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Abstract

Emissions of ozone (O3s) precursors in the United States have decreased
in recent decades, and near-surface O3 concentrations showed a significant
decrease in summer but an increase in winter. In this study, an Os source
tagging technique is utilized in a chemistry-climate model to investigate the
source contributions to O3 eoncentrationsmixing ratios in the U.S. from various
emitting sectors and regions of nitrogen oxides (NOx) and reactive carbon
species during 1995-2019. We show that domestic emission reductions from
energy and surface transportation are primarily responsible for the decrease in
summertime Os during 1995-2019. However, in winter, the emission control
also weakens the NOx titration process, resulting in considerable increases in
Os levels from natural sources. Additionally, increases in aviation and shipping

activitiesemissions and transpacific transport of Os from Asia largely contribute

to the winter O3z increase. Changes\We also found that changes in large-scale

circulation favoring O3 transport from upper atmosphere and foreign transport

from Asia also explain 15% of the Oz-inereasing-trendincrease in the U.S. near-

surface Os levels in winter.
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1. Introduction

Ozone (O3) near the surface has a significant impact on air quality and
public health (Haagen-Smit, 1952; Fleming et al., 2018). Since the increase in
anthropogenic emissions of O3 precursors from preindustrial times, O3z has now
become the third most important anthropogenic greenhouse gas in the
troposphere (Myhre et al., 2013). Major sources of Os in the troposphere
include the transport from the stratosphere and formation through
photochemical reactions within the troposphere involving two chemically
distinct groups of precursors: nitrogen oxides (NOx) and reactive carbon
species, including carbon monoxide (CO), methane (CH4), and non-methane
volatile organic compounds (NMVOCs) (Atkinson, 2000). Os precursors come
from a variety of sectors, and its relatively long lifetime of about 22 days
(Stevenson et al. 2006) favors the long-range transport of Os. Due to the
nonlinearity of the Os production and its associated dependence on precursor
emissions (Seinfeld and Pandis, 12972006), attributing Os pollution to its
sources is complicated.

Since the 1980s, O3 precursor emissions have significantly reduced in the
United States (Duncan et al., 2016; Xing et al., 2013; Zhang et al., 2016; Zhang
et al., 2021). However, due to the nonlinear production chemistry of Os,
complex seasonal meteorological influence, and long-range transport from
foreign source regions, domestic emissions reductions do not imply a decrease
in seasonal and annual Os concentrations. According to remote surface
measurements (Cooper et al., 2020) and aircraft observations (Gaudel et al.,
2020), the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (Szopa et al., 2021) showed a decreasing trend in annual mean O3
concentrations in the western U.S. but an increasing trend in the eastern U.S.
since the mid-1990s. On the seasonal timescale, surface observations and

modeling results showed that Os concentrations over the U.S. had decreased
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in summer due to the reductions in domestic anthropogenic emissions and
increased in winter related to the weakened NOx titration since the late 1980s
(Cooper et al.,, 2012; Lin et al,, 2017). It also shows that the increased
background O3, especially due to an increased transport from Asia, can partly
offset the benefit of domestic emissions control over the western U.S. in
summer.

Source apportionment is a useful method for quantifying contributions to
air pollutants from specific source regions and/or sectors, which is beneficial to
emission control strategies (Yang et al., 2018). One method of obtaining an O3
source-receptor relationship is to zero out or perturb emissions from a given
source region or sector in sensitivity simulations along with a baseline
simulation, which gives information about the response of O3 to changes in
precursor emissions (e.g., Fiore et al., 2009; Hoor et al., 2009). However,
emission perturbation method requires many additional model simulations

when being used to estimate the centributionsimpacts of changes in multiple

sources (Koo et al., 2009; Wang et al., 2014 }and-the). The perturbation method
may invalidate the assumption of a linear relationship between the magnitude
of the emission perturbation and the magnitude of the Oz change considering
the nonlinearity in Os chemistry, especially if large perturbations (e.g. zeroing
out regional or sector-wide emissions) are used. The tagging approach
produces information about the contribution of precursor emissions to the total
amount of Os (Butler et al., 2020). The perturbation and tagging methods are
two different methods answering different scientific questions, with the first for
the impacts and the last for the contributions (Grewe et al. 2010, Emmons et al.
2012, Clappier et al. 2017 and Thunis et al., 2019). Both of these two methods
can be used for specific purpose to provide a comprehensive understanding of
source-receptor relationships between precursor emissions and Os

concentrations.
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The source tagging method has been widely adopted in regional air quality

models to examine the Os attribution in the U.S., China, and/or Europe (Ceolet

etal;2022:-Gao et al., 2016; Collet et al., 2018; Lupascu and Butler, 2019). In
some regional models, Os apportionment is based on the ratio of chemical
indicators to determine the regime of O3 generation (e.g., VOC-limited or NOx-
limited regimes) and then attribute the generation of O3 to the tag carried by a
certain precursor (VOCs or NOx), which however cannot simultaneously
attribute Os production to NOx and VOCs, respectively (Dunker et al., 2002;
Kwok et al., 2015), while some models do not use the chemical indicators
(Lupascu and Butler, 2019; Mertens et al.,, 2020). In addition, due to the
limitation in domain size of regional air quality models, they are difficult to
account for contributions of intercontinental transport from several sources
outside the model domain. Recently, O3 tagging techniques have been
implemented in the global models (e.g., Bates-and-Jaceb,- 2020 Hanet-al;
2018:-Sudo and Akimoto, et al., 2007; Zhang et al., 2008; Emmons et al., 2012;

Grewe et al. 2017; Butler et al., 2018; Han et al., 2018; Bates and Jacob, 2020).

However, in many global models, Os is tagged by the production regions rather
than the precursor emission regions, so that Os can only be attributed to the
area where Os is generated, rather than the source of precursor emissions.
Here, based on a state-of-the-art tagging system implementation in a
global chemistry—climate model, the trends of near-surface Os
coneentrationsmixing ratios in the U.S. during 1995-2019 and the source
attributions of the Os variations to various emission sectors and regions of NOx
and reactive carbon species are investigated in this study. Mechanisms of
explaining the O3 trends that involve changes in anthropogenic emissions and
large-scale circulations are also explored.
2. Methods

2.1 Model Description
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Tropospheric O3 ecencentrationsmixing ratios are simulated using the
Community Atmosphere Model version 4 with Chemistry (CAM4-chem)
(Lamarque et al., 2012; Tilmes et al., 2015), which is the atmospheric chemistry
component of the Community Earth System Model (CESM), at a horizontal
resolution of 1.9° latitude by 2.5° longitude with 26 vertical levels extending to
40 km above the surface. The height of bottom layer-near-the-surface is about
120 m and there are about 4 layers under 2 km. The model configuration uses
a comprehensive tropospheric chemistry mechanism based on the Model for
Ozone and Related chemical Tracers version 4 (MOZART-4) (Emmons et al.,
2010, 2012). Model configurations simulate wet deposition of gas species using
the Neu and Prather (2012) scheme. Dry deposition is represented following
the resistance approach originally described in Wesely (1989). Stratosphere-
troposphere exchange of Ozs is treated by setting Os to stratospheric values as
their climatological means over 1996—-2005 at the tropopause (Lamarque et al.,
2012), which is affected by atmospheric circulation and experiences the same
loss rates as Os in the troposphere (Tilmes et al., 2016). Sea surface
temperatures and sea ice concentrations in our simulations are prescribed at
present-day climatological conditions. The zonal and meridional wind fields are
nudged towards the MERRA-2 (Modern Era Retrospective-Analysis for
Research and Applications Version 2) reanalysis (Gelaro et al., 2017) at a 6-
hourly relaxation timescale in this study to better constrain large-scale
circulations by observations. The CAM4-chem performance in simulating
tropospheric O3 and precursors has been fully evaluated in Tilmes et al. (2015).
2.2 Ozone Source Tagging Technique

The novel Os source tagging technique implemented in the model was
developed by Butler et al. (2018), which can provide a separate source
apportionment of tropospheric Os to the two distinct groups of precursor

emissions, i.e., NOx and reactive carbon (CO, CH4 and NMVOCs). The portion



150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177

of tropospheric Os that is attributable to the stratosphere-troposphere exchange
can also be quantified using this unique tagging technique. The source
attribution of Os requires two separate model runs with the tagging applied to
NOx and reactive carbon species, respectively. Details of the Os tagging
technique are described in Butler et al. (2018).

In this study, near-surface Os is attributed to emission sectors and regions.
Emissions from individual sectors, including agriculture (AGR), energy (ENE),
industry (IND), residential, commercial and other (RCO), surface transportation
(TRA), waste management (WST), international shipping (SHP) and biomass
burning (BMB) emissions, as well as chemical production in the stratosphere
(STR) and extra chemical production (XTR, a small amount of O3 produced due
to the self-reaction of OH radicals and the reactions of HO2 with certain organic
peroxy radicals) are tagged for both NOx and reactive carbon species. Aircraft
(AIR), soil (SOIL) and lightning (LGT) sources are separately tagged for NOx
emissions, while solvents (SLV) and biogenic (BIO) sources are separately
tagged for NMVOCs emissions.

For the regional source attribution, we separately tag anthropogenic
sources from Africa (AFR), Central America (CAM), Europe (EUR), Middle East
(MDE), North America (NAM), East Asia (EAS), South Asia (SAS), Southeast
Asia (SEA) and rest of the world (ROW) (see Fig. 1 for the region map) and
natural sources (BMB, SOIL, LGT, BIO, STR and XTR). Additional tags for
methane (CH4) and carbon monoxide (CO) are applied in both of the reactive
carbon tagging simulations that are used to attribute O3 to emission sectors and
regions. We doeesdo not tag CH4 by individual sources and its-centribution-is
the contributions of CH4 from various sources are lumped;—_in this study. It is

because CHas-is-often-considered-separatelyfrom-NMVOCs—H has a relative

long lifetime in the troposphere and it is well mixed in the troposphere due to its

exceptionally low reactivity, which can contribute to O3 formation at any location
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in the troposphere where photochemical conditions are favorable (Fiore et al.,

2008). CO also has a longer lifetime and lower reactivity than most NMVOCs;

from-other NMMOGCs-Therefore—the. The lumped tetalCO is separately-tagged
in the sectoratiribution-simulations_for emission sectors, but the-CO-is-not
specifically tagged in the regional-attribution-simulations_for emission regions

due to the computational limit.

2.3 Emissions and Observation
The global anthropogenic emissions, including NOx, CO, NMVOCs, SOz,
and NHs, over 1990-2019 are from the Community Emissions Data System

(CEDS) version 20210205 (Hoesly et al., 2018) (See Table S1 and Figs. S1-

S3). Biomass burning emissions are obtained from the CMIP6 (Coupled Model
Intercomparison Project Phase 6) over 1990-2014 (van Marle et al., 2017) and
the emissions for the following five years (2015-2019) are interpolated from the
SSP2-4.5 forcing scenario (O'Neill et al., 2016). NOx emitted from soils and
biogenic NMVOCs from vegetation are prescribed as in Tilmes et al. (2015) and
are kept at the present-day (2000) climatological levels during simulations.
Lightning emissions of NOx are estimated online using enlinethe
parameterization based on simulated cloud top heights from Price et al. (1997),
which is scaled to provide a global annual emission of 3-5 Tg N yr' as
(Lamarque et. al+., 2012). CH4 mixingratio-is fixed at a global average |level of
47501760 parts per billion (ppb, volume ratio in this study) during simulations.
Many studies have reported that the previous CEDS version 20160726

(hereafter CEDS2016) has large biases in the regional emission estimates (e.q.,

Cheng et al., 2021; Fan et al., 2018). In this study, the CEDS version 20210205

is used (hereafter CEDS2021), which builds on the extension of the CEDS

system described in McDuffie et al. (2020) and extends the anthropogenic

emissions to year 2019. It updates country-level emission inventories for North
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America, Europe and China and has considered the significant emission

reductions in China since the clean air actions in recent years. The global total

NOx emission from CEDS2021 is lower than that of CEDS2016 after 2006 and it

shows a fast decline since then. In 2014, the global total anthropogenic

emission of NOx in CEDS2021 is about 10% lower than the CEDS2016 estimate.

This difference is mainly reflected in the NOx emissions in China and India.

CEDS2021 has a lower estimate of the global NMVOCs emission than CEDS2016

by more than 10% during the recent decades, attributed to lower emissions

from Africa, Central and South America, the Middle East and India. The using

of the CEDS2021 emission inventory in this study could reduce the contributions

of NOx emissions from East Asia and South Asia to the U.S. O3 mixing ratios

and trends, as compared to CEDS2016. However, recent study reported a

difference in aviation emission distribution of NOx between CMIP5 and CMIP6

related to an error in data pre-processing in CEDS, leading to a northward shift

of O3 burden in CMIP6 (Thor et al., 2023). Therefore, the contribution of the

aircraft emissions of NOx to the O3 mixing ratios could be overestimated at high

latitude regions.

Surface Os measurements in the U.S. are obtained from the U.S.
Environmental Protection Agency (EPA). Linear trends of surface Oz are
calculated separately for boreal summer (June-July-August, JJA) and winter
(December-danuary-February, DJF). Seasonal mean for any site that has less
than 50% data availability in any month of a season is net-calculated-discarded
following Lin et al. (2017). Os trends at-sites-is shewncalculated only when the

seasonal data availability is greater than 85% during the analyzed period (more

than 22 years). Trends in this study are calculated based on the linear least-

squares regressions and the statistical significance is identified through the F

test with the 95% confidence level.

2.4 Experimental Design



234
235
236
237
238
239
240
241
242
243
244
P45
P46
PAT
P48
249
250
251
252
253
254
255

256
257

259
260
261

In this study, four groups of experiments are conducted, each group
includes both NOx tagging simulation and reactive carbon tagging simulation.
Two BASE experiment groups include simulations with emission sectors and
regions, respectively, tagged for the two chemical distinct precursors. The
BASE experiments are performed with time-varying anthropogenic emissions
and winds nudged to MERRA-2 reanalysis. The other two groups of sensitivity
experiments (MET) are the same as BASE experiments, except that the
anthropogenic emissions are held at year 2019 level during simulations. All
experiments are performed over 1990-2019, with the first 5 years treated as
model spin-up and the last 25 years used for analysis. The BASE experiments
are analyzed to quantify the source attributions of Os in the U.S., unless stated

otherwise. We note that although the wind fields are nudged at a 6-hourly

relaxation timescale, the atmospheric dynamics could also be slightly different

between simulations, leading to the slight changes in the contributions from the

same tags between simulations.

2.5 Model Evaluation

Figure S42 compares the simulated near-surface O3 eencentrationsmixing
ratios with those from observations in 1995 and 2019, respectively. In general,
the model overestimates Os concentrationsmixing ratios in the U.S. in both

summer and winter by 10—-40%. It can capture the seasonal pattern of Os

seaseonality—that high eencentrationsmixing ratios in summer and low

coneentrationsmixing ratios in winter. The spatial distributions can also be
roughly captured by the model, with statistically significant correlation
coefficients between simulations and observations in the range of 0.21-0.45.
From 1995 to 2019, the O3 concentrationsmixing ratios in the U.S. decreased
in summer and increased in winter presented in observations. The model can
produce the sign of the changes, but has large biases in magnitudes, which will

be discussed in the following section.

10
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3 Results
3.1 Ground-level ozone trends in the U.S.

Emissions of O3 precursors have substantially reduced since 1995 in both
the western U.S. (WUS, 100-125°W, 30—45°N) and eastern U.S. (EUS, 70—
100°W, 30-45°N), primarily owning to the reductions in anthropogenic
emissions (Figs. S1-S3). However, the simulated annual near-surface Os
coneentrationsmixing ratios present opposite trends between WUS and EUS,
with increases in EUS but weak decreases in WUS, which also exist in
observations (Fig. 2a3a).

Looking—at—different—seasons,—wefound-theThe simulated contrasting
trends in annual mean O3 cencentrationrsmixing ratios between the WUS and
EUS are dominated by the strong decreases in O3 cencentrationsmixing ratios
in summer across the U.S. (Fig. 3b) and increased Os levels in winter over the
central-eastern U.S. during 1995-2019- (Fig. 3c). The opposite trends between
summer and winter have also been noted in many previous studies (e.g.,
Copper et al., 2012; Lin et al., 2017, Jaffe et al., 2018). The model reproduces
the observed O3 trend over EUS in summer and roughly captures the Os trend
over WUS in winter (Table S11). The decreasing trend over WUS in summer
and increasing trend over EUS in winter, however, are largely overestimated in
the model, partly attributed to the coarse model resolution. The model also
tends to overestimate the weakening of NOx titration in winter, leading to the
biases. For spring and autumn, they are the transition between summer and
winter, having the similar spatial pattern of O3 trends as annual average, and
will not be concerned in this study.

3.2 Source attribution of ozone trends to emission sectors
During 1995-2019, summer and winter NOx emissions from energy and

surface transport sectors have significantly decreased in both WUS and EUS,

11
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followed by industry and residential sectors, while those from aircraft have
increased slightly (Fig. 34). Emissions of NMVOCs from surface transportation,
solvents, industry, residential and waste sectors have decreased across the
U.S., while those from energy and agriculture have increased. CO emissions
have also significantly decreased over this time period.

are-shown-in-Fig—5-The time series of the source sector contributions to O3

mixing ratios from NOx and reactive carbon emissions are shown in Figs—4;

respectivelyFig. 5 and the Os trends in the U.S. attributed to different emission

source sectors are shown in Fig. 6. In summer, the Os attributed to NOx

emissions from energy and surface transportation NOx-emissions-decreased at

the rate of 2.0+0.472 and 1.6+0.472 ppb/decade in WUS and 3.2+0.452 and
1.7+£0.212 ppb/decade in EUS, respectively (Figs. 6a6a and 5e6¢). On the
contrary, the Oz contributed by aircraft NOx emissions increased by 0.4+0.630
ppb/decade in both WUS and EUS. Along with the reductions in anthropogenic
emissions, natural emissions are becoming increasingly important as sources
for Os formation near the surface. Although NOx emissions from soil are held at
the present-day climatological levels, they account for 0.7+0.681 and 1.7+£0.461
ppb/decade increase in WUS and EUS, respectively, during 1995-2019, related
to the changing Os production efficiency under the more NOx-sensitive
condition. Note that, during 1995-2019, the molar ratio (mol N /mol C) of
emitted NOx to NMVOCs reduced from 0.11 to 0.07 in the-WUS and from 0.14
to 0.07 in-the EUS, confirming the enhanced NOx-sensitive condition during the
analyzed time period. In recent decades, global emissions from international
shipping have increased rapidly (Eyring;_et al., 2005; Muller-Casseres et al.,
2021), but have declined near the coast of the United States. Due to a strong
chemical sink associated with photolysis of O3z with subsequent production of

hydroxyl radical (OH) from water vapor in summer (Johnson et al., 1999), the

12
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effect of increased international shipping emissions efover the far-shoreremote

ocean regions on the continental United-States-U.S. was blunted. But the
increase in  shipping emissions inland tends to increase Os
concentrationrsmixing ratios in eastern U.S. (Fig. S654).

In summer, biogenic sources dominate the emissions of NMVOCs in the
U.S. (Fig. S3). As the Os decreases, mainly due to the reductions in domestic
NOx emissions, the contributions from biogenic emissions of NMVOCs have a
decreasing trend in the U.S. during 1995-2019 (Figs. 5b6b and 5d6d), even
though biogenic emissions were fixed during simulations. This also applies to
CHa4, of which the concentrationmixing ratio was kept constant. This does not
actually mean that CH4 and biogenic NMVOCs themselves contributed to the
overall Os trend through changing the precursor levels since they were kept
constant during simulations; rather, mainly due to the reductions in NOx
emissions, Os production efficiency by reactive carbon species decreases,
leading to decreasing trends of O3 contribution by CH4 and biogenic NMVOCs.
In conjunction with NOx emission reductions, decreases in NMVOCs emissions
from surface transportation and industry sectors contribute negative Os trends
of —0.31£0.0 and —0.10.0 ppb/decade, respectively, in both WUS and EUS; in

summer (Figs 6b and 6d), which are offset by the increases in NMVOCs

emissions from energy and agriculture sectors. Although the Os production
efficiency of CO is relatively low, the contributions of CO to Os
coneentrationsmixing ratios largely decreased with trends of —0.6+£0.1 and —
0.5+0.1 ppb/decade in WUS and EUS, respectively, due to the massive
reduction in anthropogenic emissions of CO (Fig. S1).

In winter, through the weakened NOx titration process (Gao et al., 2013;
Simon et al., 2015), the NOx emission control causes an increase in Os levels
during 1995-2019, especially the contribution from surface transportation

(0.4+0.0 ppb/decade in WUS and 0.8+0.1 ppb/decade in EUS) (Figs. 5e6e and

13



P46 5g69). Although aircraft NOx emissions slightly increased,-but O3 attributed to
347  aircraft NOx emissions shows positive trends as large as 0.4+0.0 and 0.6+0.0
348 ppb/decade in WUS and EUS, respectively. It is because aircraft emissions are
349 injected directly into the upper troposphere and lower stratosphere in a low
350 ambient NOx condition and have a much higher Os enhancement efficiency
351 than surface emissions (Hodnebrog et al., 2011). It can be confirmed that the
352  NOx from aircraft contributes to the increase in O3 eonecentrationsmixing ratios
353 at 250 hPa in high latitude regions of the Northern Hemisphere during 1995—

354 2019 (Fig. S6S5). The decrease in near-shore shipping_emissions weakened

355 the NOx titration, together with the weakened O3 chemical sink from water vapor
356 in winter, leading to large increasing trends of Os by 0.8£0.1 and 1.0+0.1
357 ppb/decade, respectively, in the WUS and EUS during 1995-2019. Although
358 most natural emissions do not change during the simulations, the net Os
359 chemical production is more sensitive to NOx under the emission control
360 condition, resulting in the increasing Os trends contributed by the soil and
361 lightning NOx emissions. Due to the weakened NOx titration in winter, the
362  contribution of stratospheric intrusion increases at a rate of 0.6+0.1 and 1.0£0.1
363 ppb/decade over WUS and EUS, respectively, when stratospheric contribution
364 to the near-surface Os is relatively high (Butler et al., 2018). Along with the
365 weakened NOx titration, contributions from reactive carbon emissions to the
366 near-surface Os in the U.S. also increase for most species and sectors (Figs.
367  5f6f and 5h6h).

368 3.3 Source attribution of ozone trends to emission regions

369 TheTime series of the source region contributions to near-surface O3

370 mixing ratios are shown in Fig. 7 and the O3z trends in the U.S. attributed to

371 different emission source regions are presented in Fig. 7—Fime-seriesof-the
372  seource-contributionsare-shown-inFigs—68. In summer, domestic anthropogenic

373  NOx emissions (excluding those from soil) within North America account for 49%

14
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of the near-surface O3 cencentrationmixing ratio averaged over the U.S.
(WUS+EUS) in 1995-2019. The domestic emission reduction is the dominant
factor causing the decline in surface Os ecencentrationsmixing ratios, with
contributions of —4.4+0.222 and -5.7+0.3 ppb/decade to the trends over WUS
and EUS, respectively, during 1995-2019 (Figs. 7a8a and #€8c). Reductions in
the NMVOCs emissions from North American anthropogenic sources also
decrease O3z concentrationsmixing ratios (Figs. 7b8b and 7€8d), accompanying
with the domestic NOx emission control. The increase in NOx emissions from
Asia contributes 0.7+0.1 ppb/decade to the total O3z increasing trend in WUS,
partly offsetting the negative impact of domestic emission reductions, but has a
weak impact in EUS, which is consistent with previous studies (Lin et al., 2017).

In winter, domestic anthropogenic NOx emissions only account for 19% of
the surface Os eoncentrationmixing ratio in the U.S. over 1995-2019, while NOx
sources from lightning, rest of the world (mainly from the international shipping),
and Asia contribute 17%, 14%, and 11%, respectively—and. O3 from
stratospheric intrusion contributes 21% of the near-surface Os in the U.S. {Fig-
6)in winter. During 1995-2019, the significant increase in wintertime surface
O3 ecencentrationsmixing ratios are not directly linked to the reductions in
domestic anthropogenic emissions (Figs. 7e8e and 7g8g). However, the
domestic emission control weakens the NOx titration, resulting in considerable
increases in Os originating from the natural sources, including Os from
stratospheric intrusion, lightning and soil emissions. The natural sources
combined contribute to positive Os trends of 1.2+0.2 and 2.41+0.3 ppb/decade
in WUS and EUS, respectively. If the Os increase is attributed to NMVOCs
emissions, the combined natural source contribution is even larger (1.4+0.2 in
WUS and 2.5£0.2 ppb/decade_in EUS) (Figs. #f8f and #h8h). O3 produced by
CHa increases at rates of 1.3+0.1 and 2.1+0.1 ppb/decade in WUS and EUS,

respectively, due to the weakened NOx titration. Increases in aviation and
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shipping emissions together explain the 1.2+0.1 and 1.5+0.1 ppb/decade of O3
trends in WUS and EUS, respectively (Figs. 5e6e and 5g6g). Long-range
transport of O3z produced from Asian NOx emissions enhances the wintertime
Os increasing trends by 0.9+0.1 and 1.2+0.1 ppb/decade in WUS and EUS,
respectively, which are equally contributed by sources from East Asia, South
Asia, and Southeast Asia (Figs. 7e8e and 7g8q).
3.4. Impact of variations in large-scale circulations on ozone trends
Many studies have reported that Os spatial distribution is strongly
modulated by changes in large-scale circulations (e.g., Shen and Mickley, 2017;
Yang et al., 2014, 2022). Based on our MET experiments with anthropogenic
emissions kept unchanged, the changes in large-scale circulations show a
weak influence on the U.S. Os trends in summer (Fig. 8a9a) but cause a
significant Os rise in the central U.S. in winter (Fig. 8b9b). Averaged over the
U.S., the near-surface Os cencentrationmixing ratio in winter increases at the
rate of 0.7+0.3 ppb/decade during 1995-2019 in MET experiments;-acecounting
for Bl ot e hondl e o0 - ppbleocnc e p PR cner —onde | sUggests

that the variation in large-scale circulations is responsible for 15% of the

are-the-mainfactor-affeeting-Os-trends-increasing trend in wintertime Os mixing

ratio by 4.7+0.3 ppb/decade in the U.S. during 1995-2019 simulated in BASE

experiment.

The changes in atmospheric circulation pattern support the above finding.

Compared to 1995-1999, anomalous northerly winds locate over high latitudes
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of North America in 2015-2019 (Fig. 8€9c), strengthening the prevailing

northerly winds in winter. Fhe-strengthened-windstransport-Os—from-remote
regions—{e-g-Asia)-to-thecentral U.S—(Fig-—8g)—In addition, an anomalous
subsidence alse-occurs over the central U.S. in 2015-2019, compared to 1995
1999 (Fig. 8d)y—leading—to—an—9d). The anomalous dewnwardsubsidence
transport ef-O3 from high altitudes and even stratosphere to the surface {Figs-

8g-and-8h).and the strengthened winds transport Os from remote regions (e.qg.,

Os produced by Asian NOx emission) to the central U.S., both contributing to

0.2+0.1 ppb/decade of the O3 increase over the U.S. (Fig. 10). The horizontal

and—verticalfinding is consistent with Lin et al. (2015) that variations in the

circulation facilitate Os transport ef-Os-tegether-contributefrom upper altitudes

to the near-surface O inereases in-winter during-1995-2019 associated with
the-changes-inlarge-scale—circulations, as well as foreign contributions from

Asia. The anomalous atmospheric circulation is likely linked to the location of

the midlatitude jet stream, which is influenced by ENSO cycle{Lin-etal-2015)..

4. Conclusions and discussions

Using a global chemistry—climate model equipped with an Os source
tagging technique, we examine the long-term trends and source apportionment
of Os in the continental U.S. over 1995-2019 to various emission source
sectors and regions in this study. This model can capture the O3 decreasing
trend over the EUS in summer and increasing trend over the WUS in winter
during this time period, but largely overestimates the decreasing trend over
WUS in summer and increasing trend over EUS in winter.

In summer, our simulation results show that the decline in surface Os is
dominated by the rapid reductions in NOx emissions from energy and surface
transportation sectors, contributing to O3z decreases at a rate of —2.0 and —-1.6

ppb/decade in WUS and -3.2 and —1.7 ppb/decade in EUS, respectively. As
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the anthropogenic NOx decreases, the more NOx-sensitive condition leads to a
positive Os trend of 0.7 and 1.7 ppb/decade in WUS and EUS, respectively,
contributed by the NOx emissions from soil. Due to the reductions in NOx
emissions, the Os production efficiency by reactive carbon species also
decreased, leading to the decreasing contributions to O3z from reactive carbon
species in summer during 1995-2019. Even though biogenic NMVOCs
emissions and CHs mixing ratio were fixed during simulations, their
contributions also decreased related to the weakened Os production efficiency
by these precursors. Source region tagging suggests that the domestic
emission reductions are primarily responsible for the decreasing trend in
summertime near-surface Os cencentrationsmixing ratios in the U.S. during
1995-2019.

The mechanisms of wintertime Os increases over the U.S. are more
complexcomplicated. First, the domestic emission control weakens the NOx
titration, resulting in considerable increases in O3z originating from natural
sources, including Os from stratospheric intrusion, lightning, soil and biogenic
emissions. The natural sources combined contribute a positive Oz trend of more
than 1 and 2 ppb/decade in WUS and EUS, respectively. Second, increases in
aviation and shipping emissions together explain the 1.2 and 1.5 ppb/decade
of O3 trends in WUS and EUS, respectively. Third, long-range transport of Os
produced from Asian NOx emissions enhances the wintertime Os increasing
trends by 0.9 and 1.2 ppb/decade in WUS and EUS, respectively. Fourth, the
variation of horizontal and vertical transport O3 associated with the changes in
large-scale circulation contributes to the near-surface O3z increases over the

U.S. by 15% in winter during 1995-2019.

observations, the decreasing trend of O3 cencentrationsmixing ratios over WUS
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511
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in summer and increasing trend over EUS in winter are overestimated in the
CAM4-chem model. Because most Oz monitors are located in urban areas and
these areas generate strong Os during the day and have strong oxidation
titration at night, the daily and grid averaged Os concentrationsmixing ratios
output by the model could be inconsistent with the urban observations. The

overestimate of Oz trend in the EUS might be related to a potential biased model

representation of vertical mixing in winter. Besides;Large uncertainties existing

in the emissions also result in the biases in the Os simulation. Lin et al. (2017)

found that the contribution from increasing Asian emissions offset that from the
U.S. emission reductions, resulting in a weak Os trend in WUS. In this study,
the Asian NOx emissions only contribute to 0.6 ppb/decade of the total positive
trend in WUS in summer, much lower than the 3.7 ppb/decade decrease
attributable to the domestic emission reductions, suggesting that the Asian
contribution to the O3 trends in WUS is likelypossibly underestimated in this
study. Fhe-bias-efWe also found that the model did not capture the significant

increase in summertime Os simulationlevels in China may-alselead-to-a-biasin

the-wintertime-Os-trend-overEUSIn recent years, which could explain the low

contribution from Asian sources. Additionally, international shipping can have a

disproportionately high influence on tropospheric Os due to the dispersed
nature of NOx emissions (Butler et al., 2020; Kasibhatla et al., 2000; von Glasow
et al., 2003), together with the weakened NOx titration, resulting in the
overestimation of Os trends. The fixed CH4 mixing ratio during simulations also
biased the modeled Os trends-in-this-study, which deserves further investigation
with the varying CH4 levels in future studies. The coarse model resolution also
contributed to the biases. The overestimate of Os trend over EUS in winter,
likely related to the bias in NOx titration, implies the overestimate of source
contributions to the trends in magnitude.

Compared with Butler et al. (2018), the simulation in this study shares
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similar source sector contributions to the zonal average of Os
coneentrationsmixing ratios at the surface and 400 hPa in 2010 (Figs. S7 and
S8 in this study and Figs. 5 and 6 in Butler et al. (2018)). The contributions from
the stratosphere and lightning NOx are relatively higher in this study than Butler
et al. (2018). This may be related to the different anthropogenic emission
inventories used, causing different O3 production/loss efficiencies by natural
precursors. When comparing the contributions from different source regions to
surface O3 cencentrationrsmixing ratios in North America, NOx emissions from
East Asia, South Asia, North America, and Europe contributed 2.2, 1.1, 8.3, and
0.7 ppb of the surface Os in North America, respectively (Fig. S9) in this study,
which are also similar to those from Fig. 4 in Butler et al. (2020). Both studies

show the contributions of anthropogenic NMVOCs to surface Os

coneentrationsmixing ratios in North America are less than 10 ppb.
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1001 Table 1. Os trends (ppb/decade) over eastern U.S. and western U.S. in winter
1002 (December-January-February, DJF) and summer (June-July-Auqust, JJA) from
1003  observations and model simulations.

1004
Season Source eastern U.S. western U.S.

DJF Observation 2.1+£0.29 2.2+0.23
DJF Model 6.1 +£0.40 3.2+0.28
JJA Observation -3.0£0.41 -0.5+042
JJA Model -3.0+0.29 -2.3+0.20
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Figure 1. Source regions that are selected for O3 source tagging in this study,
include Africa (AFR), Central America (CAM), East Asia (EAS), Europe (EUR),
Middle East (MDE), North America (NAM), South Asia (SAS), Southeast Asia
(SEA) and rest of the world (ROW).
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Figure 2. The simulated (contours) and observed (scatters) seasonal mean
near-surface O3 mixing ratios over the United States in JJA (left) and DJF (right)
and in 1995 (top) and 2019 (bottom). The correlation coefficient and normalized
mean bias (NMB, > (Model — Observation) / > Observationx 100%) are

shown on top right of each panel.
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1029  Figure 3. Linear trends (ppb/decade) of simulated (contours) and observed
1030  (color-filled markers) (a) annual, (b) JJA and (c) DJF mean near-surface O3
1b31 concentrationsmixing ratios during 1995-2019. Areas without hatches indicate
1032 statistical significance with 95% confidence. The boxes in (a) mark the western
1033 U.S. (WUS, 100-125°W, 30-45°N) and eastern U.S. (EUS, 70-100°W, 30—
1b34 45°N), respectively. The observed annual O3 cencentrationmixing ratio trends
1035 in (a) are derived from IPCC ARG, based on Cooper et al. (2020) and Gaudel
1036 et al. (2020) over 1995-2017. The observed seasonal O3 concentrationmixing
1037 ratio trends in (b) and (c) are calculated based on the U.S. EPA Os
1038 measurements over 1995-2019.
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Figure 34. Linear trends of NOx and reactive carbon emissions from various
sectors in summer and winter over WUS and EUS. The increasing and
decreasing trends marked with red and blue values, respectively, indicate
statistical significance with 95% confidence.

40



VOC TAG

: | |
[a)
o
ol | |“ |||||||||II ||III
— IIRNSERNNRRRRRNNRNRRER NO« TAG
o L LGT
E 0 STR
= 1995 2000 2005 2010 2015 mm SOIL
= B SHP
o AR
.7___..._ mm ENE
--’-! e TRA
I IND
il =
o
9995 2000 2005 2010 2015 9995 2000 2005 2010 2015
60 60
WuUsS Wwus
48 48
2 36 o 361 _—
Q L |I|II a - R =it
= LA a H
S l..::l““ o e R |||||I||||||||||| |||| VOC TAG
X CH4
- 12 I““l““"“"“"“ 12 i,
_9, STR
Q 0~ - - - ' B BIO
é 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 AME
60 60 mm RCO
EUS EUS sV
48 48 mm ENE
. . TRA
0 361 o 361 I IND
Q. (a8
= |. TR o mm OTH
Om 24 l ....- o("') 24 -
Epplnsy I'II i
12 |||||I||||IIIIIIII 12 (e A e ntgatanit
0 0
1046 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015

1047

1b48 Figure 45. Time series of near-surface Os concentrationsmixing ratios (ppb)
1049 averaged over WUS and EUS contributed by NOx and reactive carbon

1050 emissions from different sectors in summer and winter during 1995-2019.
1051  Sources with small contributions are combined and shown as OTH.

41



VOC TAG

24 0.5 (b)
- — 003 000 e 0.09
g 12 % 0.01
m @
[+] o
8 0.0 g-05
I )
812 g-10 dos
") @« -0
5 224 196157 g5
E F -3.6 WUS =20 WUS
E LGT STR SOIL BMB RCO SHP AIR ENE TRA IND AGR WST OTH
= (c)
w 24
g 12 )
8 8
g 0.01 _—_S
o =
&-12 &
p =
2—2.4 . E
= =
8 Eus | i T
LGT STR SOIL BMB RCO SHP AIR ENE TRA IND AGR WST OTH CH4 CO STR BIO BMB RCO SHP SLV ENE TRA IND AGR WST OTH
(e) (f)
3.0
1.2
z 0.76 WUS | ¢ 20 WUS
Sos| 064 ’ § “hs2
3 k)
%04021 0.43 0.36 -% 1.0 0.640.70 0.51
. P 0.15 0.03 0-200.15O o5 g 0.020.07 00104 0.06
2 0.02 - 05001 § O - -
‘8 E 0.01 E -0.09 -0.02-0.01 -0.21 0.01
= -0.04 ,
sm— LGT STR SOIL BMB RCO SHP AIR ENE TRA IND AGR WST OTH - CH4 CO STR BIO BMBRCO SHP SLV ENE TRA IND AGRWST OTH
= (@) h
1.01 a0 th)
1.2 :
: 030 EUS | 4 p EUS
g K g 20
Q 8 [s]
go 8
8 | 1.0
S04 k=S
8 ]
c c 0
Z 0.0 2
1052 LGT STR SOIL BMB RCO SHP AIR ENE TRA IND AGR WST OTH 1.0 CH4 CO STR BIO BME RCO SHP SLV ENE TRA IND AGRWST OTH

1053

1E54 Figure 56. Linear trends (ppb/decade) of near-surface O3 concentrationsmixing
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Figure 78. Linear trends (ppb/decade) of near-surface O3 concentrationsmixing
ratios in summer and winter over WUS and EUS contributed by the NOx (left)
and reactive carbon (right) emissions from various source regions (color bars).
The increasing and decreasing trends marked with red and blue color numbers,
respectively, indicate statistical significance with 95% confidence. Contributions
from source regions EAS, SAS and SEA are combined to ASIA. Other sources
having small contributions are combined and shown as OTH.
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(a) Trends 1995-2019 Summer(ppb per decade) (b) Trends 1995-2019 Winter(ppb per decade)
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Figure 89. Linear trends (ppb/decade) of simulated (a) JJA and (b) DJF mean
near-surface O3 concentrationsmixing ratios during 1995-2019. Differences
between the first (1995-1999) and last (2015-2019) five years during 1995—
2019 (lastfirst) in DJF mean (c) 850 hPa horizontal winds and (d) meridional
winds and vertical velocity averaged over 90—-105°W. Areas without hatches in
(a) and (b) and red arrows in (c) and (d) indicate statistical significance with
95% confidence. All results are from the MET experiments.

45



(a) Sector NO, TAG
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Figure 10. Linear trends (ppb/decade) of near-surface O3

coneentrationsmixing ratios in winter over the U.S, contributed by the NOx (e—
ga,c) and reactive carbon (f-hb,d) emissions from various source sectors (e;—
fa,b) and regions (g;-hc,d). The increasing and decreasing trends marked with
red and blue color numbers, respectively, indicate statistical significance with
95% confidence. Contributions from source regions EAS, SAS and SEA are
combined to ASIA. Some sources having small contributions are combined
and shown as OTH.
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