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Abstract 19 

Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy 20 

is an important method for the identification of occurrences, chemical compositions, 21 

and sources of atmospheric chromophores. However, current knowledge on the 22 

identification and interpretation of fluorescent components is mainly based on 23 

aquatic dissolved organic matter and might not be applicable to atmospheric samples. 24 

Therefore, this study comprehensively investigated EEM data of different types of 25 

strong light-absorbing organic compounds, water-soluble organic matter (WSOM) in 26 

different aerosol samples (combustion source samples and ambient aerosols), soil 27 

dust, and purified fulvic and humic acids supplemented by parallel factor 28 

(PARAFAC) modelling. The results demonstrated that organic compounds with high 29 

aromaticity and strong electron-donating groups generally present strong 30 

fluorescence spectra at longer emission wavelengths, whereas organic compounds 31 

substituted with electron-withdrawing groups have relatively weaker fluorescence 32 

intensity. In particular, aromatic compounds containing nitro groups (i.e., 33 

nitrophenols), which show strong absorption and are the major component of 34 

atmospheric brown carbon, exhibited no significant fluorescence. EEM-PARAFAC 35 

identified three fluorescent components (i.e., C1, C2, and C3) in ambient WSOM. 36 

Although EEM-PARAFAC derived C1 (235, 270/330 nm) in ambient WSOM is 37 

generally considered as protein-like groups, our findings suggested that it is mainly 38 

composed of aromatic acids, phenolic compounds, and their derivatives, with only 39 

traces of amino acids. C2 is associated with the atmospheric chemical reaction of 40 
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biomass burning and/or biogenic organic molecules, with relatively lower degree of 41 

oxidation, which are more abundant in Guangzhou WSOM (56%-69%). Whereas, 42 

C3 is mainly attributed to highly oxygenated organic molecules derived from soil 43 

and atmospheric aging processes and has a relatively higher contribution in Chuzhou 44 

WSOM (23%). These findings provide new insights for the analysis of chemical 45 

properties and sources of atmospheric fluorophores using the EEM method. 46 

 47 

1. Introduction 48 

Water-soluble organic carbon (WSOC) constitutes a substantial fraction (10–49 

80%) of organic aerosols in the atmosphere and is ubiquitous in ambient aerosols, 50 

clouds or fog, and rain water (Wozniak et al., 2012; Huang et al., 2022, Zhang et al., 51 

2022a). Recent studies have highlighted that a portion of WSOC, termed brown 52 

carbon (BrC), can absorb light in the near-ultraviolet and visible ranges (Laskin et al., 53 

2015, Frka et al., 2022; Ma et al., 2022). Owing to its strong light-absorption 54 

capacity, BrC can cause up to 45% solar radiation absorption by atmospheric 55 

aerosols and has potential effects on regional and even global climate (Zhang et al., 56 

2013). In addition, BrC also participates in atmospheric photochemical reactions, 57 

affects the physicochemical properties of atmospheric aerosols (Laskin et al., 2015; 58 

Tang et al., 2020b), and potentially, can be activated to form reactive oxygen species 59 

that cause adverse effects on human health (Cao et al., 2021; Zhang et al., 2022b). 60 

Excitation-emission matrix (EEM) fluorescence spectroscopy is a highly 61 

sensitive and widely used analytical technique for the identification of chemical 62 
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characteristics and sources of chromophores in dissolved organic matter (DOM) in 63 

aquatic environments (Murphy et al., 2010, 2013; Zhang et al., 2014). Recently, 64 

EEM has been further extended and frequently applied for the investigation of 65 

water-soluble organic matter (WSOM), such as light-absorbing organic compounds 66 

in atmospheric aerosols and fine particles from combustion processes (Chen et al., 67 

2020; Fan et al., 2016; Wu et al., 2020; Yang et al., 2022). For instance, humic-like 68 

substances (HULIS) and protein-like substances (PRLIS) have been identified as 69 

important fluorescent components in combustion-derived particles (Cao et al., 2021; 70 

Tang et al., 2021) and ambient aerosols (Ma et al., 2022; Wu et al., 2020; Yang et al., 71 

2022). Chen et al. (2016) used EEM coupled with parallel factor analysis 72 

(PARAFAC) and high-resolution mass spectrometry to identify chromophores in 73 

ambient aerosols and proposed that fluorescent components with longer excitation 74 

(Ex)/emission (Em) wavelengths comprise more highly oxygenated groups (Chen et 75 

al., 2016a). In addition, further application of the EEM method has also revealed that 76 

the concentration and types of fluorophores obviously vary during atmospheric 77 

processes, such as photolytic aging of biomass burning (BB)-derived chromophores 78 

(Aftab et al., 2018; Tang et al., 2020b). Therefore, the EEM method has significant 79 

potential for the characterization (types, sources, and evolution) of atmospheric BrC. 80 

However, application of the EEM method for the identification of atmospheric 81 

BrC has some limitations. It is well known that the present identification, 82 

classification, and interpretation of fluorescent components in atmospheric WSOM 83 

are mainly based on the fluorescence peak position of DOM in aquatic environments 84 
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(Coble, 1996; Wünsch et al., 2019). Nonetheless, the chemical and molecular 85 

composition and source of WSOM in atmospheric aerosols significantly vary from 86 

those of DOM in aquatic environments (Graber and Rudich, 2006; Laskin et al., 87 

2015); hence, the current fluorescence criterion derived from aquatic environments 88 

could lead to some inaccurate description of the fluorescent components in 89 

atmospheric WSOM. For instance, the EEM region at Ex/Em = 235(270)/330 nm is 90 

assigned to PRLIS and/or tryptophan-like substances in aquatic environments (Coble, 91 

1996), but is also associated with non-nitrogen species such as polyphenols in 92 

atmospheric WSOM (Chen et al., 2016b). The EEM region at peak M (290–93 

315/370–420 nm) is considered as a typical signal of marine-derived HULIS (Coble, 94 

2007; Zhao et al., 2019), but the source of this peak should be cautiously 95 

investigated when interpreting BrC in continental aerosols. In addition, the 96 

intensities of fluorescent species are not always linearly correlated with their 97 

concentrations, which can be affected by the aromatic ring system and the number 98 

and types of functional groups, thereby leading to greater uncertainty in intensity 99 

measurements (Andrade-Eiroa et al., 2013; Chen et al., 2020; Wang et al., 2020). 100 

Atmospheric BrC is composed of complex organic molecules with different light 101 

absorption properties (Lin et al., 2020; Huang et al., 2021; Jiang et al., 2022), and 102 

only a subset of BrC molecules that contain functional groups are capable of 103 

fluorescence emission upon relaxation from an excited state (Andrade-Eiroa et al., 104 

2013). Hence, interpretation of fluorescence data may only correspond to fluorescent 105 

chromophores and may not be representative of BrC as a whole (Chen et al., 2020; 106 
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Wang et al., 2020). All these factors limit further application of the EEM method for 107 

the analysis of atmospheric BrC. Therefore, it is essential to investigate the 108 

light-absorbing species that can be detected by EEM and obtain important 109 

information for identifying the chemical compositions and possible sources of these 110 

species. 111 

Accordingly, in the present study, the EEM profiles of a series of BrC model 112 

compounds and WSOM isolated from primary combustion samples, soils, and 113 

atmospheric aerosols were investigated. The chemical characteristics and sources of 114 

the main fluorophores were interpreted according to the fluorescence peaks location 115 

and intensity, and the chemical structures of the model compounds and source 116 

samples were analyzed. Then, atmospheric aerosols in Guangzhou (GZ) and 117 

Chuzhou (CZ) cities were collected and fluorescent chromophores within the 118 

water-soluble fraction were identified to estimate the application of the 119 

EEM-PARAFAC method in characterizing atmospheric BrC. The results obtained 120 

help to broaden the application of the EEM-PARAFAC method to study atmospheric 121 

BrC. 122 

 123 

2. Materials and methods 124 

2.1. Materials 125 

For accurate identification of the chemical composition and structures of 126 

fluorophores in atmospheric BrC and for assessment of application of the EEM 127 

method to examine atmospheric BrC, a total of 136 samples were investigated in this 128 
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study. The samples comprised: (1) 35 BrC model compounds, including phenolic 129 

compounds, aromatic acids, nitroaromatic compounds (NACs), PRLIS, 130 

N-heterocyclic compounds, and polycyclic aromatic hydrocarbons (PAHs) and their 131 

derivatives (detailed information in Text S1.1 and Table S1 of supporting 132 

information (SI)). These compounds are usually detected in ambient samples and 133 

have been considered typical BrC model compounds (Frka et al., 2022, Lin et al., 134 

2016; 2017; Wang et al., 2017; Huang et al., 2021); (2) 13 primary combustion 135 

source samples collected from BB, coal combustion (CC), and vehicle emission 136 

(VE); (3) five soil samples obtained from the rural area of Guangdong Province, 137 

China, with different vegetation, which is also an important source of atmospheric 138 

BrC and has been widely identified in previous studies (Chen et al., 2020; Vasilatou 139 

et al., 2017); (4) six purified fulvic and humic acids (FAs and HAs, respectively) 140 

kindly provided by Professor Weilin Huang (Rutgers, The State University of New 141 

Jersey, NJ, USA); and (5) 34 diurnal fine particulate matter (PM2.5) samples 142 

collected from 6 to 22 April, 2021 at GZ and CZ, respectively. In addition, 43 annual 143 

PM2.5 samples were collected from February 2018 to January 2019 at the GZ site and 144 

classified as wet and dry season atmospheric PM2.5 samples (for detailed information, 145 

see Text S1 of SI). Field blank samples were collected without instrument power on 146 

during each sampling period. 147 

 148 

2.2. Standard solution and aqueous extraction of ambient samples 149 

Solutions of model organic compounds were prepared by dissolving a certain 150 
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amount of dried solid or liquid samples in Milli-Q water or methanol. The ambient 151 

aerosol and soil samples were ultrasonically extracted with ultrapure water three 152 

times, and the supernatants were filtered using a 0.22-μm PTFE syringe filter to 153 

isolate the WSOM. The specific separation and purification methods have been 154 

published in previous studies (Chen et al., 2020; Fu et al., 2015; Wang et al., 2020; 155 

Yan and Kim, 2017) and are presented in the SI (Test S2).  156 

 157 

2.3. EEM-PARAFAC analysis  158 

The EEM fluorescence spectra of the aqueous extraction of the samples in 1-cm 159 

quartz cuvettes were recorded using a three-dimensional fluorescence 160 

spectrophotometer (Aqualog; HORIBA Scientific, USA) at room temperature. The 161 

scanning ranges for Ex and Em were 200–500 and 250–550 nm, respectively. The 162 

wavelength increment of the Ex and Em scans was 5 nm, the integration time was 163 

0.5 s, and Milli-Q water (18.2 MΩ cm) used as blank reference. The absorbance 164 

measurements were used to correct the EEM for inner filter effects (IFEs) as 165 

described previously (Fu et al., 2015) if the absorbance was > 0.05 at 250 nm 166 

(Murphy et al., 2013; Tang et al., 2020a). Background samples were also analyzed 167 

and the background values were subtracted from the values obtained for all the 168 

samples. To avoid concentration effects, the fluorescence spectra were normalized by 169 

the water Raman area to produce Raman unit (R.U.) and further by the organic 170 

carbon concentration of the samples to the normalized fluorescence intensities 171 

(R.U./(mg C/L)) (Yang et al., 2022) are shown in Table S2. 172 
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The PARAFAC modelling procedure was conducted for 77 atmospheric WSOM 173 

samples in MATLAB 2014b (Mathwork.Inc, USA) using the drEEM toolkit 174 

(Murphy et al., 2018; Wünsch et al., 2019). PARAFAC was computed using two to 175 

nine component models, with non-negativity constraints and residual analysis, and 176 

split-half analysis was employed to validate the number of fluorescent components. 177 

Based on the results of the split-half and core consistency analyses, three-component 178 

models were chosen for further investigation. The relative contribution of individual 179 

chromophores was estimated by calculating the maximum fluorescence intensities 180 

(Fmax: maximum fluorescence intensity of the identified fluorescent components; 181 

relative content (%) = Fmax/ΣFmax) (Chen et al., 2020; Fan et al., 2020).  182 

 183 

3. Results and discussion 184 

3.1. Fluorescence properties of BrC model compounds 185 

To identify whether the light-absorbing species possess fluorescence, a series of 186 

BrC model compounds were tested by the EEM method, and the fluorescence 187 

profiles are shown in Fig. S1. The results revealed that the location and intensity of 188 

the fluorescence peaks of different compounds were different, which varied with the 189 

distinct functional groups and aromatic conjugate system.  190 

Although phenolic compounds are important light-absorbing species in 191 

atmospheric BrC (Smith et al., 2016; Yu et al., 2014, 2016), not all of them exhibit 192 

strong fluorescence. As shown in Fig. S1a, a strong fluorescence peak in the EEM 193 

spectrum of phenol was observed at Ex/Em = 270/295 nm. When the phenol 194 
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compounds were substituted with electron-donating groups (e.g., hydroxyl), all of 195 

the stronger fluorescence peaks were obviously red-shifted to 310–320 nm (e.g., 196 

catechol, hydroquinone, and 2-methoxyphenol). However, phenolic compounds 197 

substituted with electron-withdrawing groups (e.g., carboxyl and aldehyde) 198 

displayed weaker or even no fluorescence (Fig. S1a). These differences could be due 199 

to the ability of the electron-donating groups to form a larger conjugate system 200 

coupled with the benzene ring and decrease the π→π* transition energy, thus leading 201 

to an increase in the Em wavelength (i.e., red shift) and variation in fluorescence 202 

intensity (Chen et al., 2002; Andrade-Eiroa et al., 2013). In contrast, the 203 

electron-withdrawing group can reduce the conjugated structure formed by the 204 

benzene ring and hydroxyl group, reducing the fluorescence intensity 205 

(Andrade-Eiroa et al., 2010; Andrade-Eiroa et al., 2013). 206 

Aromatic acid and its derivatives are also important light-absorbing organic 207 

compounds in atmospheric BrC. Owing to the negative effects of the carboxyl group, 208 

a weak fluorescence peak (275/315 nm) was identified for benzoic acid, and no 209 

fluorescence was detected for benzene polycarboxylic acids, such as phthalic acid, 210 

terephthalic acid, and trimesic acid (Fig. S1b). However, when benzoic acid was 211 

substituted with electron-donating groups (e.g., hydroxyl, methoxy), higher intensity 212 

fluorescence peaks were observed. Two strong fluorescence peaks at 230/405 and 213 

290/405 nm were identified for 2-hydroxybenzoic acid substituted with only one 214 

hydroxyl group. These peaks could have been the result of the ortho structure of the 215 

hydroxy and carboxyl groups, which is favorable for the formation of intramolecular 216 
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hydrogen bonds and generates a double-ring conjugate structure, reducing the 217 

transition energy and thereby presenting strong UV absorption and fluorescence 218 

(Andrade-Eiroa et al., 2013). 219 

N-containing compounds, especially NACs, have strong light absorption, and 220 

have been reported to be the major components of atmospheric BrC, accounting for 221 

more than 60% of the total light absorption intensity at 300–500 nm (Huang et al., 222 

2021; Lin et al., 2016; Lin et al., 2017; Wang et al., 2017; Frka et al, 2022). However, 223 

most of the NACs did not exhibit any fluorescence (Fig. S1c), similar to that 224 

reported in a previous study by Chen et al. (2020), which could be due to the 225 

significant reduction in the electron density of the benzene ring by the nitro (-NO2) 226 

group—strong electron-withdrawing group—thereby weakening the fluorescence. 227 

Tryptophan and tyrosine are the two most studied PRLIS species, and their 228 

EEM spectra are generally used as standards for comparison with fluorophores in 229 

atmospheric WSOM (Matos et al., 2015; Qin et al., 2018). As shown in Fig. S1d, the 230 

Ex/Em peaks at 275/300 and 275/350 nm corresponded to tyrosine and tryptophan, 231 

respectively. The maximum Em wavelength of phenylalanine was more inclined to 232 

short wavelength (280 nm) and with much weaker fluorescence intensity. Moreover, 233 

the fluorescence peaks of PRLIS obviously overlapped with those of phenols and 234 

aromatic acids (Fig. S1a, b). It must be noted that the concentrations of phenols and 235 

aromatic acids were significantly higher than those of tryptophan and tyrosine in the 236 

atmospheric samples (Table S2); therefore, the aerosol BrC fluorophores in these 237 

regions are more likely to have originated from phenols and aromatic acids rather 238 
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than PRLIS. 239 

N-heterocyclic compounds such as pyrrole, pyridine, and imidazole are 240 

commonly identified in atmospheric samples (Dou et al., 2015; Jiang et al., 2019; 241 

Kosyakov et al., 2020). However, no fluorescence was observed for these three 242 

species in the present study, indicating that the absorbed energy may have been 243 

consumed by relaxation or vibration (Fig. S1e). Nevertheless, 244 

imidazole-2-formaldehyde produced two strong fluorescence peaks at 290/440 and 245 

350/440 nm, formed from the oxidation of imidazole, suggesting that some 246 

N-heterocyclic compounds from secondary reactions may exhibit strong 247 

fluorescence at higher wavelength in atmospheric BrC (Ackendorf et al., 2017). 248 

PAHs and their derivatives are mainly formed from incomplete combustion 249 

processes and are important components of BrC (Chen et al., 2020; Lin et al., 2017; 250 

Mahamuni et al., 2020). As shown in Fig. S1f, all PAHs exhibited strong 251 

fluorescence emission, with its peak location associated with the conjugated 252 

aromatic system. Naphthalene presented a fluorescence band located at the 253 

maximum Em wavelength of approximately 325 nm. As expected, with the 254 

increasing size of the π-bond system and degree of conjugation, the fluorescence 255 

band moved toward the longer wavelength range, and a new Em band was observed 256 

at 360–390 nm for 3–4-ring phenanthrene and pyrene, and at 400–500 nm for ≥ 257 

5-ring PAHs (Mahamuni et al., 2020). The fluorescence spectra of high-ring PAHs 258 

were more complex because of more types of double bonds. As shown in Fig. S1f, 259 

the intensity and location of the fluorescence peaks were also significantly changed 260 
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when different types of groups were substituted with PAHs. For example, 1-naphthol 261 

exhibited a stronger EEM peak at a relatively longer wavelength (230, 290/460 nm) 262 

owing to its highly conjugated structure, when compared with naphthalene. This 263 

EEM spectrum was located in the EEM region of FAs, implying that FAs are 264 

composed of aromatic units and O-containing groups. In contrast, relatively weaker 265 

fluorescence was observed for 9-fluorenone, anthraquinone, and 266 

2-naphthalenecarboxylic acid, and no EEM signals were observed for 267 

2-nitronaphthol (Fig. S1c), which was substituted with a strong 268 

electron-withdrawing group (NO2). 269 

 270 

3.2. Fluorescence properties of BrC from different sources 271 

As shown in Fig. S4a and S4b, BB and CC WSOM exhibited similar 272 

fluorescence spectra (Tang et al., 2020a; Chen et al., 2020; Yang et al., 2022), with 273 

two types of fluorescence peaks at Ex/Em ≈ (230–240)/(340–400) nm (peak A) and 274 

Ex/Em ≈ (260–280)/(330–360) nm (peak B), respectively. The two fluorescence 275 

peaks were similar to those previously reported for BB WSOM and HULIS (Fan et 276 

al., 2020; Tang et al., 2020a; Yang et al., 2022). In general, peak A mainly 277 

corresponds to the protein-like UV region, with a minor contribution from fulvic-like 278 

substances, whereas peak B could be attributed to tryptophan-like fluorophores. 279 

However, based on the results of the present study, these two peaks could be mainly 280 

attributed to aromatic species such as aromatic acids, phenolic compounds, and 281 

minor quantities of PAHs (e.g., naphthalene) (Fig. 1). The fluorescence spectra of 282 
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WSOM from two types of vehicles (diesel and gasoline) also presented two 283 

fluorophores. A relatively strong fluorescence peak was observed at the low Ex 284 

wavelength (Ex/Em ≈ 230/350 nm) and a relatively weaker peak was detected at the 285 

high Ex wavelength (Ex/Em ≈ 270/350 nm) (Fig. S4c). These results are consistent 286 

with those reported in previous studies on VE (Chen et al., 2020; Tang et al., 2020a; 287 

Yang et al., 2022) and similar to the EEM fluorescence spectra of BB and CC 288 

WSOM (Chen et al., 2020; Fan et al., 2020; Cao et al., 2021; Yang et al., 2022). 289 

However, the fluorescence ranges of vehicle WSOM were obviously narrower, 290 

suggesting that BB and CC WSOM fluorescent components are more complex. 291 

Soil-derived DOM is also a primary source of atmospheric WSOM. As shown 292 

in Fig. S5a, two main fluorescence peaks located at Ex/Em = 230/430 and 320/430 293 

nm, were detected in the fluorescence spectra of soil DOM, which are similar to 294 

those reported in previous studies (Ge et al., 2021; Liu et al., 2009) and particularly 295 

close to the position of FAs (Fig. S5b). 296 

Secondary chemical formation is another important source of atmospheric 297 

WSOM. For example, the aqueous-phase reactions of aldehydes with ammonium 298 

sulfate (AS) can produce highly fluorescent species (Hawkins et al., 2016). The 299 

Glyoxal-AS and glyoxal/glycine reaction products fluoresces at 340/450 nm, 300 

whereas formaldehyde-AS reaction product fluoresce at 250/430 nm. Secondary 301 

organic aerosols (SOAs) produced in the limonene/O3 system have been reported to 302 

strongly fluoresce in the presence of NH3 (Bones et al., 2010). In addition, aging of 303 

primary organic compounds has also been found to change the fluorescence spectra 304 
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(Lee et al., 2013; Li et al., 2021; Powelson et al., 2014). For instance, aging of 305 

syringic acid with OH radicals caused the initial fluorescence band to move toward 306 

the long wavelength range, producing a new band at a broad Em band at 400–600 307 

nm. Similarly, the fluorescence peaks red-shifted (e.g., from 260–270/360 nm to 308 

280–290/390–400 nm) during the O3 aging process (Fan et al., 2020), suggesting the 309 

degradation of the initial compound and formation of new secondary organic 310 

compounds generally located at longer wavelengths, possibly with a high degree of 311 

aromaticity or highly oxidized functional groups (Chen et al., 2016a; Vidović et al., 312 

2019, 2020; Powelson et al., 2014; Vione et al., 2019; Yu et al., 2016). 313 

 314 

3.3. Identification of chemical species and potential sources of fluorescent 315 

components in ambient aerosols 316 

The typical EEM spectra of atmospheric water-soluble light-absorbing 317 

compounds are shown in Fig. 2. Three fluorescence peaks were identified in the 318 

aerosol WSOM samples: a stronger fluorescence peak at Ex/Em = 230–250/360–420 319 

nm, and two relatively weaker fluorescence peaks at Ex/Em = 270–290/340–370 nm 320 

and 300–320/360–420 nm. Similar fluorescence bands have been previously 321 

identified in the EEM fluorescence spectra of WSOM from PM2.5 in the cold and 322 

warm seasons in Aveiro, Portugal (Matos et al., 2015), the High Arctic atmosphere 323 

(Fu et al., 2015), Godavari, Nepal (Wu et al., 2019), Lanzhou and Xi’an, 324 

northwestern China (Qin et al., 2018; Chen et al., 2020), Chongqing, southwestern 325 

China (Wang et al., 2020), and Harbin, northeastern China (Ma et al., 2022). 326 



16 
 

Although the fluorescence intensities varied with different sites and seasons, the 327 

shapes of the EEM spectra of WSOM were very similar, making it difficult to 328 

directly distinguish the different samples solely based on the characteristics of the 329 

EEM profiles. Therefore, a more powerful protocol named the PARAFAC method 330 

was employed to identify the individual fluorophores in ambient WSOM. 331 

 332 

3.3.1. Identification and quantification of fluorescent components by the 333 

PARAFAC method 334 

As shown in Fig. 3, three fluorescent components (C1, C2, and C3) were 335 

identified in the atmospheric samples; C1 occurred at a relatively lower Em 336 

wavelength, exhibiting two fluorescence peaks at Ex/Em = 235(270)/330 nm, C2 337 

presented fluorescence peaks at around Ex/Em = 235(320)/390 nm, and C3 had a 338 

longer Em wavelength than C1 and C2, which was located at Ex/Em = about 339 

250(355)/455 nm. In general, these fluorescent components have been interpreted 340 

based on knowledge of the fluorescence characteristics of aquatic DOM. 341 

Accordingly, C1 is considered to belong to the typical PRLIS (Coble, 1996; Wünsch 342 

et al., 2019), C2 is associated with fulvic-like substances or less-oxygenated HULIS 343 

(Liu et al., 2009; Zhang et al., 2014), and C3 is usually considered to correspond to 344 

terrestrial HULIS that are highly oxygenated organic matter (Table S3) (Liu et al., 345 

2009; Wünsch et al., 2019; Zhou et al., 2017). However, it must be noted that the 346 

sources and transformation process are significantly different for WSOM in aerosols 347 

and DOM in aquatic and terrestrial environments; therefore, the fluorescence 348 
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classifications of DOM might not be applicable to atmospheric WSOM. 349 

In general, the Ex and Em wavelengths of fluorescent components are mainly 350 

associated with their chemical characteristics and structures (Table S1 and Fig. 1). In 351 

the present study, C1 was similar to tryptophan-like fluorophores associated with 352 

PRLIS in rainwater (Zhang et al., 2014; Zhou et al., 2017) and fog water (Bianco et 353 

al., 2014; Bianco et al., 2016). However, this fluorophore might also be related to 354 

small molecular aromatic compounds, such as aromatic acids (e.g., 355 

3,5-dihydroxybenzoic acid and 2-naphthalenecarboxylic acid) and PAHs (e.g., 356 

naphthalene, phenanthrene, and anthraquinone) (Fig. 1a) (Miyakawa et al., 2015; Wu 357 

et al., 2019). In addition, this fluorophore could also contain traces of some phenolic 358 

compounds, including catechol, hydroquinone, and 2-methoxyphenol. These organic 359 

species might be generated by various types of combustion processes and 360 

atmospheric oxidation reactions. It must be noted that investigations of the 361 

fluorescent components in atmospheric WSOM should not only consider their 362 

position in the fluorescence spectrum, but also their concentration and possibility of 363 

trapping. Many previous studies have reported that the concentration of amino acids 364 

in atmospheric aerosols is almost negligible, when compared with that of lower 365 

molecular weight aromatic compounds such as aromatic acids and phenolic 366 

compounds (Table S2) (Bianco et al., 2016; Song et al., 2017; Vione et al., 2019; 367 

Mahamuni et al., 2020; and references therein). Therefore, fluorescent components 368 

in this Ex/Em region could be attributed to small molecular aromatic species (e.g, 369 

aromatic acids, phenolic compounds) rather than PRLIS. Moreover, this fluorophore 370 



18 
 

overlapped with that of WSOM from combustion process such as BB, CC, and VE 371 

(Fig. 1b), suggesting significant contribution of the combustion process. 372 

When compared with C1, C2 exhibited a strong fluorescence peak at longer 373 

Ex/Em wavelength of 235(320)/390 nm, implying that this fluorescent component 374 

presented a relatively larger molecular size and higher aromaticity than C1 (Pöhlker 375 

et al., 2012). As shown in Fig. 1a, the fluorescence of C2 is similar to that of 376 

aromatic compounds (e.g., 2-naphthalenecarboxylic acid, 2-hydroxybenzoic acid, 377 

anthraquinone) and high-ring PAHs (e.g., pyrene, anthraquinone, anthracene, 378 

chrysene) (Mahamuni et al., 2020), and overlaps with the fluorescence spectra of 379 

FAs. In addition, this fluorophore has also been reported to be related to the 380 

generation of SOAs from organic precursors emitted from biological/anthropogenic 381 

emission and combustion processes (Wang et al., 2020). For example, the 382 

aqueous-phase reactions of aldehydes with AS have been proposed as an important 383 

source of atmospheric BrC, which present similar fluorescence spectral profiles 384 

(Hawkins et al., 2016; Lee et al., 2013) (Fig. 1b). In addition, oxidative 385 

oligomerization of phenols and their derivatives can also shift the Ex/Em wavelength 386 

of these substances to longer wavelengths, falling into similar fluorescence regions 387 

(Li et al., 2021; Tang et al., 2020a; Vione et al., 2019). As suggested by Chen et al. 388 

(2016a), this fluorescent component may be a less-oxygenated fluorescent group 389 

contributed by biomass combustion. Therefore, fluorophore C2 might be related to 390 

the derivatives of biomass burning and/or biogenic molecules, with relatively lower 391 

degree of oxidation (Chen et al., 2016a; Jiang et al., 2022). 392 
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C3 presented a longer Em wavelength than C1 and C2, with two peaks at 393 

around Ex/Em=250/455 nm and 355/455 nm (Fig. 3). This fluorescent component 394 

overlaps with the fluorescence of high-ring PAHs and their derivatives, such as 395 

fluoranthene, benzo-b-fluoranthene, benzo-a-pyrene, indeno-123cd-pyrene, 396 

1-naphthol, and N-heterocyclic compounds, including imidazole-2-formaldehyde 397 

(Chen et al., 2020; Mahamuni et al., 2020). Furthermore, this fluorescent component 398 

exhibited a similar Ex/Em wavelength to that of FAs and HAs (Fig. S5b), suggesting 399 

the possible contribution of soil dust, and thus could be assigned as HULIS (Lin and 400 

Guo, 2020). Similar fluorescent substances have also been identified in the study of 401 

atmospheric aerosol fluorescent chromophores, such as the highly oxygenated 402 

HULIS in Nagoya, Japan (Chen et al., 2016a), Lanzhou, China (Qin et al., 2018), 403 

Xi’an, China (Chen et al., 2020), a haze event in Harbin (Ma et al., 2022), and 404 

humic-like compounds with more aromatic and unsaturated bonds in Godavari, 405 

Nepal (Wu et al., 2019) and Tianjin, China(Deng et al., 2022). Based on the 406 

PARAFAC results with aerosol mass spectrometry data, C3 was considered to be a 407 

fluorescent group with high oxygen content and high O/C ratio, close to that of aged 408 

organic aerosols (Chen et al., 2016a; Jiang et al., 2022) (Fig. 1b). It must be noted 409 

that low molecular weight organic compounds can further undergo oligomerization 410 

to high molecular weight species with long Em wavelengths during the aging 411 

process (Hawkins et al., 2016; Li et al., 2021; Tang et al., 2020b; Yu et al., 2016). 412 

The resulting compounds may present a more complex structure than their precursor, 413 

probably owing to the presence of condensed aromatic rings and other π-electron 414 
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systems with a high level of conjugation; thus, atmospheric aging is assumed to be a 415 

potential contributor to C3 (Barsotti et al., 2016; De Laurentiis et al., 2013; Hawkins 416 

et al., 2016). 417 

 418 

3.3.2. Spatial and seasonal variations in fluorescent components in WSOM 419 

The relative contributions of C1, C2, and C3 components to the total 420 

fluorescence intensities (Fmax/∑Fmax) were calculated (Fig. 4), and were found to be 421 

similar for WSOM from CZ and GZ, exhibiting maximum C2 content and relatively 422 

lower C1 and C3 contents. Furthermore, WSOM samples showed obvious spatial 423 

and seasonal variations, similar to the results reported in other regions in China 424 

(Zhang et al., 2022a, 2022b). First, CZ WSOM presented a relatively higher C3 425 

content (23±4%) than GZ WSOM (17±3%), whereas GZ WSOM had a relatively 426 

higher C2 content (56±7%) than CZ WSOM (49±4%) during the same sampling 427 

period. Such differences in the composition of fluorescent components may be 428 

ascribed to the variation in the primary emission sources and atmospheric aging 429 

process at the two sites. The relatively higher C3 content in the CZ could be 430 

attributed to the comparatively high contribution of soil dust in the suburban region, 431 

which is consistent with the relatively higher Ca
2+

 contents in the CZ PM2.5 432 

(1.8±1.2%) than in the GZ PM2.5 (1.5±0.8%) (Vasilatou et al., 2017; Wu et al., 2019). 433 

In contrast, the relatively higher C2 content in GZ WSOM may be attributed to the 434 

comparatively stronger atmospheric chemical reaction associated with bio-volatile 435 

organic compounds (bio-VOCs) in the hot and humid region of GZ. This result was 436 
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consistent with the relatively higher humification index (HIX) and normalized 437 

fluorescence volume (NFV) values (log(NFV)) of CZ WSOM (Fig. S6) (Chen et al., 438 

2020; Yang et al., 2022). 439 

In addition, the resolved Ex and Em spectra for GZ WSOM were also similar in 440 

different seasons, implying that the types of fluorophores contributing to WSOM 441 

were predominantly the same throughout the year. However, the compositions of 442 

fluorescent components varied in different seasons. In the dry season (October–443 

March), WSOM showed relatively higher contents of C3 fluorophores (17±4%), 444 

whereas in the wet season (April–September), slightly higher contents of C2 445 

fluorophores (69±4%) were detected (Fig. 4) (Chen et al., 2020; Wang et al., 2020). 446 

These differences might be associated with the variations in the source composition 447 

and aging effects of BrC in different seasons. The higher content of C3 in WSOM in 448 

the dry season suggested the occurrence of more highly aromatic and highly 449 

oxidized compounds. These results could be explained by the fact that more aged 450 

organic aerosols and dust were transported from the northern region of China (Jiang 451 

et al., 2021). In contrast, the slightly higher C2 content in the wet season may be 452 

attributed to the relatively stronger secondary formation of bio-SOAs and 453 

photodegradation effects in the high-temperature and relative humidity season. 454 

 455 

4. Conclusion and future prospects 456 

In this study, the fluorescence properties of BrC model compounds were 457 

investigated to determine the chromophoric species that can be evaluated by the 458 
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EEM method. Accordingly, the aerosol WSOM samples at two sites (CZ and GZ) 459 

were investigated by the EEM-PARAFAC method, and the chemical characteristics 460 

and potential sources of fluorescent components were examined. The main 461 

conclusions and future prospects are as follows: 462 

(1) Fluorescent components have predominantly been evaluated based on the 463 

knowledge of fluorophores in aquatic DOM, which often leads to misinterpretation. 464 

In the present study, the chemical characteristics of fluorophores in different Ex/Em 465 

regions were discussed based on the fluorescence properties of BrC model 466 

compounds and their amounts in aerosols. In particular, the C1 fluorophore in 467 

atmospheric WSOM, which has been frequently assigned to PRLIS because of the 468 

similarity in fluorescence spectra, was demonstrated to mainly include aromatic 469 

acids, phenolic compounds, and their derivatives, with negligible amounts of amino 470 

acids. 471 

(2) The fluorescence properties of target compounds are mainly influenced by 472 

the aromatic system and characteristics of adjacent functional groups. Organic 473 

compounds with high aromaticity and strong electron-donating groups (e.g., 474 

hydroxyl, methoxyl) generally exhibited strong fluorescence spectra at longer Em 475 

wavelengths, whereas organic compounds substituted with electron-withdrawing 476 

groups presented relatively weaker fluorescence intensities. In particular, aromatic 477 

compounds containing nitro groups (i.e., nitrophenols) showed strong absorption and 478 

were the major component of atmospheric BrC; however, they did not exhibit 479 

significant fluorescene. Thus, the fluorescence method could only measure a subset 480 
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of chromophores in aerosol BrC and should be used with caution for the 481 

investigation of aerosol BrC. 482 

(3) The EEM spectra for aerosol WSOM were very similar; however, the 483 

relative contents of certain fluorescent components significantly varied with the 484 

sampling site and season. For example, more fluorescent components associated 485 

with soil and secondary oxidation of small molecular compounds from combustion 486 

emission were identified in CZ WSOM, whereas more fluorescent components 487 

derived from atmospheric chemical reaction of bio-VOCs were observed in GZ 488 

WSOM. In addition, GZ WSOM exhibited more highly aromatic and highly 489 

oxidized compounds in the dry season. 490 

Although many studies have applied the EEM-PARAFAC method to investigate 491 

atmospheric WSOM and have obtained useful data, there are still challenges and 492 

gaps that must be addressed. First, caution should be taken for credible 493 

interpretations of the fluorescent components in atmospheric WSOM because of the 494 

differences in chemical characteristics of organic matter derived from different 495 

sources. In addition, the same fluorophores may exhibit different Ex/Em ranges and 496 

intensities in different environmental conditions (e.g., pH, coexisting metal ions and 497 

inorganic salts). Therefore, more theoretical and experimental studies are necessary 498 

to understand the relationship between the fluorescent groups and positions of 499 

fluorescence peaks, as well as the influences of sources and chemical formation 500 

process of the fluorescent groups on fluorescence peaks. 501 

 502 
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 856 

Figure 1. Comparison of chemical characteristics of molecules assigned to each 857 

fluorescence component of BrC model compounds (a) and source WSOM (b). 858 
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862 

 863 
 864 

Figure 2. The 3D-EEM spectra of WSOM in atmospheric PM2.5 samples (a: 865 

Chuzhou (CZ); b: Guangzhou (GZ); c: GZ wet season; d: GZ dry season) 866 
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 869 

Figure 3. The EEM components derived from the PARAFAC model of WSOC in 870 

atmospheric PM2.5 samples collected at Chuzhou (CZ) and Guangzhou (GZ) sites. 871 
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 874 

Figure 4. Relative contribution of individual fluorophores of atmospheric WSOM. (a: 875 

Chuzhou (CZ); b: Guangzhou (GZ); c: wet season of GZ; d: dry season of GZ; the 876 

colored box represents the data range of 25%-75%, the horizontal line within the box 877 

represents the median line (50%), the error bar represents the 1.5 times the standard 878 

deviation, the circle in the box represents the mean value of the data, the triangles in 879 

the bottom and top represent the minimum and maximum values of the data; the dots 880 

in the right of the box represent the overall data coupled with Gaussian distribution 881 

line.) 882 
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