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Abstract. Accurate estimation of wind speed at wind turbine hub height is of significance for wind 

energy assessment and exploitation. Nevertheless, the traditional power law method (PLM) generally 

estimates the hub height wind speed by assuming a constant exponent between surface and hub height 10 

wind speed. This inevitably leads to significant uncertainties in estimating wind speed profile 

especially under unstable conditions. To minimize the uncertainties, we here use a machine learning 

algorithm known as Random Forest (RF) to estimate the wind speed at hub heights such as at 120 m 

(WS120), 160 m (WS160) and 200 m (WS200). These heights go beyond the traditional wind mast limit 

of 100-120 m. The radar wind profiler and surface synoptic observations at the Qingdao station from 15 

May 2018 to August 2020 are used as key inputs to develop the RF model. A deep analysis of the RF 

model construction has been performed to ensure its applicability. Afterwards, the RF model and the 

PLM are used to retrieve the WS120, WS160 and WS200. The comparison analyses from both RF and 

PLM models are performed against radiosonde wind measurements. At 120 m, the RF model shows a 

relative higher correlation coefficient R of 0.93 and a smaller RMSE of 1.09 m/s, compared with the 20 

R of 0.89 and RMSE of 1.50 m/s for the PLM. Notably, the metrics used to determine the performance 

of model declines sharply with height for the PLM model, as opposed to the stably variation for the 

RF model. This suggests the RF model exhibits advantages over the traditional PLM model. This is 

because the RF model well considers the factors such as surface friction and heat transfer. The diurnal 

and seasonal variations of WS120, WS160 and WS200 from RF are then analyzed. The hourly WS120 is 25 

large at daytime from 0900 to 1600 local solar time (LST) and reach a peak at 1400 LST. The seasonal 

WS120 is large in spring and winter and is low in summer and autumn. The diurnal and seasonal 

variations of WS160 and WS200 are similar to those of WS120. Finally, we investigated the absolute 

percentage error (APE) of wind power density between RF and PLM at different heights. In the vertical 

direction, the APE is gradually increased as the height increases. Overall, the PLM algorithm has some 30 

limitations in estimating wind speed at hub height. The RF model that combines more observations or 
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auxiliary data is the more suitable for the hub height wind speed estimation. These findings obtained 

here have great implications for the development and utilization of wind energy industry in the future. 
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1. Introduction   

With the rapid economic development of the world, the massive consumption of fossil fuels produces 

an increasing emission of carbon dioxide, sulfur dioxide and other pollutants (Yuan, 2016; Magazzino 

et al., 2021). To tackle this problem, it is increasingly becoming imperative to develop renewable clean 

energy (Hong et al., 2012; Luo et al., 2022). Among the myriad renewable energy resources, wind 40 

energy has gained more and more favors because of its abundant availability, good sustainability, and 

high cost-effectiveness (Li et al., 2018; Leung et al., 2012). As one of the largest energy consuming 

countries in the world, China is currently facing an increasingly serious energy and climate situation 

(Khatib et al., 2012). The Chinese government proposes to peak its carbon dioxide emissions before 

2030 and achieve carbon neutrality before 2060 (Shi et al., 2023; Su et al., 2022a; 2022b). With the 45 

stimulus of policies and the favor of investors, wind power industry in China is flourishing. Therefore, 

the scientific assessment of wind energy resources in China is of great importance for the healthy 

development of wind energy industry in the decades to come. 

Characterizing the wind speed at wind turbine hub height is key for wind energy assessment (Yu et al., 

2022). The wind turbine is usually installed at the top of wind mast with a height of 100-120 m above 50 

ground level (AGL), which roughly corresponds to the surface layer (Veers et al., 2019). The wind 

speed data that have been widely used for wind energy assessment are mainly obtained from wind 

mast, Doppler lidar or reanalysis data (Debnath et al., 2021; Lolli et al., 2011; 2021). The 10 m wind 

data measured by the ground meteorological station can be used for wind energy assessment (Oh et al. 

2012; Liu et al., 2019). The wind tower or mast can also provide wind speed observation data below 55 

100 m AGL (Durisic et al. 2012; Liu J. et al., 2018). Moreover, the reanalysis data, such as the fifth 

generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis system 

(ERA5), can provide the hourly wind speed at a height of 10 or 100 m AGL for wind energy assessment 

(Laurila et al., 2021; Gualtieri, 2021). However, the wind turbines are increasing in height and rotor 

diameter with the development of technology, which go beyond the surface layer and enter the Ekman 60 

layer. Such as some offshore wind power plants, the blade tips of the largest wind turbine can reach 

heights of 250 m AGL (Gaertner et al. 2020). In addition, increasing wind turbine hub height reduces 

the impact of surface friction, enabling wind turbines to operate in high-quality wind resource 
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environments (Veers et al., 2019). Therefore, the wind profile is important for the selection of wind 

turbine hub height and the assessment of wind energy. 65 

It is widely recognized that the wind profile is mainly obtained by empirical formulae (Li et al., 2018), 

such as the power law method (PLM). The PLM method generally assumes that the wind speed below 

150 m in the planetary boundary layer (PBL) varies exponentially with height (Hellman et al. 1914). 

This means that the wind speed at the wind turbine hub height can be calculated from the surface wind 

speed based on a constant power law exponent (α). However, the surface layer wind profile is mainly 70 

controlled by the surface roughness, friction velocity and the atmospheric stability (Gryning et al., 

2007). The surface layer is where obstructions such as trees, buildings, hills, and valleys cause 

turbulence and reduce the wind speed (Coleman et al., 2021; Solanki et al., 2022). Due to the influence 

of inhomogeneous underlying surface and ubiquitous atmospheric turbulence, wind speed varies 

constantly and greatly in the vertical (Tieleman 2021). Especially above surface layer, the factors, such 75 

as the Coriolis force, baroclinity and wind shear, increase the complexity of the wind profile (Brümmer 

1991). As a result, the α has spatiotemporal variability and depends on a variety of factors, such as 

terrain, time and height (Li et al., 2018). Therefore, the assumption of a constant α poses great 

challenges and uncertainties to wind energy assessment. Some studies use more complex models to 

improve the PLM, such as the perturbation theory (Sen et al., 2012) and the bivariate wind speed-wind 80 

shear model (Jung et al., 2017). These studies confirm that there is a complex nonlinear relationship 

between surface observations and wind speed at the wind turbine hub height. Therefore, one of the 

greatest challenges is to develop an accurate method to describe the nonlinear transfer from surface 

observations to wind speed at wind turbine hub height. 

With the development of machine learning (ML) technology, the ML algorithms have been widely 85 

used in the field of wind speed and wind power prediction (Magazzino et al., 2021). Chi et al. (2015) 

compared two wind speed-forecasting mechanisms in China based on linear regression and support 

vector machine algorithm. They find that the ML algorithms have better accuracy in solving the 

nonlinear problem. Lahouar and Slama et al. (2017) use several meteorological factors to forecast wind 

power based on a random forest (RF) model. The results indicate that compared with physical and 90 

statistical approaches, the ML model can achieve better accuracy when coping with problems that 

cannot be analytically defined. Therefore, it is worth trying to use ML algorithms to retrieve the wind 

speed at wind turbine hub height from available observations. 

Given the abovementioned problems, we attempt to use a ML algorithm known as RF to retrieve wind 

speed at wind turbine hub height from the radar wind profiler (RWP) and surface synoptic observations. 95 
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A RF model has been trained based on the surface in situ wind speed, high-height RWP wind speed 

and corresponding surface meteorological data from May 2018 to August 2020. The performance of 

the classical PLM method and the RF model are then compared. Next, the wind speeds from the RF 

model are used to evaluate the wind power. The results of our study can provide useful information 

for the development of wind energy industry in coastal China. The observational data are introduced 100 

in section 2. The RF model construction and wind energy evaluation method are displayed in section 

3. Section 4 discusses the accuracy of the RF model and the variation of wind energy resources. A 

summary of results is presented in section 5. 

2. Materials and Data 

2.1 RWP data 105 

The RWP is a ground-based remote sensing device that is used to measure the atmospheric wind 

profiles from surface to 5-8 km AGL (Liu B. et al., 2019; Guo et al., 2021a). It has high and low 

detection modes in the vertical direction, and their corresponding vertical resolutions are 120 and 60 

m, respectively (Liu et al., 2020; Chen et al., 2023). Nevertheless, the wind profile near the ground 

surface, especially those below 300 m AGL are usually highly uncertain, due to the influence of ground 110 

and intermittent clutter (May and Strauch 1998; Allabakash et al., 2019). Therefore, there exists large 

data gap between ground surface and the lowest measurement height provided by the RWP. Here, the 

RWP data are obtained at Qingdao (120.23 °E, 36.33 °N), which is a typical coastal synoptic weather 

station. The spatial distribution and surface type of this station are shown in Fig. 1. Geographically, 

Qingdao station is located on the south of Shandong Peninsula and lies to the west of the Yellow Sea. 115 

To be more specific, this station is set up in the suburb, surrounded by cropland. The altitude of this 

station is 12 m above mean sea level. The hourly wind speed (WS300) and direction (WD300) data at 

300 m AGL are obtained from 1 May 2018 to 31 August 2020. The original RWP data at 6-min 

intervals have not been released temporarily, but can be reasonably requested upon demand by 

contacting Dr. Jianping Guo (Email: jpguocams@gmail.com). 120 

2.2 Anemometer 

The wind cup anemometer can measure the instantaneous wind speed and is installed at 10 m AGL 

(Mo et al., 2015). The sensing part of wind cup anemometer is composed of three or four conical or 

hemispherical empty cups. It can provide surface wind data with an error of less than 10% (Zhang et 

al., 2020). This device is also installed at Qingdao station. Here, the 10 m wind speed (WS10) and 125 
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direction (WD10) data are also obtained from 1 May 2018 to 31 August 2020. The WS10 data are 

processed into hourly average value to match the RWP data. 

2.3 Radiosonde data 

The radiosonde (RS) provides the vertical profiles of wind speed and wind direction at 5-8 meter 

intervals (Guo et al., 2020). The accuracy of RS wind speed is within 0.1 m/s in the PBL (Guo et al., 130 

2021b). One noteworthy drawback is that the operational RS can provide observations of wind profiles 

only twice per day: 0800 and 2000 local solar time (LST). The Qingdao station is equipped with RS 

and RWP at the same time. The RS data also collect from 1 May 2018 to 31 August 2020. 

2.4 ERA5 data 

The ERA5 is the reanalysis data combining model data and observations, which provides global, 135 

hourly estimates of atmospheric variables (Hoffmann et al., 2019). The horizontal resolution can reach 

0.25 * 0.25 degree, and there are 137 vertical levels in vertical direction. “ERA5 hourly data on single 

levels from 1959 to present” is a dataset of ERA5, which can provide a series of surface parameters 

such as temperature, humidity, pressure and radiation etc. (Hersbach et al., 2020). Here, nine 

parameters have been collected, including charnock coefficient (Char), forecast surface roughness 140 

(FSR), friction velocity (FV), dew point (DP), temperature (Temp), pressure (Pres), net solar radiation 

(Rn), latent heat flux (LHF), and sensible heat flux (SHF). Char, FSR and FV are related to surface 

roughness, and can evaluate the influence of different surface types on the wind speed in the surface 

layer. DP, Temp and Press are the meteorological parameters associated with wind speed. Rn, LHF 

and SHF indicate the solar radiation level, which is directly related to the generation of wind. 145 

According to the longitude and latitude information of the Qingdao station, the grid where the RWP 

station is located is selected and those parameters in the corresponding grid are obtained accordingly. 

These data are obtained from 1 May 2018 to 31 August 2020.  

3. Methods 

The schematic diagram of surface layer wind profile observations is shown in Fig. 2. The wind mast 150 

or tower can provide wind speed data below 100 m AGL (Durisic et al. 2012; Liu et al., 2018). The 

RWP can measure the wind profiles from the 300 m to a height of 5-8 km AGL (Liu B. et al., 2019). 

It leads to a gap (100 to 300 m) in the observation of wind profile. At present, the PLM method is most 

often applied to extrapolate the surface wind speed to the wind turbine hub height, such as wind speed 

at 120 m (WS120), 160 m (WS160) and 200 m (WS200) AGL. 155 

3.1 Power law method 
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The PLM method is proposed by Hellman et al. (1914). It assumes that the wind speed below 150 m 

in the PBL varies exponentially with height. As a result, the wind speed at wind turbine hub height is 

typically estimated using the following formula (Abbes et al., 2012): 

𝑣2 =  𝑣1 × (
ℎ2

ℎ1
)

𝛼

                                  (1) 160 

where v1 and v2 are the wind speed at height h1 and h2, respectively. The α is the power law exponent, 

which varies with time, altitude, and location (Durisic et al., 2012). In engineering application, the 

value of α is determined by the terrain type, and generally is estimated to range from 0.1 to 0.4 (Li et 

al., 2018). Here, the general value of α for coastal topography is set to 0.15 based on former studies 

(Patel et al., 2005; Banuelos et al., 2010). However, Jung et al. (2021) pointed out that the error in the 165 

wind power density estimation over China can reach to 30 % based on a constant α value. Therefore, 

we attempt to use ML algorithm to obtain the WS120, WS160 and WS200. 

3.2 RF algorithm 

RF is an ensemble ML method, which has been widely used in regressive calculation (Breiman, 2001). 

It is a method to integrate many decision trees into forests and predict the result. Schematic diagram 170 

of RF is shown in Fig. S1. The RF is composed of many decision trees, and each decision tree is 

irrelevant. The performance of RF is determined by the aggregation of the results of all the trees (Ma 

et al., 2021). For RF model, the number of trees (N) is an important parameter to achieve the optimal 

performance of the model. The further detailed information can be referred to Breiman (2001). 

3.2.1 Inputs for RF  175 

In the construction of the RF model, it is necessary to obtain the relevant variables that may affect the 

surface wind profile according to the physical mechanism and previous research. At present, the PLM 

is often used to calculate the wind speed at hub height. It confirms that the wind speed at hub height is 

related to the wind speed at other heights (Durisic et al., 2012; Li et al., 2018). Therefore, the WS10, 

WD10, WS300 and WD300 are selected as inputs. The surface wind profile also depends on the surface 180 

roughness, friction velocity and the atmospheric stability (Gryning et al., 2007), so that FSR, FV and 

Char are also regarded as inputs. The higher FSR causes a slower wind speed in the surface layer. The 

FV is a theoretical wind speed at the Earth's surface, which is used to calculate the way wind changes 

with height in near surface (Stull, 1988). Moreover, considering that the generation of wind is closely 

associated with uneven heating of the Earth's surface by solar radiation (Solanki et al., 2022), the Rn, 185 

LHF and SHF are also selected as input variables. Additionally, some studies use atmospheric 

temperature and pressure as input to improve the accuracy of wind speed prediction (Chi et al., 2015). 
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Here, we also regard DP, Temp and Press as the input variables. The reference value, also included as 

input in the RF model, is the WS120, WS160 and WS200 measured from RS. These values are listed in 

Table S1. 190 

3.2.2 Feature selection 

To estimate the WS120, WS160 and WS200, we need to build RF model on 120 m (RF120), 160 m (RF160) 

and 200 m (RF200), respectively. For each model, it is necessary to select the main features from the 

inputs to avoid data redundancy and reduce the complexity of the model (Ma et al., 2021). Following 

the research of De et al. (2022), the inputs, which cannot cause a 2% reduction in correlation coefficient, 195 

are regarded as irrelevant feature and removed. Figure 3 shows the importance analysis of inputs for 

three RF models. The relevant features are marked by red bars. The irrelevant features are marked by 

blue bars, which are not regarded as final inputs in three RF models. For three RF models, the relevant 

features are both WS10, FV, Char, SHF and WS300. It indicates that the factors such as surface friction, 

heat transfer and high-height wind speed constraints are considered in the construction of RF models. 200 

In addition, it is surprising that FSR has such low importance in three RF models construction. FSR is 

a measure of surface resistance, which directly affects the near-surface wind speed (Gryning et al., 

2007). At a land station, the FSR is derived from the vegetation type (Li et al., 2021). The surface type 

of Qingdao station is cropland. Li et al. (2021) confirms that the FSR at cropland is most likely to 0.3 

m. In training data, the FSR from ERA5 also approximates a constant value (0.3 m). Since the constant 205 

variable has no meaning for RF model construction, the RF model divides FSR into irrelevant variable. 

Therefore, the final inputs for three RF models are WS10, FV, Char, SHF and WS300. 

3.2.3 Tuning parameter  

RF algorithm requires to setup the N in order to avoid overfitting in the training dataset (Ma et al., 

2021). Here, we use the RF algorithm for regression in MATLAB R2020b. The code and usage of RF 210 

are referred to the MATLAB help center (https://ww2.mathworks.cn/help/stats/treebagger.html, last 

access: 15 November 2022). The specific tuning parameter process of RF model is presented as follows: 

The N value varies from 1-500 with an interval of 10. Correlation coefficient (R) and root mean square 

error (RMSE) are used to evaluate the accuracy of the model. We need to set an appropriate N value 

to maximize R and minimize RMSE. Fig. S2 shows the tuning parameter process for the N of three 215 

RF models. For RF120, it can find that the R increased with N value increased, while the R is almost 

unchanged when N value is greater than 100. When N equals 200, R reaches the maximum value (0.82) 

and RMSE reaches the minimum value (1.68 m/s). Therefore, the N value is set to 200 for RF120. 

Moreover, according to the same tuning parameter process, the N values are set to 300 and 150 for 

RF160 and RF200, respectively. After determining the final inputs and N values, the three RF models 220 
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have been trained and tested. At Qingdao Station, a total of 746 sample data are obtained after data 

matching. We use the 5-fold crossover to train RF models. The test results are discussed in section 4.1. 

3.2.4 Sensitivity analysis 

The accuracy and generalization of the RF model depend on training and testing samples (Ma et al., 

2021). However, the training and testing samples are obtained at 0800 and 2000 LST. It needs to 225 

discuss whether the RF model also applies to other times. This depends on whether the RF model has 

enough generalization for the training samples, and whether the inputs at other times have appeared in 

the training samples. Fig. S3-S5 shows the difference between estimated wind speed and observed 

wind speed of three RF models, which as a function of the inputs. For three RF models, the deviations 

are relatively stable and not change with the increase of inputs. It indicates that three RF models have 230 

good generalization for the training and testing samples. This is because the RF tends to increase 

random disturbance in the sample space, parameter space and model space, thereby reducing the 

impact of "cases" and improving the generalization ability (Breiman, 2001). Moreover, Fig. S6 shows 

the distribution of inputs at different time. The red dashed lines represent the maximum and minimum 

values of each variable at training samples. In the range of the red line, three RF models can provide 235 

stable output due to its good generalization ability. It can be found that almost all the inputs have 

appeared in training samples. Therefore, three RF models have sufficient generalization and can be 

used at other times. 

3.3 Assessment methods of wind energy  

For the wind speed at hub height, a series of indicators have been used to evaluate wind energy, such 240 

as Weibull distribution and wind power density (WPD) (Pishgar et al., 2015). These parameters are 

commonly used to evaluate the wind energy at a certain station (Fagbenle et al., 2011; Liu et al., 2018). 

3.3.1 Weibull distribution 

The Weibull distribution can calculate the cumulative probability F(v) and probability density f(v) 

function of WS120 in a certain period of time, which are expressed as follows (Chang et al., 2011): 245 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

]                                    (2) 

𝑓(𝑣) =
𝑑𝐹(𝑣)

𝑑𝑣
= (

𝑘

𝑐
) (

𝑣

𝑐
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

]                             (3) 

where v is the WS120; k and c are the shape parameter of the Weibull distribution. Higher c indicates 

larger wind speed, while the k indicates wind stability. Saleh et al. (2012) compared different methods 

to estimate k and c, and pointed out that the moments method is recommended in estimating the 250 
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Weibull shape parameter. Therefore, we use the moments method to calculate the k and c, which shows 

as follows (Rocha et al., 2012): 

𝑘 = (
𝜎

𝑣̅
)

−1.086

                                        (4) 

𝑐 =
𝑣̅

𝒯(1+
1

𝑘
)
                                              (5) 

where 𝑣̅ and σ are the mean and square deviation of WS120, respectively. Г is the gamma function, 255 

which has a standard form as follows: 

𝒯(𝑥) = ∫ 𝑒−𝑢𝑢𝑥−1∞

0
𝑑𝑢                                  (6) 

3.3.2 Wind power density 

The WPD is the wind energy per unit area that the airflow passes vertically in unit time, and generally 

takes the form like (Akpinar et al., 2005): 260 

       𝑊𝑃𝐷 =
1

2
𝜌𝑐3𝒯 (

𝑘+3

𝑘
)                                 (7) 

where ρ is the air density, k and c are the shape parameter of Weibull (equ.4 and 5), and Г is the gamma 

function (equ.6). In addition, the absolute percentage error (APE) is used to quantify the differences in 

wind energy assessment based on different methods. The APE is calculated by: 

       𝐴𝑃𝐸 =
|𝑊𝑃𝐷𝑅𝐹−𝑊𝑃𝐷𝑃𝐿𝑀|

𝑊𝑃𝐷𝑅𝐹
∗ 100 %                         (8) 265 

where WPDRF and WPDPLM are calculated by the wind speed from RF and PLM, respectively. 

4. Results and discussion 

4.1 Intercomparison of wind speed using different methods. 

Figure 4 shows the wind profile from different methods under different time. The red, black and blue 

lines represent the mean wind speed from RS, PLM and RF, respectively. For the PLM, the retrieved 270 

results below 80 m AGL are consistent with the RS observations. Gryning et al. (2007) also pointed 

out that the wind profile based on surface-layer theory is valid up to a height of 50–80 m. Above 80 m 

AGL, the wind speeds retrieved by PLM deviate from the RS observations. This deviation is increasing 

with the height. The comparison results between PLM and RS at 120 m, 160 m and 200 m AGL (Fig. 

5) are also confirmed it. This is due to the fact that above surface layer, the Coriolis force, baroclinity 275 

and wind shear increase the complexity of the wind profile (Brümmer 1991). Moreover, most of 

estimated results from PLM are underestimated when the observed wind speed is high, especially at 

200 m AGL. The reason is that the surface wind profile is affected by turbulence, surface friction and 

other factors (Tieleman 2021; Solanki et al., 2022). The turbulence caused by inhomogeneous 
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underlying surface can change the wind direction and reduce the horizontal wind speed (Coleman et 280 

al., 2021). Especially in coastal areas, the sea land interaction and complex surface types make the 

variations of near surface wind profiles more complex. The simple exponential relationship is unable 

to obtain the surface wind profile with high accuracy, especially at high wind speed condition. By 

comparison, the WS120, WS160 and WS200 retrieved from RF are closer to RS observations. Compared 

with PLM, the R and RMSE between the observed wind speed and the estimated wind speed from RF 285 

at three heights are significantly improved (Fig. 5). This is due to the fact that the surface friction (FV), 

heat transfer (SHF) and high-height wind speed constraints (WS300) are considered in construction of 

RF, which can improve the accuracy of the model. Moreover, it notes that three RF models tend to 

slightly overestimate small values and underestimate high values. The reason is the small number of 

training samples at high and low values, resulting in the reduction of RF model generalization. Overall, 290 

it can be seen from the metrics of R and RMSE that the wind speed from RF model is better than that 

from PLM.  

In addition, for both PLM and RF, the retrieved wind profile at 2000 LST is closer to the RS 

observations. The comparisons between the observed wind speed and the estimated wind speed for 

PLM and RS under different time is shown in Fig. S7. The fitting results of PLM and RF at 2000 LST 295 

are slightly higher than that at 0800 LST. It indicates that the performance of PLM and RF vary with 

hour of the day. This is because the wind profile depends not only on the surface friction but also on 

the atmospheric stratification (Gryning et al., 2007). The surface layer is in an unstable stratification 

due to heat transfer caused by solar radiation during daytime, while the surface layer tends to stable 

stratification due to surface radiation cools during nighttime (Yu et al., 2022; Solanki et al., 2022). The 300 

WS120, WS160 and WS200 are more vulnerable to the surface turbulence due to the unstable stratification 

during daytime. Therefore, the performance of PLM and RF at nighttime is better than that at daytime. 

Figure 6 shows the comparisons between the observed results and the estimated results for PLM and 

RF under different season. The red, green, blue and black represent the spring, summer, autumn and 

winter, respectively. At three heights, the performance of PLM is the best in winter and the worst in 305 

summer. It shows that the performance of PLM is affected by seasonal factors, which is due to the 

wind shear varying dramatically with season (Banuelos-Ruedas et al., 2010). Pérez et al. (2005) 

indicates that the surface layer wind speed profile is mainly affected by the convection produced by 

surface heating in summer. The WS120, WS160 and WS200 affect by the surface due to the unstable 

stratification, which leads that the PLM performs worst in summer. In contrast, during winter, the 310 

surface temperature is generally lower than the air temperature aloft creating a stable inversion (Yu et 

al., 2022; Liu et al., 2022). The WS120, WS160 and WS200 are disconnected from the surface due to 
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stable stratification. It leads that the PLM performs best in winter. As for RF, although the performance 

in spring is slightly lower than that in other seasons, the fitting results at four seasons are significantly 

improved compared with the PLM. This indicates that RF is least affected by seasons. The reason is 315 

that the RF model is less subjective than PLM because they are data driven. Overall, in terms of 

stability and accuracy, the RF is more suitable for estimating wind speed at hub height. 

4.2 Vertical profiles of wind speed at surface layer  

Figure 7 shows the diurnal and seasonal variations of WS120, WS160 and WS200. The diurnal and 

seasonal variations of wind speed at three heights are on average similar to each other. From the 320 

perspective of daily variation, the wind speed is larger at daytime from 0900 to 1600 LST, while is 

lower at nighttime from 0000 to 0400 LST. This daily cycle is mainly affected by the solar radiation 

and the sea-land breeze. On the one hand, the surface is heated by solar radiation at daytime, warming 

the low-level air. The convection formed by rising warm air mass results in high wind speed during 

the daytime. After sunset, the surface radiation cools and the air layer tends to stabilize, resulting in a 325 

gradual decrease in wind speed (Liu et al., 2018). On the other hand, the difference of specific heat 

capacity between sea and land can form the difference of thermal properties between sea and land. The 

difference of air pressure is obvious, which is easy to form sea land breeze (Li et al., 2020). Similar 

diurnal variations in 10 m wind speed are also observed at three other stations in China (Liu et al., 

2013). From the perspective of seasonal variation, the wind speed is large in spring and winter and is 330 

low in summer and autumn. This is because the influence of East Asia Monsoon and Mongolian 

cyclones (Yu et al., 2016; Zheng et al., 2020). The large-scale synoptic systems in China have a 

relatively high occurrence frequency during the cold season (spring and winter), which result in the 

higher wind speed than warm season (summer and autumn) (Liu F. et al., 2019).  

The histograms of WS120, WS160 and WS200 with corresponding Weibull distributions are plotted in 335 

Fig. 8. The blue bar and pink lines represent occurrence probability and Weibull distributions, 

respectively. Moreover, the mean wind speed and Weibull distribution parameters for three heights are 

listed in Table 1. The occurrence probabilities of WS120, WS160 and WS200 are both the unimodal 

distribution, with a peak probability in medium wind speed (about 5 m/s) and a low probability in high 

and low wind speed. The mean WS120, WS160 and WS200 are 5.84, 6.26 and 6.57 m/s, which gradually 340 

increases with height. The lower wind speed near the ground is caused by the influence of underlying 

surface roughness and surface friction (Li et al., 2018; Li et al., 2020). In addition, there is a deviation 

between the probability density function and the frequency of occurrence at some stations, which is 

because Weibull distribution generally has a long tail effect or a right skewed distribution (Pishgar-
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Komleh et al., 2015; Ali et al., 2018). Overall, the Weibull distribution matches with the frequency of 345 

wind speed at all stations. Therefore, the Weibull distribution parameters can be applied for the wind 

energy assessment. 

4.3 Influence of wind speed from different methods on WPD 

Figure 9 shows the diurnal variations of WPD from PLM and RF at 120 m, 160 m and 200 m AGL. 

The red solid and dotted lines represent the variation of WPD from RF and PLM, respectively. The 350 

gray bar represents the absolute percentage error (APE) of WPD between RF and PLM. The diurnal 

pattern of WPD from RF is like that from PLM. At three heights, the hourly mean WPD is larger at 

daytime from 0900 to 1600 LST with a peak at 1400 LST and is lower at nighttime from 0000 to 0400 

LST. On the contrary, the APE is lower at daytime (0800 to 1800 LST) and larger at nighttime (2000 

to 0600 LST). At 120 m, the mean APE at daytime and nighttime are 14.09 % and 35.80 %, 355 

respectively. Considering that the results from RF are underestimated at high wind speed condition, 

the APE of WPD between PLM and actual observation at daytime should be slightly greater than 

14.09 %. Moreover, the diurnal variations of APE at 160 m and 200 m AGL generally resemble the 

features obtained at 120 m AGL. But the APE of WPD between RF and PLM increases with the height. 

These results indicate that the PLM is more suitable for wind energy assessment in the daytime, and 360 

the error of wind energy assessment based on PLM is gradually increased as the height increases. 

Figure 10 shows the monthly variations of WPD from PLM and RF at 120 m, 160 m and 200 m AGL. 

The monthly variation of WPD from RF is also similar to that from PLM. The monthly WPD is 

relatively high for the period from March to May, as compared to the lower values from June to 

October. At 120 m, the APE is largest in summer and is lowest in winter. The seasonal APE during 365 

spring, summer, autumn and winter are 23.65 %, 40.83 %, 19.67 % and 12.62 %, respectively. The 

monthly variations of APE at 160 m and 200 m are consistent with that at 120 m. It indicates that the 

PLM is more suitable for wind energy assessment in autumn and winter. In addition, the APE during 

spring at 120 m, 160 m and 200 m are 23.65 %, 28.12 % and 34.22 %, respectively. Due to the 

performance of RF model is the worst in spring, the APE of WPD between PLM and real value during 370 

spring may increases. Jung et al. (2021) also finds that the global median absolute percentage error in 

the wind energy estimations is 36.9% assuming the power law exponent being 0.14. Overall, the PLM 

has some limitations in wind energy assessment above 100 m. When using PLM to evaluate wind 

energy at high height, it is necessary to pay attention to its errors. Moreover, the use of RF model that 

takes the factors such as surface friction, heat transfer and high-height wind speed constraints into 375 

account is suggested to evaluate wind energy.  
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5. Summary and conclusions 

The traditional methods such as the PLM used to estimate wind speed at hub height generally assume 

a constant exponent α in establishing the power law relationship between wind speeds at surface and 

hub height, which inevitably leads to large uncertainties. To confront this challenge, this study uses 380 

the RF algorithm to retrieve the wind profile based on the RWP and surface meteorological data from 

May 2018 to August 2020.  

The comparison against observations indicates that the WS120 estimated from RF are better than those 

from PLM, given the relative higher R (0.93 versus 0.89) and smaller RMSE (1.09 m/s versus 1.50 

m/s). Particularly, the performance of PLM declines with height. Especially at 200 m, the R and RMSE 385 

from PLM change to 0.78 and 2.42 m/s, respectively. In contrast, the RF model maintains good 

accuracy at different heights. The R (RMSE) for RF model at 160 m and 200 m are 0.91 (1.29 m/s), 

and 0.91 (1.48 m/s), respectively. These results show that above the surface layer, the wind speeds 

from PLM deviate from the observed value. The RF model is more suitable for retrieving the hub 

height wind speed, when the hub height is extended above the surface layer. Overall, the RF model 390 

shows advantages over the traditional PLM. This is because the RF model well considers the influence 

of near-surface environmental parameters, such as friction velocity and charnock coefficient. 

Moreover, the heat transfer and high-height wind speed constraints are also considered in the 

construction of RF model. Based on the wind speed from RF, the diurnal and seasonal variations of 

wind energy are then analyzed. The hourly mean WPD is larger from 0900 to 1600 LST with a peak 395 

at 1400 LST. The WPD is relatively high in spring and winter, as compared to the lower values in 

summer and autumn. Finally, the differences of WPD between RF and PLM at different heights are 

investigated. At 120 m, the mean APE of WPD between RF and PLM at daytime and nighttime are 

14.09 % and 35.80 %, respectively. Moreover, the seasonal APE at 120 m is largest in summer 

(40.83 %) and is lowest in winter (12.62 %). In addition, the mean APE at 120 m, 160 m and 200 m 400 

are 24.19 %, 27.99 % and 32.57 %, respectively. These results indicate that there are some errors in 

the wind energy evaluation based on wind speed from PLM. Therefore, when retrieving high height 

wind speed, it is suggested to combine more observation or auxiliary data to build a more accurate 

model, such as RF model. In the absence of other observation data, it is necessary to pay attention to 

the errors when using PLM to evaluate wind energy at high height.  405 

Our work provides a new pathway to fill the data gap of wind speed at the hub height for the high 

capability of the state-of-the-art ML algorithm, which lays a solid foundation for more robust wind 

energy assessment. However, the high-precision wind profile estimate is only one part of the efficient 
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utilization of wind energy resources. The cost of wind turbines, topography conditions, and other 

factors also need more attention, which deserves further investigation in the future.  410 
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Tables: 

 

 620 

 

 

 

Table 1 Statistics for the Weibull distribution of WS120, WS160 and WS200 from 1 May 2018 to 31 

August 2020. 625 

Height (m) 
Mean wind 

speed (m/s) 

Standard 

deviation (m/s) 

Weibull Shape 

factor k 

Weibull Scale 

factor c (m/s) 

120 5.84 2.54 2.47 6.58 

160 6.26 2.59 2.60 7.05 

200 6.57 2.80 2.52 7.40 

 

 

  



24 

 

Figures: 

 630 

 

Figure 1. (a, b) Geographical distribution and (c) surface type of the radar wind profiler station at 

Qingdao. The photo of surface type is provided by Google Earth map (© Google Maps). 
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Figure. 2 The schematic diagram of surface layer wind profile observations. The photos are provided 

by Baidu (© Baidu). 
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 640 

 

Figure 3. Importance analysis of inputs for RF model at (a) 120 m, (b) 160 m, and (c) 200 m. 
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 645 

 

Figure 4. Vertical profiles of the wind speed from different methods at (a) all time, (b) 0800 and (c) 

2000 LST. Red, black and blue lines represent mean wind profile from RS, PLM and RF, respectively. 

Corresponding color shading areas represent the standard deviation. 
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Figure 5. Comparisons between observed wind speed and estimated wind speed for (a, c, e) PLM and 

(b, d, f) RF at 120 m, 160 m and 200 m. The gray and black line is the reference and regression line, 

respectively. The color bar represents the data density. The asterisk indicates that the correlation 

coefficient (R) has passed the t-test at a confidence level of 95%. 655 
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Figure 6. Comparisons between observed wind speed and estimated wind speed for (a, b, c) PLM and 

(d, e, f) RF at 120 m, 160 m and 200 m under different season. The red, green, blue and black represent 

spring, summer, autumn and winter, respectively. The asterisk indicates that the correlation coefficient 660 

(R) has passed the t-test at a confidence level of 95%. 
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Figure 7. Monthly and diurnal cycles of (a) WS120, (b) WS160 and (c) WS200 from 1 May 2018 to 31 

August 2020. Color bar represents the wind speed from RF model. 665 
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Figure 8. Probability distribution and Weibull distribution of (a) WS120, (b) WS160 and (c) WS200 from 

1 May 2018 to 31 August 2020. The blue bar and pink lines represent occurrence probability and 670 

Weibull distributions, respectively. 
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Figure 9. Diurnal variation of the wind power density (WPD) at (a) 120 m, (b) 160 m and (c) 200 m. 

The red solid and dotted lines represent the WPD from RF and PLM, respectively. The gray bar 675 

represents the absolute percentage error (APE) of WPD between RF and PLM. 
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Fig. 10. Similar to Fig. 9, but for the monthly variation. 
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