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Abstract. Atmospheric water vapor plays a crucial role in the global energy balance, hydrological cycle, and climate system.
High-quality and consistent water vapor data from different sources are vital for weather prediction and climate research. This
study assesses the consistency between Formosa Satellite Mission 3—Constellation Observing System for Meteorology,
lonosphere, and Climate (FORMOSAT-3/COSMIC) radio occultation (RO) and European Centre for Medium-Range Weather
Forecasts (ECMWF) ReAnalysis Model 5 (ERAS) water vapor datasets. Comparisons are made across different atmospheric
pressure levels (300 hPa, 500 hPa, and 850 hPa) from 2007 to 2018. Generally, the two datasets show good spatial and temporal
agreements. COSMIC's global water vapor retrieval is slightly lower than ERA5's at 500 and 850 hPa, with distinct latitudinal
differences between hemispheres. COSMIC exhibits global water vapor increasing trends of 3.47+1.77, 3.25+1.25, and
2.0340.65%/Decade at 300 hPa, 500 hPa, and 850 hPa, respectively. Significant regional variability in water vapor trends,
encompassing notable increasing and decreasing patterns, is observable in tropical and subtropical regions. At 500 and 850
hPa, strong water vapor increasing trends are noted in the equatorial Pacific Ocean and the Laccadive Sea, while decreasing
trends are evident in the Indo-Pacific Ocean region and the Arabian Sea. Over land, substantial increasing trends at 850 hPa
are observed in the southern United States, contrasting with decreasing trends in South Africa and Australia. The differences
between the water vapor trends of COSMIC and ERAS are primarily negative in the tropical regions at 850 hPa. However, the
water vapor increasing trends at 850 hPa estimated from COSMIC are significantly higher than the ones derived from ERA5
data for two low-height stratocumulus cloud-rich ocean regions west of Africa and South America. These regions with notable
water vapor trend differences are located in the Intertropical Convergence Zone (ITCZ) area with frequent occurrences of
convection, such as deep clouds. The difference in characterizing water vapor distribution between RO and ERAS in deep
cloud regions may cause such trend differences. The assessment of spatiotemporal variability in RO-derived and reanalysis of

atmospheric water vapor data helps assure the quality of these datasets for climate studies.
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1. Introduction

Water vapor is one of the most important greenhouse gases in the atmosphere, which accounts for about 60% of the natural
greenhouse effect (Kiehl and Trenberth, 1997; Wagner et al., 2006; Foster et al., 2007; Ahrens and Samson, 2011). Water
vapor cycles with latent heat release through condensation and evaporation are closely linked to cloud formation, which alters
atmospheric energy budgets. In addition, studies showed that water vapor amplifies global warming (Smith and Reynolds,
2005; Parker et al., 2007; Dai, 2006; Allan and Soden, 2008; Mieruch et al., 2008; Zhang et al., 2013). As the earth warms,
the water vapor concentration in the lower troposphere increases with increasing temperature, increasing the evaporation rate
and adding more atmospheric water vapor, which usually warms the atmosphere further. The water vapor’s heat-trapping effect
is crucial in climate change (Forster et al., 2007). Studies (i.e., Foster et al., 2007; Allan et al., 2010; Trenberth, 2011; Hegerl
et al., 2015) show that water vapor has profound impacts on atmospheric temperature structure and hydrological cycle, which,

in turn, increases the likelihood of extreme regional precipitation events, extreme weather conditions, and droughts.

Accurate atmospheric water vapor climate data records (CDRs) are critical for detecting climate change. Various studies have
quantified the spatial and temporal variation and trend in atmospheric water vapor using two types of water vapor data: i)
measurements or retrievals from sensor observations and ii) reanalysis data produced by assimilating various observations.
The first data type includes both ground-based in situ and space-borne observations: long-term radiosonde measurements (Zhai
and Eskridge, 1997; Ross and Elliott, 2001; Ho et al., 2010; Zhao et al., 2012; Zhang et al., 2018), weather station data (Dai,
2006), water vapor retrieved from ground-based Global Positioning System (GPS) station data (Kursinski et al., 1997; Bock
et al., 2007; Nilsson and Elgered, 2008; Vey et al., 2010; Huang et al., 2013; Chen and Liu, 2016; Yuan et al., 2021), water
vapor retrievals from space-borne radio occultation observations (Ho et al., 2009; Huang et al., 2013; Ho et al., 2018; Zhang
et al. 2018; Andrisaniand and Vespe, 2020; Gleisner et al., 2022), visible spectral-range sensor observations (Mieruch et al.
2008; Grossi et al., 2015; Borger et al., 2021), microwave (Rosenkranz, 2001; Chen and Liu, 2016; Ho et al., 2018; Yadav et
al., 2021), and infrared sounder observations (Susskind et al., 2003).

The second type of water vapor data is from the global atmospheric reanalysis products generated by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020) and the National Centers for Environmental Prediction
(NCEP) (Whitaker et al., 2008). These reanalysis data are constructed from assimilating in situ, and satellite observations
through data assimilation (DA) systems blended with model outputs. These atmospheric reanalysis data have been used for
investigating long-term atmospheric water vapor variability and trends (Bengtsson, 2004; Wagner et al., 2006; Adler et al.,
2008; Ho et al., 2009; Dessler and Davis, 2010; Huang et al., 2013; Zhang et al., 2013; Chen and Liu, 2016; Xie et al., 2020;
He et al., 2022) and climate change studies (Allan, 2002; Allan et al., 2014; Lu et al., 2015). However, the quality of the
reanalysis data may be affected by i) discontinuity or changes of in situ data and satellite data, ii) the inadequate spatial and

temporal coverage of the observations, iii) inadequate measurement bias corrections, iv) preliminary observation error
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estimates, v) contaminations of ground-based and space-borne satellite observations due to clouds, and vi) potential/unknown
model errors (Sherwood et al., 2010; Chen and Liu, 2016). The uncertainty of forecast and reanalysis data under cloudy

conditions, especially over oceans, is still very large (Lonitz and Geer 2017).

Past climate modeling studies suggest that increasing surface temperature can result in an increasing trend in global water
vapor (Held and Soden, 2000, 2006; Santer et al., 2006). Studies based on various types of observations and reanalysis data
have shown an increasing water vapor trend over different periods ranging from several decades to the recent decade
(Bengtsson, 2004; Wagner et al., 2006; Ho et al., 2009; Chen and Liu, 2016; Wang et al., 2017; Ho et al., 2018). However,
these studies also showed substantial variation (with both increasing and decreasing) in regional water vapor trends (Ross and
Elliott, 2001; Dai, 2006; Mieruch et al., 2008, 2014; Zhang et al., 2018). This is mainly because regional water vapor
concentration may change dramatically depending on multiple non-thermodynamic factors such as i) surface type, ii) long-
range transport of air masses, and iii) water availability. As a result, the global surface temperature increase does not increase
water vapor everywhere (Chou and Neelin, 2004; Wagner et al., 2006; Lu et al., 2015; Chen and Liu, 2016).

Many studies (i.e., Ho et al., 2009; Chen and Liu, 2016; Ho et al., 2018) have compared global reanalysis of water vapors with
those derived from in situ and satellite sensors. For example, Chen and Liu (2016) evaluated the global precipitable water
vapor (PWV) variability and trend from ECMWF and NCEP reanalysis results. They compared the water vapor reanalysis
with 36-year (1979 to 2014) water vapor datasets collected from radiosonde, ground-based Global Navigation Satellite System
(GNSS), and microwave satellite observations. All these datasets showed increasing PWV trends. The ERA-interim reanalysis
agrees with microwave satellite observations better than those from the NCEP reanalysis. The ERA-interim overestimates the
PWYV over the ocean for the period before 1992 compared to microwave satellite data. It is essential to continue comparing the
differences and consistencies of atmospheric water vapor data's temporal and spatial variabilities from different sources and

provide the climate community with high-quality water vapor data.

There is growing interest in comparing reanalysis data and all-weather water vapor profiles retrieved from GNSS radio
occultation (RO) (Anthes et al., 2000; Kursinski et al., 2001; Ho et al., 2009, 2010). Complementing the measurements from
microwave and infrared sounders, RO data can provide information on the temperature, water vapor, and pressure with high
accuracy, precision, and vertical resolution. Because the quality of RO data does not change during the day or night and is not
affected by clouds (Anthes et al. 2008; Ho et al. 2020a), the RO temperature and water vapor profiles co-located with reanalysis
data would help identify the variation of temperature and humidity under all-weather conditions over time. RO data has been
used to evaluate biases and monitor calibration changes for microwave measurements (lacovazzi et al., 2020; Shao et al.,
2021a) and infrared sounders (Chen et al., 2022). Further, RO-derived water vapor profiles have been used to distinguish

systematic water vapor biases in radiosondes (Ho et al., 2010; Sun et al., 2019; Ho et al., 2020a; Shao et al., 2021b).
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In this paper, we characterize the water vapor data derived from Formosa Satellite Mission 3—Constellation Observing System
for Meteorology, lonosphere, and Climate (FORMOSAT-3/COSMIC) (hereafter COSMIC) and those from ECMWF Re-
Analysis model 5 (ERA5). Launched in 2006, COSMIC was the first constellation of microsatellites carrying GPS RO
receivers. COSMIC has demonstrated the value of RO data in the ionosphere for climate and meteorological research and
operational weather forecasting (Ho et al., 2020a). This paper aims to characterize and compare the global, latitudinal, and
regional variabilities of COSMIC and ERA5 water vapor distributions, seasonality, and long-term trends at selected pressure
levels from 2007 to 2018. In addition, this paper identifies regions with notable increasing and decreasing water vapor trends,
i.e., regions becoming moister or drier, and regions with significant water vapor trend differences between COSMIC and
ERADS. Particular interest is also placed on comparing the COSMIC and ERA5 water vapor trends over the stratocumulus

cloud-rich regions to investigate the impacts of stratocumulus clouds on near-surface water vapor data quality in ERAS.

This paper is organized as follows: Section 2 introduces the water vapor data from COSMIC RO retrieval and ERA5 reanalysis.
Section 3 analyzes global and latitudinal variabilities of long-term (2007-2018) COSMIC and ERAS water vapor data at three
pressure levels, and their differences are quantified. In Section 4, the global and latitudinal water vapor trends derived from
COSMIC and ERAS5 are quantified and compared at different pressure levels. Section 5 examines the overall distribution of
regional water vapor trends derived from the COSMIC and ERAS time series and their differences. Furthermore, a few specific
sites with frequent stratocumulus cloud coverage and large differences between COSMIC and ERAS are selected to quantify
the water vapor trend differences. Additionally, the seasonal variability of latitudinal water vapor distribution is summarized
in Appendix A.1. Appendix A.2 and A.3 describe the estimation of the water vapor trend with sampling error removal and its
associated uncertainties for a given region of interest (Rol). Appendix A.4 provides supplemental information on a few sites

with notable increasing and decreasing water vapor trends. We present the conclusions and discussions in Section 6.

2. Datasets used for Spatial and Temporal Water Vapor Variability Analysis
2.1 ECMWF Reanalysis Data

This study used the ERAS5 global atmospheric and climate reanalysis dataset

(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). ERAS is the fifth-generation ECMWF reanalysis dataset

covering the past 4 to 7 decades. The ERA5 dataset is generated from the Four-Dimensional Variational (4ADVAR) data
assimilation system, which uses a fixed version of the ECMWF NWP system, i.e., Integrated Forecasting System (IFS) Cy41r2.
The IFS-Cy41r2 system became operational in 2016 (Hersbach et al., 2020) and blends or assimilates meteorological
observations (e.g., surface weather stations, ocean buoys, radiosonde stations, aircraft, and remote sensing satellites) with a
previous forecast to obtain the best for both. These blended results serve as the initial conditions for the next forecast period.
The ERAS water vapor data are from the ground to ~0.1 hPa at 37 mandatory pressure levels. Our study used ERA5 global
water vapor profiles from 2007 to 2018 in 6-hour increments. The ERA5 data were collected with a 0.25<spatially gridded
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resolution, equivalent to a spatial resolution of ~25 km at the equator. Many studies have been conducted to validate the ERA5
atmospheric products using satellite measurements (Chen and Liu, 2016; Lei et al., 2020; Tang et al., 2021; Campos et al.,
2022). Overall, the results of these studies show that ERA5 is in good agreement with satellite measurements (or retrieved
products). For example, Tang et al. (2021) compared the Atmospheric downward longwave radiation (DLR) from Clouds and
Earth's Radiant Energy System (CERES) satellite retrievals and ERAS data with observations at Baseline Surface Radiation
Network (BSRN) stations over land surfaces. The ERA5 atmospheric reanalysis performed better than satellite retrievals in
estimating DLR over the land surface. According to Chen and Liu (2016), the global water vapor trend over 1992-2014 from
the data of the ECMWF reanalysis model agrees well with the microwave satellite data. These studies provide confidence in

the accuracy of the ERAS5 products for comparison with COSMIC retrievals.

2.2 COSMIC WETPrf water vapor retrieval

The COSMIC RO receivers on the Low Earth Orbit (LEO) satellites measure the phase delay of radio waves, which are emitted
from the GPS satellites and bent by atmospheric refraction. Profiles of atmospheric refractivity can be derived from the bending
angles of radio wave trajectories when propagating through the ionosphere, stratosphere, and troposphere. From the retrievals
of RO limb-sounding observations, the bending angle and refractivity profiles from the excess phase data processed from the
Doppler-shifted raw radio signals transmitted by GPS satellites are derived. Then, the One-Dimensional Variational (1IDVAR)
retrieval algorithm is applied to solve an under-determined problem: determine the atmospheric temperature and water vapor
profiles from bending angle or refractivity data. The 1DVAR retrieval generally uses a priori state of the atmosphere, i.e.,
vertical background temperature and humidity profiles, and associated background and observation uncertainties/error

covariance matrices (ECM) to minimize a quadratic cost function.

In this paper, we analyze the 2007 to 2018 COSMIC wet profile data produced by the University Corporation for Atmospheric
Research (UCAR) from COSMIC RO data, namely WETPrf (https://cdaac-www.cosmic.ucar.edu/cdaac/products.html). The
WETPrf data from the COSMIC Data Analysis and Archive Center (CDAAC) consist of temperature, water vapor, and
pressure profiles with a high vertical resolution (100 m). UCAR WETPrf profile data contain the latitude and longitude of the
RO perigee point, temperature, pressure, water vapor profile, and mean sea level height. COSMIC has provided more than
seven million RO-sounding profiles over its lifetime. Many of the six COSMIC GPS receivers continued beyond their 2-year
designed life and provided more than 1,000 occultation profiles per day through 2016. The COSMIC data decreased

significantly in late 2019 and was decommissioned in May 2020.

The UCAR COSMIC WETPrf data was generated with the heritage 1DVAR algorithm at CDAAC to produce wet temperature
and humidity profile data. In the 1DVAR algorithm for WETPrf, background profiles are taken from ERA-Interim gridded
low-resolution data and interpolated to the time and location of RO measurements to separate the pressure, temperature, and
moisture contributions to the refractivity. The constraint applied to WETPrf in the 1DVAR retrieval is very tight, such that

5
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temperature and moisture profiles are reported only when the residual refractivity (i.e., the difference between the observed
refractivity and simulated refractivity computed from the retrieved temperature and moisture profiles) are within the
uncertainty of refractivity. This ensures that the information on refractivity measurements from RO is completely used in the
1DVAR (Ho et al., 2020a).

2.3 Method of comparing COSMIC and ERA5 water vapor data

In our analysis, COSMIC RO profiles with the ‘Bad’ flag have been filtered out. COSMIC RO and ERAS5 water vapor profiles
were paired through collocation before the analysis was performed. The ERA5 data have a global distribution over 0.25-degree
latitude/longitude grids, vertically over 37 pressure layers, and at 6-hour intervals. Therefore, the ERA5 water vapor data at a
given pressure level are interpolated at the latitude/longitude of the perigee point of the RO profile and at RO time to match
the COSMIC RO measurement. For the RO data, the fine vertical resolution COSMIC RO water vapor profiles are interpolated
onto three pressure levels, e.g., 300, 500, and 850 hPa, selected to characterize water vapor variations at representative altitudes
around 9 km, 5.5 km, and 1.5 km, respectively.

The pressure level at 850 hPa studied in this paper is close to the surface and within the boundary layer. Its water vapor can
vary based on factors such as humidity levels near the surface, regional water vapor sources, and weather patterns. From
previous studies (Ho et al., 2009, 2020a; Shao et al., 2021a; Johnston et al., 2021) of comparing RO water vapor data with
collocated reanalysis model data or radiosonde measurements, it was found that RO water vapor retrievals have a negative
bias in the lower troposphere. The COSMIC water vapor retrieval is strongly affected by super-refraction at this pressure level
in the moisture-rich regions (Ho et al., 2010). It is worth evaluating the relative biases and consistency in the trends on various
spatial scales between COSMIC and ERA5S water vapor datasets at this 850 hPa pressure level.

The water vapor at 500 hPa can vary widely depending on local weather conditions and atmospheric patterns. Water vapor at
500 hPa is crucial for understanding the development of weather patterns, including mid-latitude cyclones, ridges, and troughs.
This pressure level also contributes to the upper-level atmospheric circulation patterns through convection, which carries moist
air upward from the lower troposphere and plays a role in redistributing heat and moisture. It was learned from the earlier
comparison of RO data with radiosonde measurements that starting from the pressure level at 500 hPa, the RO-water vapor
retrieval uncertainty increases as altitude decreases. Therefore, we chose 500 hPa as the representative middle troposphere of

interest to study in this paper.

The 300 hPa pressure level represents the water vapor layer with fewer horizontal variations at higher altitudes. Water vapor
in the upper troposphere plays a critical role in the Earth's radiative balance and climate system. It affects the absorption and
emission of radiation, contributing to warming (absorbing and trapping infrared radiation, i.e., greenhouse effect) and cooling
(emitting heat energy) effects. Johnston et al. (2021) showed large discrepancies in the ERA5 and MERRA2 reanalysis model

6
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water vapor profiles compared to COSMIC-2 in the upper troposphere. There are large uncertainties for the reanalysis model
to estimate the upper troposphere water vapor due to the combined effects of complex atmospheric dynamics (jet streams,
convection, and mixing) at high altitudes, sparse observations and difficulties in validation, errors in extrapolating from lower
altitude measurements, and accurate accounting of radiative effects at high altitudes. Therefore, we chose 300 hPa as the
representative upper troposphere level to compare spatial and temporal variabilities of water vapor between COSMIC and
ERAS5.

2.4 Impact of ERA-Interim as a priori on COSMIC water vapor retrieval

The UCAR’s 1IDVAR retrieval algorithm for COSMIC WETPrf (water vapor and humidity) uses ERA-Interim profiles as the
a priori input (Wee et al., 2022). In addition, the UCAR WETPrf water vapor/temperature retrieval also enforces a retrieval
constraint to the residual refractivity. Such a constraint can determine the influence of ERA-Interim on the final water vapor
retrieval at different pressure levels. On the other hand, the ERA5 provides a more comprehensive and reliable reanalysis by
using improved weather forecast and data assimilation models with various ground, in-situ, and satellite measurements
compared to ERA-Interim (Fujiwara et al., 2017; Hersbach et al., 2020). Figure 1 depicts the monthly (using January and July
of 2007 as representative winter and summer months of the northern hemisphere) scatter plots of the collocated COSMIC
global water vapor versus ERA5 and ERA-Interim water vapor data at three pressure levels. The linear regression statistics for
COSMIC versus ERA5 and COSMIC versus ERA-Interim comparisons are also shown on the plots. All plots show that
COSMIC versus ERA-Interim comparisons are more scattered than the COSMIC versus ERA5 comparison. Quantitatively,
the correlation coefficients between COSMIC and ERAS are around 0.96, while the correlation coefficient between COSMIC
and ERA-Interim varies from 0.88 to 0.93. The linear fitting coefficients, i.e., slopes, of COSMIC versus ERAS fittings are
closer to 1 than COSMIC versus ERA-Interim fitting in all panels of Figure 1. In terms of the linear fitting root-mean-square-
error (RMSE) residuals, the RMSEs of COSMIC versus ERAS5 fitting are lower than the COSMIC versus ERA-Interim fitting
by 24% to 47% over the two selected months (January and July of 2007) and three pressure levels. These analysis results
indicate that the COSMIC water vapor retrievals are more consistent with ERA5 than ERA-Interim. It suggests that the
information on COSMIC 1DVAR retrievals is mainly from the COSMIC refractivity instead of the ERA-Interim. We also
inspected the comparison of COSMIC versus ERA5 or ERA-Interim for other months (not shown here), and the conclusion

that COSMIC water vapor data is more consistent with ERA-5 than ERA-Interim holds for these months as well.

The comparisons between COSMIC and ERAS water vapor (Fig. 1) suggest overall consistencies over the two selected months
and at three pressure levels, which requires further quantitative analysis of the variabilities. In the following sections, we
analyze the collocated COSMIC and ERAS5 water vapor at three pressure levels to study their spatial (Section 3) and trend

(Sections 4 and 5) variabilities (the seasonal trend is provided in Appendix A.1).
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Figure 1: Scatter plots of collocated COSMIC water vapor retrieval versus ERA5 and ERA-Interim water vapor data for two months
(a, b, c: 2007/01; d, e, f: 2007/07) at three pressure levels: (a, d) 350 hPa, (b, e) 500 hPa, and (c, f) 850 hPa. The correlation coefficient
(R), linear fitting coefficient, and RMSE of the fitting residual for COSMIC water vapor retrieval versus ERA5 and ERA-Interim

comparisons are listed in each panel.

235 3. Comparison of Spatial Variability of Water Vapor between COSMIC and ERA5

3.1 Global distribution of COSMIC and ERAS water vapor

To inter-compare the spatial variability of the water vapor data between COSMIC and ERAS5 (interpolated onto COSMIC
locations and times), the collocated global humidity data over 12 years (2007-2018) are grouped into 10°x10° latitude/longitude

grids and spatial/time-averaged at three selected pressure levels, e.g., 300, 500, and 850 hPa.

240
Figure 2 compares time-averaged global water vapor distribution maps over three pressure levels between COSMIC (left

column) and ERAS (right column). The overall global distribution of water vapor of COSMIC and ERAGS at three pressure
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levels is generally consistent. At all three pressure levels, the global water vapor distribution exhibits high concentration in the
low latitude tropical regions, decreases rapidly toward the polar region, and is low in some high terrain regions such as the
Tibetan Plateau. In the low latitude tropical region, i.e., latitudes between -20 and 20 degrees, increased water vapor
concentrations occur in the East Indian and West Pacific Ocean regions and over the Amazon rainforest regions in South
America at these three pressure levels. It is noted that COSMIC bending angles are assimilated into ERA5, which significantly
improves the upper-troposphere and lower-stratosphere temperatures (Hersbach et al. 2020). However, the COSMIC 1DVAR
retrieval has more independence from its a priori (ERA-Interim) for water vapor within the lower/middle troposphere. Primary
water vapor information is retrieved from the RO observations at these altitudes, which our study is focused on. The evaluations
of global and latitude-dependent water vapor differences between COSMIC and ERAS in the following sections would help

understand the extent and regional dependence of the assimilation of COSMIC RO water vapor data in ERAS.

To quantitatively evaluate the consistency between COSMIC and ERAS5 water vapor (Q) data, the relative
biases (Qcosmic — Qrras)/Qrras (%)) between COSMIC and ERAS are calculated with the 12-year collocated COSMIC and
ERADS global water vapor data. The mean differences between COSMIC and ERA5 global water vapor are 5.67434.30%, -
1.86430.09%, and -2.30421.21% for pressure levels at 300, 500, and 850 hPa, respectively. This suggests that at 500 and 850
hPa, COSMIC water vapor retrieval is lower than ERA5 water vapor data. This is consistent with the negative moisture biases
below 5 km for the RO retrievals compared to the collocated radiosonde data (Ho et al., 2009, 2020a; Shao et al., 2021b). Such
near-surface moisture biases may come from the 1IDVAR RO retrieval when the super-refraction with a sharp refractivity
gradient occurs in the moisture-rich low-tropospheric RO profiles (Ho et al., 2020b; Shao et al., 2021a,b). At 300 hPa, the
COSMIC water vapor concentration is about 5.67% higher than ERA5. Since the water vapor concentration at 300 hPa is very
low, its contribution to the total precipitable water would be minimal. The main cause that at 300 hPa, water vapor from
COSMIC is higher than from ERA5 stems from the distinctive cloud-penetration capability of the RO signal. In contrast, there
are uncertainties in the water vapor from the reanalysis data over the cloud-free scenes since these scenes can be over thin or
cirrus clouds due to the difficulty in the data assimilation system over these types of clouds. The water vapor concentration
derived from COSMIC is expected to be higher than ERA5 at 300 hPa when the thin or cirrus clouds are present. Our evaluation
of water vapor at 300 hPa indicates that the difference between RO and ERA5 about 5.7% is likely due to the uncertainty in
classifying cloud-free scenes in the data assimilation and in the RO retrieval system. Such assessment is consistent with the
water vapor biases between COSMIC-2 and ERAS presented in Johnston et al., 2021.
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Figure 2: Comparison of the global distribution of 10x10-degree grid-averaged water vapor (g/kg) data between COSMIC retrievals
(a, b, c) at 300, 500, 850 hPa, and ERAS data (d, e, f) at 300, 500, 850 hPa, respectively.

We also notice the significant uncertainties in estimating upper troposphere water vapor in the reanalysis model. Johnston et
al. (2021) analyzed COSMIC-2 and reanalysis (ERA5 and MERRA2) water vapor differences in different latitude zones. It
was shown that the UCAR COSMIC-2 water vapor retrieval is consistently lower than both ERA5 and MERRAZ2 water vapor
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data in the lower troposphere (below 2 km). However, COSMIC-2 water vapor retrieval data is higher than ERAS data and
lower than MERRAZ data at altitudes above 5 km. The magnitude of the COSMIC-2 vs. ERA5 water vapor difference is
smaller than that of COSMIC-2 vs. MERRAZ2 above 5 km. The opposite sign and large magnitude of the ERA5 and MERRA2
model water vapor differences relative to COSMIC-2 in the upper troposphere suggest the large uncertainties in calculating
water vapor in the reanalysis model over this altitude region. There are ongoing efforts to quantify the ERA5 biases in the
upper troposphere through comparison with other measurements, such as using multi-campaign datasets on research aircraft
(Kriger et al., 2022). However, the results are inconclusive due to the comparison's limited regional, height, and temporal
coverage. In this regard, the comparisons presented in this paper help assess the biases in the reanalysis model. Further

comparisons with collocated radiosonde measurements can also help assess the biases in ERAS in the upper troposphere.

3.2 Latitude-dependence of COSMIC and ERA5 water vapor distribution

The comparisons of the latitudinal dependence of water vapor distribution between COSMIC and ERAS at three pressure
levels are shown in Fig. 3. Eight latitudinal bins from -80 to 80 degrees with 20-degree bin width are used to group COSMIC
and ERA5 water vapor data. The 20-degree wide latitude bins over northern and southern hemispheres are selected to
characterize water vapor latitude-dependence in different reprehensive latitudinal zones such as 0°-20° for tropical, 20°-40° for
sub-tropical, 40°-60° for mid-Ilatitude, and 60°-80° for high-latitude regions. The regions with latitudes above 80 degrees were
not selected due to much less data coverage from COSMIC. The collocated COSMIC and ERA5 water vapor data over all
months in 12 years (2007-2018) have been used to calculate the mean water vapor over these latitude bins, as shown in Fig. 3.
Figures 3a, 3d, and 3g show the side-by-side comparison of COSMIC and ERAS water vapor data averaged over 20-degree
latitude bins at the three selected pressure levels (300, 500 and 850 hPa), respectively. The panels in the middle and right

columns of Fig. 3 show the latitude-dependence of the COSMIC minus ERAS water vapor mean difference (AQcosmic—gras =

Qcosmic — Qgras) and relative difference (AQcosmic-gras(%) = (Qcosmic — Qrras) Qeras X 100).

In general, COSMIC and ERA5 water vapor data (Fig. 3) show that latitudinal water vapor distribution peaks in the -20 to 20-
degree equatorial latitude zones and rapidly decreases toward the polar region at all three pressure levels. There is an
asymmetry in the latitude-dependent distribution of water vapor between the northern and southern hemispheres. For example,
the northern hemisphere's 0 to 20-degree equator latitude bin has the highest water vapor compared with all other latitude bins,
including the southern -20 to 0-degree latitude bin for all three pressure levels. The decrease of water vapor from the low-
latitude tropics to the polar region in the southern hemisphere is more rapid than in the northern hemisphere, which results in
a higher water vapor concentration in the north latitudinal bins than those corresponding latitudinal bins in the southern

hemisphere.

Feulner et al. (2013) showed the asymmetric distribution of annually and zonally averaged surface air temperatures between

the northern and southern hemispheres, with the mean surface air temperature in the Northern hemisphere being 1-2°C warmer
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than in the southern hemisphere. The close relationship between temperature and the capacity of the atmosphere to hold water
vapor is governed by the Clausius-Clapeyron equation (Held and Soden, 2006). The equation states that for every 1-degree
Celsius increase in temperature, the saturation vapor pressure increases by about 7%. As temperature increases, this will lead
to the potential for more water vapor to be held in the air. In other words, warmer air has a higher capacity to hold water vapor.
This relationship is crucial for understanding how temperature changes can impact atmospheric humidity. The observed and
modeled evidences presented by Wentz and Schabel (2000), Trenberth et al. (2005), Held and Soden (2006), and Allan et al.

(2014), supports the notion that higher atmospheric water vapor contents are, in general, associated with higher temperatures.

Since the warmer temperature is closely coupled with a higher water vapor evaporation rate, our findings of moister high-
latitude zones in the northern hemisphere are consistent with the interhemispheric temperature difference observed in Feulner
et al. (2013). Furthermore, Feulner et al. (2013) examined climatological data, Earth's energy budget, and model simulations
for factors that could lead to interhemispheric temperature differences. The study of Feulner et al. (2013) compared various
factors, including seasonal differences in solar radiation, the tropical land area difference, the difference in albedo and
temperature between Antarctic and Arctic polar regions, as well as cross-equatorial ocean heat transport from the southern
hemisphere to the northern hemisphere. It was shown by Feulner et al. (2013) that for the preindustrial climate, the northward
meridional heat transport by ocean circulation, with an additional contribution from the albedo differences between the
northern and southern polar regions, are the dominant factors for the interhemispheric temperature difference. As greenhouse
gas emissions continued to rise throughout the industrial era, interhemispheric temperature disparities became larger. This is
attributed to the intensified warming of land areas compared to oceans and the significant reduction of Arctic sea ice and snow
cover in the northern hemisphere. These factors, including cross-equatorial ocean heat transport, albedo difference in polar
regions, intensified warming of land areas, and reduction of Arctic ice/snow cover, which affect interhemispheric temperature

difference, can also be the primary driving factors of the interhemispheric water vapor difference.

The comparisons between COSMIC and ERA5 water vapor at three pressure levels shown in the middle and right columns of
Fig. 3 show some latitude-dependent differences. At the 300 hPa pressure layer, the mean difference and relative difference
AQcosmic—rras (%) are all positive (Fig. 3b and 3c), i.e., Qcosmic being higher than Qgras. The peak relative differences (~7-
8%) occur in the two equatorial latitude bins (-20 to 0-degree and 0 to 20-degree bins). The percent difference values range
from 2% to 8% over the eight latitudinal bins. This suggests that the 5.67% bias in the global Q;osuic VErsus Qgras comparison

mainly comes from the water vapor difference near the equator.
At the 500 hPa pressure level, the AQcosmic—rras (Fig. 3e) are negative for all the latitude bins, with the amplitude of the

water vapor difference being low in the equatorial latitude bins, which is different from those at 300 hPa (Fig. 3b) and 850 hPa

(Fig. 3h). At this pressure layer, the mean Qcosuc 1S entirely consistent with the mean Qggus, i-€., AQcosmic—gras (%) 1S
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within -0.5% as shown in Fig. 3f, in the -20 to 20-degree latitude bins around the equator. Away from the equator, the percent

355 difference AQcosmic—rras (%) increases to around -3%.
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Figure 3: (a, d, g) Comparison of bin-mean water vapor between COSMIC retrieved data and ERAS data at three pressure levels.
Panels (b, e, h) and (c, f, i) show the value-difference and percent-difference (COSMIC minus ERAS) of latitude bin-mean water
vapor data between COSMIC retrieved data and ERAS data, respectively. The Top, middle, and bottom rows show the comparisons
at 300, 500, and 850 hPa, respectively. In all bar-chart panels, the bar centers on the x-axis are placed at the centers of the 20-degree
latitudinal bins. For this figure, collocated COSMIC and ERAS5 water vapor data for all months of the considered 12-year period
(2007-2018) have been used to calculate the mean water vapor in the corresponding latitude bins.

At the 850 hPa near-surface level, a consistent latitudinal pattern is evident (Fig. 3h and 3j), characterized by negative biases
in AQcosmic—eras across all eight latitude bins under investigation. From Fig. 3h, it can be seen that the amplitudes of negative
AQcosmic—Eras are dominantly distributed over the -40 to 40-degree latitude zone while peaking at the -20 to 20-degree equator
zone, which agrees with the occurrence of negative water vapor bias in the COSMIC 1DVAR retrieval due to super refraction
in the near-surface moisture-rich low latitude regions (Ho et al., 2010). From Fig. 3i it can be seen that AQcpsmic—gras (%) Of
all latitude bins have negative differences around -2% to -3% except for two latitude bins (-60 to -40 degree and 60 to 80

degree) which have smaller negative AQcosmic—gras(%) near zero.
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4. COSMIC and ERA5 Water Vapor Time Series Analysis and Trend Comparison

With six satellites, COSMIC occultations generally have uniform spatial and temporal distributions. However, because the
daily sample number of COSMIC occultations decreased dramatically after 2010 (see Fig. A.4e in Appendix), we need to
remove the COSMIC sampling uncertainty for the trend calculation. A detailed description of the method to remove sampling
uncertainty, i.e., sampling error removal and calculating trends from water vapor time series data, can be found in Appendix
A.2 and is not further described here. This section compares the water vapor trends derived from the COSMIC and ERA5
time series data after removing sampling error and deseasonalization. This section calculates and compares the global and
latitude-dependent water vapor trends from the collocated COSMIC and ERAS data from 2007 to 2018 at three pressure levels
(300, 500, and 850 hPa).

4.1 Comparison of global COSMIC and ERA5 water vapor trends

Figure 4a shows the time series of global mean COSMIC and ERAS water vapor at three pressure levels. At 300 hPa, COSMIC
water vapor data is consistently higher than ERA5 data. At 500 and 850 hPa, the COSMIC water vapor data is slightly lower
than the ERAS data. These differences between COSMIC and ERADS are consistent with the bias analysis in Section 3.1. Figure
4a shows that although the COSMIC and EARS time series are different, their trends are pretty close (Figure 4b), which will

be further quantified after the time series data are deseasonalized.

It can be seen in Fig. 4a that there were two abnormal water vapor increases around 2010 and 2015-2016 in both the COSMIC
and ERADb time series at all three pressure levels. The abnormal increases in water vapor around 2010 and 2015-2016 were
also observed in the long-term total precipitable water monitoring (Mears et al., 2022), which used multiple-RO sensors and
radiosonde data to construct the time series data. These abnormal water vapor increases were attributed to EI Nifp, i.e., the
warm phase of the EI Nifb Southern Oscillation (ENSO). These warm events can enhance surface evaporation, increase
tropospheric water vapor, and warm the entire tropical troposphere (e.g., Zveryaev and Allan 2005; Trenberth et al. 2005). The
recent 2015-2016 EIl Nifb event broke warming records in the central Pacific according to Nifp3.4 (sea surface temperature
(SST) anomalies averaged over the equatorial region (Latitude: -5° to 5°; Longitude: -150° to 160°) of the Pacific Ocean) and
Nifb4 indices (SST anomalies over the region (Latitude: -5° to 5°; Longitude: -150° to 160°)). The 2015-2016 EI Nifp event
was among the most significant events recorded in this century. During the El Nifp event from April 2015 to May 2016, the
equatorial Pacific Ocean waters stayed warm for a whole year, reaching peak temperatures in November 2015

(https://www.ecmwf.int/en/newsletter/151/meteorology/2015-2016-el-nino-and-beyond). The long period of warm Pacific

Ocean temperature significantly impacted the global weather patterns and diminished the seasonal cycles. This also caused
anomalies in the seasonal variation of the 2015-2016 global atmospheric water concentration through the coupling between

ocean and atmosphere over the equatorial Pacific Ocean and the atmospheric winds (Fig. 4a).
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To quantitatively evaluate the trend of global water vapor, Figure 4b shows the time series of sampling error-removed and
deseasonalized monthly-mean global water vapor of COSMIC and ERAGS at three pressure levels. The slope values, i.e., long-
term trends, are derived with linear regression and listed in Table 1 in both units of g/kg/decade (D,) and %/decade (NDy). In
calculating the percent/decade trend, i.e., normalized trend (ND,), the long-term averaged global mean water vapor (g/kg) at

a given pressure level has been used to normalize the trend with the unit g/kg/decade.

COSMIC and ERAS5 water vapor trend data (Fig. 4) show that the global water vapor trends at three pressure levels are all
positive, suggesting the increase of global water vapor concentration during the period from 2007 to 2018, i.e., becoming
globally moister, over time at these pressure levels. Many earlier studies have reported a rise of global atmospheric water vapor
in different periods, e.g., over the period 1979-2001 with ERA-40 reanalysis (Bengtsson 2004), over the period 1976-2004
using global meteorological data measured by weather stations and marine ships (Dai 2006), and over 1996-2002 with Global
Ozone Monitoring Experiment (GOME) data (Wagner et al. 2006). In Chen and Liu (2016), five global PWV data sets, e.g.,
ECMWF and NCEP reanalysis data, radiosonde, ground GPS stations, and microwave satellite measurements, over the period
2000-2014, were used to derive the trend, and all show positive global PWV trend. Allan et al. (2022) studied the global-scale
changes in water vapor and responses to surface temperature variability since 1979 using coupled and atmosphere-only CMIP6
climate model simulations. In the water vapor trend estimation over the 1988 to 2014 period, Allan et al. (2022) showed a
positive increase of global water vapor at the near-surface, at 400 hPa and Column Integrated Water VVapor from an ensemble
of climate model simulations with the CMIP®6 historical and Atmospheric Model Intercomparison Project (AMIP) experiments.
The period of COSMIC RO data studied in this paper (2007 to 2018) partially overlaps with the simulations of Allan et al.
(2022). The increasing trend in the global atmospheric water vapor concentration at the three pressure levels considered in our
trend analysis is generally consistent with the results from Allan et al. (2022). It was suggested that an increasing trend in water

vapor could be the response to the surface temperature increase (Held and Soden, 2006; Santer et al., 2006; Zhang et al., 2013).

Table 1 shows that the increasing trends of global water vapor vary from ~2 to ~4 %/Decade from the analysis of both COSMIC
and ERAS data at the three pressure levels. It was also shown by Allan et al. (2022) that in the ensembled historical
experimental model simulations, the water vapor increases by 1.53 and 3.52 %/Decade at the surface and at 400 hPa,
respectively. Our study shows that the increasing global water vapor trend estimated for the COSMIC data over the period
2007-2018 are 2.0330.65, 3.25+1.25, 3.4741.47 %/Decade at 850, 500, and 300 hPa, respectively, which is in general
agreement with the results from in Allan et al. (2022), considering that the two work cover two distinct periods with 8
overlapping years. In Allan et al. (2022), there is an increase in water vapor trend from the surface to 400 hPa by ~2 %/Decade.

Our work shows an increase of water vapor trend by 1.44 %/ Decade when pressure level varies from the near-surface (at 850

hPa) to 300 hPa, which is generally consistent.
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Figure 4: (a) Monthly-mean time series of COSMIC and ERAS global mean water vapor data at three pressure levels (solid lines)
440 and linear trend (dashed lines). (b) Time series of sampling error-removed and deseasonalized monthly-mean COSMIC and ERA5
global water vapor data (solid lines) and linear trend (dashed lines). In all panels, red and blue lines are time series (solid lines) and
trends (dashed lines) of ERAS5 and COSMIC water vapor data, respectively.
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Table 1: Comparison of the global water vapor trends (slope £95% Confidence Interval) derived from COSMIC and ERAS data.

Pressure COSMIC Q Trend Normalized COSMIC Q ERA5 Q Trend Normalized ERA5 Q
Level (Dg,cosmic, 9/kg/Decade) | Trend (Dog,rras 9/kg/Decade) Trend

(NDg,cosmic, %/Decade) (NDg gras, %/Decade)
300 hPa 0.0047 +0.0024 3.47H.77 0.0046 £+0.0022 3.58+.71
500 hPa 0.0275 +0.0106 3.2541.25 0.0355 +0.0107 4.1241.24
850 hPa 0.0912 +0.0293 2.0340.65 0.1302 £0.0311 2.8340.68

The increasing trend values at 300 hPa derived from COSMIC and ERAS5 global water vapor data are consistent. At 500 hPa
and 850 hPa, the NDg gr,5 are higher than COSMIC trends by 0.87%/Decade and 0.8%/Decade, respectively, which suggests
that ERA5 may over-estimate the increase of water vapor during 2007 to 2018. Chen and Liu (2016) showed that the increasing
PWV trend from 2000 to 2014 derived from ECMWF data is ~0.37%/Decade larger than the PWV trend derived from the
ground GPS station data. The difference between NDg gras and NDg cosmic from our analysis at 500 hPa and 850 hPa are

about 0.5%/Decade higher than the differences between the trends of ECMWF and ground GPS station PWYV data studied by
Chen and Liu (2016).

Using the trend results from COSMIC data, we can also see that water vapor trends increase with lower pressure levels. Table
1 shows that the increasing trend at 850 hPa from COSMIC data (NDq cosmic) is lower by 1.44 and 1.22 %/Decade than at
300 and 500 hPa, respectively.

4.2 Comparison of COSMIC and ERAS latitudinal water vapor trends

To further understand the latitudinal distribution of the water vapor trends, we calculate the slopes of the linear fit for COSMIC
(Do,cosmic) and ERAS (D gras) at eight 20° latitudinal bins distributed from -80° to 80°. The latitudinal bins above 80° in the
northern and southern polar regions are excluded from this analysis due to too few COSMIC RO observations. Figure 5
compares slope values of the linear fit of water vapor between COSMIC and ERAS over eight latitude bins at three pressure
levels. The first column of Fig. 5 shows the water vapor trends (D) of unit g/kg/Decade. To account for the latitudinal variation
of water vapor, the middle column of Fig. 5 shows the water vapor trends (ND,) normalized by the corresponding long-term
latitude-bin-averaged water vapor mean and expressed with the unit of %/Decade. The third column of Fig. 5 shows the
latitude-dependent water vapor trend difference (NDg cosmic - NDg gras, %/Decade) between COSMIC and ERAS. Table 2

lists the water vapor trend values of COSMIC and ERADS for eight latitude bins and at three pressure levels.

From Fig. 5, the latitude-mean water vapor trends are mostly positive (increasing), and their magnitudes vary with latitude
bins substantially at three pressure levels. The only latitude bin with a small negative water vapor trend with large uncertainty

is in the -80° to -60° southern high latitude bin at 500 hPa. From the global surface temperature trend analysis by Gu and Adler,
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2022, there is a mixture of a weak decreasing trend in the surface temperature in the Southern Ocean around the Antarctic and
an increasing trend over the Antarctic in the -80 ° to -60 ° southern latitude bin. However, the uncertainties of estimating the

temperature and water vapor trends in this latitude zone are large.
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475  Figure 5: (a, d, g) Comparison of the latitude bin-mean water vapor trends (g/kg/Decade) between COSMIC and ERA5 data at 300,
500, and 850 hPa, respectively. (b, e, h) Comparison of normalized latitude bin-mean water vapor trends (%/Decade) between
COSMIC and ERAS5 data at 300, 500, and 850 hPa, respectively. (c, f, i) The difference (COSMIC minus ERA5) of normalized
latitude bin-mean water vapor trend (%/Decade) between COSMIC and ERAS data at 300, 500, and 850 hPa, respectively. The x
values on the horizontal axis represent the centers of the 20° latitude bins. The green line in each panel separates the southern (to

480 its left) and northern (to its right) hemispheres.

At 300 hPa, the differences in water vapor trends (Fig. 5¢) between COSMIC (NDg cosmic) and ERAS (NDg gras) consist of
positive and negative values and with magnitudes being less than 0.8 %/Decade over the eight latitude bins. In other words,
the COSMIC and ERAS water vapor trends are consistent within 0.8 %/Decade over all eight latitude bins. In Fig. 5b, the
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trends of water vapor change in the four latitude bins over the -60° to -20° and 20° to 60° zones are in the range of 4 to ~6
%/Decade, which is higher than the water vapor trends (1.79 to 2.58 %/Decade) of the two equatorial latitude bins (0° to 20°
and -20° to 0°). The southern -80° to -60° latitude bin has the lowest water vapor trends (both |[NDg gras| and [NDg cosmic| <

0.6%/Decade) at 300 hPa among the eight latitude bins studied in this paper.

Table 2: Latitude bin-mean water vapor trends (g/kg/Decade and %/Decade) and 95% confidence interval estimated from COSMIC
and ERAS data at 300, 500, and 850 hPa

At 300 hPa At 500 hPa At 850 hPa
. . (DQ,COSMIO (NDQ,COSMICI (DQ,COSMICv (NDQ,COSMICl (DQ,COSMI(Jv (NDQ,COSMICr

Latitude Bin Dg,Eras) NDg gras) Dg,gras) NDg gras) Dg,Eras) NDg gras)
(g/kg/Decade) (%/Decade) | (g/kg/Decade) | (%/Decade) | (g/kg/Decade) | (%/Decade)

-80° 10 -60° 0.000140.00186, 0.5245.96, -0.00490.01, -0.7246.48, 0.0340.04, 3.1443.87,
-0.0000540.0016 | -0.1946.13 -0.0040.01 -0.4146.14 0.0140.04 0.8843.61

-60° 0 -40° 0.003140.0039, 4.3445.58, 0.0140.02, 1.8043.74, 0.1340.06, 4.61+2.00,
0.003140.004 4.4345.72 0.0240.02 3.2543.66 0.1040.06 3.3441.94

-40° 10 -20° 0.0080.0065, 4.9844.16, 0.0340.03, 3.67+43.85, 0.1140.08, 2.09+1.50,
0.00850.0064 5.7444.30 0.0540.03 5.5543.74 0.1340.08 2.27+1.41

-20° t0 -0° 0.005140.0098, 1.7943.42, 0.0240.06, 1.1743.52, 0.1240.12, 1.33+.31,
0.0068+40.0091 2.5843.44 0.0440.06 2.3543.50 0.2240.13 2.29+1.32

0° t0 20° 0.007940.01, 2.3643.04, 0.1340.05, 6.1742.71, 0.2140.10, 2.14+1.06,
0.006340.0094 2.00+2.98 0.1240.06 5.93+2.71 0.3440.10 3.34+1.02

20° t0 40° 0.01240.007, 6.29+43.56, 0.0440.03, 3.8842.95, 0.1440.09, 2.41+1.61,
0.0140.007 5.5943.61 0.0540.03 4.4142.80 0.2540.09 4.2741.56

40° 10 60° 0.004710.0044, 4.7244.40, 0.0049.02, 0.4043.14, 0.0240.08, 0.69+2.23,
0.0048+0.0044 5.0144.48 0.0240.02 2.3543.17 0.0540.08 1.4642.27

60° t0 80° 0.00140.0031, 1.9445.99, 0.0149.02, 2.3745.38, 0.0249.07, 0.9443.49,
0.00140.003 1.9846.32 0.0240.02 3.9545.25 0.0540.07 2.4843.44

At 500 hPa, both Dy cosmic and Dy gras are the highest (~0.13 g/kg/Decade) in the 0 ° to 20° latitude bin (Fig. 5d). Regarding
the normalized trends of the unit %/Decade, the NDg cosmic and NDg gras (%0/Decade) are all positive except in the -80° to -
60° latitude bin. Over the latitude bins in the -60 ° to 80° latitude zone, the values of ND, g5 Vary between 2.35 and 5.93
%/Decade while values of NDg cosuic vary between 0.4 and 6.17 %/Decade. The water vapor trends of NDg cosyic and
NDg gras in the -80° to -60° latitude bin are both quite stable with a weak n