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Abstract. Wind is one of the most essential clean and renewable energy sources in today’s world. To 

achieve the goal of peaking carbon dioxide emissions and carbon neutrality in China, it is necessary to 

evaluate the wind energy resources on the coast of China. Nevertheless, the traditional power law 10 

method (PLM) relies on the constant coefficient to estimate the wind speed at wind turbine hub height. 

The constant assumption may lead to significant uncertainties in wind energy assessment, given the 

large dependence on a variety of factors, such as terrain, time and height. To minimize the uncertainties, 

we here use three machine learning (ML) algorithms to estimate the wind speed at wind turbine hub 

height. The radar wind profiler and surface synoptic observations at eight coastal stations from May 15 

2018 to August 2020 are used as key inputs to investigate the wind energy resource. Afterwards, three 

ML models and the PLM are used to retrieve the wind speed at 120 m above ground level (WS120). 

The comparison of results with the observations shows the random forest (RF) is the most suitable 

model for the estimation of WS120. Based on the WS120 from RF, the diurnal variation of WS120 and 

wind power density (WPD) are then estimated. For land stations, the hourly mean WPD is larger at 20 

daytime from 0900 to 1600 local solar time (LST) and reach a peak at 1400 LST. This is mainly due 

to the influence of the prevailing sea-land breeze. On the contrary, the hourly mean WPD of island 

stations is relatively large at nighttime during 1800 to 2300 LST. This indicates that the wind energy 

peaks differ based on the land surface types. In terms of the spatial distribution of the seasonal mean 

WPD along the coastal region of China, the WPD in the Yangtze River Delta (YRD) region are higher 25 

than 200 W/m2 in most seasons, and the WPD at the coastal regions of Shandong Peninsula and YRD 

are much greater than over the Pearl River Delta region. This shows that the coastal regions of Bohai 

Sea and Yellow Sea have more abundant wind resources than those of East China Sea and the South 

China Sea. These findings obtained here provide insights for the development and utilization of wind 

energy industry on the coast of China in the future. 30 
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1. Introduction   

With the rapid economic development of world, the massive consumption of fossil fuels produces an 

increasing emission of carbon dioxide, sulfur dioxide and other pollutants (Yuan, 2016; Magazzino et 35 

al., 2021). Large amounts of anthropogenic emissions of carbon dioxide and other greenhouse gases 

are a major driver for the global warming, leading to ever-rising air temperature (Shakun et al., 2012; 

Shi et al., 2021). To tackle this problem, it is increasingly becoming imperative to develop renewable 

clean energy (Hong et al., 2012). Among the myriad renewable energy resources, wind energy has 

gained more and more favors because of its abundant availability, good sustainability, and high cost-40 

effectiveness (Li et al., 2018; Leung et al., 2012). As one of the largest energy consuming counties in 

the world, China is currently facing an increasingly serious energy and climate situation (Khatib et al., 

2012). The Chinese government proposes the peak carbon emissions and carbon neutrality strategy to 

deal with energy and environmental issues (Pei et al., 2022). With the stimulus of policies and the 

favor of investors, wind power industry in China is flourishing. Therefore, scientific assessment of 45 

wind energy resources in China is of great importance for the healthy development of wind energy 

industry in the decades to come. 

At present, there are three main methods for wind energy assessment. The first is based on the 

meteorological tower data (Shu et al., 2016; Liu et al., 2018). The height of the meteorological tower 

is generally 100–300 m above ground level (AGL), equipped with anemometer and other 50 

meteorological observation instruments. For instance, Durisic et al. (2012) analyzed the wind energy 

at four different heights in the South Banat region based on meteorological tower data. But due to the 

high construction and maintenance costs of meteorological tower, it is not suitable for large-scale 

networking observation. The second is based on ground meteorological station data, which can be used 

to evaluate the wind energy at the wind turbine hub height by empirical formula (Oh et al. 2012; Liu 55 

et al., 2019). Li et al. (2018) investigated the spatial and temporal variations of wind energy near Lake 

Erie shoreline based on the power law method (PLM). The PLM method generally assumes the wind 

speed below 150 m in the planetary boundary layer (PBL) varies exponentially with height (Hellman 

et al. 1914). But due to the influence of inhomogeneous underlying surface, land sea difference and 

ubiquitous atmospheric turbulence, wind varies constantly and greatly in the vertical (Tieleman 1992; 60 

Coleman et al., 2021), posing great challenges and uncertainties to wind energy assessment based on 

surface observation. The third is based on reanalysis data, such as the fifth generation European Centre 

for Medium-Range Weather Forecasts atmospheric reanalysis system (ERA5). It can provide the 

hourly wind speed at a specific height (Hersbach et al., 2020; Liu et al., 2020). Compared to near-

surface in-situ observations, it has better time continuity and spatial coverage, which can provide data 65 
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support in the region with poor observational data. The hourly resolution of ERA5 reanalysis has been 

used to assess the wind energy in the absence of observational data (Laurila et al., 2021; Gualtieri, 

2021). But the spatial resolution of the ERA5 data is 0.25 * 0.25 degree, which is much lower than the 

high-resolution model output such as the weather research and forecasting (WRF) and the point-based 

observations. These methods are widely used in the field of wind energy assessment (Li et al., 2018; 70 

Band et al. 2021), but each method has certain limitations. Therefore, it is necessary to explore more 

new observation methods to support a comprehensive assessment of wind energy. 

The radar wind profiler (RWP) network of China can measure the wind profiles from the ground 

surface to a height of 5-8 km AGL (Liu et al., 2019; Guo et al., 2021a), which provide a novel data 

source for wind energy assessment. Moreover, increasing wind turbine hub height reduces the impact 75 

of surface friction, enabling wind turbines to operate in high-quality wind resource environments 

(Veers et al., 2019). The RWP can evaluate the wind energy at different heights, which is conducive 

to the selection of wind turbine hub height. Currently, wind turbine is generally installed at the top of 

wind mast with a height of 100-120 m AGL, which roughly corresponds to the surface layer (Stull 

1988; Veers et al., 2019). This region is where obstructions such as trees, buildings, hills, and valleys 80 

cause turbulence and reduce the wind speed (Coleman et al., 2021; Solanki et al., 2022). It leads large 

uncertainties in the wind profile observations near the ground surface provided by the RWP, largely 

due to the influence of ground and intermittent clutter (May and Strauch 1998; Allabakash et al., 2019). 

Therefore, it is necessary to obtain accurate and continuous wind speed at the wind turbine hub height 

from RWP measurements, which will benefit the robust and scientific assessment of wind energy. 85 

Given the abovementioned problems, we attempt to use machine learning (ML) algorithms to retrieve 

wind speed at 120 m AGL (WS120) from RWP measurements. The surface in situ wind speed, high-

altitude RWP wind speed and corresponding surface meteorological data from May 2018 to August 

2020 are collected to develop the ML models. The performance of classical PLM method and three 

ML models were then compared. Next, the most effective RF model was used to assess the wind power 90 

on coast of China. The results of our study can provide useful information for the development of wind 

energy industry on the coast of China. The observational data is briefly introduced in section 2. The 

ML model construction and wind energy evaluation method are displayed in section 3. Section 4 

discusses the accuracy of the ML models and the variation of wind energy resources. A summary of 

results is presented in section 5. 95 
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2. Materials and Data 

2.1 RWP network of China 

The RWP is a remote sensing device that can observe the atmospheric wind profiles (Liu et al., 2019). 

The RWP network of China began to develop as of 2008, and the number of RWP stations increased 100 

to 134 by the end of 2020 (Liu et al., 2020). The time resolution of RWP data can reach minute level. 

The RWP has high and low detection modes in the vertical direction, and the corresponding vertical 

resolutions are 120 and 60 m, respectively (Liu et al., 2020). Here, eight RWP stations on the coast 

from north to south in eastern China are selected, including Dongying, Penglai, Qingdao, Lianyungang, 

Dayang, Dongtou, Fuqing, and Zhuhai. The spatial distribution of these stations is shown in Fig. 1, 105 

marked by red points. Most stations are located on land along the coast, only Dayang and Dongtou are 

located on island (Table 1). Geographically, Dongying, Penglai, Qingdao and Lianyungang are located 

on Shandong Peninsula of northern China, and the other four stations are located on Yangtze River 

Delta to Pearl River Delta in south China. The hourly wind speed profiles over the eight stations are 

obtained from 1 May 2018 to 31 August 2020. The RWP data has not been released temporarily, but 110 

it can request to Dr. Jianping Guo by email (jpguocams@gmail.com). 

2.2 Anemometer 

The wind cup anemometer can measure the instantaneous wind speed, and is installed at 10 m AGL 

(Mo et al., 2015). The sensing part of wind cup anemometer is composed of three or four conical or 

hemispherical empty cups. It can provide surface wind data with an error of less than 10% (Zhang et 115 

al., 2020). This device is also installed at eight RWP stations. The 10 m wind speed data can be 

downloaded in http://www.nmic.cn/data/cdcdetail/dataCode/A.0012.0001.html (last access: 15 

November 2022). Here, the 10 m wind speed data at the eight RWP stations were also obtained from 

1 May 2018 to 31 August 2020. The 10 m wind speed data was processed into hourly average value 

to match the RWP data. 120 

2.3 Radiosonde data 

The RS provides the profiles of wind speed and wind direction twice a day at 0800 and 2000 local 

solar time (LST) (Guo et al., 2020; Li et al., 2021; Liu et al., 2022). The accuracy of RS wind speed is 

within 0.1 m/s in the PBL (Guo et al., 2021b). One noteworthy drawback is that the operational RS 

can provide observations of wind profiles only twice per day. Note that only the station of Qingdao is 125 

equipped with RS and RWP at the same time. The RS data also collected from 1 May 2018 to 31 

August 2020, which can be downloaded from 

http://www.nmic.cn/data/cdcdetail/dataCode/B.0011.0001C.html (last access: 15 November 2022). 

http://www.nmic.cn/data/cdcdetail/dataCode/A.0012.0001.html
http://www.nmic.cn/data/cdcdetail/dataCode/B.0011.0001C.html
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2.4 ERA5 data 

The ERA5 is the reanalysis data combining model data and observations, which provides global, 130 

hourly estimates of atmospheric variables (Hoffmann et al., 2019). The horizontal resolution can reach 

0.25 * 0.25 degree, and there are 137 vertical levels in vertical direction. “ERA5 hourly data on single 

levels from 1959 to present” is a dataset of ERA5, which can provide a series of surface parameters 

such as temperature, humidity, pressure and radiation etc. (Hersbach et al., 2020). It can be downloaded 

from the website of https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-135 

levels?tab=overview (last accessed on 15 November 2022). It is known that the generation of wind is 

closely associated with uneven heating of the Earth's surface by solar radiation and atmospheric 

pressure gradient force (Solanki et al., 2022). Therefore, nine parameters that may affect the variation 

of wind speed have been collected, including charnock coefficient (Char), forecast surface roughness 

(FSR), friction velocity (FV), dew point (DP), temperature (Temp), pressure (Pres), net solar radiation 140 

(Rn), latent heat flux (LHF), and sensible heat flux (SHF). Char, FSR and FV are related to surface 

roughness and friction, and thus can evaluate the influence of different surface types on the wind speed 

in the surface layer. DP, Temp and Press are the meteorological parameters associated with wind speed. 

Rn, LHF and SHF indicate the solar radiation level, which is directly related to the generation of wind. 

According to the longitude and latitude information of the RWP station, the grid where the RWP station 145 

is located is selected and those parameters in the corresponding grid are obtained accordingly. These 

data were obtained from 1 May 2018 to 31 August 2020 at eight stations. In addition, the hourly wind 

data can also be provided by ERA5. The u and v component of wind data at 100 m AGL were also 

downloaded for wind energy assessment.  

3. Methods 150 

In this section, we introduce firstly the classical PLM method to retrieve the WS120 based on 10 m 

wind speed measurement. Then, we describe the three ML algorithms used to retrieve WS120. We 

finally present the method for evaluating wind energy. 

3.1 Power law method 

The PLM method is proposed by Hellman et al. (1914). It assumes that the wind speed below 150 m 155 

in the PBL varies exponentially with height. As a result, the wind speed at a certain height is typically 

estimated using the following formula (Abbes et al., 2012): 

𝑣2 =  𝑣1 × (
ℎ2

ℎ1
)

𝛼

                                  (1) 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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where v1 and v2 are the wind speed at height h1 and h2, respectively. The α is the wind shear coefficient, 

which varies with time, altitude, and location (Durisic et al., 2012). In engineering application, the 160 

value of α is determined by the terrain type, and generally is estimated to range from 0.1 to 0.4 (Li et 

al., 2018). Here, the general value of α for coastal topography was set to 0.15 based on former studies 

(Patel et al., 2005; Banuelos et al., 2010). 

3.2 Machine learning algorithms 

Three ML algorithms, including the k nearest neighbor (KNN), support vector machine (SVM) and 165 

random forest (RF), are applied to retrieve the WS120. For the ML algorithms, one of the most important 

things is to prepare appropriate characteristic values and accurate reference values as input. Here, the 

input data include 10 m wind speed (WS10) and direction (WD10) from wind cup anemometer, wind 

speed (WS300) and direction (WD300) at 300 m AGL measured by RWP, and nine surface parameters 

in ERA5. The reference value is the WS120 measured by RS. These values are listed in Table S1. At 170 

Qingdao station, a total of 746 sample data are obtained after data matching. We use 5-fold crossover 

to train ML models. The specific training process of each model is presented as follows. 

3.2.1 KNN 

KNN is one of the simplest ML algorithms, which can be used for regression (Coomans et al., 1982). 

Its basic idea is to find k nearest neighbors of a sample and assign the average value of these neighbors' 175 

attributes to the sample. In this way, the value of the attribute corresponding to the sample can be 

obtained (Altman, 1992). The schematic diagram of KNN is shown in Fig. S1a. For a given test sample 

(orange square), it need to find the nearest K training samples (inside the gray circle) in the training 

dataset based on the distance measurement, and then assign the average attribute value of the K samples 

to the test sample. Therefore, the setting of K value is important to the accuracy of the KNN. Here, the 180 

KNN algorithm in MATLAB R2020b was used for regression. Figs. 2a and 2d show the tuning 

parameter process for K value. The K value varies from 1-20 with an interval of 1. Correlation 

coefficient (R) and root mean square error (RMSE) were used to evaluate the accuracy of the model. 

We need to set an appropriate K value to maximize R and minimize RMSE. According to the curve of 

R and RMSE changing with K value, the R reach to 0.77 and RMSE is 2.44 m/s when the K was set 185 

to 3. Therefore, the K value was set to 3 for KNN. The code and usage of KNN model are referred to 

the MATLAB help center (https://ww2.mathworks.cn/help/stats/fitcknn.html, last access: 15 

November 2022). 

3.2.2 SVM 
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SVM is a kind of supervised classification algorithm (Cortes et al., 1995), which can also be used in 190 

regression. In regression analysis, SVM is to obtain the optimal fitting curve. The schematic diagram 

of SVM is shown in Fig. S1b. The red line and Δ represent the fitting curve and slack variable, 

respectively. The penalty parameter (C) is used to measure the loss caused by outliers. For SVM, it 

needs to obtain the optimal fitting curve with acceptable loss. The loss of objective function is 

increased with C value when the sum of relaxation variables of all outliers is certain. Therefore, it 195 

needs to take an appropriate C to ensure the performance of SVM. Here, the SVM algorithm in 

MATLAB R2020b was used for regression. The tuning parameters process is seen in Figs. 2b and 2e. 

The value of R increases first and then decreases with the increase of C. On the contrary, the RMSE 

decreases first and then increases with the increase of C. When C equals 0.75, R reaches the maximum 

value (0.79) and RMSE reaches the minimum value (1.74 m/s). Therefore, the C value was set to 0.75 200 

for SVM. In addition, the code and usage of SVM are referred to the MATLAB help centre 

(https://ww2.mathworks.cn/help/stats/fitrsvm.html, last access: 15 November 2022). 

3.2.3 RF 

RF is an ensemble ML method (Breiman, 2001), which has been widely used in regressive calculation. 

It is a method to integrate many decision trees into forests and predict the result. Schematic diagram 205 

of RF is shown in Fig. S1c. The RF is composed of many decision trees, and each decision tree is 

irrelevant. The performance of RF is determined by the aggregation of the results of all the trees (Ma 

et al., 2021). For RF model, the number of trees is an important parameter to achieve the optimal 

performance of the model. The further detailed information can be referred to Breiman (2001). Here, 

we used the RF algorithm for regression in MATLAB R2020b. Figures 2c and 2f show the tuning 210 

parameters process for number of tree (N). The N value varies from 1-500 with an interval of 20. It 

can find that the R increased with N value increased, while the R was almost unchanged when N value 

is greater than 100. When N equals 300, R reaches the maximum value (0.81) and RMSE reaches the 

minimum value (1.64 m/s). Therefore, the N value is set to 300 for RF. In addition, the code and usage 

of RF are referred to the MATLAB help centre (https://ww2.mathworks.cn/help/stats/treebagger.html, 215 

last access: 15 November 2022). 

3.2.4 Importance of variables 

Figure 3 shows the importance analysis of input variables for three ML models. The importance of the 

variable indicates the dependence of the model on this parameter. The input variables with importance 

lager than 0.1 were marked by red bar. For KNN, the importance values of WS10, FV and Char are 0.3, 220 

0.3, and 0.15, which are much larger than that of other inputs. For SVM, the importance values of 

WS10 and FV are larger than 0.1, while the importance values of other inputs are less than 0.1. For RF, 
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the importance values of WS10, FV and Char are 0.23, 0.14, and 0.13, respectively. Combined with 

these results, it found that WS10 and FV are mainly input features for these three models. WS10 was 

the surface 10 m wind speed. FV is a theoretical wind speed at the Earth's surface which increases with 225 

the roughness of the surface. This confirms that the WS120 is mainly affected by the surface wind speed 

and terrain type. In addition, the importance values of WS10 and FV for KNN is obviously larger than 

that of other inputs. By contrary, for RF, although the importance values of WS10 and FV are large, 

the importance values of some inputs are also relatively large with varies from 0.1-0.15. It indicated 

that the factors such as heat transfer and high-altitude wind speed constraints will also be considered 230 

in the inversion process of RF. 

3.3 Sensitivity analysis 

To discuss the generalization of the different methods, we investigated the difference between 

estimated WS120 and observed WS120, which as a function of WS10 and FV (Fig. 4). Since the model 

is expected to be applicable to various input values, the variation of the deviation with the input features 235 

can reflect the generalization of the model (Ma et al., 2021). It was found that the deviation of the PLM 

and KNN is changed with the increase of WS10 and FV. It indicated that the generalization of the PLM 

and KNN needed to be improved. The generalization of SVM was better than that of PLM and KNN, 

but most of the SVM results tended to be still overestimated when FV is larger than 0.4 m/s. As for 

RF, the deviation was relatively stable and did not change with the increase of WS10 and FV. This 240 

suggested that the generalization of RF was better than other three methods. This could be likely due 

to the fact that RF tends to increase random disturbance in the sample space, parameter space and 

model space, thereby reducing the impact of "cases" and improving the generalization ability (Breiman, 

2001). Moreover, Figure S2 shows the distribution of main input variables of RF model (WS10, FV, 

Char, SHF, and WS300) at eight RWP stations. The red dashed lines represent the maximum and 245 

minimum values of each variable at Qingdao station. In the range of the red line, the RF can provide 

stable output due to its good generalization ability. It can be found that almost all the input values of 

other seven stations have appeared in Qingdao station. Therefore, the RF model has sufficient 

generalization and can be used in other coastal stations. In addition, it is noteworthy that the ML model 

needs to be reconstructed when most of the inputs at a research site are not within the range of the red 250 

line. 

3.4 Assessment methods of wind energy  
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For the obtained WS120, a series of indicators need to be used to evaluate wind energy, such as Weibull 

distribution and wind power density (WPD) (Pishgar et al., 2015). These parameters are commonly 

used to evaluate the wind energy at a certain station (Fagbenle et al., 2011; Liu et al., 2018). 255 

3.4.1 Weibull distribution 

The Weibull distribution can calculate the cumulative probability F(v) and probability density f(v) 

function of WS120 in a certain period of time, which are expressed as follows (Chang et al., 2011): 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

]                              (2) 

𝑓(𝑣) =
𝑑𝐹(𝑣)

𝑑𝑣
= (

𝑘

𝑐
) (

𝑣

𝑐
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑣

𝑐
)

𝑘

]                       (3) 260 

where v is the WS120; k and c are the shape parameter of Weibull distribution. Higher c indicates larger 

wind speed, while the k indicates wind stability. Saleh et al. (2012) compared different methods to 

estimate k and c and pointed out that the moments method is recommended in estimating the Weibull 

shape parameter. Therefore, we use the moments method to calculate the k and c, which shows as 

follows (Rocha et al., 2012): 265 

𝑘 = (
𝜎

𝑣̅
)

−1.086

                                 (4) 

𝑐 =
𝑣̅

𝒯(1+
1

𝑘
)
                                      (5) 

where 𝑣̅ and σ are the mean and square deviation of WS120, respectively, and Г is the gamma function, 

which has a standard form as follows: 

𝒯(𝑥) = ∫ 𝑒−𝑢𝑢𝑥−1∞

0
𝑑𝑢                              (6) 270 

3.4.2 Wind power density 

The WPD is the wind energy per unit area that the airflow passes vertically in unit time, and generally 

takes the form like (Akpinar et al., 2005): 

       𝑊𝑃𝐷 =
1

2
𝜌𝑐3𝒯 (

𝑘+3

𝑘
)                            (7) 

where ρ is the air density, k and c are the shape parameter of Weibull (equ.4 and 5), and Г is the gamma 275 

function (equ.6). 

4. Results and discussion 

The accuracy of four methods is firstly evaluated by comparing with RS measurements. The 

characteristics of WS120 were then analyzed based on the results from RF model. Finally, the variation 

of wind resource was analyzed. 280 
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4.1 Intercomparison of WS120 using different methods 

To evaluate the performance of four methods, the estimated WS120 of PLM, KNN, SVM and RF were 

compared with observation. Given that only Qingdao has RS data, the comparison of different methods 

was conducted based on the data at Qingdao. Figure 5 shows the comparisons between the observed 

WS120 and the estimated WS120 for four methods under different time. Overall, the R (RMSE) resulting 285 

from PLM, KNN, SVM and RF for all times were 0.79 (2.33 m/s), 0.81 (1.97 m/s), 0.85 (1.52 m/s), 

and 0.94 (1.00 m/s), respectively. It can be seen from the metrics of R and RMSE that the accuracy of 

ML models is better than that of PLM. Moreover, for each method, the comparison results were similar, 

irrespective of 0800 and 2000 LST. It indicates that the performance of the four methods does not vary 

with hour of the day. For the PLM, most of estimated results are underestimated when the observed 290 

WS120 is high. Meanwhile, the PLM methods depends on the exponential relationship between WS120 

and WS10. However, the WS120 is affected by turbulence, surface friction and other factors (Tieleman 

1992; Solanki et al., 2022). The turbulence caused by inhomogeneous underlying surface can change 

the wind direction and reduce the horizontal wind speed (Coleman et al., 2021). Especially in coastal 

areas, the sea land interaction and complex surface types make the variations of near surface wind 295 

profiles more complex. Simple exponential relationship is unable to obtain the WS120 with high 

accuracy, especially at high wind speed condition. Similarly, the most of results from KNN are 

underestimated under the high observed WS120. The R and RMSE of KNN has been slightly improved 

compared with PLM, because the estimated WS120 of KNN is obtained by averaging the nearest k 

points in the training set (Altman, 1992). Essentially, KNN model is to establish the relationship 300 

between main characteristics (WS10 and FV) and WS120. Therefore, the performance of KNN is similar 

to PLM. On the contrary, although the SVM and RF tend to slightly overestimate small values and 

underestimate high values, the R and RMSE between the observed WS120 and the estimated WS120 are 

significantly improved. Especially for the RF, the highest R (0.94) and the smallest RMSE (1.00 m/s) 

show that the RF is the best model to retrieve WS120. This is due to the fact that it considers more 305 

environmental factors, such as SHF, Char, WS300, and WD300. These results indicate that considering 

heat transfer and high-altitude wind speed constraints in inversion process can improve the accuracy 

of the model. 

Figure 6 shows the comparisons between the observed WS120 and the estimated WS120 for four methods 

under different season. The red, green, blue and black represent the spring, summer, autumn and winter, 310 

respectively. The PLM performs best in autumn (R=0.83, RMSE=1.95 m/s) and worst in summer 

(R=0.72, RMSE=2.37 m/s). The slopes of fitting line at spring, summer, autumn and winter were 0.58, 

0.47, 0.72 and 0.8, respectively. It shows that the performance of PLM is affected by seasonal factors, 
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which is likely due to the wind shear varying dramatically with season (Banuelos-Ruedas et al., 2010). 

In contrast, the comparison results of ML models are less affected by seasonal factor. The fitting result 315 

of KNN at different season is similar except for winter. Similarly, the performance of SVM at spring 

(winter) is similar to summer (autumn). The slopes of fitting line for SVM at spring, summer, autumn 

and winter are 0.66, 0.67, 0.8 and 0.82, respectively. As for RF, the fitting result in spring is slightly 

lower than that in other seasons. The slopes of fitting line at four seasons range from 0.75 to 0.85. This 

indicates that RF is least affected by seasons. Overall, in terms of stability and accuracy, the RF is the 320 

best model to retrieve WS120. 

4.2 Characteristics of wind speed 

The histograms of WS120 with corresponding Weibull distributions at eight coastal stations are plotted 

in Fig. 7. The blue bar and pink lines represent occurrence probability and Weibull distributions, 

respectively. Moreover, the mean WS120 and Weibull distribution parameters for all eight stations are 325 

listed in Table 2. The occurrence probability of WS120 over these stations can be divided into two types. 

One type is the unimodal distribution at land sites, such as Dongying, Penglai, Qingdao, Lianyungang, 

Fuqing, and Zhuhai, with a peak probability in medium wind speed (about 5 m/s) and a low probability 

in high and low wind speed. The other type is at island sites, such as Dayang and Dongtou stations, 

with a maximum peak in 4 m/s and a local peak at 12 m/s. The mean wind speed at island stations is 330 

slightly higher than that at coastal land stations. This is due to the influence of underlying surface 

roughness and atmospheric stability, resulting in the difference between sea and land breeze (Li et al., 

2018; Li et al., 2020). In addition, there is a deviation between the probability density function and the 

frequency of occurrence at some stations, which is due to the fact that Weibull distribution generally 

has a long tail effect or a right skewed distribution (Pishgar-Komleh et al., 2015; Ali et al., 2018). 335 

Overall, the Weibull distribution matches with the frequency of wind speed at all stations. Therefore, 

the Weibull distribution parameters can be applied for the wind energy assessment. 

4.3 Variation of wind resource 

Figure 8 shows the diurnal variation of WS120 and WPD at eight stations. The blue and red lines are 

the WS120 and WPD, respectively. At the land stations like Dongying, Penglai, Qingdao, Lianyungang, 340 

Fuqing, and Zhuhai, the WS120 is larger at daytime from 0900 to 1600 LST. This daily cycle of WS120 

is mainly affected by the solar radiation and sea-land breeze. On the one hand, the surface is heated by 

solar radiation at daytime, warming the low-level air. The convection formed by rising warm air mass 

results in high wind speed during the daytime. After sunset, the surface radiation cools and the air layer 

tends to stabilize, resulting in a gradual decrease in wind speed (Liu et al., 2018). On the other hand, 345 
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the difference of specific heat capacity between sea and land can form the difference of thermal 

properties between sea and land. The difference of air pressure is obvious, which is easy to form sea 

land breeze (Li et al., 2020). Similar diurnal variations in 10 m wind speed were also observed at three 

other stations in China (Liu et al., 2013). On the contrary, the WS120 at the Dayang and Dongtou (island 

stations) is higher at nighttime from 1800 to 2300 LST. This is largely due to the much higher specific 350 

heat capacity over ocean compared with over land. The land-ocean thermal condition tends to result in 

a low wind speed at daytime and a high wind speed at nighttime, particularly in the absence of synoptic-

scale forcing (Li et al., 2018). Overall, there are two diurnal variation patterns of wind energy at these 

stations. One is for land stations, the hourly mean WPD is larger at daytime from 0900 to 1600 LST 

with a peak at 1400 LST. The other is for island stations, the hourly mean WPD of these stations 355 

remains at a high level at all day and is relatively large at nighttime from 1800 to 2300 LST. The urban 

electricity demand usually reaches peaks at around noon in the daytime and in the evening (Hong et 

al., 2012). This means that the wind energy at the land and island stations can support the power 

demand during the noon and midnight, respectively. When the demand and the supply achieve a 

balance, wind energy will be used more effectively. In addition, it is worth noting that the mean wind 360 

speed and WPD at island stations are generally higher than that at land stations, which may be due to 

the difference in specific heats between land and sea. Li et al. (2018) also pointed out that the offshore 

stations offer more wind energy than onshore stations. 

Figure 9 shows the monthly variation of WS120 and WPD at eight stations. For all sites, the seasonal 

distribution of WS120 is large at spring and winter, and is low in summer and autumn. This is due to 365 

the influence of East Asia Monsoon and Mongolian cyclones (Yu et al., 2016). The large-scale synoptic 

systems in China have a relatively high occurrence frequency during the cold season (spring and 

winter), which result in the higher wind speed than warm season (summer and autumn) (Liu et al., 

2019). In addition, at north China, such as Dongying, Penglai, Qingdao, and Lianyungang, the monthly 

WPD is relatively high for the period from March to May, as compared to the lower values from 370 

August to October. This result indicates that the wind source of coastline of Shandong province is 

more adequate in spring season. By contrast, at south China, the monthly WPD at Dayang and Dongtou 

is maximum in December, and most of the monthly WPD are larger than 200 W/m2. This could be 

likely owing to the fact that these two stations are set up on the island, and the wind energy mainly 

depends on the sea breeze circulations. As for Zhuhai, the WPD maintain a very low value for every 375 

month and remain almost constant. 
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Figure 10 shows the spatial distribution of seasonal WS120 and WPD in the coastal regions of China. 

The shading colors in the background show the corresponding results calculated from the ERA5 data, 

which is used as reference. Overall, the spatio-temporal variations of wind speed and WPD calculated 

from the RWP observations have good consistency with that of ERA5 data. The maximum mean WS120 380 

of 6.79 m/s occurs at Dayang in summer and the minimum mean WS120 of 4.52 m/s occurs at Zhuhai 

in autumn. Moreover, the WS120 at Dongying, Penglai, Qingdao, Lianyungang, Dayang, and Dongtou 

is relatively higher than that at Fuqing and Zhuhai for all seasons. It indicates that the wind resources 

may be richer in the coastal region of northern China. According to National Renewable Energy 

Laboratory standard (Jamil et al., 1995), the WPD of Qingdao, Dayang, and Dongtou are higher than 385 

200 W/m2 in most seasons, and these three stations could be classified as wind power class Ⅱ stations. 

Except for island stations at Dayang and Dongtou, the WPD at Dongying, Penglai, Qingdao, and 

Lianyungang are much greater than those at Fuqing and Zhuhai, irrespective of seasons. Those results 

indicated that the wind resources in the Bohai Sea and the Yellow Sea coast are more abundant than 

those in the South China Sea coast. Furthermore, for the coastal region of Bohai Sea and the Yellow 390 

Sea, the wind energy resources are the most abundant in spring while for the East China Sea and the 

South China Sea coast, the wind energy resources are relatively abundant in summer. 

5. Summary and conclusions 

This study used the ML algorithms to evaluate the wind energy resource at eight coastal stations based 

on the wind speed profile and surface meteorological data from May 2018 to August 2020. Moreover, 395 

the accuracy of PLM, KNN, SVM and RF was compared based on the comparison between observed 

WS120 and estimated WS120. Finally, the wind energy resource at eight coastal stations was evaluated 

based on the WS120 from RF. 

For the four WS120 inversion method, the accuracy of three ML models is better than that of PLM. This 

is probably due to the PLM only depending on the constant α to establish relationship between surface 400 

wind speed and WS120. In fact, α is not constant and changes with height, time and meteorological 

conditions. It results in a relatively low accuracy of the PLM method. In contrast, the ML models 

consider the influence of environmental parameters to improve accuracy, such as FV and Char etc. 

Moreover, it can be noted that there are also differences in performance between different ML models. 

The results indicate that the RF is the best model to retrieve WS120, followed by SVM; last are KNN. 405 

This is caused by different decision strategies of the ML models. The variable importance analysis 

indicated that the model which can comprehensively consider the influence of most variables has the 

best performance. 
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The monthly variation of wind resources varies on the coast of China. The wind resources along the 

Bohai Sea coast have a peak approximately in May. By contrast, the wind resources along the Yellow 410 

Sea coast keeps relatively stable without pronounced peak. As for the coastal regions of East China 

Sea and the South China Sea, the wind resources increase from January, reach the maximum in June 

or July, and then decrease until December. In terms of the diurnal variation of wind resources, the 

WPD over land station has a peak at daytime from 0900 to 1600 LST, while the WPD over island 

station exhibits peak value at nighttime from 1800 to 2300 LST. This means that the wind energy at 415 

the land and island stations can support the power demand during the noon and midnight, respectively. 

When the demand and the supply achieve a balance, wind energy will be used more effectively. As for 

the spatial distribution of wind resource, the Bohai Sea and Yellow Sea coast have more abundant 

wind resources than the East China Sea and the South China Sea. The seasonal variations of wind 

resources vary on the coast of China. The coast of the Bohai Sea and Yellow Sea has the richest wind 420 

resources in spring or autumn, while the coast of the East China Sea and the South China Sea has the 

richest wind resources in summer. 

Our work comprehensively assesses the wind energy resources on the coast of China using the state-

of-the-art ML algorithm, which provides invaluable information for the development of wind energy 

industry in the coastal regions of China in the future. However, wind energy assessment is only one 425 

part of the efficient utilization of wind energy resources. The cost of wind turbines, topography 

conditions, environment harm, and other factors also need more attention, which deserves further 

investigation in the future.  
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Tables: 

 

Table 1 Detailed information of the radar wind profiler observational stations. 

Station 

Name 
Station ID Longitude (°E) Latitude (°N) Altitude (m) 

Surface 

types 

Dongying 54736 118.67 37.44 11.1 Land 

Penglai 54752 120.76 37.79 60.7 Land 

Qingdao 54857 120.23 36.33 12 Land 

Lianyungang 58044 119.24 34.54 4 Land 

Dayang 58474 122.04 30.64 49 Island 

Dongtou 58760 121.15 27.83 71 Island 

Fuqing 58942 119.39 25.72 51.7 Land 

Zhuhai 59488 113.2 22.07 30 Land 

 625 
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Table 2 Statistics for the Weibull distribution of WS120 at the eight stations from 1 May 2018 to 31 630 

August 2020. 

Station WS120 (m/s) 
Standard 

deviation (m/s) 

Weibull Shape 

factor k 

Weibull Scale 

factor c (m/s) 

Dongying 5.54 1.77 3.46 6.16 

Penglai 5.27 2.39 2.35 5.95 

Qingdao 5.86 2.45 2.58 6.59 

Lianyungang 5.81 1.75 3.68 6.43 

Dayang 6.64 2.99 2.38 7.49 

Dongtou 5.89 2.66 2.37 6.65 

Fuqing 5.39 2.44 2.37 6.08 

Zhuhai 4.68 1.78 2.87 5.25 
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Figures: 635 

 

 

Figure 1. Geographical distribution of the eight radar wind profiler observational stations (red dots) 

in the coast of East China. 

 640 
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Figure 2. The parameter tuning process for (a, d) KNN, (b, e) SVM and (c, f) RF models. The blue 

and red lines represent the variation of R and RMSE, respectively. The gray dotted lines and texts 645 

indicate the optimal parameters for their corresponding models. 
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 650 

Figure 3. Importance analysis of input variables for three models: (a) KNN, (b) SVM, and (c) RF. 
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Figure 4. Scatter plots showing the difference of observed WS120 and estimated WS120 as a function 

of WS10 (a-d) and friction velocity (FV, e-h). The red, green, blue and black points represent the 

difference for PLM-observed, KNN-observed, SVM-observed and RF-observed, respectively. The 

gray line represents the mean difference. 
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Figure 5. Comparisons between observed WS120 and estimated WS120 based on the (a, e, i) PLM, (b, 

f, j) KNN, (c, g, k) SVM and (d, h, l) RF models under different time. The gray and black line is the 

reference and regression line, respectively. The color bar represents the data density. The asterisk 

indicates that the correlation coefficient (R) has passed the t-test at a confidence level of 95%. 665 
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Figure 6. Comparisons between observed WS120 and estimated WS120 based on the (a) PLM, (b) KNN, 

(c) SVM and (d) RF models under different season. The red, green, blue and black represent spring, 670 

summer, autumn and winter, respectively. The asterisk indicates that the correlation coefficient (R) 

has passed the t-test at a confidence level of 95%. 
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Figure 7. Probability distribution and Weibull distribution of WS120 at the eight stations from 1 May 

2018 to 31 August 2020. The blue bar and pink lines represent occurrence probability and Weibull 

distributions, respectively. 
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Figure 8. Diurnal variation of the WS120 and wind power density for the eight RWP stations as 

shown in Figure 1. The blue and red lines denote the mean wind speed and wind power density, 

respectively. 
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Fig. 9. Similar to Fig. 8, but for the monthly variation. 
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 690 

Fig. 10. Spatial distribution of the seasonal mean wind speed and wind power density at 100 m AGL 

along the coastline of China. The circles represent the WS120 observations directly from the eight RWP 

stations. The shading colors in the background show the corresponding results calculated from the 

ERA5 reanalysis data. 
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