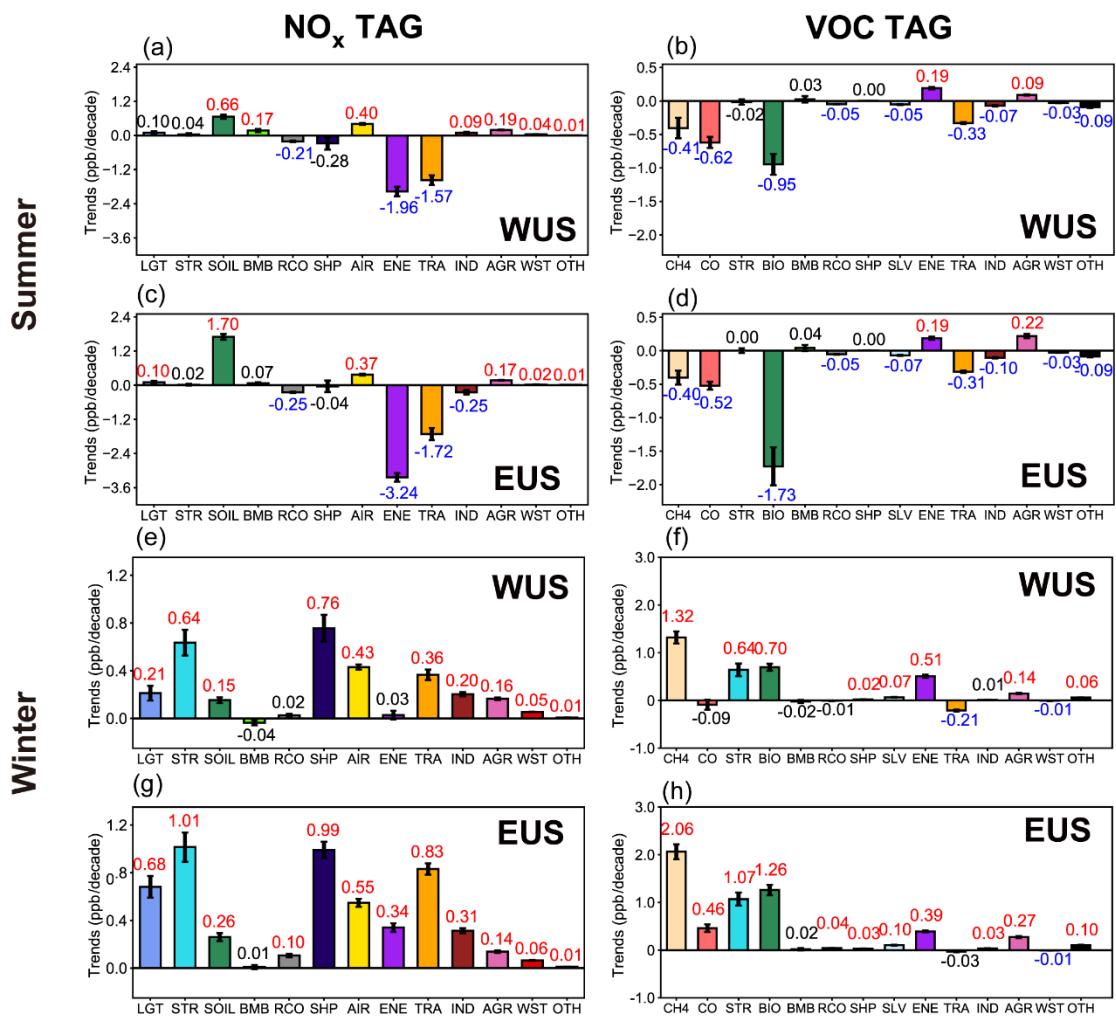


Figure 3. Linear trends (ppb/decade) of simulated (contours) and observed (color-filled markers) (a) annual, (b) JJA and (c) DJF mean near-surface O₃ concentrations/mixing ratios during 1995–2019. Areas without hatches indicate statistical significance with 95% confidence. The boxes in (a) mark the western U.S. (WUS, 100–125°W, 30–45°N) and eastern U.S. (EUS, 70–100°W, 30–45°N), respectively. The observed annual O₃ concentration/mixing ratio trends in (a) are derived from IPCC AR6, based on Cooper et al. (2020) and Gaudel et al. (2020) over 1995–2017. The observed seasonal O₃ concentration/mixing ratio trends in (b) and (c) are calculated based on the U.S. EPA O₃ measurements over 1995–2019.

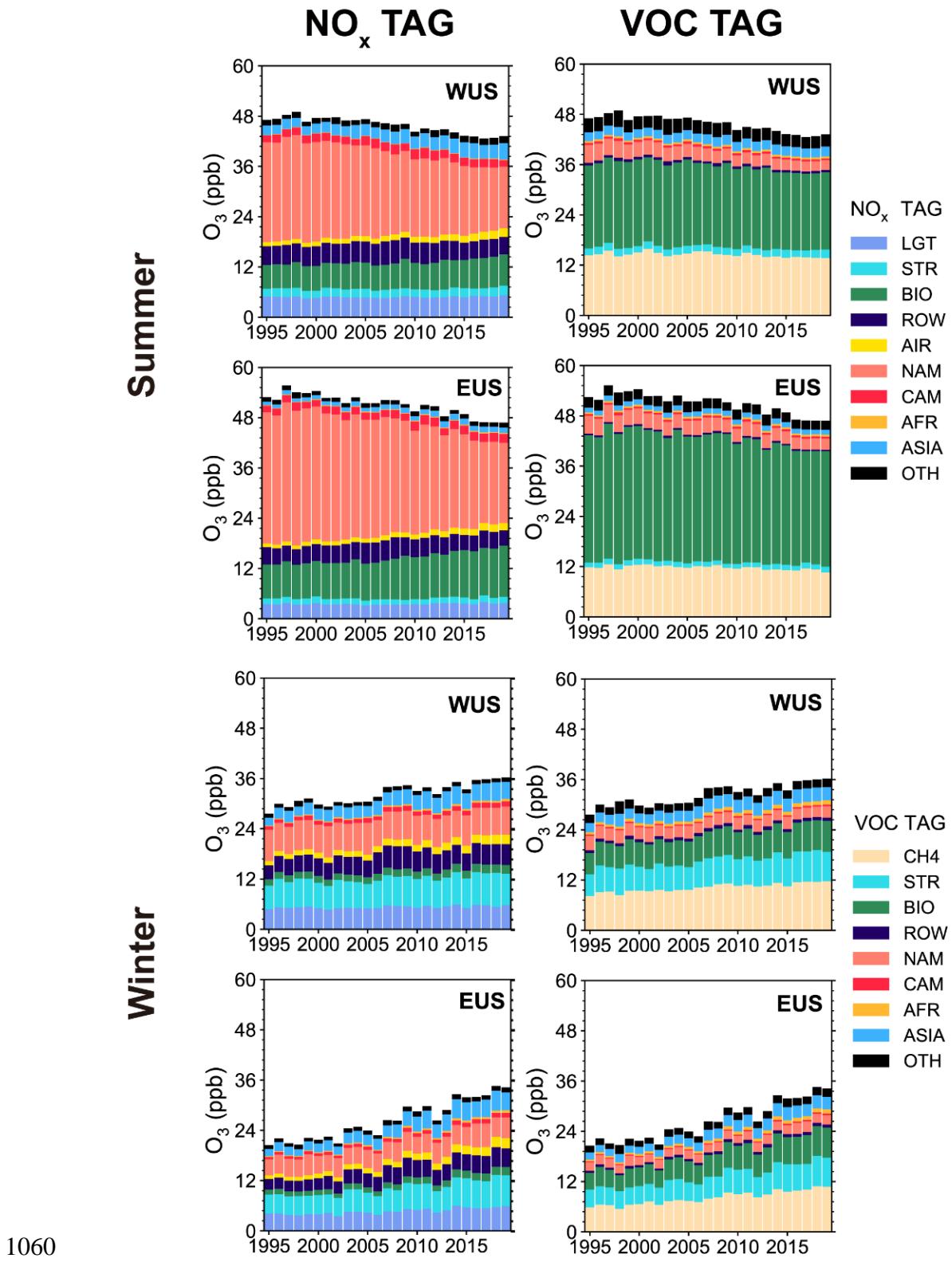
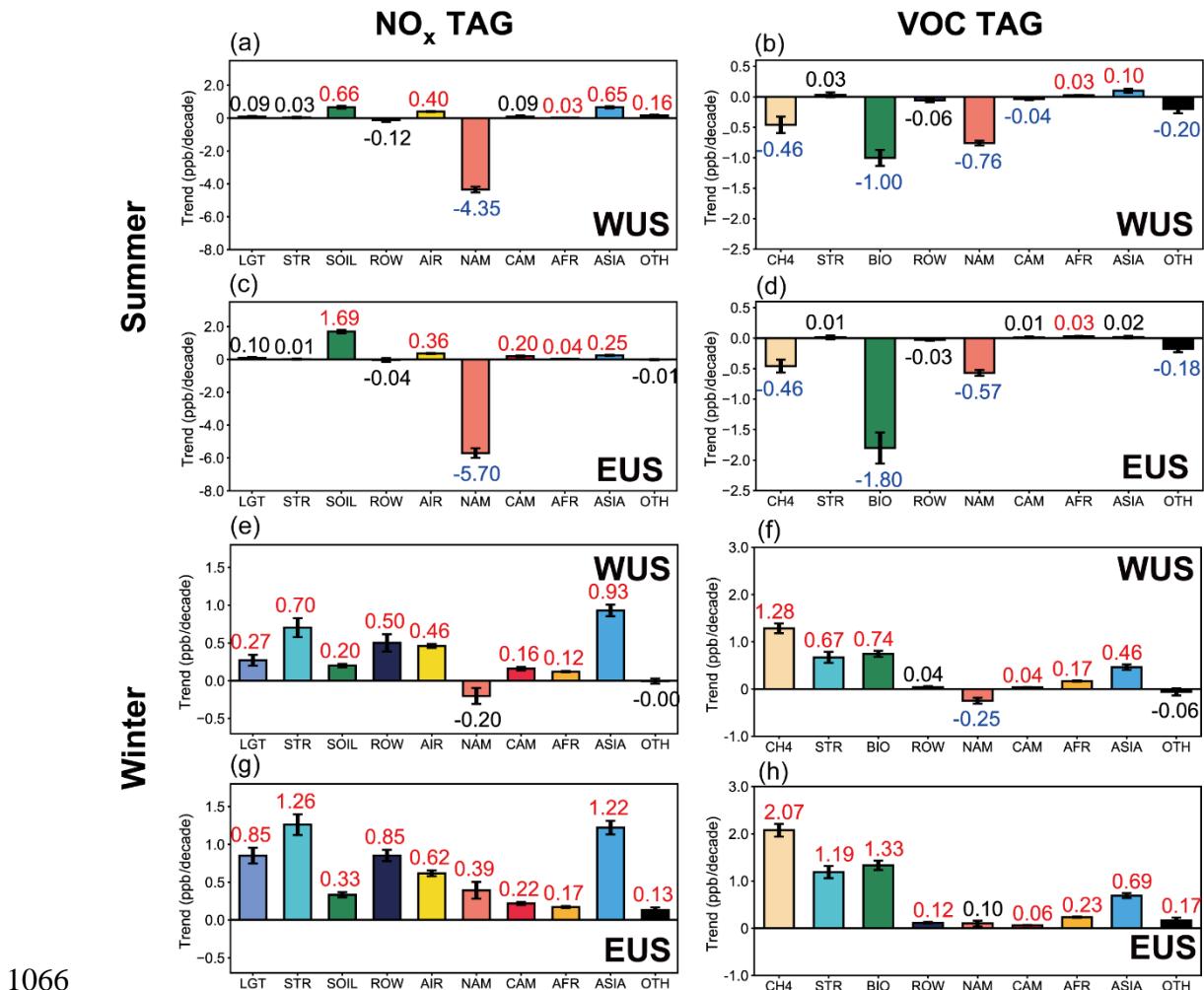
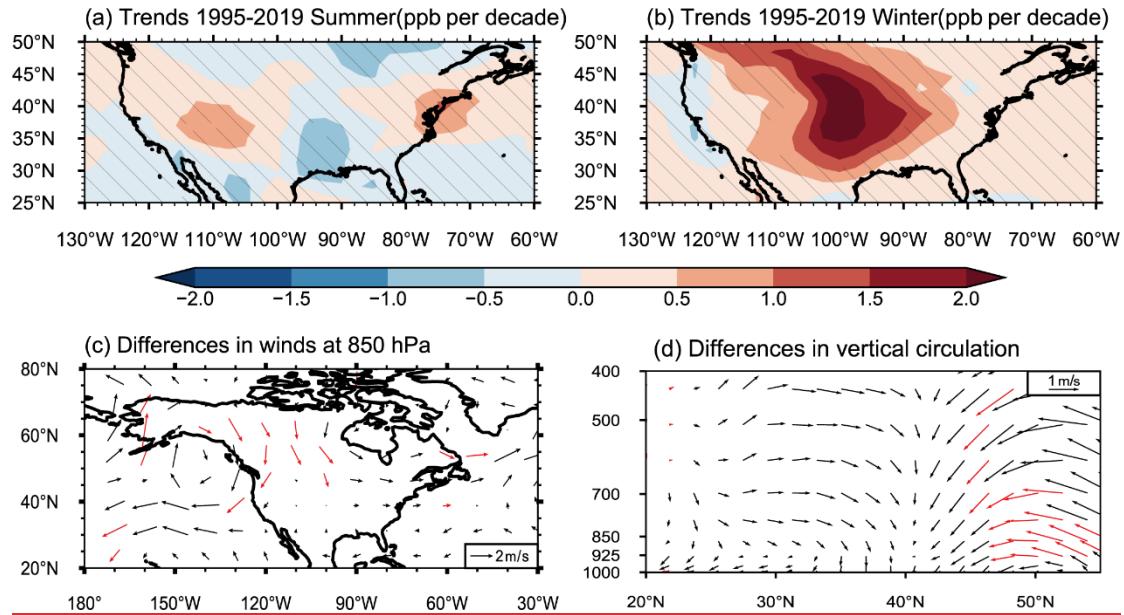


Figure 34. Linear trends of NO_x and reactive carbon emissions from various sectors in summer and winter over WUS and EUS. The increasing and decreasing trends marked with red and blue values, respectively, indicate statistical significance with 95% confidence.




Figure 56. Linear trends (ppb/decade) of near-surface O₃ concentrations/mixing ratios in summer and winter over WUS and EUS contributed by the NO_x (left) and reactive carbon (right) emissions from various sectors (color bars). The increasing and decreasing trends marked with red and blue color numbers, respectively, indicate statistical significance with 95% confidence. Other sources having small contributions are combined and shown as OTH.

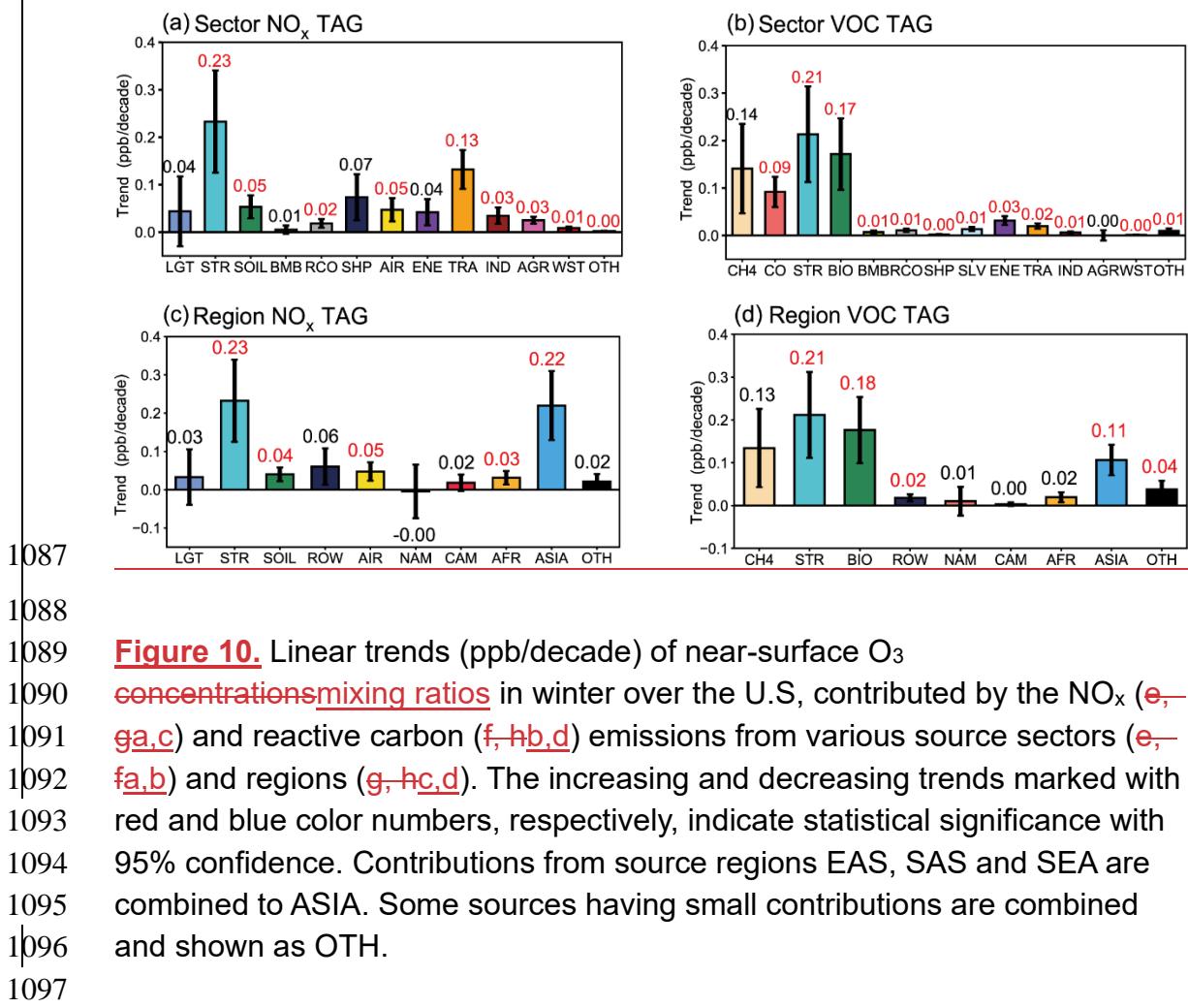

1060
1061
1062 **Figure 67.** Time series of near-surface O₃ ~~concentrations~~mixing ratios (ppb)
1063 averaged over WUS and EUS contributed by NO_x and reactive carbon
1064 emissions from different source regions in summer and winter during 1995–
1065 2019. Sources with small contributions are combined and shown as OTH.

Figure 78. Linear trends (ppb/decade) of near-surface O₃ concentrations/mixing ratios in summer and winter over WUS and EUS contributed by the NO_x (left) and reactive carbon (right) emissions from various source regions (color bars). The increasing and decreasing trends marked with red and blue color numbers, respectively, indicate statistical significance with 95% confidence. Contributions from source regions EAS, SAS and SEA are combined to ASIA. Other sources having small contributions are combined and shown as OTH.

Figure 89. Linear trends (ppb/decade) of simulated (a) JJA and (b) DJF mean near-surface O₃ concentrations during 1995–2019. Differences between the first (1995–1999) and last (2015–2019) five years during 1995–2019 (last–first) in DJF mean (c) 850 hPa horizontal winds and (d) meridional winds and vertical velocity averaged over 90–105°W. Areas without hatches in (a) and (b) and red arrows in (c) and (d) indicate statistical significance with 95% confidence. All results are from the MET experiments.

