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Abstract  10 

This study focuses on implications of differences between recent global emissions inventories for 11 
simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990-2019 12 
period. We use the ECLIPSE version 6 (ECLv6) and Community Emission Data System year 2021 13 
release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the resulting 14 
aerosol evolution to corresponding results derived with the first CEDS release, as well as to observed 15 
trends in regional and global aerosol optical depth (AOD). Using CEDS21 and ECLv6 results in 3% 16 
and 6% lower global mean AOD compared to CEDS in 2014, primarily driven by differences over China 17 
and India, where the area average AOD is up to 30% lower. These differences are considerably larger 18 
than the satellite-derived interannual variability in AOD. A negative linear trend (over 2005-2017) in 19 
global AOD following changes in anthropogenic emissions is found with all three inventories but is 20 
markedly stronger with CEDS21 and ECLv6. Furthermore, we confirm that the model better captures 21 
the sign and strength of the observed AOD trend over China with CEDS21 and ECLv6 compared to 22 
using CEDS, while the opposite is the case for South Asia. We estimate a net, global mean aerosol-23 
induced RF in 2014 relative to 1990 of 0.08 W m-2 for CEDS21, and 0.12 W m-2 for ECLv6, compared 24 
to 0.03 W m-2 with CEDS. Using CEDS21, we also estimate the RF in 2019 relative to 1990 to be 0.10 25 
W m-2, reflecting the continuing decreasing trend in aerosol loads post 2014. Our results facilitate more 26 
rigorous comparison between existing and upcoming studies of climate and health effects of aerosols 27 
using different emission inventories.  28 

  29 

1 Introduction 30 

Human activities have led to a substantial increase in atmospheric abundances of aerosols relative to 31 
pre-industrial conditions. While increasing emissions of greenhouse gases is the dominant driver of 32 
recent global warming, aerosols play a key role in shaping regional and global climate, and for 33 
anthropogenic climate change, through their interactions with radiation and clouds. The sixth assessment 34 
report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) estimates that changes in 35 
atmospheric aerosols have contributed an effective radiative forcing (ERF) of –1.3 W m-2 over the 36 
industrial era (1750–2014), albeit with a wide uncertainty range of –2.0 to –0.6 W m-2 (Forster et al., 37 
2021).   38 

Over recent decades, anthropogenic emissions of aerosols and their precursor gases haves been 39 
changeding rapidly, with substantial spatiotemporal heterogeneity, and particularly in Asia. Following 40 
decades of rapid economic growth in China, the combustion of coal, other fossil fuels, and biofuels 41 
increased considerably, resulting in the region becoming the dominanting source of air pollution 42 
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emissions. However, since the implementation adoption of the national aAction pPlans targeting 43 
particulate matter levels (i.e.  on Air Pollution Prevention and Control in 2013 (SCPRC, 2013) and 44 
Winning the Blue Sky Defense Battle in 2018 (SCPRC, 2018)), emissions of sulfur dioxide (SO2) and 45 
then nitrogen oxide (NOx) in China have declined rapidly (Klimont et al., 2017; Klimont et al., 2013; 46 
Tong et al., 2020; Zheng et al., 2018). Recent studies suggest that also black carbon (BC) emissions are 47 
declining (Kanaya et al., 2020; Zheng et al., 2018). In contrast, aA continuing strong growth in emissions 48 
of SO2 and other pollutants emissions has been seen in South Asia (Kurokawa & Ohara, 2020), resulting, 49 
according to studies, in India overtaking China as the dominant emitter of SO2 (Li et al., 2017). These 50 
contrasting trends have given rise to a distinct dipole pattern of increasing and declining aerosol optical 51 
depth over South and East Asia, respectively, visible in satellite data (Samset et al., 2019). Such rapid 52 
aerosol changes are likely to affect the climate of the regionsal climate, as aerosols have been shown to 53 
have a notable influence on regional temperature and precipitation, including extremes (e.g. Bollasina 54 
et al., 2011; Hegerl et al., 2019; Marvel et al., 2020; Samset et al., 2018; Sillmann et al., 2013), with 55 
different responses to scattering and absorbing aerosols. Hhowever, the exact nature and magnitude of 56 
such climate implications magnitude and role need to better quantified (Persad et al., 2022)remains 57 
insufficiently quantified. However, the overall scientific uncertainty on aerosol induced global mean 58 
radiative forcing is still larger than the estimated regional changes , and also varies over the recent 59 
decades depending on the overall level of emissions and their location relative to cloud decks and other 60 
climate features. 61 

Robust quantification of the impacts of aerosols requires reliable and consistent estimates of 62 
anthropogenic emissions. However, currently there exist One factor contributing to uncertainty is the 63 
substantial differences, in both magnitudes and trends, that exist between available current emission 64 
inventories (e.g. Crippa et al., 2018; Elguindi et al., 2020; Smith et al., 2022). Emission inventories are 65 
quantifications of contributions from various industrial processes or other anthropogenic activities to 66 
the rate of emissions of various compounds to the atmosphere. They generally combine bottom-up 67 
information such as reported economic activities with direct observations and process modelling and are 68 
used extensively in essentially all efforts to quantify climate and air quality implications of human 69 
activities. While the overall scientific uncertainty on aerosol-induced global mean radiative forcing (RF) 70 
is larger than the estimated regional changes, the uncertainty also varies over the recent decades 71 
depending on the overall level of emissions and their location relative to cloud decks and other climate 72 
features (Bellouin et al., 2020; Regayre et al., 2014; Samset et al., 2019; Szopa et al., 2021). Hence, 73 
understanding both the inherent inventory differences and the implications of these on downstream 74 
calculations and modelled quantities such as aerosol optical depths and radiative forcing is crucial. 75 

As an example, a critical issue that has recently been highlighted is a notable underestimation of the 76 
decline in Chinese emissions of SO2 and NOx, and overestimation of carbonaceous aerosol emissions 77 
in Asia and Africa, in the Community Emission Data System (CEDS) developed for the sixth cycle of 78 
the Coupled Model Intercomparison Project (CMIP6) (Szopa et al., 2021). Recent work has shown that 79 
results from the CMIP6 experiments fail to fully capture the observed recent trends in aerosol optical 80 
depth (AOD) in Asia (Cherian & Quaas, 2020; Ramachandran et al., 2022; Su et al., 2021; Wang et al., 81 
2021), with the discrepancy largely attributed to the misrepresentation of emissions in the region in last 82 
decade of the historical CMIP6 period. Other studies demonstrate that the poor representation of 83 
observed aerosol trends can propagate to further uncertainties in attribution of aerosol-induced impacts, 84 
such as the East Asian monsoon (Wang et al., 2022) and health impacts (Cheng et al., 2021). In addition 85 
to CMIP6, the CEDS emissions have also been used in individual model studies of historical aerosol 86 
evolution, radiative forcing, sector attribution, and air quality assessments (e.g. Bauer et al., 2020; 87 
Chowdhury et al., 2022; Lund et al., 2018; Lund et al., 2020; Paulot et al., 2018). Moreover, uncertainties 88 
and biases in the baseline historical inventory may influence scenario-based assessments of near-term 89 
future regional climate risk.  90 
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Since the initial parts of the CMIP6 exercise, the CEDS inventory has undergone several revisions. The 91 
most recent version from 2021, CEDS21, covering the period up to 2019, exhibit several key differences 92 
compared to the initial release – for some species all the way back to the early 2000s (O'Rourke et al. 93 
(2021)). More specifically, In particular, both emissions of BC, and OC and NOx are emissions areall 94 
substantially lower in the update, in global totals and, particularly, in Asia, and issues related to the 95 
decreasing trend in Chinese SO2 is more pronouncedare largely addressed. However, the implications 96 
of these differences in input data on simulated anthropogenic aerosol distributions, globally and 97 
regionally, and the resulting radiative forcing, are not fully quantified and cannot be directly 98 
extrapolated. Furthermore,  99 

Given the relative importance of these source regions, such inventory differences may have implications 100 
for simulations of anthropogenic aerosol distributions globally and contribute to increased uncertainty 101 
in estimates of aerosol-induced climate impacts, both in the IPCC AR6 and elsewhere in the literature. 102 
For instance, recent work has shown that results from the CMIP6 experiments fail to fully capture the 103 
observed recent trends in aerosol optical depth (AOD) in Asia (Cherian & Quaas, 2020; Ramachandran 104 
et al., 2022; Su et al., 2021; Wang et al., 2021), with the discrepancy largely attributed to the 105 
misrepresentation of emissions in the region in last decade of the historical CMIP6 period. Other studies 106 
demonstrate that the poor representation of observed aerosol trends can propagate to further 107 
uncertainties in attribution of aerosol-induced impacts, such as the East Asian monsoon (Wang et al., 108 
2022) and health impacts (Cheng et al., 2021). In addition to CMIP6, the CEDS emissions have also 109 
been used in individual model studies of historical aerosol evolution, radiative forcing, sector attribution, 110 
and air quality assessments (e.g. Bauer et al., 2020; Chowdhury et al., 2022; Lund et al., 2018; Lund et 111 
al., 2020; Paulot et al., 2018). Moreover, uncertainties and biases in the baseline historical inventory 112 
may influence scenario-based assessments of near-term future regional climate risk.  113 

Aas the update to CEDS came too late for uptake in IPCC AR6, it is pertinent to ask investigateif the 114 
influence of these emission inventory differences affected ton the assessed modeled evolution of 115 
atmospheric aerosol trends and subsequent climate implications.  116 

Here, we present undertake one an such iinvestigation of the implications of known differences in recent 117 
emission inventories on quantified aerosol burdens, optical depth, and radiative forcing, over the period 118 
1990-2019. Using the chemical transport model OsloCTM3, we perform simulations with the CEDS21 119 
emission inventory and compare to previously published results derived with the original CEDS release 120 
(Lund et al., 2018; Lund et al., 2019). We also perform simulations with a third recent global inventory, 121 
the ECLIPSE version 6b, where emissions are similar in evolution but generally even lower than in 122 
CEDS21, especially in the most recent period. We explorequantify the differences in between 123 
inventories in simulated evolution of global and regional anthropogenic aerosol loads over the 1990-124 
2014 periodbetween experiments using the different inventories, comparing optical depth to remote 125 
sensing observations, and quantify in the resulting radiative forcing. We also explore the post-2014 126 
aerosol evolutions with CEDS21 and compare trends in simulated aerosol optical depth to remote 127 
sensing observations. Our aims are to document the model ability to represent recent observed aerosol 128 
trends and to quantify the implications of differences in inventories available for the community on 129 
downstream diagnosed quantities critical for assessing the air quality and climate implications of 130 
anthropogenic aerosol.  131 

 132 

2 Methods 133 

Atmospheric concentrations of aerosols are simulated with the global chemical transport model 134 

OsloCTM3 (Lund et al., 2018; Søvde et al., 2012). The model is driven by meteorological data from the 135 

European Center for Medium Range Weather Forecast (ECMWF) OpenIFS model updated every 3 136 

hours and is run in a 2.25°x2.25° horizontal resolution, with 60 vertical levels (the uppermost centered 137 
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at 0.1 hPa). OsloCTM3 treats tropospheric and stratospheric chemistry, as well as modules for 138 

carbonaceous, secondary organic, sulfate, ammonium-nitrate, sea salt and dust aerosols. Aerosols are 139 

scavenged by convective and large-scale rain (ice and liquid phase), with rainfall calculated from 140 

ECMWF data for convective activity, cloud fraction, and rainfall. Dry deposition applies prescribed 141 

deposition velocities for different land cover types. For further details we refer to Lund et al. (2018) and 142 

Søvde et al. (2012). 143 

The aerosol optical depth (AOD) and instantaneous top-of-atmosphere radiative forcing due to aerosol-144 

radiation interactions (RFari) is calculated offline using a multi-stream model with the discrete ordinate 145 

method DISORT (Myhre et al., 2013; Stamnes et al., 1988). The same radiative transfer model is also 146 

used to estimate the radiative forcing of aerosol-cloud interactions (RFaci) (earlier denoted the cloud 147 

albedo effect or Twomey effect). To account for the change in cloud droplet concentration resulting 148 

from anthropogenic aerosols, which alter the cloud effective radius and thus the optical properties of the 149 

clouds, the approach from Quaas et al. (2006), is used. Briefly, this approach is based on a statistical 150 

relationship between cloud droplet number concentrations and fine-mode AOD derived from satellite 151 

data from the MODerate Resolution Imaging Spectroradiometer (MODIS).  152 

 153 

Modeled AOD is compared with retrievals from the MODIS instrument on the Aqua satellite, which is 154 

available for the period 2003-2020 (MOD08, 2018). We use the combined Dark Target and Deep Blue 155 

AOD at 550nm, release MOD08_M3_V6.1, downloaded from the NASA Giovanni interface. MODIS-156 

Terra AOD is also available for the same period and, for most years, is around 10% lower than MODIS-157 

Aqua on global average. However, based on previous evaluation of the MODIS AOD and a reported 158 

drift in the Terra data (Levy et al., 2010; Sherman et al., 2017), we chose to use MODIS-Aqua for the 159 

model comparison in the current study. We also compare modeled AOD with ground-based 160 

measurements from the AERONET (AErosol RObotic NETwork) (Holben et al., 1998) Version 3 Level 161 

2.0 retrievals at 500 nm. The comparison uses all available data from all months and stations for a given 162 

year, with modeled AOD linearly interpolated to the latitude and longitude of each station. Temporal 163 

trends in simulated and observed AOD are estimated on global-mean and grid point basis by linear least 164 

square fitting and defined as statistically significant (from no trend) when the linear Pearsons correlation 165 

coefficient is significant at the 0.05 level. To minimize the influence of individual years, e.g. with higher 166 

biomass burning influence, we calculate a set of trends with one and one year removed from the sample 167 

and then take the average of this set of coefficients. Interannual variability is estimated on a grid point 168 

basis as the standard deviation of the residual when subtracting a 10-year boxcar average (with mirrored 169 

data around the end points). We also compare modeled AOD with ground-based measurements from 170 

the AERONET (AErosol RObotic NETwork) (Holben et al., 1998) Version 3 Level 2.0 retrievals at 500 171 

nm. The comparison uses all available data from all months and stations for a given year, with modeled 172 

AOD linearly interpolated to the latitude and longitude of each station. 173 

 174 

Five different time series of simulated aerosol distributions covering the 1990-2019 period are included 175 

in this analysis, using three different emission inventories and either fixed or actual (i.e. corresponding 176 

to the emission year) meteorology. The fixed meteorology runs forms the basis for investigating 177 

differences in simulated anthropogenic aerosol and corresponding RF, while the latter is used in the 178 

comparison with observed AOD. Table 1 provides a summary of the experiments.  179 

 180 

Two sets of time slicefixed meteorology simulations are performed using anthropogenic emissions from 181 

the CEDS version 2021 (O'Rourke et al., 2021) (hereafter “CEDS21”) and ECLIPSEv6b baseline 182 

(hereafter “ECLv6”) inventories. The ECLv6 emissions are developed with the Greenhouse Gas - Air 183 
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Pollution Interactions and Synergies (GAINS) model (Amann et al., 2011). Version 6b (IIASA, 2022) 184 

consists of gridded aerosol and reactive gas emissions in 5-year intervals over the period 1990-2015, as 185 

well as emissions for 2008, 2009, 2014 and 2016. The Community Emission Data System (CEDS) 186 

inventory provides a gridded inventory of anthropogenic greenhouse gas, reactive gases and aerosols 187 

since 1750 (Hoesly et al., 2018). In the first release, the most recent year was 2014, while the 2021 188 

release covers the period until 2019. Simulations with OsloCTM3 are performed for 1990, 1995, 2000, 189 

2005, 2010, 2014 and 2016 emissions, as well as years 2018 and 2019 for CEDS21. Results from the 190 

current study are compared with previously published results from simulations over 1990 to 2014 191 

performed with the first release of the CEDS emissions (hereafter “CEDS”) (Lund et al., 2018) and 192 

three of the SSP scenarios (SSP1-1.9, SSP2-4.5, and SSP3-7.0) from 2015 to 2100 (here we use data for 193 

2020 and 2030)  (Lund et al., 2019). These three scenarios broadly span the range of aerosol and 194 

precursor emissions projected in the SSPs. Keeping in line with the experimental design in Lund et al. 195 

(2018), we use year 2010 meteorological data and each simulation is run for one year, with 6 months 196 

spin-up. All three time series In all simulations,uses  biomass burning emissions from van Marle et al. 197 

(2017) are used for thefrom 1990 to -2014 period, and with Global Fire Emissions Database version 4 198 

(GFED4, Randerson et al. (2017)) thereafter. We note that van Marle et al. (2017) emissions are also 199 

based on GFED. Other natural emissions (dust and sea salt aerosols, precursor gases from the ocean, 200 

soil, and vegetation) are fixed at the year 2010 levels.  201 

 202 

For the comparison with MODIS data, Additionally, wwe use output from a timeseries of OsloCTM3 203 

simulations with CEDS emissions and actual actual, running meteorology covering the period 1990-204 

2017 (the last three years uses Shared Socioeconomic Pathways (SSP) 2-4.5 emissions (Fricko et al., 205 

2017) linearly interpolated between 2015 and 2020) (hereafter “CEDSmet”). These simulations were 206 

Originallyoriginally  performed for the phase III of the Aerocom project (e.g. Gliß et al., 2021). For the 207 

present study, we also produce an updated version covering the 2001-2017 period using CEDS version 208 

2021 emissions (hereafter “CEDS21met”),. While differences in emissions exist also in the years prior, 209 

we restrict the use of resources by only going back to the start of the MODIS record, covering the period 210 

when the  this time series allows an assessment of the role of meteorology in the simulated aerosol 211 

trends. Finally, we produce an updated version of this timeseries using the 2021 release of the CEDS 212 

emissions for the 2001-2017 period (i.e. when the differences are most pronounced) (hereafter 213 

“CEDS21met”).. In these simulations, the other natural aerosol emissions also vary following the 214 

meteorological year.  A summary of the experiments is provided in Table S1.  215 

 216 

Figure 1 shows global, total emissions of SO2, BC, OC and NOx over the 1990-2019 period in the three 217 

inventories used here. The differences are particularly pronounced after 2005. Both ECLv6 and CEDS21 218 

show substantially lower emissions of all species during this period, relative to CEDS. The largest 219 

differences are for BC and OC, where CEDS21 is 20-30% lower than CEDS in 2014. For SO2 and NOx, 220 

the corresponding number is approx. 10%.  ECLv6 is generally lower than both CEDS inventories, 221 

particularly for SO2, where ECLv6 is 30% lower than CEDS. While not used in this study, we also note 222 

that similar differences have also been found between CEDS and two other recent global inventories, 223 

the Emissions Database for Global Atmospheric Research (EDGAR) version 5 (Crippa et al., 2020) and 224 

Hemispheric Transport of Air Pollution (HTAP) version 3 (Crippa et al., 2022). Important geographical 225 

distinctions underlie these global differences, as demonstrated for SO2 emissions in 2014 in Fig. 226 

1(Gómez-Sanabria et al., 2022; e.g.Kanaya et al., 2020); Wiedinmyer et al. (2014); Zheng et al. (2018), 227 

where lower emissions in ECLv6 and CEDS21 are primarily found in China, India, and the Arabian 228 

Peninsula. For many regions and species, differences exist also prior to 2014 (Fig. S1). For instance, 229 

CEDS21 has the highest BC emissions in China of the three inventories until year 2000, while ECLv6 230 

BC emissions are higher than CEDS21 in both India and Africa South of the Sahara. In India, CEDS 231 
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and CEDS21 show increasing SO2 emissions while in ECLv6 these appear to be leveling off during 232 

2014-2016. Aside from East and South Asia, the overall temporal evolution is generally similar in the 233 

main source regions across inventories, although magnitudes differ.   234 

Figure 1 shows global, total emissions of SO2, BC, OC and NOx over the 1990-2019 period in the three 235 

inventories used here. The differences are particularly pronounced after 2005. Both ECLv6 and CEDS21 236 

show substantially lower emissions of all species during this period, relative to CEDS. The largest 237 

differences are for BC and OC, where CEDS21 is 20-30% lower than CEDS in 2014. For SO2 and NOx, 238 

the corresponding number is approx. 10%.  ECLv6 is generally lower than both CEDS inventories, 239 

particularly for SO2, where ECLv6 is 30% lower than CEDS. While not used in this study, we also note 240 

that similar differences have also been found between CEDS and two other recent global inventories, 241 

the Emissions Database for Global Atmospheric Research (EDGAR) version 5 (Crippa et al., 2020) and 242 

Hemispheric Transport of Air Pollution (HTAP) version 3 (Crippa et al., 2022). Important geographical 243 

distinctions underlie these global differences, as demonstrated for SO2 emissions in 2014 in Fig. 1, where 244 

lower emissions in ECLv6 and CEDS21 are primarily found in China, India, and the Arabian Peninsula. 245 

For many regions and species, differences exist also prior to 2014 (Fig. S1). For instance, CEDS21 has 246 

the highest BC emissions in China of the three inventories until year 2000, while ECLv6 BC emissions 247 

are higher than CEDS21 in both India and Africa South of the Sahara. In India, CEDS and CEDS21 248 

show increasing SO2 emissions while in ECLv6 these appear to be leveling off during 2014-2016. Aside 249 

from East and South Asia, the overall temporal evolution is generally similar in the main source regions 250 

across inventories, although magnitudes differ.   251 

 252 

 253 

 254 

3 Results and discussion 255 

Here we first document the differences in simulated global and regional and trends in aerosol 256 
abundances distributions and trends arising from the spread between emission inventoriessimulated with 257 
the three different emission inventories. We then investigate how AOD diagnosed from experiments 258 
using old and new emission estimates compare with observed AOD. , discussing burdens of individual 259 
species before focusing on total AOD. We then Finally, we present updated estimates of radiative 260 
forcing relative to 1990. Finally, we compare the simulated global and regional AOD with observations 261 
over the period.  262 

 263 

3.1 Influence of emission inventory differences on simulated aerosol distributionsAerosol 264 

burdens  265 

Figure 1 shows global, total emissions of SO2, BC, OC, NOx, ammonium (NH3) and non-methane 266 

volatile organic compound (NMVOC) over the 1990-2019 period in the inventories used here. The 267 

differences are particularly pronounced after 2005. Both ECLv6 and CEDS21 show substantially lower 268 

emissions of most species during this period, relative to CEDS. In 2014, the largest differences between 269 

CEDS21 and CEDS are in BC and OC emissions, where CEDS21 is 20-30% lower. For SO2, NOx, and 270 

NMVOC, the corresponding number is approximately 10%.  ECLv6 is generally lower than both CEDS 271 

inventories, particularly for SO2 and NMVOC, by about 30%. While not used in this study, we also note 272 

that similar differences have also been found between CEDS and two other recent global inventories, 273 

the Emissions Database for Global Atmospheric Research (EDGAR) version 5 (Crippa et al., 2020) and 274 

Hemispheric Transport of Air Pollution (HTAP) version 3 (Crippa et al., 2022).  275 

 276 
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Important geographical distinctions underlie these global differences, as demonstrated in Fig. S1 for 277 

selected main source regions. While a comprehensive investigation of causes for the inventory 278 

differences is beyond the scope of the present study, and can be difficult due to the number of underlying 279 

assumptions, input data, and revisions, we discuss some key features here. All three inventories rely on 280 

the energy statistical data from International Energy Agency (IEA), however, there are differences in 281 

assumptions about emission rates, implementation of policies, and data on non-energy sources. The 282 

ECLv6 estimates include explicit representation of air quality policies and their implementation 283 

efficiency drawing on national information and, if not available, extrapolation of trends considering 284 

capacity replacement (e.g., new vehicles, newly build power plant capacity) and emission performance 285 

of these new technologies. This led to, among other things, estimated faster decline of SO2 and NOx 286 

emissions from power and industry (in turn in total emissions) in China over recent years than in CEDS 287 

(Fig. S1a,d). This decline has been also confirmed in Zheng et al. (2018). CEDS21 made a correction to 288 

CEDS, mirroring the estimates in the GAINS model for ECLv6. In South Asia, dominated by India, 289 

ECLv6 and CEDS21 show a similar difference to CEDS emissions of SO2 and NOx, representing use 290 

of updated emission characteristics for coal power plants. India has had a slower economic growth and 291 

less heavy industry than China. While some policies aimed at controlling NOx from transport has been 292 

introduced, the limited polices in the power and industry sector have resulted in increasing Indian SO2 293 

and NOx emissions, but the growth has been slower than that in China in the 2000’s. For BC and OC 294 

(Fig. S1b,c), the three inventories show largest differences for East Asia, mainly China, owing to 295 

differences in estimates of emissions from coal use in industry, with ECLv6 applying the lowest 296 

emission factors, and from open burning of municipal waste. For the latter category, CEDS has 297 

originally relied on the rather high estimates of waste generation and share burned (using Wiedinmyer 298 

et al. (2014)), while ECLv6 used independently estimated generation rates (Gómez-Sanabria et al., 299 

2022). The declining BC trends in East Asia, as shown in ECLv6 and CEDS21, have been supported by 300 

measurements (e.g. Kanaya et al., 2020). Estimates for some species, e.g., NH3, are often based on very 301 

similar sources of information as, apart from in Europe and North America, these have received less 302 

attention from policy making and measurement (emissions) community. Consequently, estimates are 303 

similar across all inventories at the aggregated regional level (Fig. S1e). Aside from East and South 304 

Asia, the overall temporal evolution is generally similar in the main source regions across inventories, 305 

although magnitudes can differ. 306 

 307 

3.1.1 Global and regional aerosol burdens in 2014  308 

 309 

The differences between inventories are substantial enough to influence simulated aerosol burdens (i.e. 310 
column integrated aerosol mass, in mg m-2) at the global mean level. For 2014, i.e. the most recent 311 
common year for all three emission inventories, we estimate 4% and 68% lower global mean burdens 312 
of total BC when ith using CEDS21 and ECLv6 (increasing to 6% and 11% if when considering only 313 
aerosols only from fossil fuel and biofuel combustionemissions), respectively, compared to CEDS (see 314 
Table S12 for absolute numbers)). For primary organic aerosol (POA), the corresponding numbers are 315 
11% and 143% (30% and 40%), while global mean total sulfate burden is 8% and 15% lower with 316 
CEDS21 and ECLv6. Smaller reductions on the order of 3-4% are also seen in the global mean 317 
secondary organic aerosol (SOA) burden. Biogenic volatile organic compound ( VOC) emissions, the 318 
main source of SOA, are the same in all simulations. However, the SOA abundance is affected by the 319 
lower emissions of differences in anthropogenic VOCs in both CEDS21 and ECLv6 than in CEDS 320 
(Fig.1), as well as and bby lower changesamount of POA in primary organic aerosols, which serve as 321 
substrates for SOA formation.  322 
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For all these aerosol main anthropogenic aerosol sspecies, the absoluteburden differences are 323 
consistently largest over East Asia, followed by South Asia, and larger for ECLv6 than for CEDS21. 324 
Figure 2 shows absolute regional mean burden (with corresponding relative changes given in Fig.S3). 325 
Regions considered are East Asia (EAS), South Asia (SAS), Sub-Saharan Africa (SAF), North America 326 
(NAM), South America (SAM), North Africa and the Middle East (NAF), Europe (EUR), Southeast 327 
Asia (SEA), and Russia (RBU) (see also Fig. S2). For EAS, the new simulated burden of BC and POA 328 
is 30-40% lower, depending on inventory, compared to simulations using CEDS, following 50-60% 329 
lower BC and OC emissions. The 40-50% lower SO2 emissions translate to 20-30% lower regional 330 
sulfate burden in our simulations. A similar relationship between emission and burden differences are 331 
simulated for SAS, where the burdens of BC, POA, and sulfate are 6%, 27%, and 30% lower, 332 
respectively, in experiments with ECLv6 than with CEDS. Lower burdens of sulfate and POA are 333 
simulated for all other regions as well, and in particular Averaged over these regions, we find reductions 334 
in the year 2014 burdens of BC, POA and sulfate of up to 0.45, 3.5, and 1.9 mg m-2, respectively, when 335 
switching from CEDS tover NAF with ECLv6. In some regions, like SAM, NAF, and SAF, the new 336 
inventories estimate 20-30% lower BC emissions than CEDS, however, due to the lower absolute 337 
magnitudes, the simulated burden differences are small compared to other aerosols. We note that 338 
regional burdens can be influenced by long-range transport and thus affected by remote emission 339 
inventory differences outside the main source region. We also note that we find differences in surface 340 
concentrations between simulations that are broadly similar track the results forto the burden changes. 341 
While beyond the scope of the present study, this may have implications for assessments of air pollution 342 
related health impacts. 343 

The only species that is globally more abundant globally in simulations with the two new inventories, 344 
is nitrate. However, tThere isare considerable important regional heterogeneitydifferences, where the 345 
burden is lower compared to the CEDS experiments in South Asia and on the US east coast but higher 346 
in the US Midwest, parts of Africa and South America, and, especially, over East Asia (Fig.22, Fig.S23). 347 
While absolute differences are small in many regions compared to other species, Tthe net effect is 348 
nevertheless a 15 and 24% higher global mean nitrate burden with CEDS21 and ECLv6, respectively, 349 
compared relative to using CEDS emissions. Changes in the atmospheric nitrate distribution results from 350 
a complex interplay between differences in emissions of NOx, NH3,ammonia, and SO2. Studies have 351 
also shown that nitrate formation can be influenced by background concentrations of VOCs (e.g. 352 
Womack et al., 2019).  We find the largest absolute difference in nitrate in For instance, in EAS and 353 
SAS, however, of opposite sign. In EASChina (and elsewhere), the lower emissions of SO2 and NOx 354 
are both lower in both ECLv6 and CEDS21 than in CEDS, whereas NH3 emissions are higher (Fig.1, 355 
Fig.S1).  This results in lower reduces the chemical competition for available sulfate and, in turn, 356 
enhanced increases the formationproduction of nitrate aerosol. In SAS, SO2, NOx, and NH3 are all lower 357 
in the two new inventories than in CEDS, as is the nitrate burden. Differences in concentrations of VOCs 358 
in the simulations with different inventories is a further complicating factor. Studies have suggested that 359 
nitrate formation can be more sensitive to changes in VOCs than NOx, however, this is highly site 360 
specific (Yang et al., 2022). Further delineating the role of individual factors on nitrate differences would 361 
require simulations beyond what is available for the current study. The potential for an increasing 362 
relative role of nitrate for air pollution and climate in a world with concurrent declines in SO2 and NOx 363 
emissions but little in NH3 has also been discussed in previous studies (e.g. Bauer et al., 2007; Bellouin 364 
et al., 2011; Zhai et al., 2021).  However, while more studies have focused on local air pollution impacts 365 
of nitrate, and associated mitigation strategies, nitrate is still missing from many global climate models. 366 
Moreover, when included, the model diversity in simulated distributions is large (Bian et al., 2017). Our 367 
results suggests that uncertainties in emissions and choice of inventory can contribute to spread in 368 
simulated nitrate aerosols and confound the comparison of conclusions across modeling studies. 369 
Moreover, the complexity of the nitrate response demonstrates that the impact of inventory differences 370 
on simulated aerosols cannot be understood from scaling with the changes in individual emissions but 371 
require explicit modeling.  372 
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 373 

To place the range in estimates between simulations with different inventories into more context, we 374 
compare the differences in simulated aerosol burdens in 2014 to the difference in burdens over the 5-375 
year period from 2014 to 2019 using CEDS21. Averaged globally, we estimate 3% and 6% lower AOD 376 
with CEDS21 and ECLv6, respectively, compared to CEDS in 2014.  377 

Regionally, even larger difference between the two new inventories and CEDS arise, as shown in Fig. 378 
2 (see Fig. S2 for corresponding percentage changes). For all main anthropogenic aerosol species, the 379 
absolute differences are consistently largest over East Asia, followed by South Asia, and larger for 380 
ECLv6 than for CEDS21. Averaged over these regions, we find reductions in the year 2014 burdens of 381 
BC, POA and sulfate of up to 0.45, 3.5, and 1.9 mg m-2, respectively, when switching from CEDS to 382 
ECLv6 (Fig. 2). This constitutes changes of around 30-40% (Fig. S2). For BC and sulfate, burdens are 383 
also notably lower over North Africa and the Middle East with ECLv6 compared to both CEDS and 384 
CEDS21.  385 

The only species that is more abundant globally with the two new inventories, is nitrate. However, there 386 
are important regional differences, where the burden is lower compared to CEDS in South Asia and on 387 
the US east coast but higher in the US Midwest, parts of Africa and South America, and, especially, 388 
over East Asia (Fig.2, Fig.S2). The net effect is a 15 and 24% higher global mean nitrate burden with 389 
CEDS21 and ECLv6, respectively, relative to CEDS. Changes in the atmospheric nitrate distribution 390 
results from a complex interplay between differences in emissions of NOx, ammonia, and SO2. For 391 
instance, in China (and elsewhere), the lower emissions of SO2 in both ECLv6 and CEDS21 reduces the 392 
chemical competition for available sulfate and, in turn, increases the production of nitrate aerosol. The 393 
potential for an increasing relative role of nitrate in a world with concurrent declines in SO2 emissions 394 
has also been discussed in previous studies (!!! INVALID CITATION !!! (e.g. Bauer et al., 2007; 395 
Bellouin et al., 2011)).  396 

BBoth globally and regionally, thee spread in burdens between simulations with different inventories 397 
and the 2014-2019 burden changes are ofspread in estimated aerosol load in 2014 between simulations 398 
with different inventories is on the same order of magnitude.  or larger than the change over the 5-year 399 
period from 2014 to 2019 in CEDS21. In other words, at least in this case, the changes resulting from 400 
inventory differences are as large as those due to the recent overall change in anthropogenic emissions. 401 
We note that regional burdens can be influenced by long-range transport and thus affected by remote 402 
emission inventory differences. We also note that we find differences in surface concentrations between 403 
simulations that broadly track the results for burden. While beyond the scope of the present study, this 404 
may have implications for assessments of air pollution related health impacts.   405 

Combined, these burden differences translate to a 3% and 6% lower global, annual mean AOD with 406 
CEDS21 and ECLv6, respectively, compared to CEDS in 2014 in our simulations. As expected, the 407 
differences are most pronounced over China and India (Fig. S4), where we estimate 20% and 30% lower 408 
regional mean AOD in 2014 using the two new emission inventories, respectively, compared to using 409 
CEDS. For context, Fig. S4 also shows the interannual variability in AOD from MODIS-Aqua (see Sect. 410 
2): In these regions the differences between inventories are markedly larger than what can be expected 411 
from natural year-to-year variations.   412 

 413 

3.1.2 Global and regional AOD 1990-2019  414 

 415 

 416 

Regional differences are larger and, as expected, most pronounced over China and India (Fig. 3b). 417 
Averaged over each of these regions (indicated by the boxes in Fig.3b), we estimate 20% and 30% lower 418 
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AOD using the two new emission inventories, respectively, in 2014. For context, we also show the 419 
interannual variability in AOD from MODIS-Aqua (see Sect. 2): For most of these regions the 420 
differences between inventories are markedly larger.Next, we take a closer look at differences in the 421 
simulated temporal trend, focusing on total AOD. Figure 3 shows the global and regional mean AOD 422 
from 1990 to 2019. Also shown is plotted in Fig. 3a is the linear trend from 2005 to 2017 for each of the 423 
global timeseriestimeseries. This period overlaps with the availability of remotely sensed AOD 424 
discussed in Sect. 3.1.3, as well as the period with the most pronounced inventory differences. However, 425 
as there is a certain extent of inventory differences also prior to 2005, we also provide corresponding 426 
linear trends over the full 1990-2017 period in Table S2.  427 

The simulated AOD is consistently lower when  428 

3.2 Aerosol optical depth  429 

The differences between inventories are also directly reflected in the simulated total AOD. Over the 430 
whole period considered, global mean AOD is highest in simulations with the first release of the CEDS 431 
emissions, followed by using CEDS21 and then ECLv6 emissions compared to CEDS, over the full 432 
period studied, with increasing divergence over time, especially after 2005 (Fig. 3a). Averaged globally, 433 
we estimate 3% and 6% lower AOD with CEDS21 and ECLv6, respectively, compared to CEDS in 434 
2014. Regional differences are larger and, as expected, most pronounced over China and India (Fig. 3b). 435 
Averaged over each of these regions (indicated by the boxes in Fig.3b), we estimate 20% and 30% lower 436 
AOD using the two new emission inventories, respectively, in 2014. For context, we also show the 437 
interannual variability in AOD from MODIS-Aqua (see Sect. 2): For most of these regions the 438 
differences between inventories are markedly larger.  439 

Also plotted in Fig. 3a is the linear trend from 2005 to 2017 for each of the global timeseries. We 440 
estimate a significant (at the 0.05 level - see Sect. 2) negative linear trend in global mean AOD of -0.005 441 
and -0.006 per decade in simulations with that anthropogenic emission changes in the CEDS21 and 442 
ECLv6 inventories have resulted in a significant (at the 0.05 level - see Sect. 2) negative linear trend in 443 
global mean AOD of -0.005 and -0.006 per decade, respectively. This trend strengthens when extended 444 
to 2019 based on simulations with in CEDS21. A negative global trend is also found when using the 445 
first CEDS release, however, it is smaller and not significant over the period 2005-2014. Extending the 446 
timeseries to 2017 by assuming that emissions follow SSP2-4.5 after 2014 (see Sect. 2)dashed orange 447 
line), as in Fig. 3, the negative trends strengthens and switches to significant as per our definition, but it 448 
remains weaker smaller than for the other two inventories (at -0.003 per decade). Considering the full 449 
period, we estimate a significant negative trend in simulations with CEDS21 and ECLv6, but no trend 450 
when using CEDS (Table S2). This long-term decline in total AOD is primarily driven by the decline in 451 
sulfate AOD, following the emission decline after introduction of air quality policies, first in the US and 452 
Europe, then in China, and the collapse of the Soviet Union (e.g. Aas et al., 2019). Over the full period, 453 
we simulate increasing trends in BC and nitrate AOD, significant at the 0.05 level, with all three 454 
inventories (not shown), however, their contributions to total AOD are much smaller than that of sulfate. 455 
Robust evidence of a declining influence by aerosols on climate since 1990 was recently found from 456 
observables (Quaas et al., 2022). Our model simulations capture this overall trend, and the findings 457 
reinforce the role of changes in anthropogenic emission, particularly since 2005. Furthermore, we 458 
suggest that if using the original CEDS emissions, models may have failed to capture this trend. We 459 
note that biomass burning emissions also change over time in our simulations, but we do not find any 460 
significant trend in biomass aerosols (BC and POA) AOD on the global mean scale over this period. We 461 
do note that years of high biomass burning activity, such as 2019 where GFED4 emissions are 25% 462 
higher than in 2018, can lead to marked jumps in simulated AOD. We have limited possible influence 463 
of such years on the linear trend calculated (see Sect. 2). t despite the negative long-term trend and 464 
continued decrease in anthropogenic emissions, CEDS21 AOD is up in 2019 compared to 2018. We 465 
attribute this primarily to the high 2019 biomass burning emissions in GFEDv4, more than 25% higher 466 
than in 2018.   467 
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 468 

Regionally, we simulate significant declining trends in all three emission inventories result in a 469 
significant decline in AOD over 2005-2017 for over EURthe Eastern US and , Europe, and NAM, with 470 
this parts of Russia and Eurasia over the 2005-2017 period in our simulations (Fig. 3c).trend extending 471 
back to 1990 (Table S2), as expected. This is also consistent with surface observations both AOD and 472 
atmospheric sulfur and in agreement with other models (Mortier et al., 2020; Aas et al., 2019), and we 473 
capture the decline regardless of which emission inventory is used. In both regions, and across 474 
simulations with all three scenarios, we find a decline in the AOD of BC, OA, and sulfate, but an 475 
increasing trend in nitrate AOD. Over RBU, we also simulate a decline a significant decline in area 476 
average AOD over the full 1990-2017 period, but a flatter evolution when considering only 2005-2017. 477 
However, the results are similar with all three scenarios also here. In parts of the RBU region, GFED4 478 
shows an increase in emissions over the latter period, resulting in a positive trend in the AOD of biomass 479 
aerosols from 2005. On the African continent, we simulate negative, albeit weak, trend in AOD over the 480 
2005-2017 period for SAF. In contrast, the trend over the full period is positive. Anthropogenic 481 
emissions in SAF have increased (Fig. S1), although less steeply than in Asia, and we find significant 482 
increases in the AOD of all the anthropogenic species with all inventories from 1990 to 2017. However, 483 
from 2005 onwards, there has been a decreasing trend in GFED4 emissions, following a reduction in 484 
the burnt area of savannas (Wu et al., 2021). Biomass burning aerosols contribute relatively more to 485 
total AOD here, than in the northern hemisphere regions and hence impose a stronger effect on the area 486 
average trend. A similar pattern is seen for SAM, while for SEA, another biomass burning influenced 487 
region, we find less clear trends. While diagnosed trends in total AOD in these regions are mostly of 488 
similar sign across simulations with the three inventories, we find that the trend in sulfate AOD diverges 489 
between model runs using CEDS or CEDS21 (positive trend) and ECLv6 (negative trend) in SAF and 490 
NAF, pointing to a need to better understand the drivers of emission changes in these regions and 491 
homogenize between inventories. As expected, the key differences between simulations with different 492 
inventories arise over Asia. Simulations with  There is also a marked negative trend over South America, 493 
as well as a weaker decline over Equatorial Africa. In contrast, increases in simulated AOD are seen 494 
over Eastern Siberia. A positive, but weaker and not significant at the 0.05 level, trend is also seen over 495 
Canada. This is presumably due to higher biomass burning activity, which is supported by a significant 496 
increasing trend in annual biomass burning carbon emissions in GFEDv4 in the boreal North America 497 
and eastern Eurasia regions over the same period (not shown). There is also a decline in GFEDv4 carbon 498 
emissions in South America and Africa south of the Sahara, suggesting that biomass burning is also a 499 
key driver of the simulated AOD trends there. While the three inventories largely agree in all of above 500 
regions, the key differences arise, as expected, when looking at Asia. Bboth CEDS21 and ECLv6 show 501 
a significant decreasing trend in total AOD over EAS between 2005 and 2017China. While Aa decline 502 
is found also present in the simulations withusing CEDS, it  – when extending the time series to 2017 503 
using SSP245 emissions – but is much weaker and not significant. Moreover, differences between 504 
inventories affect the sign of the simulated trend when considering the full period, owing primarily to 505 
the spread in estimated sulfate AOD. For SAS, we simulate a consistent positive trend, but ranging from 506 
0.01 per decade with ECLv6 to 0.03 per decade with CEDS, with increasing divergence in AOD over 507 
time. Similar magnitude differences between the sets of experiments exist for the AOD of all 508 
anthropogenic aerosol in this region.    Real world emissions have hence likely tracked well below the 509 
SSP245 projections in the region. While all three inventories show a significant positive trend in AOD 510 
over India, this is strongest in CEDS. Regional trends and differences will be further discussed in Sect. 511 
3.4, including a comparison with observations.  512 

 513 

 514 

3.3 Radiative forcing of anthropogenic aerosol since 1990 515 
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Figure 4a shows the RFari, RFaci, and net aerosol radiative forcing (RFnet, RFari plus RFaci) relative 516 
to 1990 for the three sets of experiments. The net RF of changes in anthropogenic (and biomass burning) 517 
aerosol is positive since 1990, except for 1995 and 2005, where a small negative forcing is estimated. 518 
As shown in Fig. 1, all inventories show an increase in anthropogenic SO2 emissions in 2005 compared 519 
to the years before, and both these years have relatively high biomass burning emissions in these years. 520 
This positive global mean RF is determined by the balance between a positive forcing over the northern 521 
extratropics, predominantly due to aerosol-radiation interactions, and a negative forcing over Asia and 522 
parts of South America and Africa (Fig. S3).  523 

In 2014, we estimate a global mean RFnet of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 524 
W m-2 for ECLv6 relative to 1990, of which the RFari constitutes 0.07 W m-2, 0.09 W m-2 and 0.10 W 525 
m-2. Our CEDS RFari estimate is similar to the multi-model mean RFari of 0.05 W m-2 derived for the 526 
1990-2015 period using ECLIPSE version 5 emissions by Myhre et al. (2017). The same study estimated 527 
a model mean RFnet of 0.1 W m-2, but with a significant intermodel spread, from close to zero to more 528 
than 0.2 W m-2. This spread is larger than the difference between estimates with different inventories in 529 
the present analysis. Nevertheless, the differences in emissions between CEDS and CEDS21 (ECLv6) 530 
translates to a factor 3 (5) stronger RFnet in our calculations. These differences arise primarily from the 531 
weaker forcing over East Asia and, for ECLv6, also over South Asia and South and Central America, 532 
compared to CEDS (Figure 4b). In contrast, all three inventories give similar RF over the 1990-2014 533 
period in North America, Europe, and Eurasia and show the effect of the southeastward shift in 534 
emissions over the past decades. A negative forcing is seen over China during this period with all three 535 
inventories; however, this is markedly weaker in CEDS21 and ECLv6 (Fig. S3).     536 

Figure 4c shows the RFnet in 2019 relative to 2014, i.e. the five most recent years provided by CEDS21. 537 
In contrast to the 1990-2014 period (Fig. S3), a net positive forcing is estimated over China, in line with 538 
the decline in SO2 emissions. Over India, the forcing has remained negative, although weaker than 539 
during the preceding period. Over Europe and western Russia, the bulk of the emission decline, and 540 
hence forcing, was already realized until 2014, with only relatively weaker RF seen until 2019. On 541 
global average, RFnet is estimated to be 0.10 W m-2 in 2019 relative to 1990 for CEDS21 emissions 542 
(small reduction from 0.13 W m-2 in 2018 likely due to stronger biomass burning emissions in 2019) 543 
(Fig. 4a).  544 

In the first CEDS release, the most recent historical year was 2014. Using a selection of the SSP 545 
scenarios, Lund et al. (2019) quantified the projected aerosol-induced RF. The orange hatched bars in 546 
Fig. 4 show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with SSP1-1.9, SSP2-4.5 547 
and SSP3-7.0 in that study. The RFnet in 2019 estimated with CEDS21 is close to the lower end of the 548 
bar, i.e. the RFnet projected under SSP3-7.0. However, prior to this higher biomass burning year, there 549 
are indications that the RFnet from simulations with CEDS21 tracked closer to SSP2-4.5 or an even 550 
lower emission pathway.  551 

The dipole pattern of aerosol changes and resulting RF over India versus China was first highlighted by 552 
Samset et al. (2019). Using emissions from CEDS and SSP1-1.9, SSP2-4.5 and SSP3-7.0, combined 553 
with a radiative kernel approach, that study estimated a range of 2014-2030 aerosol (SO2 and BC) RF 554 
of -1.0 W m-2 (SSP1-1.9) to 0.82 W m-2 (SSP2-4.5) over India, and 0.06 W m-2 (SSP2-4.5) to 1.10 W 555 
m-2 (SSP3-7.0) over China. Part of this range can be attributed to poor knowledge of current, and hence 556 
also future, regional emissions (Samset et al. 2019). In the present study, we estimate regionally 557 
averaged RFnet in 2019 relative to 2014 of -0.09 W m-2 and 0.22 W m-2 over India and China, 558 
respectively. For China, this recent RFnet is about 20% of the previously estimated difference between 559 
high and low future aerosol emission scenarios in 2030 (SSP2-4.5 and SSP3-7.0). Uncertainties in the 560 
amount of recent emission reductions can therefore markedly affect assessments of projected near-tern 561 
aerosol-induced climate impacts, as they depend on a well constrained starting point. 562 

 563 
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3.1.34 Comparison with observed AODaerosol trends  564 

To explore We have demonstrated that the differences between recent global inventories translates to 565 
notable differences in global and regional anthropogenic aerosol distributions, trends, and radiative 566 
forcing. To assess whether the model captures observed global and regional trends better with the 567 
CEDS21 emissions than with CEDS, we compare simulated AOD to MODIS-Aqua retrievals and 568 
ground-based AERONET measurement. For this evaluation, we also use simulations where the model 569 
is driven by meteorology for the respective years, referred to as CEDSmet and CEDS21met, are used 570 
(see Sect. 2), for more realistic comparison with the observations. Using both these, we also estimate 571 
negative linear trends in simulated global mean AOD from 2005 to 2017, strengthening from -0.001 per 572 
decade in CEDSmet to -0.003 per decade in CEDS21met. These are, however, weaker than the trends 573 
derived from the fixed meteorology simulations in Sect. 3.1.2 (Fig. 3) and not significant at the 0.05 574 
level, demonstrating the notable influence of variability in meteorology and natural aerosols, masking 575 
trends due to changes in anthropogenic emissions. This influence is particularly visible for the area 576 
averaged AOD for SAF and NAF, where the diagnosed trend is positive but non-significant in these 577 
simulations, in contrast to the negative trend found in simulations with fixed meteorology above. The 578 
negative trend over SAM is also not significant at the at the 0.05 level in these runs. For other focus 579 
regions, results are similar between fixed and actual meteorology runs and significant trends arise over 580 
the natural variability. 581 

Figure 4a shows the annual, global mean simulated AOD from 1990 to 2017 and the MODIS-Aqua 582 
AOD from 2003 to 2019. Dashed lines show the linear 2005-2017 trends. Figures 4b-d show the spatially 583 
explicit trends. Figure 5a shows the annual, global mean simulated AOD from 1990 to 2017 and the 584 
MODIS-Aqua AOD from 2003 to 2019. Dashed lines show the linear 2005-2017 trends. Figures 5b-d 585 
show the spatially explicit trends.  586 

 We first note that The the magnitude of simulated global mean AOD is lower than that derived from 587 
the MODIS-Aqua, by around 20%. However, the overall geographical pattern of the observed AOD is 588 
captured by the model (Fig. S54).  Furthermore, the AOD simulated by the OsloCTM3 is within, 589 
although in the lower range, of the spread in AOD between the CMIP and AeroCom models (Vogel et 590 
al., 2022). As also shown by Vogel et al. (2022), there can be a notable spread also in AOD derived 591 
from different satellite products. They found a 13% standard deviation range in global mean AOD 592 
between eight satellite products, , wherewith MODIS retrievals comes out in the upper end. Furthermore, 593 
although again the lower range, Tthe OsloCTM3 AOD falls is within the full range standard deviation 594 
range ofof the  satellite- derived annual mean AOD found in that study. Overall, this suggests a 595 
reasonable OsloCTM3 performance in terms of magnitude and distribution.   596 

In terms of temporal evolution, we estimate weakly negative linear trends in simulated global mean 597 
AOD from 2005 to 2017 with both CEDS and CEDS21, albeit not significant at the 0.05 level. Using 598 
the original release of the CEDS emissions with the SSP2-4.5 extension (i.e. CEDSmet), we calculate a 599 
trend in global mean AOD of -0.001 per decade. With CEDS21 emissions, this strengthens to -0.003 600 
per decade. These are weaker than the trends associated with anthropogenic emission changes derived 601 
from the fixed meteorology simulations in Sect. 3.1 (-0.003 and -0.005 per decade with CEDS and 602 
CEDS21, respectively) and not significant, demonstrating the influence of variability in meteorology 603 
and natural aerosols. Consistent evidence of a declining influence of anthropogenic aerosols on climate 604 
has also been found for a range of observed variables (Quaas et al., 2022). Consistent evidence of a 605 
declining influence of anthropogenic aerosols on climate has also been found for a range of observed 606 
variables (Quaas et al., 2022).  607 

In contrast, MODIS-Aqua data indicatessuggests a very weak positive linear trend of 0.001 per decade 608 
in global mean AOD over the 2005-2017 period (, further strengthening to 0.004 per decade when 609 
extending the data to considering the full time series of available observations (2003-2019). We do not, 610 
however, find this trend to be significant at the 0.05 level. MODIS data is influenced by This could in 611 
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part be due to influence from the substantial year-to-year variability, in particular  seen aafter 2010, 612 
which was also pointed out by Vogel et al. (2022). Regions of significant positive observed AOD trend 613 
include parts of the ocean in the southern hemisphere A positive global AOD trend was also found in 614 
ground based observations by Mortier et al. (2020). This positive observed trend is driven by an increase 615 
in AOD over oceans, associated with sea salt aerosol, as well as over boreal regions in the northern high 616 
latitudes, associated with biomass burning aerosol (Fig. 54b). Here, sea salt aerosols could be causing 617 
the increase. However, Quaas et al. (2022) recently showed that this positive trend is not clear in Multi-618 
angle Imaging SpectroRadiometer (MISR) data.  We do not, however, find this trend to be significant 619 
at the 0.05 level. This could in part be due to influence from the substantial year-to-year variability seen 620 
after 2010, which was also pointed out by Vogel et al. (2022). While we are primarily focused on the 621 
anthropogenically-influenced regions in the present analysis, we briefly note that the model does not 622 
fully capture the magnitude of the trends over high-latitude boreal biomass burning regions, nor over 623 
the sSouthern hemisphere oceanic regions is also not captured by the model  (Fig. 45c-d). While studies 624 
to date show a wide spread in simulated response of sea spray aerosol to changing climate, recent studies 625 
have suggested increases both at the global (Struthers et al., 2013) and, even more strongly, at the 626 
regional scale (Korhonen et al., 2010). Moreover, other factors than wind speed are proposed to be 627 
possible drivers of a climate feedback on sea salt aerosol (e.g. Paulot et al., 2020, and references therein). 628 
Better understanding of changing natural aerosols in the OsloCTM3 and reasons for the discrepancies 629 
compared to observations require further, dedicated studies.We also simulate weaker trends in the boreal 630 
regions of North America and Russia, contributing to the model-observation difference.  631 

Over the main anthropogenic emission sources regions, Regionally, there are significant observed 632 
declines in AOD over East Asia, eastern US, and parts of Europe (Fig. 45b). These trends have been 633 
confirmed by both ground based and remote sensing observations of AOD and other variables (Gui et 634 
al., 2021; Moseid et al., 2020; Paulot et al., 2018; Quaas et al., 2022). For NAM and EUR, we calculate 635 
an area average negative observed trend of -0.006 and -0.009, respectively, from MODIS-Aqua. This is 636 
of the same sign but weaker than the trend simulated with both emission inventories. For the latter, this 637 
contrast findings by Mortier et al. (2020), where models in general were found to underestimate the 638 
observed decrease in AOD seen in surface observations. Over EAS, where the influence of inventory 639 
differences is most pronounced, a significant negative observed trend of -0.044 per decade is calculated. 640 
This is in very close agreement with the -0.40 per decade AOD trend simulated with the CEDS21, while 641 
simulations with CEDS do not show a significant trend. Hence, the model is clearly able to better 642 
represent observed trends with the updated inventory. This is further confirmed in Fig. 5, where we 643 
show five-year average deviations from the period 2003-2017 in both MODIS-Aqua and simulated 644 
AOD. Using CEDS21 results in marked improvements compared to observed AOD trends over China, 645 
both for the first and most recent full 5-year periods. However, the opposite tendency is found for AOD 646 
over SAS. Here we estimate and observed significant positive trend of 0.04 per decade. The diagnosed 647 
trends are also positive in simulations using both inventories, but somewhat weaker, especially when 648 
switching from CEDS to CEDS21 (and even more so when using EClv6 emissions - Fig.3). Figure 5 649 
suggests that this discrepancy arises in the more recent decade. Furthermore, inventories and simulated 650 
AOD suggest a leveling off in the increase in recent years, which is not seen from MODIS-Aqua. 651 
Whether this is due to inaccurate representation of the evolution of anthropogenic emissions in the 652 
inventories or could be influenced by poor model representation of other aerosols such as dust from 653 
agricultural soils and urban areas (e.g. construction, non-exhaust transport emissions), is however not 654 
clear from this analysis. We note that the model underestimates the magnitude of AOD observed by 655 
MODIS-Aqua in both EAS and SAS. To the extent that the MODIS is accurate, this could support the 656 
latter. This type of dust is suggested to give an important contribution to the particulate matter load (e.g. 657 
Chen et al., 2019; Xia et al., 2022), but are stilling missing from many global models. Other contributing 658 
factors include the representation of processes related to aerosol transport and scavenging. Finally, A 659 
negative trend is also seen over South America; however, this is not significantly different from zero 660 
over this period. A significant positive trend is seen over India. The trends over North America, Europe, 661 
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and Asia are consistent with the concurrent changes in anthropogenic emissions and have been seen in 662 
both ground based and remote observations of both AOD and other variables (Gui et al., 2021; Moseid 663 
et al., 2020; Paulot et al., 2018; Quaas et al., 2022). The trends in AOD simulated with the OsloCTM3 664 
show the same sign as MODIS-Aqua in most regions, for both emission inventories (Fig. 5c-d). As 665 
expected from results in preceding sections, the main differences, between CEDSmet and MODIS-666 
Aqua, as well as between model results, arise over Asia. We therefore take a closer look at the evolution 667 
of AOD in this region (Fig. 6). Both MODIS-Aqua and the OsloCTM3 show an increase in AOD over 668 
India from 2008, although modeled changes are weaker in magnitude. As indicated by preceding 669 
sections, using CEDS21 results in marked improvements compared to observed AOD trends over China, 670 
both for the first and last full 5-year periods. A continuation of the dipole pattern of increases and 671 
decreases over India and China is evident from the observations for the 2018-2020 period (noting that 672 
the COVID-19 pandemic resulted in significant temporary impacts on emissions in 2020). In the case 673 
of India, this increase suggests that the leveling off in anthropogenic emissions in the inventories (Fig. 674 
S1) may not be representative of the observed evolution. However, we note that natural emissions, as 675 
well as long-range transport, may factor into the observed trend as well, complicating the comparison. 676 
Wwe also note that the 5-year deviations in Fig. 5 show exhibit quite some variability over the Middle 677 
East, with both positive and negative deviations from the baseline period. While anthropogenic 678 
emissions in this region increase steadily over the period (by 13-40% depending on species) in the 679 
inventories used in the present study, the strong influence from dust emissions in this region likely 680 
dominates the contributes to the temporal variability.   681 

A previous OsloCTM3 study by Lund et al. (2018) found an improved agreement between year 2010 682 
ground-based AERONET observations and model output, including over Asia, when switching from 683 
CMIP5 and ECLIPSEv5 emissions to CEDS, the latter having higher emissions. This seemingly 684 
contradicts expectations following the now-known biases in this first release of CEDS. Here we repeat 685 
the comparison with AERONET measurements, but for year 2014. Resulting scatter density plots are 686 
given in Fig. S6the SI.  687 

On global average, the model underestimates observed AOD, consistent with the comparison against 688 
MODIS-Aqua and Lund et al. (2018). The normalized mean bias (NMB) compared to AERONET 689 
ranges from -212 to -29% in the simulations with fixed and actual  meteorology (Fig. S5). This 690 
underestimation is somewhat larger than what was found by Lund et al. (2018), but since the year, 691 
number of measurements and stations are different, a direct comparison is difficult. These simulations 692 
use 2010 meteorology, however, the difference in meteorology appears to only explain a small part of 693 
the bias, as can be seen by comparing scatter density plots for CEDS and CEDSmet and CEDS21 and 694 
CEDS21met. Interannual variability may also play a role. We consistently find higher bias NMB and 695 
lower correlation when switching from the original CEDS release to CEDS21 and ECLv6. The largest 696 
normalized mean bias (NMB) of -29% is found in the simulation using ECLv6 emissions, the lowest of 697 
the three inventories, while the smallest NMB is calculated for CEDS (-22%) (Fig. S5). Hence, while 698 
the model is better able to represent observed recent aerosol trends over East Asia with newer emission 699 
inventories, these results point to other issues that may have been . Specifically, our analysconcealed by 700 
too high anthropogenic emissions. Dust and atmospheric processing, as discussed above, are again a 701 
possible contributing factors. is indicates that the too high emissions in CEDS may have partly concealed 702 
underestimations of other aerosol sources in the model. One possible candidate is dust aerosol from soils 703 
in agricultural regions and human activities in urban areas (e.g. construction, non-exhaust transport 704 
emissions), which are suggested to give an important contribution to the particulate matter load (e.g. 705 
Chen et al., 2019; Xia et al., 2022), but is stilling missing from many global models, including the 706 
OsloCTM3.  707 

 708 
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3.3 Radiative forcing of anthropogenic aerosol since 19903.2 Impact of inventory differences 709 

on estimated anthropogenic aerosol RF 710 

Finally, we quantify the aerosol-induced RF from the three sets of experiments.  711 

Figure 64a shows the RFari, RFaci, and net aerosol radiative forcing (RFnet, RFari plus RFaci) relative 712 
to 1990 for the three sets of experiments. The net RF of changes in anthropogenic (and biomass burning) 713 
aerosol is positive since 1990, except for 1995 and 2005, where a small negative forcing is estimated. 714 
As shown in Fig. 1, global all inventories show an increase in anthropogenic SO2 emissions show a peak 715 
emissions in 2005 compared to the years before, and both these years have the relatively high biomass 716 
burning emissions are relatively highin these years. This positive global mean net RF is determined 717 
mainly by the balance between a positive forcing over the northern extratropics, 718 
predominantlydominated by  due to aerosol-radiation interactions, and a negative forcing over Asia and 719 
parts of South America and Africa with stronger contributions from aerosol-cloud interactions (Fig. 720 
S37).  721 

In 2014, we estimate a global mean RFnet of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 722 
W m-2 for ECLv6 relative to 1990, of which the RFari constitutes 0.07 W m-2, 0.09 W m-2 and 0.10 W 723 
m-2, respectively. We note that our framework only captures the cloud albedo effect and not radiative 724 
effects of any changes in cloud lifetime that may arise through the influence of aerosols (i.e. we calculate 725 
RF, not ERF). Our CEDS RFari estimate using CEDS emissions is similar to the multi-model mean 726 
RFari of 0.05 W m-2 derived for the 1990-2015 period using ECLIPSE version 5 emissions by Myhre et 727 
al. (2017). The same study estimated a model mean RFnet of 0.1 W m-2, but with a significant intermodel 728 
spread, from close to zero to more than 0.2 W m-2. This spread is larger than the difference between 729 
estimates with different inventories in the present analysis. Nevertheless, the differences in emissions 730 
between CEDS and CEDS21 (ECLv6) translates to a factor 3 (5) stronger RFnet in our calculations.  731 

Figure 6b shows regional mean RF, including the balance between RFari and RFaci. Following the 732 
significant decline in AOD over EUR and NAM, the dominant contributions to positive RF are found 733 
here, followed by Russia. There is however little difference between simulations with three inventories. 734 
In contrast, the net RF over EAS switches sign from negative in simulations with CEDS to positive 735 
when using CEDS21 or ECLv6 due to observed decline in emissions now captured. While negative in 736 
all three sets of experiments, the net RF over SAS is 40% (20%) weaker when ECLv6 (CEDS21) 737 
emissions are used compared to CEDS. This results from a 50% (20%) lower net area averaged AOD 738 
change between 1990 and 2014, compared to simulations with CEDS.   739 

These differences arise primarily from the weaker forcing over East Asia and, for ECLv6, also over 740 
South Asia and South and Central America, compared to CEDS (Figure 4b). In contrast, all three 741 
inventories give similar RF over the 1990-2014 period in North America, Europe, and Eurasia and show 742 
the effect of the southeastward shift in emissions over the past decades. A negative forcing is seen over 743 
China during this period with all three inventories; however, this is markedly weaker in CEDS21 and 744 
ECLv6 (Fig. S3).     745 

The CEDS21 inventory extends to 2019, compared to 2014 in CEDS. The global mean net RF over this 746 
five-year period is estimated to be 0.10 W m-2, driven primarily by a further positive forcing over China 747 
in line with the continued decline in SO2 emissions following implementation of measures targeting 748 
improved air quality. Over India, the forcing in 2019 relative to 2014 remains negative, but weaker than 749 
during the preceding period, while over Europe and western Russia, the RF is low suggesting little 750 
further recent emission changes (not shown). We note however that this is short period and results should 751 
be interpreted with that in mind. Figure 4c shows the RFnet in 2019 relative to 2014, i.e. the five most 752 
recent years provided by CEDS21. In contrast to the 1990-2014 period (Fig. S3), a net positive forcing 753 
is estimated over China, in line with the decline in SO2 emissions. Over India, the forcing has remained 754 
negative, although weaker than during the preceding period. Over Europe and western Russia, the bulk 755 
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of the emission decline, and hence forcing, was already realized until 2014, with only relatively weaker 756 
RF seen until 2019. On global average, RFnet is estimated to be 0.10 W m-2 in 2019 relative to 1990 for 757 
CEDS21 emissions (small reduction from 0.13 W m-2 in 2018 likely due to stronger biomass burning 758 
emissions in 2019) (Fig. 4a). Using a selection of the SSP scenarios, Lund et al. (2019) extended 759 
simulations from 2014 CEDS emissions and quantified the projected aerosol-induced RF. The orange 760 
hatched bars in Fig. 6 show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with SSP1-761 
1.9, SSP2-4.5 and SSP3-7.0 in that study. The RFnet in 2019 estimated with CEDS21 here is close to 762 
the lower end of the bar, i.e. the RFnet projected under SSP3-7.0. However, prior to this higher biomass 763 
burning year, there are indications that the RFnet from simulations with CEDS21 tracked closer to SSP2-764 
4.5 or an even lower emission pathway.  765 

 766 

In the first CEDS release, the most recent historical year was 2014. Using a selection of the SSP 767 
scenarios, Lund et al. (2019) quantified the projected aerosol-induced RF. The orange hatched bars in 768 
Fig. 4 show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with SSP1-1.9, SSP2-4.5 769 
and SSP3-7.0 in that study. The RFnet in 2019 estimated with CEDS21 is close to the lower end of the 770 
bar, i.e. the RFnet projected under SSP3-7.0. However, prior to this higher biomass burning year, there 771 
are indications that the RFnet from simulations with CEDS21 tracked closer to SSP2-4.5 or an even 772 
lower emission pathway.  773 

The dipole pattern of aerosol changes, and resulting RF, over India versus China that can be seen 774 
continuing in observations and is expected to impose regional climate impacts, was first highlighted by 775 
Samset et al. (2019). Using emissions from CEDS and SSP1-1.9, SSP2-4.5 and SSP3-7.0, combined 776 
with a radiative kernel approach, that study estimated a range of 2014-2030 aerosol (SO2 and BC) net 777 
RF of -1.0 W m-2 (SSP1-1.9) to 0.82 W m-2 (SSP2-4.5) over India, and 0.06 W m-2 (SSP2-4.5) to 1.10 778 
W m-2 (SSP3-7.0) over China. Part of this range can be attributed to poor knowledge of current, and 779 
hence also future, regional emissions (Samset et al. 2019). In the present study, we estimate regionally 780 
averaged RFnet in 2019 relative to 2014 of -0.09 W m-2 and 0.22 W m-2 over India and China, 781 
respectively. For China, this recent RFnet is about 20% of the previously estimated difference between 782 
high and low future aerosol emission scenarios in 2030 (SSP2-4.5 and SSP3-7.0). Missing or incorrectly 783 
captured Uncertainties in the amount of recent past emission trendsreductions can therefore markedly 784 
affect assessments of projected near-termn aerosol-induced climate impacts, as they depend on a well 785 
constrained starting point. 786 

 787 

 788 

4 Conclusions 789 

We have investigated the impact of differences between recent global emission inventories available for 790 
the aerosol and climate modeling community on simulated anthropogenic aerosol abundances, and 791 
associated radiative forcing, from 1990 to 2019. Simulations with the chemical transport model 792 
OsloCTM3 and the CEDS emission inventory, developed for the sixth cycle of the IPCC, has beenare 793 
compared with corresponding results using two newer inventories: The CEDS 2021 update (CEDS21) 794 
and the ECLIPSE version 6b (ECLv6). Our objective was to evaluate the model performance 795 
considering revisions to the emissions input data, partly done to correct known regional biases, and to 796 
investigate the implications of inventory differences on downstream diagnosed quantities critical for 797 
assessing the air quality and climate effects of anthropogenic aerosol.  798 

Our main objective was to explore the implications of now known biases in CEDS, specifically the 799 
underestimation of the decline in Chinese precursor emissions and an overestimation of Asian and 800 
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African BC and OC emissions. While largely addressed in the updated release, these biases introduce 801 
added uncertainty in recently published estimates of the anthropogenic aerosol evolution and effects.  802 

We have found that, apart for nitrate, simulations with the CEDS21 (ECLv6) inventory give result in 803 
lower global mean aerosol burdens than corresponding runs with CEDS, ranging from 4% (6%) for BC 804 
to o 18papprox.. 10% (15%) for sulfate and POA in 2014 (the most recent historical year common for 805 
all scenarios). Differences are consistently most pronounced over East Asia, followed by South Asia, 806 
where they are on the order of 30-60% depending on species and scenario. Difference in the underlying 807 
anthropogenic emissions arise from different assumptions about emission rates, data on non-energy 808 
sources, and, importantly, representation of air quality policies and their implementation efficiency. We 809 
also note marked differences between CEDS and ECLv6 over North Africa and the Middle East. In our 810 
model, the global mean fine mode nitrate burden is 15% (24%) higher with CEDS21 (ECLv6) relative 811 
to CEDS, but with regional heterogeneity in sign of the difference. Overall, we estimate 3% (6%) lower 812 
total AOD with CEDS21 (ECLv6), respectively, compared to CEDS in 2014. The difference reaches 813 
18approx.. 20% and 30% over East and South Asia.  814 

Over East Asia, we diagnose a significant negative linear trend in total area averaged AOD from 2005 815 
to 2017 of -0.03 per decade in simulations using the ECLv6 emissions. In contrast, we find no significant 816 
trend in corresponding experiments with CEDS. Changes in anthropogenic emissions result in a negative 817 
linear trend in global mean AOD over the 2005-2017 period with all three inventories, but increasingly 818 
stronger with CEDS21 (ECLv6). Importantly, we find that the model is better able to capture the 819 
declining AOD ttrend observed by MODIS-Aqua over China with both new inventories, whereas it is 820 
weak and not significant with CEDS. In all three sets of simulations, we estimate a significant A positive 821 
linear AOD trend is found over South AsiaIndia. The simulated trend is, however, ; however, it is weaker 822 
than that derived from in the model than in MODIS-Aqua data and this gap increases when switching 823 
from CEDS to the CEDS21 and ECLv6 inventories. We also underestimate the magnitude of observed 824 
AOD in the region, at least compared to this specific satellite product. Recent emission trends are less 825 
well constrained by observations in India than e.g. in China. The extent to which the model-observation 826 
difference arises from the input of anthropogenic emissions or could be influenced by poor model 827 
representation of other aerosols sources or atmospheric processes, is not clear from the present analysis. 828 
For other regions considered, there is generally agreement in the sign of the simulated area averaged 829 
AOD trend between the three sets of simulations, although the magnitude can differ, in particular for 830 
the AOD of individual species. For instance, there is an increasing (over time) divergence in the sulfate 831 
AOD over Africa between simulations using CEDS and ECLv6. .Over most regions, nitrate AOD 832 
increases, however,  nitrate contribute relatively less to total AOD than sulfate and OA.  833 

Using offline radiative transfer calculations, we estimate a global mean net aerosol RF in 2014 relative 834 
to 1990 of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 W m-2 for ECLv6. Following the 835 
continued declined in CEDS21 emissions, a positive global-mean net RF is also estimated for the 5-year 836 
period 2014-2019, with the strongest positive signals over China and easter US. Regionally, the sign of 837 
the net aerosol-induced RF switched from negative to positive when replacing CEDS emissions with 838 
CEDS21 or ECLv6 in our study. Hence, the failure to capture recent observed emission trends in China 839 
may have resulted in the wrong sign in estimates of the regional effect on the energy balance over recent 840 
decades. Over South Asia, the area average net RF is up to 40% lower in simulations with the updated 841 
inventories compared to CEDS.   842 

While the focus of the present study is on anthropogenic aerosols, our comparison with observed AOD 843 
reveals potential issues related to the representation of natural aerosols or other processes in the 844 
OsloCTM3. SpecificallyIn particular, the modeled AOD does not capture the strength of the slight 845 
ppositive AOD global tretrend observed over high latitude North America and Russia, likely due to an 846 
increase in biomass burning aerosolsapparent in MODIS-Aqua, with key discrepancies over northern 847 
hemisphere biomass burning regions and the Southern Ocean. For individual years, we also find a larger 848 
underestimation in AOD compared to AERONET measurements when switching from CEDS to the 849 
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lower CEDS21 and ECLv6 emissions, despite better representation of some key regional observed 850 
trends. Further This could indicate that too high anthropogenic emission estimates have masked 851 
challenges with for instance dust emissions. Dedicated studies are required to investigate this in more 852 
detail.  853 

Anthropogenic aerosols are changing rapidly, particularly in Asia, with potentially large but 854 
insufficiently quantified implications for regional climate. We have demonstrated that differences 855 
between recent emission inventories translates to notable differences in global and regional trends in 856 
anthropogenic aerosol distributionscan have marked effects on the magnitude and trend of regional and 857 
global aerosol abundances, and in turn ion estimates of radiative forcing. Although additional studies 858 
are required to fully quantify the broader implications for aerosol-induced climate and health impacts, 859 
our results facilitate comparisons between existing and upcoming studies, using different emission 860 
inventories, of anthropogenic aerosols and their effects.  861 
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Tables:  1184 

 1185 

Table 1: Summary of experiments used in the study.  1186 

Name  Description Years simulated  

CEDS CEDS v2016 emissions, fixed meteorology 1990, 1995, 2000, 2005, 2010 

2014 

CEDS21 CEDS v2021 emissions, fixed meteorology  1990, 1995, 2000, 2005, 2010 

2014, 2016, 2018, 2019 

ECLv6 ECLIPSEv6b emissions, fixed meteorology  1990, 1995, 2000, 2005, 2010 

2014, 2016 

CEDSmet CEDS v2017 emissions until 2014 and SSP2-4.5 for 

2015-2017, running meteorology  

1990-2017 

CEDS21met CEDS v2021 emissions, running meteorology 2001-2017 
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Figures:  1212 

 1213 

 1214 

 1215 

 1216 

Figure 1 Global total anthropogenic emissions of SO2, BC, OC, and NOx, NH3, and NMVOC in the 1217 
CEDS21, ECLv6, CEDS17 inventories, for the period 1990 to the most recent inventory year (2019, 1218 
2016 and 2014, respectively). Dotted lines show emissions from the SSP2-4.5 scenario, linearly 1219 
interpolated from 2015 to 2019. The maps show the difference in SO2 emissions in 2014, the most recent 1220 
common year  1221 
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 1231 

Figure 2 Absolute difference in regional mean burden of the key anthropogenic aerosol species between 1232 
simulations with CEDS21 and CEDS (upper bar) and ECLv6 and CEDS (lower bar). Regions are the 1233 
same as in Lund et al. (2019): EAS = East Asia, SAS = South Asia, SAF = Sub-Saharan Africa, NAM = 1234 
North America, SAM = South America, NAF = North Africa and the Middle East, EUR = Europe, SEA 1235 
= South East Asia, RBU = Russia.  1236 
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 1239 

Figure 3: a) Global and regional mean total AOD simulated with emissions from the CEDS21, ECLv6 1240 
and CEDS inventories. In the case of CEDS, the timeseries is extended from 2014 to 2017 using SSP2-1241 
4.5 emissions. Dashed lines show the linear 2005-2017 trend, defined as statistically significant from 1242 
no trend when the linear Pearsons correlation coefficient is significant at the 0.05 level. To reduce any 1243 
influence of individual, outlier years on the trends, we calculate a set of trends removing one-and-one 1244 
year from the sample and show the average. Significance is given in the parenthesis. If a dash is given, 1245 
individual trends from the sample differed from each other in terms of significance.  b) Difference in 1246 
AOD between the two inventories and CEDS in 2014, i.e. the last year of historical emissions in CEDS. 1247 
Also shown is the interannual variability in MODIS AOD. c) Regional linear trends in AOD over 2005-1248 
2017 with the three different emission inventories.  1249 

  1250 

 1251 



31 
 

 1252 

Figure 4: a) RFari and RFaci (left) and RFnet (RFari+RFaci) relative to 1990 under the CEDS21, 1253 
ECLv6, and CEDS emission inventories. The vertical bars to the right show the range in RFnet in 2020 1254 
and 2030 (relative to 1990) estimated with the SSP1-1.9 and SSP3-7.0 emissions (adapted from Lund et 1255 
al. (2019)). b) Difference in RFnet in 2014 relative to 1990 between simulations with ECLv6 and CEDS 1256 
emissions. c) The RFnet in 2019 relative to 2014 with CEDS21.  1257 
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 1268 

Figure 45: a) Global, annual mean AOD from MODIS-Aqua and the OsloCTM3 over the 1990-2019 1269 
period. Note that data north and south of 70° is excluded here due to the limited MODIS-Aqua coverage. 1270 
Dashed lines show linear trend from 2005 to 2017. b-d) Spatially resolved linear trends in observed and 1271 
simulated AOD. Hatching indicates where the linear trend is significantly different from zero at the 0.05 1272 
level.  1273 
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 1279 

Figure 56:  Evolution of AOD over South and East Asia, and the Middle East, over the period 2003-1280 
2020. All panels show five-year average deviations from the period 2003-2017, except the rightmost 1281 
MODIS-Aqua panel which show the three-year average deviation (same baseline). The top row shows 1282 
retrievals from MODIS Aqua; the two bottom rows show model calculations with OsloCTM3 based on 1283 
the CEDS and CEDS21 emission inventories. 1284 
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 1305 

Figure 46: a) Global mean RFari and RFaci (topleft) and RFnet (RFari+RFaci) (bottom) relative to 1306 
1990 from simulations under using  tthe CEDS, CEDS21, and ECLv6, and CEDS emission inventories. 1307 
The vertical bars to the right show the range in RFnet in 2020 and 2030 (relative to 1990) estimated 1308 
with the SSP1-1.9 and SSP3-7.0 emissions (adapted from Lund et al. (2019)). b) Regional mean RFnet, 1309 
RFari, and RFaci in Difference in RFnet in 2014 relative to 1990 betweenin simulations with CEDS, 1310 
CEDS21, and ECLv6 and CEDS  inventoriesemissions. c) The RFnet in 2019 relative to 2014 with 1311 
CEDS21.  1312 
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