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Abstract  9 

This study focuses on implications of differences between recent global emissions inventories for 10 
simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990-2019 11 
period. We use the ECLIPSE version 6 (ECLv6) and Community Emission Data System year 2021 12 
release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the resulting 13 
aerosol evolution to corresponding results derived with the first CEDS release, as well as to observed 14 
trends in regional and global aerosol optical depth (AOD). Using CEDS21 and ECLv6 results in 3% 15 
and 6% lower global mean AOD compared to CEDS in 2014, primarily driven by differences over China 16 
and India, where the area average AOD is up to 30% lower. These differences are considerably larger 17 
than the satellite-derived interannual variability in AOD. A negative linear trend over 2005-2017 in 18 
global AOD following changes in anthropogenic emissions is found with all three inventories but is 19 
markedly stronger with CEDS21 and ECLv6. Furthermore, we confirm that the model better captures 20 
the sign and strength of the observed AOD trend over China with CEDS21 and ECLv6 compared to 21 
using CEDS, while the opposite is the case for South Asia. We estimate a net, global mean aerosol-22 
induced RF in 2014 relative to 1990 of 0.08 W m-2 for CEDS21, and 0.12 W m-2 for ECLv6, compared 23 
to 0.03 W m-2 with CEDS. Using CEDS21, we also estimate the RF in 2019 relative to 1990 to be 0.10 24 
W m-2, reflecting the continuing decreasing trend in aerosol loads post 2014. Our results facilitate more 25 
rigorous comparison between existing and upcoming studies of climate and health effects of aerosols 26 
using different emission inventories.  27 

  28 

1 Introduction 29 

Human activities have led to a substantial increase in atmospheric abundances of aerosols relative to 30 
pre-industrial conditions. While increasing emissions of greenhouse gases is the dominant driver of 31 
recent global warming, aerosols play a key role in shaping regional and global climate, and for 32 
anthropogenic climate change, through their interactions with radiation and clouds. The sixth assessment 33 
report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) estimates that changes in 34 
atmospheric aerosols have contributed an effective radiative forcing (ERF) of –1.3 W m-2 over the 35 
industrial era (1750–2014), albeit with a wide uncertainty range of –2.0 to –0.6 W m-2 (Forster et al., 36 
2021).  37 

Over recent decades, anthropogenic emissions of aerosols and their precursor gases have changed 38 
rapidly, with substantial spatiotemporal heterogeneity, particularly in Asia. Following decades of rapid 39 
economic growth in China, the combustion of coal, other fossil fuels, and biofuels increased 40 
considerably, resulting in the region becoming the dominant source of air pollution emissions. However, 41 
since the adoption of the national action plans targeting particulate matter levels (i.e. Air Pollution 42 
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Prevention and Control in 2013 (SCPRC, 2013) and Winning the Blue Sky Defense Battle in 2018 43 
(SCPRC, 2018)), emissions of sulfur dioxide (SO2) and then nitrogen oxide (NOx) in China have 44 
declined rapidly (Klimont et al., 2017; Klimont et al., 2013; Tong et al., 2020; Zheng et al., 2018). 45 
Recent studies suggest that also black carbon (BC) emissions are declining (Kanaya et al., 2020; Zheng 46 
et al., 2018). A strong growth in emissions of SO2 and other pollutants has been seen in South Asia 47 
(Kurokawa & Ohara, 2020), resulting, according to studies, in India overtaking China as the dominant 48 
emitter of SO2 (Li et al., 2017). These contrasting trends have given rise to a distinct dipole pattern of 49 
increasing and declining aerosol optical depth over South and East Asia, respectively, visible in satellite 50 
data (Samset et al., 2019). Such rapid changes are likely to affect the climate of the regions, as aerosols 51 
have been shown to have a notable influence on regional temperature and precipitation, including 52 
extremes (e.g. Bollasina et al., 2011; Hegerl et al., 2019; Marvel et al., 2020; Samset et al., 2018; 53 
Sillmann et al., 2013), with different responses to scattering and absorbing aerosols. However, the exact 54 
nature and magnitude of such climate implications need to better quantified (Persad et al., 2022).  55 

Robust quantification of the impacts of aerosols requires reliable and consistent estimates of 56 
anthropogenic emissions. However, currently there exist substantial differences, in both magnitudes and 57 
trends, between available emission inventories (e.g. Crippa et al., 2018; Elguindi et al., 2020; Smith et 58 
al., 2022). Emission inventories are quantifications of contributions from various industrial processes or 59 
other anthropogenic activities to the rate of emissions of various compounds to the atmosphere. They 60 
generally combine bottom-up information such as reported economic activities with direct observations 61 
and process modelling and are used extensively in essentially all efforts to quantify climate and air 62 
quality implications of human activities. While the overall scientific uncertainty on aerosol-induced 63 
global mean radiative forcing (RF) is larger than the estimated regional changes, the uncertainty also 64 
varies over the recent decades depending on the overall level of emissions and their location relative to 65 
cloud decks and other climate features (Bellouin et al., 2020; Regayre et al., 2014; Samset et al., 2019; 66 
Szopa et al., 2021). Hence, understanding both the inherent inventory differences and the implications 67 
of these on downstream calculations and modelled quantities such as aerosol optical depths and radiative 68 
forcing is crucial. 69 

As an example, a critical issue that has recently been highlighted is a notable underestimation of the 70 
decline in Chinese emissions of SO2 and NOx, and overestimation of carbonaceous aerosol emissions 71 
in Asia and Africa, in the Community Emission Data System (CEDS) developed for the sixth cycle of 72 
the Coupled Model Intercomparison Project (CMIP6) (Szopa et al., 2021). Recent work has shown that 73 
results from the CMIP6 experiments fail to fully capture the observed recent trends in aerosol optical 74 
depth (AOD) in Asia (Cherian & Quaas, 2020; Ramachandran et al., 2022; Su et al., 2021; Wang et al., 75 
2021), with the discrepancy largely attributed to the misrepresentation of emissions in the region in last 76 
decade of the historical CMIP6 period. Other studies demonstrate that the poor representation of 77 
observed aerosol trends can propagate to further uncertainties in attribution of aerosol-induced impacts, 78 
such as the East Asian monsoon (Wang et al., 2022) and health impacts (Cheng et al., 2021). In addition 79 
to CMIP6, the CEDS emissions have also been used in individual model studies of historical aerosol 80 
evolution, radiative forcing, sector attribution, and air quality assessments (e.g. Bauer et al., 2020; 81 
Chowdhury et al., 2022; Lund et al., 2018; Lund et al., 2020; Paulot et al., 2018). Moreover, uncertainties 82 
and biases in the baseline historical inventory may influence scenario-based assessments of near-term 83 
future regional climate risk.  84 

Since the initial parts of the CMIP6 exercise, the CEDS inventory has undergone several revisions. The 85 
most recent version from 2021, covering the period up to 2019, exhibit several key differences compared 86 
to the initial release – for some species all the way back to the early 2000s. More specifically, emissions 87 
of BC, OC and NOx are all substantially lower in the update, in global totals and, particularly, in Asia, 88 
and the decreasing trend in Chinese SO2 is more pronounced. However, the implications of these 89 
differences in input data on simulated anthropogenic aerosol distributions, globally and regionally, and 90 
the resulting radiative forcing, have not been fully quantified and cannot be directly extrapolated. 91 
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Furthermore, as the update to CEDS came too late for uptake in IPCC AR6, it is pertinent to ask if the 92 
influence of these emission inventory differences affected the assessed evolution of atmospheric aerosol 93 
trends and subsequent climate implications.  94 

Here, we present an investigation of the implications of known differences in recent emission inventories 95 
on quantified aerosol burdens, optical depth, and radiative forcing, over the period 1990-2019. Using 96 
the chemical transport model OsloCTM3, we perform simulations with the CEDS21 emission inventory 97 
and compare to previously published results derived with the original CEDS release (Lund et al., 2018; 98 
Lund et al., 2019). We also perform simulations with a third recent global inventory, the ECLIPSE 99 
version 6b, where emissions are similar in evolution but generally even lower than in CEDS21, 100 
especially in the most recent period. We explore the differences in simulated evolution of global and 101 
regional anthropogenic aerosol loads between experiments using the different inventories, comparing 102 
optical depth to remote sensing observations, and quantify the resulting radiative forcing. Our aims are 103 
to document the model ability to represent recent observed aerosol trends and to quantify the 104 
implications of differences in inventories available for the community on downstream diagnosed 105 
quantities critical for assessing the air quality and climate implications of anthropogenic aerosol.  106 

 107 

2 Methods 108 

Atmospheric concentrations of aerosols are simulated with the global chemical transport model 109 
OsloCTM3 (Lund et al., 2018; Søvde et al., 2012). The model is driven by meteorological data from the 110 
European Center for Medium Range Weather Forecast (ECMWF) OpenIFS model updated every 3 111 
hours and is run in a 2.25°x2.25° horizontal resolution, with 60 vertical levels (the uppermost centered 112 
at 0.1 hPa). OsloCTM3 treats tropospheric and stratospheric chemistry, as well as modules for 113 
carbonaceous, secondary organic, sulfate, ammonium-nitrate, sea salt and dust aerosols. Aerosols are 114 
scavenged by convective and large-scale rain (ice and liquid phase), with rainfall calculated from 115 
ECMWF data for convective activity, cloud fraction, and rainfall. Dry deposition applies prescribed 116 
deposition velocities for different land cover types. For further details we refer to Lund et al. (2018) and 117 
Søvde et al. (2012). 118 

The aerosol optical depth (AOD) and instantaneous top-of-atmosphere radiative forcing due to aerosol-119 
radiation interactions (RFari) is calculated offline using a multi-stream model with the discrete ordinate 120 
method DISORT (Myhre et al., 2013; Stamnes et al., 1988). The same radiative transfer model is also 121 
used to estimate the radiative forcing of aerosol-cloud interactions (RFaci) (earlier denoted the cloud 122 
albedo effect or Twomey effect). To account for the change in cloud droplet concentration resulting 123 
from anthropogenic aerosols, which alter the cloud effective radius and thus the optical properties of the 124 
clouds, the approach from Quaas et al. (2006), is used. Briefly, this approach is based on a statistical 125 
relationship between cloud droplet number concentrations and fine-mode AOD derived from satellite 126 
data from the MODerate Resolution Imaging Spectroradiometer (MODIS).  127 

Modeled AOD is compared with retrievals from the MODIS instrument on the Aqua satellite, which is 128 
available for the period 2003-2020 (MOD08, 2018). We use the combined Dark Target and Deep Blue 129 
AOD at 550nm, release MOD08_M3_V6.1, downloaded from the NASA Giovanni interface. MODIS-130 
Terra AOD is also available for the same period and is, for most years, around 10% lower than MODIS-131 
Aqua on global average. However, based on previous evaluation of the MODIS AOD and a reported 132 
drift in the Terra data (Levy et al., 2010; Sherman et al., 2017), we choose to use MODIS-Aqua for the 133 
model comparison in the current study. Temporal trends in simulated and observed AOD are estimated 134 
on global-mean and grid point basis by linear least square fitting and defined as statistically significant 135 
(from no trend) when the linear Pearsons correlation coefficient is significant at the 0.05 level. To 136 
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minimize the influence of individual years, e.g. with higher biomass burning influence, we calculate a 137 
set of trends with one and one year removed from the sample and then take the average of this set of 138 
coefficients. Interannual variability is estimated on a grid point basis as the standard deviation of the 139 
residual when subtracting a 10-year boxcar average (with mirrored data around the end points). We also 140 
compare modeled AOD with ground-based measurements from the AERONET (AErosol RObotic 141 
NETwork) (Holben et al., 1998) Version 3 Level 2.0 retrievals at 500 nm. The comparison uses all 142 
available data from all months and stations for a given year, with modeled AOD linearly interpolated to 143 
the latitude and longitude of each station. 144 
 145 
Five different time series of simulated aerosol distributions covering the 1990-2019 period are included 146 
in this analysis, using three different emission inventories and either fixed or actual (i.e. corresponding 147 
to the emission year) meteorology. The fixed meteorology runs forms the basis for investigating 148 
differences in simulated anthropogenic aerosol and corresponding RF, while the latter is used in the 149 
comparison with observed AOD. Table 1 provides a summary of the experiments.  150 
 151 
Two sets of fixed meteorology simulations are performed using anthropogenic emissions from CEDS 152 
version 2021 (O'Rourke et al., 2021) (hereafter “CEDS21”) and ECLIPSEv6b baseline (hereafter 153 
“ECLv6”) inventories. The ECLv6 emissions are developed with the Greenhouse Gas - Air Pollution 154 
Interactions and Synergies (GAINS) model (Amann et al., 2011). Version 6b (IIASA, 2022) consists of 155 
gridded aerosol and reactive gas emissions in 5-year intervals over the period 1990-2015, as well as 156 
emissions for 2008, 2009, 2014 and 2016. The Community Emission Data System (CEDS) inventory 157 
provides a gridded inventory of anthropogenic greenhouse gas, reactive gases and aerosols since 1750 158 
(Hoesly et al., 2018). In the first release, the most recent year was 2014, while the 2021 release covers 159 
the period until 2019. Simulations are performed for 1990, 1995, 2000, 2005, 2010, 2014 and 2016 160 
emissions, as well as years 2018 and 2019 for CEDS21. Results from the current study are compared 161 
with previously published results from simulations over 1990 to 2014 performed with the first release 162 
of the CEDS emissions (hereafter “CEDS”) (Lund et al., 2018) and three of the SSP scenarios (SSP1-163 
1.9, SSP2-4.5, and SSP3-7.0) from 2015 to 2100 (here we use data for 2020 and 2030) (Lund et al., 164 
2019). These three scenarios broadly span the range of aerosol and precursor emissions projected in the 165 
SSPs. Keeping in line with the experimental design in Lund et al. (2018), we use year 2010 166 
meteorological data and each simulation is run for one year, with 6 months spin-up. All three time series 167 
uses biomass burning emissions from van Marle et al. (2017) from 1990 to 2014 and Global Fire 168 
Emissions Database version 4 (GFED4, Randerson et al. (2017)) thereafter. We note that van Marle et 169 
al. (2017) emissions are also based on GFED. Other natural emissions (dust and sea salt aerosols, 170 
precursor gases from the ocean, soil, and vegetation) are fixed at the year 2010 levels.  171 
 172 
For the comparison with MODIS data, we use a timeseries of OsloCTM3 simulations with CEDS 173 
emissions and actual meteorology covering the period 1990-2017 (the last three years uses Shared 174 
Socioeconomic Pathways (SSP) 2-4.5 emissions (Fricko et al., 2017) linearly interpolated between 2015 175 
and 2020) (hereafter “CEDSmet”). These simulations were originally performed for the phase III of the 176 
Aerocom project (e.g. Gliß et al., 2021). For the present study, we also produce an updated version 177 
covering the 2001-2017 period using CEDS version 2021 emissions (hereafter “CEDS21met”). While 178 
differences in emissions exist also in the years prior, we restrict the use of resources by only going back 179 
to the start of the MODIS record, covering the period when the differences are most pronounced. In 180 
these simulations, the other natural aerosol emissions also vary following the meteorological year.  181 
 182 
 183 
3 Results and discussion 184 
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Here we first document the differences in simulated global and regional aerosol abundances and trends 185 
arising from the spread between emission inventories. We then investigate how AOD diagnosed from 186 
experiments using old and new emission estimates compare with observed AOD. Finally, we present 187 
updated estimates of radiative forcing relative to 1990.  188 

 189 

3.1 Influence of emission inventory differences on simulated aerosol distributions 190 

Figure 1 shows global, total emissions of SO2, BC, OC, NOx, ammonium (NH3) and non-methane 191 
volatile organic compound (NMVOC) over the 1990-2019 period in the inventories used here. The 192 
differences are particularly pronounced after 2005. Both ECLv6 and CEDS21 show substantially lower 193 
emissions of most species during this period, relative to CEDS. In 2014, the largest relative differences 194 
between CEDS21 and CEDS are in BC and OC emissions, where CEDS21 is 20-30% lower. For SO2, 195 
NOx, and NMVOC, the corresponding number is approximately 10%.  ECLv6 is generally lower than 196 
both CEDS inventories, particularly for SO2 and NMVOC, by about 30%. While not used in this study, 197 
we also note that similar differences have also been found between CEDS and two other recent global 198 
inventories, the Emissions Database for Global Atmospheric Research (EDGAR) version 5 (Crippa et 199 
al., 2020) and Hemispheric Transport of Air Pollution (HTAP) version 3 (Crippa et al., 2022).  200 
 201 
Important geographical distinctions underlie these global differences, as demonstrated in Fig. S1 for 202 
selected main source regions. While a comprehensive investigation of causes for the inventory 203 
differences is beyond the scope of the present study, and can be difficult due to the number of underlying 204 
assumptions, input data, and revisions, we discuss some key features here. All three inventories rely on 205 
the energy statistical data from International Energy Agency (IEA), however, there are differences in 206 
assumptions about emission rates, implementation of policies, and data on non-energy sources. The 207 
ECLv6 estimates include explicit representation of air quality policies, and their implementation 208 
efficiency, drawing on national information and, if not available, extrapolation of trends considering 209 
capacity replacement (e.g., new vehicles, newly build power plant capacity) and emission performance 210 
of these new technologies. The result is, among other things, estimated faster decline of SO2 and NOx 211 
emissions from power and industry (in turn in total emissions) in China over recent years than in CEDS 212 
(Fig. S1a,d). This decline has been also confirmed in Zheng et al. (2018). CEDS21 made a correction to 213 
CEDS, mirroring the estimates in the GAINS model for ECLv6. In South Asia, dominated by India, 214 
ECLv6 and CEDS21 show a similar difference to CEDS emissions of SO2 and NOx, representing use 215 
of updated emission characteristics for coal power plants. India has had a slower economic growth and 216 
less heavy industry than China. While some policies aimed at controlling NOx from transport has been 217 
introduced, the limited polices in the power and industry sector have resulted in increasing Indian SO2 218 
and NOx emissions, but the growth has been slower than that in China in the 2000’s. For BC and OC 219 
(Fig. S1b,c), the largest inventory differences are found in East Asia, mainly China, owing to differences 220 
in estimates of emissions from coal use in industry, with ECLv6 applying the lowest emission factors, 221 
and from open burning of municipal waste. For the latter category, CEDS has originally relied on the 222 
rather high estimates of waste generation and share burned (using Wiedinmyer et al. (2014)), while 223 
ECLv6 used independently estimated generation rates (Gómez-Sanabria et al., 2022). The declining BC 224 
trends in East Asia, as shown in ECLv6 and CEDS21, have been supported by measurements (e.g. 225 
Kanaya et al., 2020). Estimates for some species, e.g., NH3, are often based on very similar sources of 226 
information as, apart from in Europe and North America, these have received less attention from policy 227 
making and measurement (emissions) community. Consequently, estimates are similar across all 228 
inventories at the aggregated regional level (Fig. S1e). Aside from East and South Asia, the overall 229 
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temporal evolution is generally similar in the main source regions across inventories, although 230 
magnitudes can differ. 231 
 232 

3.1.1 Global and regional aerosol burdens in 2014  233 

The differences between inventories are substantial enough to influence simulated aerosol burdens (i.e. 234 
column integrated aerosol mass, in mg m-2) at the global mean level. For 2014, i.e. the most recent 235 
common year for all three emission inventories, we estimate 4% and 8% lower global mean burdens of 236 
total BC when using CEDS21 and ECLv6 (6% and 11% if considering only aerosols only from fossil 237 
fuel and biofuel combustion), respectively, compared to CEDS (Table S1). For primary organic aerosol 238 
(POA), the corresponding numbers are 11% and 13% (30% and 40%), while global mean total sulfate 239 
burden is 8% and 15% lower with CEDS21 and ECLv6. Smaller reductions in the order of 3-4% are 240 
also seen in the global mean SOA burden. Biogenic VOC emissions, the main source of SOA, are the 241 
same in all simulations. However, the SOA abundance is affected by the lower emissions of 242 
anthropogenic VOCs in both CEDS21 and ECLv6 than in CEDS (Fig.1), as well as by lower amount of 243 
POA, which serve as substrates for SOA formation.  244 

For all these aerosol species, the burden differences are consistently largest over East Asia, followed by 245 
South Asia, and larger for ECLv6 than for CEDS21. Figure 2 shows absolute regional mean burden 246 
(with corresponding relative changes given in Fig.S3). Regions considered are East Asia (EAS), South 247 
Asia (SAS), Sub-Saharan Africa (SAF), North America (NAM), South America (SAM), North Africa 248 
and the Middle East (NAF), Europe (EUR), Southeast Asia (SEA), and Russia (RBU) (see also Fig. S2). 249 
For EAS, the new simulated burden of BC and POA is 30-40% lower, depending on inventory, 250 
compared to simulations using CEDS, following 50-60% lower BC and OC emissions. The 40-50% 251 
lower SO2 emissions translate to 20-30% lower regional sulfate burden in our simulations. A similar 252 
relationship between emission and burden differences are simulated for SAS, where the burdens of BC, 253 
POA, and sulfate are 6%, 27%, and 30% lower, respectively, in experiments with ECLv6 than with 254 
CEDS. Lower burdens of sulfate and POA are simulated for all other regions as well, and in particular 255 
over NAF with ECLv6. In some regions, like SAM, NAF, and SAF, the new inventories estimate 20-256 
30% lower BC emissions than CEDS, however, due to the lower absolute magnitudes, the simulated 257 
burden differences are small compared to other aerosols. We note that regional burdens can be 258 
influenced by long-range transport and thus affected by inventory differences outside the main source 259 
region. We also note that we find differences in surface concentrations between simulations that are 260 
broadly similar to the burden changes. While beyond the scope of the present study, this may have 261 
implications for assessments of air pollution related health impacts. 262 

The only species that is globally more abundant in simulations with the two new inventories is nitrate. 263 
There is considerable regional heterogeneity, where the burden is lower compared to the CEDS 264 
experiments in South Asia and on the US east coast but higher in the US Midwest, parts of Africa and 265 
South America, and, especially, over East Asia (Fig.2, Fig.S3). While absolute differences are small in 266 
many regions compared to other species, the net effect is nevertheless a 15 and 24% higher global mean 267 
nitrate burden with CEDS21 and ECLv6, respectively, compared to using CEDS emissions. Changes in 268 
the atmospheric nitrate distribution result from a complex interplay between differences in emissions of 269 
NOx, NH3, and SO2. Studies have also shown that nitrate formation can be influenced by background 270 
concentrations of VOCs (e.g. Womack et al., 2019) We find the largest absolute difference in nitrate in  271 
EAS and SAS, however, of opposite sign. In EAS, emissions of SO2 and NOx are both lower in ECLv6 272 
and CEDS21 than in CEDS, whereas NH3 emissions are higher (Fig.1, Fig.S1). This results in lower 273 
chemical competition for available sulfate and, in turn, enhanced formation of nitrate aerosol. In SAS, 274 
SO2, NOx, and NH3 are all lower in the two new inventories than in CEDS, as is the nitrate burden. 275 
Differences in concentrations of VOCs in the simulations with different inventories is a further 276 
complicating factor. Studies have suggested that nitrate formation can be more sensitive to changes in 277 
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VOCs than NOx, however, this is highly site specific (Yang et al., 2022). Further delineating the role of 278 
individual factors on nitrate differences would require simulations beyond what is available for the 279 
current study. The potential for an increasing relative role of nitrate for air pollution and climate in a 280 
world with concurrent declines in SO2 and NOx emissions but little in NH3 has also been discussed in 281 
previous studies (e.g. Bauer et al., 2007; Bellouin et al., 2011; Zhai et al., 2021). However, while more 282 
studies have focused on local air pollution impacts of nitrate, and associated mitigation strategies, nitrate 283 
is still missing from many global climate models. Moreover, when included, the model diversity in 284 
simulated distributions is large (Bian et al., 2017). Our results suggest that uncertainties in emissions 285 
and choice of inventory can contribute to spread in simulated nitrate aerosols and confound the 286 
comparison of conclusions across modeling studies. Moreover, the complexity of the nitrate response 287 
demonstrates that the impact of inventory differences on simulated aerosols cannot be understood from 288 
scaling with the changes in individual emissions but requires explicit modeling.  289 

To place the range in estimates between simulations with different inventories into more context, we 290 
compare the differences in simulated aerosol burdens in 2014 to the difference in burdens over the 5-291 
year period from 2014 to 2019 using CEDS21. Both globally and regionally, the spread in burdens 292 
between simulations with different inventories and the 2014-2019 burden changes are of the same order 293 
of magnitude. In other words, at least in this case, the changes resulting from inventory differences are 294 
as large as those due to the recent overall change in anthropogenic emissions.  295 

Combined, these burden differences translate to a 3% and 6% lower global, annual mean AOD with 296 
CEDS21 and ECLv6, respectively, compared to CEDS in 2014 in our simulations. As expected, the 297 
differences are most pronounced over China and India (Fig. S4), where we estimate 20% and 30% lower 298 
regional mean AOD in 2014 using the two new emission inventories, respectively, compared to using 299 
CEDS. For context, Fig. S4 also shows the interannual variability in AOD from MODIS-Aqua (see Sect. 300 
2): In these regions the differences between inventories are markedly larger than what can be expected 301 
from natural year-to-year variations.   302 

 303 

3.1.2 Global and regional AOD 1990-2019  304 

Next, we take a closer look at differences in the simulated temporal trend, focusing on total AOD. Figure 305 
3 shows the global and regional mean AOD from 1990 to 2019. Also shown is the linear trend from 306 
2005 to 2017 for each of the timeseries. This period overlaps with the availability of remotely sensed 307 
AOD discussed in Sect. 3.1.3, as well as the period with the most pronounced inventory differences. 308 
However, as there is a certain extent of inventory differences prior to 2005, we also provide 309 
corresponding linear trends over the full 1990-2017 period in Table S2.  310 

The simulated AOD is consistently lower when using CEDS21 and ECLv6 emissions compared to 311 
CEDS over the full period studied, with increasing divergence over time, especially after 2005. We 312 
estimate a significant (at the 0.05 level - see Sect. 2) negative linear trend in global mean AOD of -0.005 313 
and -0.006 per decade in simulations with CEDS21 and ECLv6, respectively. This trend strengthens 314 
when extended to 2019 based on simulations with CEDS21. A negative global trend is also found when 315 
using the first CEDS release, however, it is smaller and not significant over the period 2005-2014. 316 
Extending the timeseries to 2017 by assuming that emissions follow SSP2-4.5 after 2014 (see Sect. 2), 317 
as in Fig. 3, the negative trends strengthens and switches to significant as per our definition, but it 318 
remains weaker than for the other two inventories. Considering the full period, we estimate a significant 319 
negative trend in simulations with CEDS21 and ECLv6, but no trend when using CEDS (Table S2). 320 
This long-term decline in total AOD is primarily driven by the decline in sulfate AOD, following the 321 
emission decline after introduction of air quality policies, first in the US and Europe, then in China, and 322 
the collapse of the Soviet Union (e.g. Aas et al., 2019). Over the full period, we simulate increasing 323 
trends in BC and nitrate AOD, significant at the 0.05 level, with all three inventories (not shown), 324 
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however, their contributions to total AOD are much smaller than that of sulfate. Robust evidence of a 325 
declining influence by aerosols on climate since 1990 was recently found from observables (Quaas et 326 
al., 2022). Our model simulations capture this overall trend, and the findings reinforce the role of 327 
changes in anthropogenic emission, particularly since 2005. Furthermore, we suggest that if using the 328 
original CEDS emissions, models may have failed to capture this trend. We note that biomass burning 329 
emissions also change over time in our simulations, but we do not find any significant trend in biomass 330 
aerosols (BC and POA) AOD on the global mean scale over this period. We do note that years of high 331 
biomass burning activity, such as 2019 where GFED4 emissions are 25% higher than in 2018, can lead 332 
to marked jumps in simulated AOD. We have limited possible influence of such years on the linear trend 333 
calculated (see Sect. 2).  334 

Regionally, we simulate significant declining trends in AOD over 2005-2017 for EUR and NAM, with 335 
this trend extending back to 1990 (Table S2), as expected. This is also consistent with surface 336 
observations both AOD and atmospheric sulfur and in agreement with other models (Mortier et al., 337 
2020; Aas et al., 2019), and we capture the decline regardless of which emission inventory is used. In 338 
both regions, and across simulations with all three scenarios, we find a decline in the AOD of BC, OA, 339 
and sulfate, but an increasing trend in nitrate AOD. Over RBU, we also simulate a decline a significant 340 
decline in area average AOD over the full 1990-2017 period, but a flatter evolution when considering 341 
only 2005-2017. However, the results are similar with all three scenarios also here. In parts of the RBU 342 
region, GFED4 shows an increase in emissions over the latter period, resulting in a positive trend in the 343 
AOD of biomass aerosols from 2005. On the African continent, we simulate negative, albeit weak, trend 344 
in AOD over the 2005-2017 period for SAF. In contrast, the trend over the full period is positive. 345 
Anthropogenic emissions in SAF have increased (Fig. S1), although less steeply than in Asia, and we 346 
find significant increases in the AOD of all the anthropogenic species with all inventories from 1990 to 347 
2017. However, from 2005 onwards, there has been a decreasing trend in GFED4 emissions, following 348 
a reduction in the burnt area of savannas (Wu et al., 2021). Biomass burning aerosols contribute 349 
relatively more to total AOD here than in the northern hemisphere regions and hence impose a stronger 350 
effect on the area average trend. A similar pattern is seen for SAM, while for SEA, another biomass 351 
burning influenced region, we find less clear trends. While diagnosed trends in total AOD in these 352 
regions are mostly of similar sign across simulations with the three inventories, we find that the trend in 353 
sulfate AOD diverges between model runs using CEDS or CEDS21 (positive trend) and ECLv6 354 
(negative trend) in SAF and NAF, pointing to a need to better understand the drivers of emission changes 355 
in these regions and homogenize between inventories. As expected, the key differences between 356 
simulations with different inventories arise over Asia. Simulations with both CEDS21 and ECLv6 show 357 
a significant decreasing trend in total AOD over EAS between 2005 and 2017. While a decline is found 358 
using CEDS, it is much weaker and not significant. Moreover, differences between inventories affect 359 
the sign of the simulated trend when considering the full period, owing primarily to the spread in 360 
estimated sulfate AOD. For SAS, we simulate a consistent positive trend, but ranging from 0.01 per 361 
decade with ECLv6 to 0.03 per decade with CEDS, with increasing divergence in AOD over time. 362 
Similar magnitude differences between the sets of experiments exist for the AOD of all anthropogenic 363 
aerosol in this region.    364 

 365 

3.1.3 Comparison with observed AOD  366 

To explore whether the model captures observed global and regional trends better with the CEDS21 367 
emissions than with CEDS, we compare simulated AOD to MODIS-Aqua retrievals and ground-based 368 
AERONET measurement. For this evaluation, we also use simulations where the model is driven by 369 
meteorology for the respective years, referred to as CEDSmet and CEDS21met (see Sect. 2), for more 370 
realistic comparison with the observations. Using both these, we also estimate negative linear trends in 371 
simulated global mean AOD from 2005 to 2017, strengthening from -0.001 per decade in CEDSmet to 372 
-0.003 per decade in CEDS21met. These are, however, weaker than the trends derived from the fixed 373 
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meteorology simulations in Sect. 3.1.2 (Fig. 3) and not significant at the 0.05 level, demonstrating the 374 
notable influence of variability in meteorology and natural aerosols, masking trends due to changes in 375 
anthropogenic emissions. This influence is particularly visible for the area averaged AOD for SAF and 376 
NAF, where the diagnosed trend is positive but non-significant in these simulations, in contrast to the 377 
negative trend found in simulations with fixed meteorology above. The negative trend over SAM is also 378 
not significant at the at the 0.05 level in these runs. For other focus regions, results are similar between 379 
fixed and actual meteorology runs and significant trends arise over the natural variability. 380 

Figure 4a shows the annual, global mean simulated AOD from 1990 to 2017 and the MODIS-Aqua 381 
AOD from 2003 to 2019. Dashed lines show the linear 2005-2017 trends. Figures 4b-d show the spatially 382 
explicit trends. We first note that the magnitude of simulated global mean AOD is lower than that 383 
derived from MODIS-Aqua, by around 20%. However, the overall geographical pattern of the observed 384 
AOD is captured by the model (Fig. S5). Furthermore, the AOD simulated by the OsloCTM3 is within, 385 
although in the lower range, of the spread in AOD between the CMIP and AeroCom models (Vogel et 386 
al., 2022). As also shown by Vogel et al. (2022), there can be a notable spread in AOD derived from 387 
different satellite products. They found a 13% standard deviation range in global mean AOD between 388 
eight satellite products, with MODIS retrievals in the upper end. Although again the lower range, the 389 
OsloCTM3 AOD falls within the full range of the satellite-derived annual mean AOD. Overall, this 390 
suggests a reasonable OsloCTM3 performance in terms of magnitude and distribution.   391 

In terms of temporal evolution, MODIS-Aqua data indicates a very weak positive linear trend of 0.001 392 
per decade in global mean AOD over the 2005-2017 period (0.004 per decade when extending the data 393 
to 2019). We do not, however, find this trend to be significant. MODIS data is influenced by substantial 394 
year-to-year variability, in particular after 2010, which was also pointed out by Vogel et al. (2022). 395 
Regions of significant positive observed AOD trend include parts of the ocean in the southern 396 
hemisphere (Fig. 4b). Here, sea salt aerosols could be causing the increase. However, Quaas et al. (2022) 397 
recently showed that this positive trend is not clear in Multi-angle Imaging SpectroRadiometer (MISR) 398 
data. While we are focused on the anthropogenically-influenced regions in the present analysis, we 399 
briefly note that the magnitude of the trends over the southern hemisphere oceanic regions is also not 400 
captured by the model (Fig. 4c-d). We also simulate weaker trends in the boreal regions of North 401 
America and Russia, contributing to the model-observation difference.  402 

Over the main anthropogenic emission sources regions, there are significant observed declines in AOD 403 
over East Asia, US, and Europe (Fig. 4b). These trends have been confirmed by both ground based and 404 
remote sensing observations of AOD and other variables (Gui et al., 2021; Moseid et al., 2020; Paulot 405 
et al., 2018; Quaas et al., 2022). For NAM and EUR, we calculate an area average negative observed 406 
trend of -0.006 and -0.009, respectively, from MODIS-Aqua. This is of the same sign but weaker than 407 
the trend simulated with both emission inventories. For the latter, this contrast findings by Mortier et al. 408 
(2020), where models in general were found to underestimate the observed decrease in AOD seen in 409 
surface observations. Over EAS, where the influence of inventory differences is most pronounced, a 410 
significant negative observed trend of -0.044 per decade is calculated. This is in very close agreement 411 
with the -0.40 per decade AOD trend simulated with the CEDS21, while simulations with CEDS do not 412 
show a significant trend. Hence, the model is clearly able to better represent observed trends with the 413 
updated inventory. This is further confirmed in Fig. 5, where we show five-year average deviations from 414 
the period 2003-2017 in both MODIS-Aqua and simulated AOD. Using CEDS21 results in marked 415 
improvements compared to observed AOD trends over China, both for the first and most recent full 5-416 
year periods. However, the opposite tendency is found for AOD over SAS. Here observations suggest a 417 
significant positive trend of 0.04 per decade. The diagnosed trends are also positive in simulations using 418 
both inventories, but somewhat weaker, especially when switching from CEDS to CEDS21 (and even 419 
more so when using EClv6 emissions - Fig.3). Figure 5 suggests that this discrepancy arises in the more 420 
recent decade. Furthermore, simulated AOD, and underlying emissions, suggest a leveling off in recent 421 
years, which is not seen from MODIS-Aqua. Whether this is due to inaccurate representation of the 422 
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evolution of anthropogenic emissions in the inventories or could be influenced by poor model 423 
representation of other aerosols such as dust from agricultural soils and urban areas (e.g. construction, 424 
non-exhaust transport emissions), is however not clear from this analysis. We note that the model 425 
underestimates the magnitude of AOD observed by MODIS-Aqua in both EAS and SAS. To the extent 426 
that the MODIS is accurate, this could support the latter. This type of dust is suggested to give an 427 
important contribution to the particulate matter load (e.g. Chen et al., 2019; Xia et al., 2022), but are 428 
stilling missing from many global models. Other contributing factors include the representation of 429 
processes related to aerosol transport and scavenging. Finally, we also note that the 5-year deviations in 430 
Fig. 5 show quite some variability over the Middle East, with both positive and negative deviations from 431 
the baseline period. While anthropogenic emissions in this region increase steadily over the period (by 432 
13-40% depending on species) in the inventories used in the present study, the strong influence from 433 
dust emissions in this region likely dominates the temporal variability.   434 

A previous OsloCTM3 study by Lund et al. (2018) found an improved agreement between year 2010 435 
ground-based AERONET observations and model output, including over Asia, when switching from 436 
CMIP5 and ECLIPSEv5 emissions to CEDS, the latter having higher emissions. This seemingly 437 
contradicts expectations following the now-known biases in this first release of CEDS. Here we repeat 438 
the comparison with AERONET, but for the year 2014. Resulting scatter density plots are given in Fig. 439 
S6. The normalized mean bias (NMB) compared to AERONET ranges from -21 to -29% in the 440 
simulations with fixed and actual meteorology. We find higher bias and lower correlation when 441 
switching from the original CEDS release to CEDS21 and ECLv6. Hence, while the model is better able 442 
to represent observed recent aerosol trends over East Asia with newer emission inventories, these results 443 
point to other issues that may have been concealed by too high anthropogenic emissions. Dust and 444 
atmospheric processing, as discussed above, are again possible contributing factors.   445 

 446 

3.2 Impact of inventory differences on estimated anthropogenic aerosol RF 447 

Finally, we quantify the aerosol-induced RF from the three sets of experiments. Figure 6a shows the 448 
RFari, RFaci, and net aerosol radiative forcing (RFnet, RFari plus RFaci) relative to 1990 for the three 449 
sets of experiments. The net RF of changes in anthropogenic (and biomass burning) aerosol is positive 450 
since 1990, except for 1995 and 2005, where a small negative forcing is estimated. As shown in Fig. 1, 451 
global anthropogenic SO2 emissions show a peak in 2005 and the biomass burning emissions are 452 
relatively high. This positive global mean net RF is determined mainly by the balance between a positive 453 
forcing over the northern extratropics, dominated by aerosol-radiation interactions, and a negative 454 
forcing over Asia and parts of South America and Africa with stronger contributions from aerosol-cloud 455 
interactions (Fig. S7).  456 

In 2014, we estimate a global mean RFnet of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 457 
W m-2 for ECLv6 relative to 1990, of which the RFari constitutes 0.07 W m-2, 0.09 W m-2 and 0.10 W 458 
m-2, respectively. We note that our framework only captures the cloud albedo effect and not radiative 459 
effects of any changes in cloud lifetime that may arise through the influence of aerosols (i.e. we calculate 460 
RF, not ERF). Our RFari estimate using CEDS emissions is similar to the multi-model mean RFari of 461 
0.05 W m-2 derived for the 1990-2015 period using ECLIPSE version 5 emissions by Myhre et al. 462 
(2017). The same study estimated a model mean RFnet of 0.1 W m-2, but with a significant intermodel 463 
spread, from close to zero to more than 0.2 W m-2. This spread is larger than the difference between 464 
estimates with different inventories in the present analysis. Nevertheless, the differences in emissions 465 
between CEDS and CEDS21 (ECLv6) translates to a factor 3 (5) stronger RFnet in our calculations.  466 

Figure 6b shows regional mean RF, including the balance between RFari and RFaci. Following the 467 
significant decline in AOD over EUR and NAM, the dominant contributions to positive RF are found 468 
here, followed by Russia. There is however little difference between simulations with three inventories. 469 
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In contrast, the net RF over EAS switches sign from negative in simulations with CEDS to positive 470 
when using CEDS21 or ECLv6 due to observed decline in emissions now captured. While negative in 471 
all three sets of experiments, the net RF over SAS is 40% (20%) weaker when ECLv6 (CEDS21) 472 
emissions are used compared to CEDS. This results from a 50% (20%) lower net area averaged AOD 473 
change between 1990 and 2014, compared to simulations with CEDS.   474 

The CEDS21 inventory extends to 2019, compared to 2014 in CEDS. The global mean net RF over this 475 
five-year period is estimated to be 0.10 W m-2, driven primarily by a further positive forcing over China 476 
in line with the continued decline in SO2 emissions following implementation of measures targeting 477 
improved air quality. Over India, the forcing in 2019 relative to 2014 remains negative, but weaker than 478 
during the preceding period, while over Europe and western Russia, the RF is low suggesting little 479 
further recent emission changes. We note however that this is a short period and results should be 480 
interpreted with that in mind. Using a selection of the SSP scenarios, Lund et al. (2019) extended 481 
simulations from 2014 CEDS emissions and quantified the projected aerosol-induced RF. The orange 482 
hatched bars in Fig. 6 show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with SSP1-483 
1.9, SSP2-4.5 and SSP3-7.0 in that study. The RFnet in 2019 estimated with CEDS21 here is close to 484 
the lower end of the bar, i.e. the RFnet projected under SSP3-7.0. However, prior to this higher biomass 485 
burning year, there are indications that the RFnet from simulations with CEDS21 tracked closer to SSP2-486 
4.5 or an even lower emission pathway.  487 

The dipole pattern of aerosol changes, and resulting RF, over India versus China that can be seen in 488 
observations and is expected to impose regional climate impacts, was first highlighted by Samset et al. 489 
(2019). Using emissions from CEDS and SSP1-1.9, SSP2-4.5 and SSP3-7.0, combined with a radiative 490 
kernel approach, that study estimated a range of 2014-2030 aerosol (SO2 and BC) net RF of -1.0 W m-2 491 
(SSP1-1.9) to 0.82 W m-2 (SSP2-4.5) over India, and 0.06 W m-2 (SSP2-4.5) to 1.10 W m-2 (SSP3-7.0) 492 
over China. Part of this range can be attributed to poor knowledge of current, and hence also future, 493 
regional emissions (Samset et al. 2019). In the present study, we estimate regionally averaged RFnet in 494 
2019 relative to 2014 of -0.09 W m-2 and 0.22 W m-2 over India and China, respectively. For China, this 495 
recent RFnet is about 20% of the previously estimated difference between high and low future aerosol 496 
emission scenarios in 2030 (SSP2-4.5 and SSP3-7.0). Missing or incorrectly captured past emission 497 
trends can therefore markedly affect assessments of projected near-term aerosol-induced climate 498 
impacts, as they depend on a well constrained starting point. 499 

 500 

4 Conclusions 501 

We have investigated the impact of differences between recent global emission inventories available for 502 
the aerosol and climate modeling community on simulated anthropogenic aerosol abundances, and 503 
associated radiative forcing, from 1990 to 2019. Simulations with the chemical transport model 504 
OsloCTM3 and the CEDS emission inventory, developed for the sixth cycle of the IPCC, has been 505 
compared with corresponding results using two newer inventories: The CEDS 2021 update (CEDS21) 506 
and the ECLIPSE version 6b (ECLv6). Our objective was to evaluate the model performance 507 
considering revisions to the emissions input data, partly done to correct known regional biases, and to 508 
investigate the implications of inventory differences on downstream diagnosed quantities critical for 509 
assessing the air quality and climate effects of anthropogenic aerosol.  510 

We have found that, apart for nitrate, simulations with the CEDS21 (ECLv6) inventory give lower global 511 
mean aerosol burdens than corresponding runs with CEDS, ranging from 4% (6%) for BC to approx. 512 
10% (15%) for sulfate and POA in 2014 (the most recent historical year common for all scenarios). 513 
Differences are consistently most pronounced over East Asia, followed by South Asia, where they are 514 
on the order of 30-60% depending on species and scenario. Differences in the underlying anthropogenic 515 
emissions arise from different assumptions about emission rates, data on non-energy sources, and, 516 
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importantly, representation of air quality policies and their implementation efficiency. In our model, the 517 
global mean fine mode nitrate burden is 15% (24%) higher with CEDS21 (ECLv6) relative to CEDS, 518 
but with regional heterogeneity in sign of the difference. Overall, we estimate 3% (6%) lower total AOD 519 
with CEDS21 (ECLv6), respectively, compared to CEDS in 2014. The difference reaches approx. 20% 520 
and 30% over East and South Asia.  521 

Over East Asia, we diagnose a significant negative linear trend in total area averaged AOD from 2005 522 
to 2017 of -0.03 per decade in simulations using the ECLv6 emissions. In contrast, we find no significant 523 
trend in corresponding experiments with CEDS. Importantly, we find that the model is better able to 524 
capture the trend observed by MODIS-Aqua with both new inventories. In all three sets of simulations, 525 
we estimate a significant positive linear AOD trend over South Asia. The simulated trend is, however, 526 
weaker than that derived from MODIS-Aqua and this gap increases when switching from CEDS to the 527 
CEDS21 and ECLv6 inventories. We also underestimate the magnitude of observed AOD in the region, 528 
at least compared to this specific satellite product. Recent emission trends are less well constrained by 529 
observations in India than e.g. in China. The extent to which the model-observation difference arises 530 
from the input of anthropogenic emissions or could be influenced by poor model representation of other 531 
aerosols sources or atmospheric processes, is not clear from the present analysis. For other regions 532 
considered, there is generally agreement in the sign of the simulated area averaged AOD trend between 533 
the three sets of simulations, although the magnitude can differ, in particular for the AOD of individual 534 
species. For instance, there is an increasing (over time) divergence in the sulfate AOD over Africa 535 
between simulations using CEDS and ECLv6. Over most regions, nitrate AOD increases, however, 536 
nitrate contributes relatively less to total AOD than sulfate and OA.  537 

Using offline radiative transfer calculations, we estimate a global mean net aerosol RF in 2014 relative 538 
to 1990 of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 W m-2 for ECLv6. Regionally, the 539 
sign of the net aerosol-induced RF switched from negative to positive when replacing CEDS emissions 540 
with CEDS21 or ECLv6 in our study. Hence, the failure to capture recent observed emission trends in 541 
China may have resulted in the wrong sign in estimates of the regional effect on the energy balance over 542 
recent decades. Over South Asia, the area average net RF is up to 40% lower in simulations with the 543 
updated inventories compared to CEDS.   544 

While the focus of the present study is on anthropogenic aerosols, our comparison with observed AOD 545 
reveals potential issues related to the representation of natural aerosols or other processes in the 546 
OsloCTM3. In particular, the model does not capture the strength of the positive AOD trend observed 547 
over high latitude North America and Russia, likely due to an increase in biomass burning aerosols. For 548 
individual years, we also find a larger underestimation in AOD compared to AERONET measurements 549 
when switching from CEDS to the lower CEDS21 and ECLv6 emissions, despite better representation 550 
of some key regional observed trends. Further studies are required to investigate this in more detail.  551 

Anthropogenic aerosols are changing rapidly, particularly in Asia, with potentially large but 552 
insufficiently quantified implications for regional climate. We have demonstrated that differences 553 
between recent emission inventories translate to notable differences in global and regional trends in 554 
anthropogenic aerosol distributions, and in turn in estimates of radiative forcing. Although additional 555 
studies are required to fully quantify the broader implications for aerosol-induced climate and health 556 
impacts, our results facilitate comparisons between existing and upcoming studies, using different 557 
emission inventories, of anthropogenic aerosols and their effects.  558 

 559 
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Tables:  875 
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Table 1: Summary of experiments used in the study.  877 

Name  Description Years simulated  
CEDS CEDS v2016 emissions, fixed meteorology 1990, 1995, 2000, 2005, 2010 

2014 
CEDS21 CEDS v2021 emissions, fixed meteorology  1990, 1995, 2000, 2005, 2010 

2014, 2016, 2018, 2019 
ECLv6 ECLIPSEv6b emissions, fixed meteorology  1990, 1995, 2000, 2005, 2010 

2014, 2016 
CEDSmet CEDS v2017 emissions until 2014 and SSP2-4.5 for 

2015-2017, running meteorology  
1990-2017 

CEDS21met CEDS v2021 emissions, running meteorology 2001-2017 
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Figures:  901 

 902 

 903 
Figure 1 Global total anthropogenic emissions of SO2, BC, OC, NOx, NH3, and NMVOC in the CEDS21, 904 
ECLv6, CEDS17 inventories, for the period 1990 to the most recent inventory year (2019, 2016 and 905 
2014, respectively). Dotted lines show emissions from the SSP2-4.5 scenario, linearly interpolated from 906 
2015 to 2019.  907 

 908 

 909 

 910 

Figure 2 Absolute difference in regional mean burden of the key anthropogenic aerosol species between 911 
simulations with CEDS21 and CEDS (upper bar) and ECLv6 and CEDS (lower bar). Regions are the 912 
same as in Lund et al. (2019): EAS = East Asia, SAS = South Asia, SAF = Sub-Saharan Africa, NAM = 913 
North America, SAM = South America, NAF = North Africa and the Middle East, EUR = Europe, SEA 914 
= South East Asia, RBU = Russia.  915 
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 917 

 918 

Figure 3: Global and regional mean total AOD simulated with emissions from the CEDS21, ECLv6 and 919 
CEDS inventories. In the case of CEDS, the timeseries is extended from 2014 to 2017 using SSP2-4.5 920 
emissions. Dashed lines show the linear 2005-2017 trend, defined as statistically significant from no 921 
trend when the linear Pearsons correlation coefficient is significant at the 0.05 level. To reduce any 922 
influence of individual, outlier years on the trends, we calculate a set of trends removing one-and-one 923 
year from the sample and show the average. Significance is given in the parenthesis. If a dash is given, 924 
individual trends from the sample differed from each other in terms of significance.   925 
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Figure 4: a) Global, annual mean AOD from MODIS-Aqua and the OsloCTM3 over the 1990-2019 938 
period. Note that data north and south of 70° is excluded here due to the limited MODIS-Aqua coverage. 939 
Dashed lines show linear trend from 2005 to 2017. b-d) Spatially resolved linear trends in observed and 940 
simulated AOD. Hatching indicates where the linear trend is significantly different from zero at the 0.05 941 
level.  942 
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 948 

Figure 5:  Evolution of AOD over South and East Asia, and the Middle East, over the period 2003-949 
2020. All panels show five-year average deviations from the period 2003-2017, except the rightmost 950 
MODIS-Aqua panel which show the three-year average deviation (same baseline). The top row shows 951 
retrievals from MODIS Aqua; the two bottom rows show model calculations with OsloCTM3 based on 952 
the CEDS and CEDS21 emission inventories. 953 
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 973 

Figure 6: a) Global mean RFari and RFaci (top) and RFnet (RFari+RFaci) (bottom) relative to 1990 974 
from simulations using the CEDS, CEDS21, and ECLv6 emission inventories. The vertical bars to the 975 
right show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with the SSP1-1.9 and 976 
SSP3-7.0 emissions (adapted from Lund et al. (2019)). b) Regional mean RFnet, RFari, and RFaci in 977 
2014 relative to 1990 in simulations with CEDS, CEDS21, and ECLv6 inventories.  978 
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