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Abstract 19 

        Atmospheric humic-like substances (HULIS) affect global radiation balance due to their 20 

strong light absorption at the ultraviolet wavelength. The potential sources and molecular 21 

compositions of water soluble HULIS at a suburb site of Yangtze River Delta from 2017 to 2018 22 

were discussed based on the radiocarbon (14C) analysis combining the Fourier Transform Ion 23 

Cyclotron Resonance Mass Spectrometry (FT-ICR MS) technique in this study. The 14C results 24 

showed that the averaged non-fossil source contributions to HULIS were 39 ± 8 % and 36 ± 6 % 25 

in summer and winter, respectively, indicating the significant contributions from fossil sources to 26 

HULIS. The Van Krevelen diagrams obtained from the FT-ICR MS results showed that the 27 

proportions of tannins-like and carbohydrates-like groups were higher in summer, suggesting 28 

significant contribution of HULIS from biogenic secondary organic aerosols (SOA). The higher 29 

proportions of condensed aromatic structures in winter suggested increasing anthropogenic 30 

emissions. Molecular composition analysis on the CHO, CHON, CHOS, and CHONS subgroups 31 
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showed the relatively higher intensities of high O-containing macromolecular oligomers in CHO 32 

compounds in summer, further indicating stronger biogenic SOA formation in summer. High-33 

intensity phenolic substances and flavonoids which were related to biomass burning and polycyclic 34 

aromatic hydrocarbons (PAHs) derivatives indicating fossil fuel combustion emissions were found 35 

in winter CHO compounds. Besides, two high-intensity CHO compounds containing condensed 36 

aromatic ring structures (C9H6O7 and C10H5O8) identified in summer and winter samples were 37 

similar to those from off-road engine samples, indicating that traffic emission was one of the 38 

important fossil sources of HULIS at the study site. The CHON compounds were mainly composed 39 

of nitro compounds or organonitrates with significantly higher intensities in winter, which was 40 

associated to biomass burning emission, as well as the enhanced formation of organonitrates due 41 

to high NOx in winter. However, the high-intensity CHON molecular formulas in summer were 42 

referring to N-heterocyclic aromatic compounds, which were produced from the atmospheric 43 

secondary processes involving reduced N species (e.g., ammonium). The S-containing compounds 44 

were mainly composed of organosulfates (OSs) derived from biogenic precursors, long-chain 45 

alkane and aromatic hydrocarbon, illustrating the mixed sources of HULIS. Generally, different 46 

policies need to be considered for each season due to the different season sources, i.e., biogenic 47 

emission in summer and biomass burning in winter for non-fossil source, traffic emission and 48 

anthropogenic SOA formation in both seasons and additional coal combustion in winter. Measures 49 

to control emissions from motor vehicles and industrial processes need to be considered in summer. 50 

Additional control measures on coal power plants and biomass burning should be concerned in 51 

winter. These findings add to our understanding of the interaction between the sources and the 52 

molecular compositions of atmospheric HULIS. 53 

        54 

1. Introduction 55 

        Atmospheric humic-like substances (HULIS) have been observed worldwide and can be 56 

produced from primary combustion of biomass, fossil fuel, as well as various secondary processes 57 

such as photochemical processes of volatile organic compounds (VOCs) and heterogeneous 58 

reactions of organic aerosols in the atmosphere (Kuang et al., 2015; Li et al., 2019; Ma et al., 2018; 59 

Sun et al., 2021). As important component of brown caron (BrC) aerosols, HULIS species have 60 

been widely reported to have a great impact on global radiative budget, contributing to 20-40% of 61 

the direct radiative forcing caused by light absorbing aerosols due to its light absorption at the 62 
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ultraviolet wavelength (Chung et al., 2012; Zhang et al., 2017; Zhang et al., 2020a; Wang et al., 63 

2018c). HULIS are a highly complex mixture of polar organic compounds composed of aromatic 64 

and hydrophobic aliphatic structures containing carboxyl, carbonyl, and hydroxyl function groups 65 

(Zheng et al., 2013; Graber and Rudich, 2006; Zhang et al., 2022b; Zhang et al., 2022c). During 66 

the atmospheric secondary oxidation processes, the substitutions of hydrophilic functional groups 67 

increased aerosol hygroscopicity (Huo et al., 2021; Jiang et al., 2020). Polycarboxylic acids in 68 

HULIS are surface-active and play an important role in the cloud condensation nuclei (CCN) 69 

activity (Tsui and McNeill, 2018). N-base compounds can promote the generation of atmospheric 70 

reactive oxygen species (ROS) which have a great impact on human health (Wang et al., 2017c; 71 

De Haan et al., 2018; Song et al., 2022). Identifying the molecular compositions of HULIS is a 72 

challenge due to complex mixtures contained in HULIS and can help to a better understanding of 73 

the processes involving organic compounds in atmosphere (Noziere et al., 2015; Laskin et al., 74 

2018). 75 

        The Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled 76 

with electrospray ionization (ESI) ion source have been widely used in identifying the chemical 77 

structure of HULIS, providing high mass accuracy and can determine molecular formulas from 78 

mixed compounds (Chen et al., 2016; Wang et al., 2019b; Lin et al., 2012a; Jiang et al., 2020). 79 

Typical molecular formulas composed of C, H, and O atoms in HULIS were observed being 80 

abundant in carboxylic acids, lignin-derived products, and polycyclic aromatic hydrocarbons 81 

(PAHs) or their derivatives (Lin et al., 2012a; Sun et al., 2021; Jiang et al., 2020; Huo et al., 2021; 82 

Song et al., 2018). In addition, the HULIS formation of N and S containing precursors was also 83 

widely detected (Lin et al., 2012b; Sun et al., 2021; Song et al., 2018). The N-containing 84 

compounds such as nitroaromatics were important chromophores in HULIS in aged biomass 85 

burning organic aerosols (BBOA), as well as in ambient aerosols influenced by biomass burning 86 

(BB), while reduced N compounds such as N-heterocyclic aromatic compounds were found to be 87 

important chromophores in fresh BBOA (Wang et al., 2019b; Song et al., 2022; Jiang et al., 2020; 88 

Wang et al., 2017c). Recent laboratory simulation experiments showed that the photooxidation of 89 

various anthropogenic VOCs (e.g., naphthalene, benzene, toluene, and ethylbenzene) would be 90 

promoted under high NOx condition, producing strongly light absorbing nitroaromatics (Yang et 91 

al., 2022; Aiona et al., 2018; Siemens et al., 2022; Xie et al., 2017). Otherwise, nighttime oxidation 92 

of biogenic or anthropogenic VOCs, such as benzene/toluene, isoprene (C5H8) and monoterpenes 93 
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(C10H16) by NO3 radicals lead to substantial organonitrates formation, where the VOCs oxidation 94 

is strongly affected by NOx (He et al., 2021; Shen et al., 2021; Wang et al., 2020; Zheng et al., 95 

2021).  96 

        The organosulfates (OSs) and nitrooxy organosulfates (nitrooxy-OSs) have also been found 97 

to widely exist in HULIS in different atmospheric environment (Lin et al., 2012b; Lin et al., 2012a; 98 

Sun et al., 2021). Field study and laboratory smog chamber experiments have confirmed that OSs 99 

and nitrooxy-OSs in the atmosphere mainly come from the O3, OH, or NO3 oxidation of biogenic 100 

VOCs such as isoprene, α/β-pinene as well as aromatic hydrocarbon in the presence of H2SO4/SO2 101 

(Surratt et al., 2008; Glasius et al., 2021; Yang et al., 2020; Lin et al., 2012b; Huang et al., 2020). 102 

Coal combustions were found to be important sources of the aromatic OSs and nitrooxy-OSs in 103 

HULIS (Song et al., 2018). Besides, the long-chain alkanes were found to be important precursor 104 

of OSs in atmospheric aerosol samples from urban area which was related to vehicle emissions 105 

(Wang et al., 2019a; Tao et al., 2014).  106 

         Nanjing is one of the main cities in the Yangtze River Delta (YRD), which is one of the most 107 

developed areas in China. Organic matter can account for 20-40 % of PM2.5 in the YRD area due 108 

to the impact of complicated sources, especially anthropogenic emissions (Wang et al., 2017a; 109 

Wang et al., 2016a). Studies have reported that BrC is an important contributor to aerosol light 110 

absorption in Nanjing and exhibited obvious seasonal variations, with peaks in wintertime, owing 111 

to emissions from biomass burning, fossil fuel combustion, and secondary formation (Chen et al., 112 

2018; Cui et al., 2021; Xie et al., 2020; Wang et al., 2018a).  Recently, works on the field 113 

observation of nitrated aromatic compounds (NACs) were conducted to explore the light 114 

absorption contributions of NACs to BrC and help to better understand the links between the 115 

optical properties and molecular compositions of BrC (Gu et al., 2022; Cao et al., 2023). However, 116 

as far as we know, understanding of the sources of atmospheric HULIS at molecular levels was 117 

still limited. In this work, the molecular compositions of water soluble HULIS isolated from PM2.5 118 

samples collected in summertime and wintertime from 2017 to 2018 at Nanjing, China, were 119 

investigated combining the FT-ICR MS and radiocarbon (14C) analysis. We aim to obtain the 120 

molecular characteristic differences of water soluble HULIS in summertime and wintertime and 121 

to get a better understanding of the influence of different sources on the molecular compositions 122 

of HULIS.  123 

2. Materials and methods 124 
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2.1 Sample collection 125 

        The 24 h PM2.5 samples were collected on the roof of Wende building, which was about 21 126 

m height from the ground at Nanjing University of Information Science and Technology (32.2° N, 127 

118.7° E) using a high-volume sampler (KC-1000, Qingdao, China) at a flow rate of 300 L min-1. 128 

The study site was located in the northern suburb area of Nanjing, adjacent to G205 State Road 129 

and surrounded by an industrial park and residential area. Generally, the study site was affected 130 

by human activity, industrial emission, and traffic emission. The sample collection was conducted 131 

in summer from 12 August 2017 to 26 August 2017 and in winter from 31 December 2017 to 31 132 

January 2018. A heavy haze event occurred from 31 December 2017 to 3 January 2018, thus the 133 

sample frequency was adjusted to 2 h in daytime and 8 h in nighttime. Field blank filters were 134 

performed before and after sample collection for each season. More details about the sample 135 

collection can be found in previous research reported by Bao et al. (2022). The air pollutants data 136 

including PM2.5, SO2 and NO2 were provided by China National Environmental Monitoring Centre. 137 

Twelve samples were selected for further chemical analysis and the details about the sample 138 

selection are described in Section 3.1 in this study.  139 

2.2 Chemical analysis 140 

        The solid phase extraction (SPE) cartridge (Oasis HLB, 30 µm, 60 mg/cartridge, Waters, 141 

USA) was performed to isolate the water soluble HULIS in this study. Briefly, the prepared water 142 

extracts passed through the pre-conditioned HLB cartridge firstly, then the retained HULIS on the 143 

HLB cartridge were eluted with 2% (v/v) ammonia/methanol and evaporated to dryness under a 144 

gentle stream of nitrogen gas, then re-dissolved in ultrapure water for the measurement. The carbon 145 

fraction in HULIS (HULIS-C) were determinated using a total carbon analyzer (Shimadzu-TOC-146 

VCPH, Shimadzu, Japan) with standard deviation of reproducibility test less than 3.5 % and 147 

detection limit of 0.14 μg C m-3. More details about the HULIS isolation and measurement have 148 

been described in Bao et al. (2022).   149 

        The mass concentrations of the water soluble ions including NO3
-, NH4

+ and SO4
2- were 150 

measured using an ion chromatography (Dionex ICS-5000+, ThermoFisher Scientific, USA) 151 

separated on an AS11 column (4*250 mm, Dionex) for anions and a CS12A column 152 

(4*250 mm, Dionex) for cations, respectively. Potassium hydrate (KOH) and methane sulfuric 153 

acid (MSA) was were used as the gradient eluent for anion and cation determination, respectively. . 154 

The levoglucosan concentrations were analyzed using the same ion chromatograph equipped with 155 

Formatted: Highlight



6 
 

a CarboPac MA1 analytical column (4*250 mm, Dionex) and an electrochemical detector. Sodium 156 

hydroxide (NaOH) was used as the gradient eluent for levoglucosan determination. All data were 157 

blank corrected in this study. More details of the methods have been described previously (Liu et 158 

al., 2019).  159 

2.3 Radiocarbon analysis 160 

        For the radiocarbon measurement of the HULIS samples, the organic solvents were firstly 161 

evaporated under a gentle flow of ultrapure N2 for 30-40 minutes in tin cups.  After that, the tin 162 

cups were wrapped into balls and more than 50 μg of carbon from the HULIS samples was 163 

combusted into CO2 using an elemental analyzer (EA, model vario micro, elemental, Germany), 164 

then reduced into graphite targets for 14C determination at the State Key Laboratory of Organic 165 

Geochemistry, Guangzhou Institute of Geochemistry, Guangzhou, China (Jiang et al., 2020). 166 

Detailed descriptions of the 14C data processing can be found in previous study (Mo et al., 2018). 167 

Briefly, the 14C values were expressed as the modern carbon (fm) fraction after correcting for the 168 

δ13C fractionation. The fm was converted into non-fossil carbon (fnf) fraction with the correction 169 

factor of 1.06±0.07 based on the long-term time series of 14CO2 sampled at the background station 170 

in this study (Levin et al., 2013; Levin and Kromer, 2004). 14C analysis of the oxalic acid standard 171 

(IAEA-C7) was conducted in this study (Xu et al., 2021). No field blank correction was performed 172 

for the carbon isotope analysis since the carbon content in the field blanks was negligible.   173 

2.4 High-resolution FT-ICR MS analysis 174 

        The ultrahigh resolution mass spectra of the HULIS samples were obtained through a SolariX 175 

XR FT-ICR MS (Bruker Daltonics, GmbH, Bremen, Germany) equipped with a 9.4 T 176 

superconducting magnet (Gamry Instruments, Warminster, USA) and a Paracell analyzer cell 177 

(Brucker Daltonik GmbH, Bremen, Germany) in the negative ESI mode. The detection mass range 178 

was set as m/z 150 to 800 and the ion accumulation time was set as 0.65 s. A total of 100 continuous 179 

4M transient data points were superposed to enhance the signal to noise ratio and dynamic range. 180 

The mass spectrum was externally calibrated with a standard solution of arginine and internal 181 

recalibration was performed using typical O6S1 chemical species in DataAnalysis ver. 4.4 software 182 

(Bruker Daltonics) (Mo et al., 2018; Tang et al., 2020; Jiang et al., 2020). Field blank filters were 183 

analyzed as same as the samples and all the sample data were blank corrected. More details about 184 

the data processing can be found in Text S1 in the supporting information.  185 

3. Results and discussion     186 
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3.1 General temporal characteristics during the sampling periods  187 

        Figure 1 displays the temporal variations of non-fossil contributions to HULIS-C, the mass 188 

concentrations of HULIS-C, levoglucosan, NO3
-, SO4

2-, NH4
+, SO2, NO2, and PM2.5, as well as the 189 

relative humidity and temperature during the study periods corresponding to the 12 samples. The 190 

12 samples were named as S1-S6 (summer) and W1-W6 (winter) in chronological order 191 

corresponding to the six samples in summer and winter, respectively in this study. The averaged 192 

mass concentrations of PM2.5 in summer and winter during the selected periods were 21.05 ± 8.05 193 

μg m-3 and 445.67 ± 275.00 μg m-3, respectively, indicating the serious pollution level in winter. 194 

The daily PM2.5 mass concentrations in summer were all below the daily averaged Chinese 195 

National Ambient Air Quality Standard (NAAQS) of 35 µg m−3, while the daily PM2.5 mass 196 

concentrations in winter all exceeded the daily averaged NAAQS of 35 µg m−3, of which the PM2.5 197 

mass concentrations of W1-W3 and W6 exceeded 200 µg m-3. The averaged mass concentrations 198 

of HULIS in summer and winter during the selected periods were 1.83 ± 0.27 μg m-3 and 4.52 ± 199 

2.29 μg m-3, respectively. Compared with those measured in other cities in China in summer, 200 

theThe  averaged HULIS concentration in Nanjing in summersummer was comparable with those 201 

measured in Guangzhou of 1.70 μg m-3 (Fan et al., 2016), Shanghai of 1.61 μg m-3 (Zhao et al., 202 

2016) and Xi’an of 1.50 μg m-3 (Zhang et al., 2020b). with those measured in other cities in China, 203 

i.e., 1.70 μg m-3 in Guangzhou,1.61 μg m-3 in Shanghai and 1.50 μg m-3 in Xi’an. Compared with 204 

those measured in winter samples in other cities, our result was comparable with those in Xi’an of 205 

(4.50 μg m-3 (Zhang et al., 2020b), a little lower than those in the megacity of Shanghai of (5.31 206 

μg m-3 (Zhao et al., 2016) and higher than those in the southern coastal city of Guangzhou of (3.60 207 

μg m-3 (Fan et al., 2016). (Fan et al., 2016; Zhang et al., 2020b; Zhao et al., 2016).  208 

       As shown in Fig. 1, the mass concentrations of HULIS-C, levoglucosan, water soluble 209 

secondary inorganic aerosols (SIA), and air pollutants showed similar trends in winter, suggesting 210 

the influence of BB and anthropogenic emissions in winter (Wu et al., 2019b). The radiocarbon 211 

analysis results showed that the fnf of HULIS-C ranged from 30 % to 50 % with an average 212 

contribution of 39 ± 8 % in summer and ranged from 32 % to 48 % with an average contribution 213 

of 36 ± 6 % in winter, indicating the significant contributions from fossil sources to HULIS at the 214 

study site. The 48 h back trajectories (Fig. S1) showed that the study site was affected by the 215 

polluted air masses mainly from the northern cities in winter, suggesting the coal combustion 216 

contributions to HULIS in winter (Ma et al., 2018; Sun et al., 2021). In addition, significant 217 
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increasing of the levoglucosan and HULIS-C mass concentrations were found from 31 December 218 

2017 to 1 January 2018, corresponding to the W1-W3 samples and the maximum of the 219 

levoglucosan and HULIS-C mass concentrations were 552.79 ng m-3 and 7.40 μg m-3, respectively, 220 

indicating the BB impact during the periods. In summer, the study site was affected by both 221 

regional transport from the nearby cities in the north and west of Nanjing and the Donghai Sea. 222 

The anthropogenic emissions from the neighboring cities might cause the anthropogenic SOA 223 

formation, i.e., secondary N-containing and S-containing compounds with aromatic structures 224 

during the atmospheric transport processes, which was discussed in detail in section 3.4 in this 225 

study.  226 

3.2 Mass spectra and molecular formula assignments 227 

        Figure S2 and S3 show the negative ion ESI FT-ICR mass spectra of HULIS in summer and 228 

winter, respectively. The molecular formulas listed are some of the top ten molecular formulas. 229 

Thousands of peaks are present in the spectra in the range from m/z 150 to m/z 600 and the most 230 

intense ion peaks are those in the range m/z 200-400 in summer and m/z 150-350 in winter. Our 231 

results are similar to those found for the ultrahigh resolution mass spectra of water-soluble organic 232 

compounds in particles produced from BB, coal combustion, vehicle exhaust emissions, as well as 233 

in ambient aerosols and cloud water samples, within a reasonable range (Tang et al., 2020; Sun et 234 

al., 2021; Song et al., 2018; Song et al., 2019; Bianco et al., 2018). In this study, the assigned 235 

molecular formulas were classified into the following four main subgroups based on their 236 

elemental compositions: CHO (compounds containing only C, H, and O), CHON (compounds 237 

containing C, H, O and N), CHOS (compounds containing C, H, O, and S), and CHONS 238 

(compounds containing C, H, O, N, and S). As shown in Fig. 2, the proportions of the four 239 

subgroups accounted for the overall formulas followed as CHO (20 %-27 %), CHON (28 %-43 %), 240 

CHOS (19 %-26 %), and CHONS (16 %-26 %) in summer, respectively and CHO (15 %-19 %), 241 

CHON (30 %-40 %), CHOS (21 %-32 %), and CHONS (20 %-29 %) in winter, respectively. The 242 

average proportions of the CHO, CHON, CHOS, and CHONS compounds in summer were 22 ± 243 

3 %, 36 ± 5 %, 22 ± 3 %, and 20 ± 4 %, respectively. The average proportions of the four subgroups 244 

in winter were 17 ± 2 %, 32 ± 4 %, 24 ± 3 %, and 27 ± 4 %, respectively. The CHON groups were 245 

the major components of molecular formulas, furthermore, the relative intensity of CHON groups 246 

increased significantly in winter (Fig. S2 and Fig. S3). Studies have suggested that HULIS emitted 247 

from biomass burning can produce a high abundance of CHON compounds and S-containing 248 
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compounds were the dominant component for primary HULIS emitted from coal combustion 249 

(Zhang et al., 2021; Song et al., 2018). The higher intensity of CHON compounds in winter in this 250 

study further indicated the BB contribution. The contributions of S-containing compounds (CHOS 251 

and CHONS groups) increased in winter which might be related to the polluted air masses 252 

transported from the northern cities with increasing coal combustions emissions in winter (Song 253 

et al., 2018). Notably, the relatively higher proportions of CHO and CHON groups in summer 254 

were most probably related to the increasing biogenic emissions in summer, resulting in the 255 

formation of some high molecular weight oligomers or highly oxidized organonitrates, which was 256 

discussed in detail in section 3.4.1 and 3.4.2 in this study. 257 

        Table S1 and S2 displays the composition characteristics of atmospheric HULIS in the 258 

summer and winter samples, including the relative intensity weighted average values of number, 259 

molecular weight (MWw), elemental ratios (O/Cw and H/Cw), double-bond equivalent (DBEw), 260 

aromaticity index (AIw), and DBE/Cw. A total of 14387 and 15731 peaks were detected in the 261 

summer and winter samples, respectively. The O/C and H/C ratios are commonly calculated to 262 

evaluate the oxidation degree and saturation degree of the compounds, respectively (Ning et al., 263 

2022). The O/Cw values were in a range of 0.61-0.80 with an average value of 0.71 ± 0.07 for 264 

summer samples and in a range of 0.59-0.67 with an average value of 0.62 ± 0.03 for winter 265 

samples, respectively. The higher oxidation degree of summer samples than winter samples 266 

indicated stronger secondary HULIS formation in summer. The H/Cw values were in a range of 267 

1.38-1.46 with an average value of 1.42 ± 0.03 for summer samples and in a range of 1.33-1.41 268 

with an average value of 1.36 ± 0.04 for winter samples, respectively. The O/Cw and H/Cw of each 269 

molecular subgroup followed a changing trend of CHO < CHON < CHOS < CHONS compounds. 270 

Most of the S-containing compounds had a O/C value ≥0.7, suggesting the large amounts of highly 271 

oxidized OSs in S-containing compounds which contained various functional groups and were 272 

mainly from the photochemical oxidation of biogenic or anthropogenic volatile organic 273 

compounds (VOCs) (Mutzel et al., 2015). The DBE values were calculated to describe the degree 274 

of unsaturation of compounds and restricted the assigned molecular formulas with unreasonably 275 

high or low number of rings or double bonds (Kroll et al., 2011). The related parameter DBE/C 276 

was the double-bond equivalent of unit carbon which can reflect the condensed ring structures in 277 

the compounds (Jiang et al., 2021). The higher DBEw and DBE/Cw values of CHO and CHON 278 

compounds were found in this study, indicating the higher unsaturation degree of these two groups.  279 
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        Considering that double bonds can be formed by heteroatoms especially O atoms, whereas 280 

make no contributions to the aromaticity of the compounds, AIw was calculated to supplement the 281 

DBE results (Song et al., 2018; Ning et al., 2019). AIw can eliminate the contribution of O, N, and 282 

S atoms to the C=C double bond density of molecules. The AIw values of different compounds 283 

groups in HULIS presented the changing trends: AIw (CHONS) > AIw (CHON) > AIw (CHO) > 284 

AIw (CHOS) in summer and AIw (CHON) > AIw (CHO) > AIw (CHONS) > AIw (CHOS) in winter, 285 

respectively. The formulas can be classified into three parts based on AI values proposed by 286 

previous studies: aliphatic (AI =0), olefinic (0< AI ≤0.5) and aromatic (AI >0.5) (Koch and Dittmar, 287 

2006; Jiang et al., 2020; Ning et al., 2019). As shown in Fig. S4 and S5, the aliphatic were the 288 

main components of S-containing compounds in this study and the olefinic and aromatic were the 289 

main components of CHO and CHON compounds. Furthermore, the aromatic proportion of CHO 290 

and CHON compounds significantly increased in winter, suggesting the increasing anthropogenic 291 

emissions in winter.  292 

3.3 Comparative analysis using Van Krevelen diagrams 293 

        In this study, the Van Krevelen diagrams (Fig. 3) were constructed to display the molecular 294 

composition and categorical distribution of the collected samples (Noziere et al., 2015; Patriarca 295 

et al., 2018; Li et al., 2022). According to the elemental ratios (O/C and H/C ratios) and AI values, 296 

seven major compound classes were classified, including lipids-like species, lignins-like species, 297 

proteins-like species, tannins-like species, carbohydrates-like species, condensed aromatics 298 

structure, and unsaturated hydrocarbons (Table S3). The Van Krevelen diagrams showed similar 299 

distributions in the 12 samples. The CHO and CHON compounds located in the lower left area 300 

and the S-containing compounds located in the upper light area with higher O/C and H/C ratios, 301 

indicating a higher degree of oxidation and saturation. The condensed aromatic structure mainly 302 

consisted in the CHO and CHON compounds, further suggesting the influence of anthropogenic 303 

emissions on the formation of CHO and CHON compounds.  304 

        Figure 4 presents the averaged relative contributions of the number of molecular formulas 305 

from the seven categories in summer and winter samples, respectively. Lignins-like species 306 

accounted for the highest proportion of CHO compounds with average contributions of 58 % and 307 

61 % in summer and winter, respectively, followed by CHON compounds with average 308 

contributions of 48 % and 57 % in summer and winter, respectively. Lignins are mainly composed 309 

of carboxyl groups, alicyclic rings, aromatic rings, and other O-containing groups. Previous studies 310 
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have reported that lignin was a complex phenolic polymer which usually came from direct 311 

biological emissions or combustions of biofuel (Ning et al., 2019; Boreddy et al., 2021; Sun et al., 312 

2021). Lignins pyrolysis products and other lignins derived molecules have been shown to be 313 

oxidized into light absorbing BrC chromophore under certain conditions (Fleming et al., 2020). 314 

        Tannins-like species accounted for 21 %, 27 %, 23 %, and 30 % of CHO, CHON, CHOS, and 315 

CHONS compounds, respectively in summer which were higher than those in winter with 316 

contributions of 13 %, 16 %, 16 %, and 23 % to CHO, CHON, CHOS, and CHONS compounds, 317 

respectively. Tannins-like species are a series of polyphenolic compounds containing hydroxyls 318 

and carboxylic groups which have been widely reported in fogs, cloud water and aerosol samples, 319 

attributing to highly oxidized organic compounds such as OSs or nitrooxy-OSs produced from the 320 

nighttime chemistry between the biogenic VOCs with the NO3 (Altieri et al., 2009; Bianco et al., 321 

2018; Ning et al., 2019; Altieri et al., 2008; Shen et al., 2021). Carbohydrates-like species which 322 

contain monosaccharide, alditols, and anhydrosugars mainly consisted in CHONS compounds 323 

which also had a relative higher proportion of 33 % in summer than that of 29 % in winter (Sun et 324 

al., 2021). C10H16NO7-9S, as monoterpene nitrooxy-OSs, showing high relative intensities, were 325 

typical carbohydrates-like species detected in this study which represented biogenic secondary 326 

organic aerosols (SOA) (Ning et al., 2019; Surratt et al., 2008; Wang et al., 2020). Both the higher 327 

proportions of tannins-like and carbohydrates-like classes in summer indicated stronger biogenic 328 

SOA formation in this study. 329 

        Proteins-like classes mainly consisted in CHOS compounds with average proportions of 29 % 330 

and 38 % in summer and winter, respectively. Proteins contain peptide-like structures formed by 331 

dehydration with different kinds of amino acids and consist of short chains of amino acid residues 332 

(Bianco et al., 2018). These compounds are associated with photochemical oxidation processing 333 

in aerosols, thus resulting in the significant formation of OSs from biogenic or anthropogenic 334 

precursors in this study (Bigg and Leck, 2008).    335 

        Higher condensed aromatics were detected in winter with average proportions of 14 % in 336 

CHO compounds and 8 % in CHON compounds, respectively which were 2-2.5 times of those in 337 

summer. Condensed aromatics are important components of PAHs which were usually emitted 338 

from incomplete combustion of fossil fuels (Ma et al., 2020). The increase of the proportion of 339 

condensed aromatics in winter indicated the stronger influence of anthropogenic sources on 340 

HULIS formation. The unsaturated hydrocarbons and lipids-like species showed the lowest 341 
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molecular number percentage of less than 1 % in this study. Previous studies have shown that the 342 

lipids-like species were the main components of water insoluble organic compounds in aerosols 343 

and could be attributed to monocarboxylic acids (Ning et al., 2022; Wozniak et al., 2008). 344 

        In summary, both the summer and winter samples were mainly composed of compounds from 345 

biogenic origins (lignins-like, tannins-like, proteins-like, and carbohydrates-like species). More 346 

tannins-like and carbohydrates-like species were detected in summer including large amounts of 347 

highly oxidized OSs or nitrooxy-OSs, indicating biogenic SOA formation. More condensed 348 

aromatic structures in CHO and CHON compounds were detected in winter, owing to increasing 349 

anthropogenic emissions. It is noted that ESI ionization technology is more sensitive for the 350 

identification of polar compounds (Jiang et al., 2014; Lin et al., 2018).  351 

. Therefore, the low polar or nonpolar compounds, such as PAHs or their derivatives from fossil 352 

sources, were probably underestimated in this study. (Jiang et al., 2014; Lin et al., 2018).  353 

3.4 Molecular composition of HULIS  354 

3.4.1 Molecular characteristics of CHO compounds 355 

        The O/Cw and H/Cw ratios for the CHO compounds were 0.45-0.56 and 1.15-1.30 for the 356 

summer samples and 0.42-0.48 and 0.90-1.02 for the winter samples (Table S1 and S2).  The 357 

summer samples showed higher oxidation degree and saturation degree. We firstly plotted the Van 358 

Krevelen diagrams of the four molecular subgroups showing relative intensities for all the 12 359 

samples and similar distributions of the high-intensity compounds were found in the 6 summer 360 

samples and the 6 winter samples, respectively. Then we combined all the data in summer and 361 

winter, respectively. As shown in Fig. 5a and 5d, the CHO compounds in summer with high 362 

relative abundance were located at the area within 0.2≤ O/C ≤1.0 and 1.0≤ H/C ≤1.7, mainly 363 

including lignins-like species and tannins-like species which were closely related to biogenic 364 

emissions. On the contrary, the condensed aromatics showed high relative abundance in winter, 365 

suggesting obviously different sources of HULIS in summer and winter. The DBE values 366 

increased with the increasing of the C numbers (Fig. 5b and 5e). The high-intensity CHO 367 

compounds in HULIS had DBE values between 3-7 with C numbers from 10 to 20 for summer 368 

samples. In winter, the high-intensity CHO compounds had DBE values between 7-11 with C 369 

numbers from 5 to 15. As mentioned above, the aromatic (AI >0.5) proportion of CHO compounds 370 

significantly increased in winter, the higher DBE values in winter further indicated the consists of 371 

more highly unsaturated aromatic compounds which reflected the anthropogenic emissions.  372 
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        The CHO compounds were classified according to the number of oxygen atoms to evaluate 373 

the oxygen content. As shown in Fig. 5c and 5f, the high-intensity CHO compounds with 6-11 374 

oxygen atom were detected in summer, such as C15H24O6, C15H22O10, C18H26O8, and C18H26O9, 375 

these highly oxygenated organic molecules with high molecular weight have also been detected in 376 

laboratory α-pinene ozonolysis SOA (Pospisilova et al., 2020). We further classified the CHO 377 

compounds by different carbon atom numbers. As shown in Fig. S6, the C17-C22 compounds were 378 

the main components of the CHO compounds, accounting for more than 50 % of the total number 379 

of CHO molecular formulas in both summer and winter seasons. However, the total relative 380 

intensities of the CHO compounds in summer were significantly higher than those in winter, of 381 

which the C23-C26 and C27-C32 compounds were enriched in summer. These high molecular weight 382 

compounds were probably oligomers formed from various biogenic precursors, such as isoprene, 383 

sesquiterpene, and monoterpene (Daellenbach et al., 2019; Berndt et al., 2018). The high intensities 384 

of these compounds in summer further indicated the stronger biogenic SOA formation in summer 385 

compared with that in winter. 386 

        High-intensity CHO compounds with 4-9 oxygen atom were detected in winter (Fig. 5c) of 387 

which the C14H10O4 formula with a DBE value of 10 appeared the highest intensity, which was 388 

probable functional PAHs and have been reported in HULIS from coal combustion smoke particles 389 

(Song et al., 2019). As shown in Fig. S2 and S3, the C14H10O4 formula appeared high intensity in 390 

all the winter samples, providing the evidence of coal combustion emissions in winter. Some other 391 

high-intensity compounds in winter, such as C14H8O4 and C14H8O5 both with DBE values of 11, 392 

and C13H8O2, C13H8O5, and C13H8O6 with DBE values of 10, might refer to hydroxyl substitutions 393 

derived from anthracenedione and xanthone, respectively, which have been reported in secondary 394 

wood combustion products (Bruns et al., 2015).  C15H10O6, C15H8O6, and C16H12O7 which had 395 

DBE values of 11, 12, and 11, respectively, might be flavonoids which had flavone backbone, the 396 

key structure of plant pigments, widely existing in plants in nature and could be important sources 397 

of BrC chromophores in aged BBOA (Fleming et al., 2020; Lin et al., 2016; Huang et al., 2021). 398 

Phenolic substances derived from phenol, guaiacol, and syringol are also widely existed in BBOA, 399 

usually from the pyrolysis of lignins in wood, which also play an important role in aqueous-phase 400 

SOA formation (Boreddy et al., 2021). For instance, C13H10O3 and C13H10O5 are guaiacol 401 

derivatives, C15H16O8 are syringol derivatives and C18H14O6 and C18H14O7 are phenol derivatives 402 

(Sun et al., 2021). As shown in Fig. S7, the relative intensities of the CHO compounds mentioned 403 
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above produced from BB were found to have similar trends with the mass concentrations of 404 

levoglucosan, which were significantly higher in W1-W3 samples, corresponding to the BB period 405 

from 31 December 2017 to 1 January 2018, providing the evidence of BB influence on HULIS 406 

formation in winter.  407 

        It is noted that the top compounds C9H6O7 and C10H6O8 were detected both in the summer 408 

and winter samples (Fig. S2 and S3), which had DBE values of 7 and 8, respectively, containing 409 

abundant condensed aromatic ring structures with high O numbers. Their peaks were also detected 410 

in the HFO (heavy-fuel-oil)-fueled off-road engine samples reported before, suggesting the traffic 411 

emission contributions to HULIS (Cui et al., 2019). This supported the radiocarbon analysis results 412 

in this study and gave further information that the traffic emissions were important fossil sources 413 

in both summer and winter seasons, which was also found in previous research which reported the 414 

sources of HULIS based on the positive matrix factorization (PMF) model by Bao et al. (2022). 415 

3.4.2 Molecular characteristics of CHON compounds 416 

        The O/Cw of CHON compounds in summer and winter were 0.57-0.71 and 0.52-0.56, 417 

respectively, while the H/Cw were 1.20-1.32 and 1.00-1.11, respectively (Table S1 and S2). 418 

Compared with the summer CHON compounds, the winter CHON compounds presented 419 

significantly higher ion abundance (Fig. 6a and 6d). The most abundant CHON subgroups had 420 

DBE values of 4-7 and 3-10 in summer and winter, respectively (Fig. 6b and 6e). Similar with the 421 

CHO compounds, the higher DBE values of high-intensity CHON compounds in HULIS in winter 422 

indicated a high prevalence of double bonds or ring structures. According to the N and O number, 423 

the CHON compounds were classified into N1Ox (N1O1-N1O15) and N2Ox (N2O2-N2O14) subgroups 424 

in summer and N1Ox (N1O1-N1O12) and N2Ox (N2O2-N2O12) subgroups in winter, respectively (Fig. 425 

6c and 6f). NO8-12 and NO6-9 compounds were mostly enriched subgroups in summer and winter, 426 

respectively. More oxygen-enriched CHON compounds containing O number above 9 were 427 

detected in summer, implying the higher oxidation degree for summer samples. In addition, the 428 

N1Ox were both the major compounds represented average of 64 ± 4 % and 61 ± 6 % of the CHON 429 

molecular formulas in summer and winter, respectively, indicating the presence of more single 430 

nitro/amino substituents in CHON compounds in this study.  431 

        Among the CHON compounds, 95 ± 1 % and 86 ± 3 % CHON compounds had O/N values 432 

≥3 in summer and winter, respectively in this study, indicating these compounds contained large 433 

amounts of oxidized nitrogen functional groups such as nitro compounds (-NO2) and/or 434 
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organonitrates (-ONO2) and excess oxygen atoms indicated the existence of other oxygen-435 

containing functional groups (Laskin et al., 2009). The organonitrates formation from NO3 436 

oxidation of biogenic or anthropogenic VOCs can affect the interactions between anthropogenic 437 

and natural emissions (He et al., 2021; Shen et al., 2021; Wang et al., 2020). Organonitrates were 438 

found to be important species contributing to SOA formation in the polluted urban environment, 439 

which were enhanced under high NOx level (Zheng et al., 2021). The significant higher relative 440 

intensities of CHON compounds in winter indicated that the high NOx environment in winter 441 

promoted the formation of organonitrates and highlighted the importance of orgnonitrates for SOA 442 

control in polluted environment.  443 

        Furthermore, we found that the increase of the relative abundance of CHON compounds in 444 

winter was particularly significant in W1-W3 samples (Fig. S2 and S3), corresponding to the BB 445 

episode. Phenols produced from the pyrolysis of lignins can react with NO3 radicals in the 446 

atmosphere, producing nitrophenols, which have been shown to be important BrC chromophore 447 

in BBOA (Wang et al., 2017c; Lin et al., 2016; Cai et al., 2020). It was reported that the gas-phase 448 

reactions of NO3 radicals with phenolic substances took place at least 4 orders of magnitude faster 449 

than those with aromatic hydrocarbon and even faster in the aqueous phase (Lin et al., 2017). 450 

Among the top CHON compounds with high relative abundance in W1-W3 samples, such as 451 

C6H4N2O6 and C7H6N2O6 both with a DBE value of 6, were refer to nitrophenols containing one 452 

or two nitrogen-containing functional groups, which have been widely reported in aged BBOA, 453 

indicating the increasing of the CHON compounds relative intensity in W1-W3 samples were 454 

closely related to BB (Lin et al., 2017; Cai et al., 2020; Mohr et al., 2013; Kourtchev et al., 2016; 455 

Lin et al., 2016). Some other top CHON compounds in winter samples such as C9H4NO4 and 456 

C10H6NO4 with low O/C and H/C ratios most likely indicated the presence of condensed aromatic 457 

structures in the compounds. The C9H4NO4 compounds were most likely emitted from vehicle 458 

emissions which have previously been reported (Cui et al., 2019). 459 

        It is worth noting that some high-intensity CHON compounds with low O/C and H/C ratios 460 

were detected in summer samples in this study (Fig. 6a), which were closely related to aromatic 461 

compounds from anthropogenic emissions. The top compounds with molecular formulas of 462 

C8H5N2O2 and C19H11N2O4, which had O/N of 1 and 2, respectively, were both reduced N 463 

compounds referring to N-heterocyclic compounds. Previously studies have found that the N-464 

heterocyclic aromatic compounds can be formed through the aldehyde−ammonia reactions (De 465 
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Haan et al., 2018; Zhang et al., 2022a). This indicated the important role of reduced N species (e.g., 466 

ammonium) in the formation of anthropogenic SOA in summer. Our results were consistent with 467 

previous study conducted in Xi’an, China which also found formation of reduced N compounds in 468 

light-absorbing aerosols through ammonia involved reactions in summer (Zeng et al., 2021). 469 

3.4.3 Molecular characteristics of S-containing compounds (CHOS and CHONS compounds) 470 

        The O/Cw of CHOS compounds in summer and winter were 0.60-0.79 and 0.56-0.67, 471 

respectively, while the H/Cw were 1.50-1.54 and 1.53-1.72, respectively. The O/Cw of CHONS 472 

compounds in summer and winter were 0.82-1.01 and 0.76-0.94, respectively, while the H/Cw 473 

were 1.57-1.65 and 1.58-1.66, respectively (Table S1 and S2). As shown in Fig. 7a, 7d, 8a, and 8d, 474 

the high-intensity S-containing compounds in summer and winter were both located at the area 475 

where O/C >0.5 and H/C >1.5, respectively. In addition, the relative intensity of S-containing 476 

compounds increased with the O/C ratios, suggesting the S-containing compounds were highly 477 

oxidized. A small number of high-intensity S-containing compounds with O/C <1.0 and H/C <1.0 478 

were also found in winter in this study, which might be related to OSs and nitrooxy-OSs produced 479 

from the oxidation of aromatic hydrocarbon. The CHOS compounds presenting high relative 480 

abundance were rich in O6-9S and O5-7S groups in summer and winter, respectively, of which the 481 

DBE values were all below 4. The CHONS compounds were rich in O8-10S and O7-9S groups in 482 

summer and winter, respectively, of which the DBE values were all below 6 (Fig. 7b, 7e, 7c, 7f, 483 

8b, 8e, 8c, and 8f). Compared with those of the CHO and CHON compounds, the DBE values of 484 

S-containing compounds were significantly lower.  485 

        Among the S-containing compounds, more than 95 % of the CHOS, CHON1S, and CHON2S 486 

formulas had O/S ratios greater than 4, 7, and 10, respectively, implying these compounds may 487 

contain organic sulfate functional groups (-OSO3) or one or two organic nitrate groups (-ONO2) 488 

and these compounds were more likely OSs or nitrooxy-OSs, presenting lower DBE values and 489 

higher O/C and H/C ratios (Table S5 and S6) (O'Brien et al., 2014). The high-intensity CHONS 490 

compounds observed in this study, such as C10H16NO7-9S, C10H18NO8-9S, C10H18N2O11S, and 491 

C9H14NO8-9S could be nitrooxy-OSs derived from monoterpenes such as limonene and α-terpinene 492 

of which we found the formulas in summer contained more oxygen atoms, indicating the higher 493 

oxidation degree of these nitrooxy-OSs in summer (Figure S2 and S3) (Sun et al., 2021; 494 

Bruggemann et al., 2020; Wang et al., 2020; Wang et al., 2018d).  495 
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        The CHOS compounds with high intensity abundance, such as typical isoprene epoxydiols 496 

(IEPOX) derived OSs with molecular formulas of C5H8O7S and C5H10O7S were both detected in 497 

the summer and winter samples, of which the relative intensity of C5H8O7S were over 80 % in S1, 498 

S2, S5, and S6 samples, indicating the significant isoprene SOA formation in summer (Kourtchev 499 

et al., 2016; Kourtchev et al., 2013). The results were consistent with the PMF results reported by 500 

Bao et al. (2022). The monoterpenes derived OSs such as C8H14O6S, C8H14O8S, C10H18O8, 501 

C10H14O6, and C11H16O7 were detected in both summer and winter samples in this study, which 502 

could refer to monoterpene-OSs derived from α-pinene, α-terpinene, and limonene (Wang et al., 503 

2020). Moreover, OSs with high carbon numbers (C ≥14) such as C14H22O7S, C14H22O8S, 504 

C14H24O7S, C15H26O7S, C15H24O7S, C15H24O8S, and C16H28O7S were also observed in both 505 

summer and winter samples. Long-chain alkanes emitted from vehicle emissions might be 506 

precursors of these OSs which was consistent with the molecular structures of OSs collected in 507 

urban areas affected by traffic emissions such as Shanghai, Los Angeles, and Beijing (Wang et al., 508 

2019a; Tao et al., 2014; Wang et al., 2016b). The aromatic OSs such as naphthalene derived OSs 509 

with molecular formulas of C10H10O6S, C10H10O7S, and C10H12O7S, 2-methylnaphthalene derived 510 

OSs with molecular formulas of C9H12O6S, C11H12O7S, and C11H14O7S, and hydroxybenzene 511 

derived OSs with molecular formulas of C6H6O5S were also observed in this study (Qi et al., 2021; 512 

Riva et al., 2015; Blair et al., 2017). Figure S8 further displays the ternary plot of the relative 513 

intensities of OSs from biogenic precursors (e.g., isoprene and monoterpenes), long-chain alkanes 514 

and aromatic hydrocarbon. As shown in Fig. S8, the biogenic OSs and long-chain alkanes OSs 515 

formation were comparable in summer and winter, demonstrating both biogenic and anthropogenic 516 

emission contributions to HULIS. The aromatic OSs presented higher relative intensities in winter, 517 

further indicating the increasing anthropogenic emissions in winter. The presence of long-chain 518 

alkanes derived OSs in both summer and winter seasons provided another evidence that the traffic 519 

emission was one of the important fossil sources of HULIS in this study.  520 

3.5 Comparison with organic compounds in source and atmospheric aerosol samples 521 

         The O/C and H/C ratios of water soluble HULIS in this study were compared with those of 522 

water soluble organic compounds reported in source samples from BB, coal combustions, and 523 

vehicle emissions (Tang et al., 2020; Song et al., 2018; Cui et al., 2019; Song et al., 2019), cloud 524 

water samples (Bianco et al., 2018; Zhao et al., 2013), rainwater samples (Altieri et al., 2009) and , 525 

fog samples (Brege et al., 2018) (Fig. 9). In addition, the O/C and H/C ratios of organic fraction 526 

Formatted: Highlight



18 
 

in, as well as aerosol samples collected in Beijing (Jang et al., 2020; Wu et al., 2019a; Wang et al., 527 

2018a), Tianjin (Han et al., 2022), Baoding (Sun et al., 2021), Shanghai (Wang et al., 2017b), 528 

Guangzhou (Jiang et al., 2021), respectively in China, Mainz (Wang et al., 2018b), Cork city 529 

(Kourtchev et al., 2014), and Bologna (Brege et al., 2018), respectively in Europe, and Bakersfield 530 

(O'Brien et al., 2014)  and Virginia (Willoughby et al., 2014), respectively in the United States 531 

were also shown in (Fig. 9).  The O/C ratios were obviously higher than those detected in primary 532 

BB, coal combustion, and vehicle emission samples. The H/C ratios of the CHO and CHON 533 

compounds were comparable with the source samples, indicating the organics in HULIS 534 

experienced atmospheric secondary process and the mixed sources of HULIS in this study. The 535 

H/C ratios of the S-containing compounds were much higher than those of source samples which 536 

could be attributed to the significant organosulfates formation in the atmosphere.  537 

        The O/C ratios reported in this study were also higher than those reported in aerosol samples 538 

in urban area in China, further indicating the serious secondary pollution at Nanjing, China. 539 

Among the CHO and CHON compounds, we found that the highest H/C ratio values were observed 540 

in the southern city of Guangzhou, followed by those in Nanjing and Shanghai, and the lowest 541 

values were observed in the northern cities such as Beijing, Tianjin, and Baoding, indicating the 542 

higher unsaturation degree of the aerosol samples collected from the northern cities, which were 543 

also considered as the heavy industrial region in China. The higher H/C ratios of aerosol samples 544 

collected in Europe and the United States indicated the less anthropogenic emissions such as 545 

industrial emissions from those areas.  546 

4. Conclusions 547 

        This study focuses on the sources and molecular characteristics differences of water soluble 548 

HULIS in summertime and wintertime from 2017 to 2018 at a suburb site of the YRD, China based 549 

on the radiocarbon analysis and FT-ICR MS measurement with ESI ion source in negative mode. 550 

The carbon isotope analysis results highlight the important fossil source contributions to HULIS 551 

at the study site. A total of 14387 and 15731 peaks were detected in the summer and winter samples, 552 

respectively based on the FT-ICR MS results. The assigned molecular formulas were classified 553 

into CHO, CHON, CHOS, and CHONS subgroups according to their elemental compositions. The 554 

Van Krevelen diagrams showed that more tannins-like and carbohydrates-like species were 555 

detected in summer indicating biogenic SOA formation. Whereas more compounds containing 556 

condensed aromatic structures were detected in winter which were derived from anthropogenic 557 
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emissions. The total relative intensity of CHO compounds in summer were significantly higher 558 

than those in winter, containing lots of macromolecular oligomers derived from biogenic 559 

precursors. The high-intensity CHO compounds in winter were mainly aromatic compounds such 560 

as phenolic substances and flavonoids which were related to aged BBOA and oxidized PAHs most 561 

probably from fossil fuel combustion. On the contrary, the total relative intensity of CHON 562 

compounds significantly increased in winter, mainly composed of nitro compounds or 563 

organonitrates. The enhanced formation of nitrophenols in winter indicated the BB influence. The 564 

increasing organonitrates formation in winter highlighted the secondary N-containing compounds 565 

formation via NO3 radical-initiated oxidation processes. It is worth noting that the top CHON 566 

compounds in summer were referring to aromatic reduced N compounds produced from the 567 

aldehyde−ammonia reactions. The S-containing compounds were mainly composed of highly 568 

oxidized OSs. The monoterpenes derived OSs and long-chain alkanes derived OSs were widely 569 

observed in both summer and winter samples, while the aromatic OSs formation were found to be 570 

more significant in winter. The presence of long-chain alkanes derived OSs supported the 571 

radiocarbon results, indicating that the traffic emission was the important fossil sources at the study 572 

site. The presence of aromatic secondary N-containing and S-containing compounds provided 573 

evidence for the substantial contributions from anthropogenic SOA formation to fossil sources at 574 

the study site. These results further verified the work reported before by Bao et al. (2022) based 575 

on the PMF model which have found the significant anthropogenic SOA and fossil fuel 576 

combustion contributions to HULIS in urban area in China at molecular level. In addition, strong 577 

biogenic emission in summer and BB in winter were found in this study, highlighting the 578 

importance of different control policies for each season in the future. 579 
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 992 

Figure 1. Time series of non-fossil contributions to HULIS-C, the mass concentrations of HULIS-993 

C, Levoglucosan, NO3
-, SO4

2-, NH4
+, SO2, NO2, and PM2.5, relative humidity, and temperature 994 

during the study periods.   995 
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  996 

Figure 2. Pie graph of the number percentages of each elemental formula group for the 12 samples 997 

plotted in the box and the averaged number percentages of each elemental formula group for the 998 

summer samples (a) and winter samples (b).   999 
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Figure 3. Van Krevelen diagrams of the 12 samples. 1004 
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Figure 4. Contributions of seven categories in CHO (a), CHON (b), CHOS (c), and CHONS (d) 1008 

compounds.  1009 



38 
 

 1010 

     1011 

Figure 5. Van Krevelen diagram ((a) and (d)), plot of DBE values vs carbon atom numbers ((b) 1012 

and (e)), and the total relative intensity of each subgroup ((c) and (f)) for the CHO compounds in 1013 

summer and winter.1014 
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 1015 
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Figure 6. Van Krevelen diagram ((a) and (d)), plot of DBE values vs carbon atom numbers ((b) 1017 

and (e)), and the total relative intensity of each subgroup ((c) and (f)) for the CHON compounds 1018 

in summer and winter.  1019 



40 
 

 1020 

    1021 

Figure 7. Van Krevelen diagram ((a) and (d)) , plot of DBE values vs carbon atom numbers ((b) 1022 

and (e)), and the total relative intensity of each subgroup ((c) and (f)) for the CHOS compounds in 1023 

summer and winter.  1024 
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Figure 8. Van Krevelen diagram ((a) and (d)), plot of DBE values vs carbon atom numbers ((b) 1027 

and (e)), and the total relative intensity of each subgroup ((c) and (f)) for the CHONS compounds 1028 

in summer and winter. 1029 

1030 
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 1032 

Figure 9. Comparison of O/C and H/C ratios of water soluble organic compounds in different 1033 

atmospheric media in CHO (a), CHON (b), CHOS (c), and CHONS (d) compounds. 1034 


