
Response to Reviewer #2’s Comments 

We thank the anonymous reviewer for his/her comprehensive evaluation and 

thoughtful comments, which greatly improve the quality of our manuscript. We have 

made efforts to adequately address the reviewers' concern one by one. For clarity 

purpose, here we have listed the reviewer' comments in plain font, followed by our 

response in bold italics. 

 

1. First concern relates with the argument of this work, which to me does not seem well 

related with this journal. As from the journal’s homepage, “Atmospheric Chemistry and 

Physics (ACP) is a not-for-profit international scientific journal dedicated to the 

publication and public discussion of high-quality studies investigating the Earth's 

atmosphere and the underlying chemical and physical processes. It covers the altitude 

range from the land and ocean surface up to the turbopause, including the troposphere, 

stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, 

field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds 

and precipitation, isotopes, radiation, dynamics, biosphere interactions, and 

hydrosphere interactions (for details see journal subject areas). The journal scope is 

focused on studies with important implications for our understanding of the state and 

behaviour of the atmosphere.” Here, the authors have used different machine learning 

algorithms to investigate the wind energy resource in China, so the connection with the 

above is not totally convincing. Also because the authors never try to connect or 

motivate their findings, for instance the construction of the algorithms, with some 

known physical process and the discussion mostly is narrowed on statistical parameters 

to compare the results obtained by the algorithms. 

Response: Good point! This concern mainly is caused by our inappropriate 

description on the grand challenge for the current instruments used to provide wind 

measurements at turbine height for wind energy industry. To this end, we attempt to 

obtain accurate wind speed at turbine height based on machine learning algorithms. 

At present, the wind mast or tower can provide wind speed below 100 m AGL (Durisic 

et al. 2012; Liu et al., 2018). By comparison, the radar wind profiler (RWP) can 

measure the wind profiles from the ground surface to a height of 5-8 km AGL (Liu 

et al., 2019). But there is a large uncertainty in the wind profile observations near the 

ground surface (below 300 m) provided by the RWP, due to the influence of ground 

and intermittent clutter (May and Strauch 1998; Allabakash et al., 2019). It leads to 

a gap (100 to 300 m) in the observation of surface layer wind profile. This height 

(100~300 m) is also the installation height of the wind turbine. The PLM method is 

most often applied to extrapolate the surface wind speed to the wind turbine hub 

height. Previously, a semi-empirical relationship, termed “log wind profile”, is 

commonly used to describe the vertical pattern of horizontal wind speeds within the 

surface layer. However, a recent study (i.e., Jung et al., 2021) suggested that the error 

in the wind power density estimation over China can reach to 30 % by taking the 



above-mentioned relationship. This is largely due to the inconsideration of 

turbulence nature in the boundary layer, and to the ignorance of the impact induced 

by multi-scale circulation. To better fit the scope of ACP, we have made substantial 

changes to the original manuscript. 

    First of all, the title is modified to “Estimating hub height wind speed based on 

machine learning algorithm: Implications for the wind energy assessment”. 

Secondly, the motivation of this manuscript has been rewritten in Introduction 

part by highlighting the challenges we are facing in estimating the wind speed at 

turbine hub height. In this context, machine learning algorithms have been reviewed 

as well. The updated introduction part goes as follows: 

“Characterizing the wind speed at wind turbine hub height is key for wind energy 

assessment (Yu et al., 2022). The wind turbine is usually installed at the top of wind 

mast with a height of 100-120 m above ground level (AGL), which roughly 

corresponds to the surface layer (Veers et al., 2019). The wind speed data that have 

been widely used for wind energy assessment are mainly obtained from wind mast, 

Doppler lidar or reanalysis data (Debnath et al., 2021). The 10 m wind data measured 

by the ground meteorological station can be used for wind energy assessment (Oh et 

al. 2012; Liu et al., 2019). The wind tower or mast can also provide wind speed 

observation data below 100 m AGL (Durisic et al. 2012; Liu et al., 2018). Moreover, 

the reanalysis data, such as the fifth generation European Centre for Medium-Range 

Weather Forecasts atmospheric reanalysis system (ERA5), can provide the hourly 

wind speed at a height of 10 or 100 m AGL for wind energy assessment (Laurila et 

al., 2021; Gualtieri, 2021). However, the wind turbines are increasing in height and 

rotor diameter with the development of technology, which go beyond the surface layer 

and enter the Ekman layer. Such as some offshore wind power plants, the blade tips 

of the largest wind turbine can reach heights of 250 m AGL (Gaertner et al. 2020). 

In addition, increasing wind turbine hub height reduces the impact of surface friction, 

enabling wind turbines to operate in high-quality wind resource environments (Veers 

et al., 2019). Therefore, the wind profile is important for the selection of wind turbine 

hub height and the assessment of wind energy. 

It is widely recognized that the wind profile is mainly obtained by empirical 

formulae (Li et al., 2018), such as the power law method (PLM) . The PLM method 

generally assumes that the wind speed below 150 m in the planetary boundary layer 

(PBL) varies exponentially with height (Hellman et al. 1914). This means that the 

wind speed at the wind turbine hub height can be calculated from the surface wind 

speed based on a constant power law exponent (α). But the surface layer wind profile 

is mainly controlled by the surface roughness, friction velocity and the atmospheric 

stability (Gryning et al., 2007). The surface layer is where obstructions such as trees, 

buildings, hills, and valleys cause turbulence and reduce the wind speed (Coleman et 

al., 2021; Solanki et al., 2022). Due to the influence of inhomogeneous underlying 

surface and ubiquitous atmospheric turbulence, wind speed varies constantly and 

greatly in the vertical (Tieleman 1992). Especially above surface layer, the factors, 

such as the Coriolis force, baroclinity and wind shear, increase the complexity of the 

wind profile (Brümmer 1991). As a result, the α has spatiotemporal variability and 

depends on a variety of factors, such as terrain, time and height (Li et al., 2018). 

Therefore, the assumption of a constant α poses great challenges and uncertainties 

to wind energy assessment. Some studies use more complex models to improve the 

PLM, such as the perturbation theory (Sen et al., 2012) and the bivariate wind speed-



wind shear model (Jung et al., 2017). These studies confirm that there is a complex 

nonlinear relationship between surface observations and wind speed at the wind 

turbine hub height. Therefore, one of the greatest challenges is to develop an 

accurate method to describe the nonlinear transfer from surface observations to wind 

speed at wind turbine hub height. 

With the development of machine learning (ML) technology, the ML algorithms 

have been widely used in the field of wind speed and wind power prediction 

(Magazzino et al., 2021). Chi et al. (2015) compared two wind speed-forecasting 

mechanisms in China based on linear regression and support vector machine 

algorithm. They find that the ML algorithms have better accuracy in solving the 

nonlinear problem. Lahouar and Slama et al. (2017) use several meteorological 

factors to forecast wind power based on a random forest (RF) model. The results 

indicate that compared with physical and statistical approaches, the ML model can 

achieve better accuracy when coping with problems that cannot be analytically 

defined. Therefore, it is worth trying to use ML algorithms to retrieve the wind speed 

at wind turbine hub height from available observations.” 

Thirdly, in the methods section, we focused on the inversion of surface layer 

wind profile based on the RF model. We try to clarify the scientific significance and 

connect the construction of the models with the known physical process: 

“The schematic diagram of surface layer wind profile observations is shown in 

Fig. 2. The wind mast or tower can provide wind speed data below 100 m AGL 

(Durisic et al. 2012; Liu et al., 2018). The RWP can measure the wind profiles from 

the 300 m to a height of 5-8 km AGL (Liu et al., 2019). It leads to a gap (100 to 300 

m) in the observation of wind profile. At present, the PLM method is most often 

applied to extrapolate the surface wind speed to the wind turbine hub height, such as 

wind speed at 120 m (WS120), 160 m (WS160) and 200 m (WS200) AGL.” 

 

Figure. 2 The schematic diagram of surface layer wind profile observation. 

“In the construction of the RF model, it is necessary to obtain the relevant 

variables that may affect the surface wind profile according to the physical 

mechanism and previous research. At present, the PLM is often used to calculate the 

wind speed at hub height. It confirms that the wind speed at hub height is related to 

the wind speed at other heights (Durisic et al., 2012; Li et al., 2018). Therefore, the 

WS10, WD10, WS300 and WD300 are selected as inputs. The surface wind profile also 



depends on the surface roughness, friction velocity and the atmospheric stability 

(Smith, 1988; Gryning et al., 2007), so that FSR, FV and Char are also regarded as 

inputs. The higher FSR causes a slower wind speed in the surface layer. The FV is a 

theoretical wind speed at the Earth's surface, which is used to calculate the way wind 

changes with height in near surface (Stull, 1988). Moreover, considering that the 

generation of wind is closely associated with uneven heating of the Earth's surface 

by solar radiation (Solanki et al., 2022), the Rn, LHF and SHF are also selected as 

input variables. Additionally, some studies use atmospheric temperature and pressure 

as input to improve the accuracy of wind speed prediction (Chi et al., 2015). Here, we 

also regard DP, Temp and Press as the input variables. The reference value, also 

included as input in the RF model, is the WS120, WS160 and WS200 measured from 

RS.” 

“To estimate the WS120, WS160 and WS200, we need to build RF model on 120 m 

(RF120), 160 m (RF160) and 200 m (RF200), respectively. For each model, it is necessary 

to select the main features from the inputs to avoid data redundancy and reduce the 

complexity of the model (Ma et al., 2021). Following the research of Gregori et al. 

(2022), the inputs which cannot cause a 2% reduction in correlation coefficient are 

regarded as irrelevant feature and removed. Figure 3 shows the importance analysis 

of inputs for three RF models. The relevant features are marked by red bars. The 

irrelevant features are marked by blue bars, which are not regarded as final inputs 

in three RF models. For three RF models, the relevant features are both WS10, FV, 

Char, SHF and WS300. It indicates that the factors such as surface friction, heat 

transfer and high-altitude wind speed constraints are considered in the construction 

of RF models. In addition, it is surprising that FSR has such low importance in three 

RF models construction. FSR is a measure of surface resistance, which directly 

affects the near-surface wind speed (Smith, 1988). At a land station, the FSR is 

derived from the vegetation type (Li et al., 2021). The surface type of Qingdao station 

is cropland. Li et al. (2021) confirms that the FSR at cropland is most likely to 0.3 m. 

In training data, the FSR from ERA5 also approximates a constant value (0.3 m). 

Since the constant variable has no meaning for RF model construction, the RF model 

divides FSR into irrelevant variable. Therefore, the final inputs for three RF models 

are WS10, FV, Char, SHF and WS300.” 

Finally, we add more physical process discussions in the discussion section. We 

try to explain the performance difference of the method from the perspective of 

physical mechanism. 

“Figure 4 shows the wind profile from different methods under different time. 

The red, black and blue lines represent the mean wind speed from RS, PLM and RF, 

respectively. For the PLM, the retrieved results below 80 m AGL are consistent with 

the RS observations. Gryning et al. (2007) also pointed out that the wind profile based 

on surface-layer theory is valid up to a height of 50–80 m. Above 80 m AGL, the wind 

speeds retrieved by PLM deviate from the RS observations. This deviation is 

increasing with the height. The comparison results between PLM and RS at 120 m, 

160 m and 200 m AGL (Fig. 5) are also confirmed it. This is due to that above surface 

layer, the Coriolis force, baroclinity and wind shear increase the complexity of the 

wind profile (Brümmer 1991). Moreover, most of estimated results from PLM are 

underestimated when the observed wind speed is high, especially at 200 m AGL. This 

is due to the surface wind profile is affected by turbulence, surface friction and other 

factors (Tieleman 1992; Solanki et al., 2022). The turbulence caused by 



inhomogeneous underlying surface can change the wind direction and reduce the 

horizontal wind speed (Coleman et al., 2021). Especially in coastal areas, the sea land 

interaction and complex surface types make the variations of near surface wind 

profiles more complex. The simple exponential relationship is unable to obtain the 

surface wind profile with high accuracy, especially at high wind speed condition. By 

comparison, the WS120, WS160 and WS200 retrieved from RF are closer to RS 

observations. Compared with PLM, the R and RMSE between the observed wind 

speed and the estimated wind speed from RF at three heights are significantly 

improved (Fig. 5). This is due to the fact that the surface friction (FV), heat transfer 

(SHF) and high-altitude wind speed constraints (WS300) are considered in 

construction of RF, which can improve the accuracy of the model. Moreover, it notes 

that three RF models tend to slightly overestimate small values and underestimate 

high values. This may be due to the small number of training samples at high and 

low values, resulting in the reduction of RF model generalization. Overall, it can be 

seen from the metrics of R and RMSE that the wind speed from RF model is better 

than that from PLM.  

In addition, for both PLM and RF, the retrieved wind profile at 2000 LST is 

closer to the RS observations. The comparisons between the observed wind speed and 

the estimated wind speed for PLM and RS under different time is shown in Fig. S7. 

The fitting results of PLM and RF at 2000 LST are slightly higher than that at 0800 

LST. It indicates that the performance of PLM and RF vary with hour of the day. 

This is due to the wind profile depends not only on the surface friction but also on 

the atmospheric stratification (Gryning et al., 2007). The surface layer is in an 

unstable stratification due to heat transfer caused by solar radiation during daytime, 

while the surface layer tends to stable stratification due to surface radiation cools 

during nighttime (Yu et al., 2022; Solanki et al., 2022). The WS120, WS160 and WS200 

are more vulnerable to the surface turbulence due to the unstable stratification 

during daytime. Therefore, the performance of PLM and RF at nighttime is better 

than that at daytime. 

Figure 6 shows the comparisons between the observed results and the estimated 

results for PLM and RF under different season. The red, green, blue and black 

represent the spring, summer, autumn and winter, respectively. At three heights, the 

performance of PLM is the best in winter and the worst in summer. It shows that the 

performance of PLM is affected by seasonal factors, which is likely due to the wind 

shear varying dramatically with season (Banuelos-Ruedas et al., 2010). Pérez et al. 

(2005) indicates that the surface layer wind speed profile is mainly affected by the 

convection produced by surface heating in summer. The WS120, WS160 and WS200 

affect by the surface due to the unstable stratification, which leads that the PLM 

performs worst in summer. In contrast, during winter, the surface temperature is 

generally lower than the air temperature aloft creating a stable inversion (Yu et al., 

2022; Liu et al., 2022). The WS120, WS160 and WS200 are disconnected from the 

surface due to stable stratification. It leads that the PLM performs best in winter. As 

for RF, although the performance in spring is slightly lower than that in other 

seasons, the fitting results at four seasons are significantly improved compared with 

the PLM. This indicates that RF is least affected by seasons. The reason is that the 

RF model is less subjective than PLM because they are data driven. Overall, in terms 

of stability and accuracy, the RF is more suitable for estimating wind speed at hub 

height.” 

All these revisions had been incorporated in this revised manuscript. 



2. Second point is that although they present limitations coming from the use of ERA5 

reanalysis due to its coarse resolution, they have used this dataset for information on 

local parameters, such as surface roughness, friction, besides wind speed so I do not 

understand how they can overcome those limitations with their method. In my opinion, 

at least some of these parameters would need much fine resolution to be representative 

of the site. 

Response: Good question! As your said, some parameters, such as surface roughness 

(FSR), friction velocity (FV), temperature (Temp) and pressure (Pres), need much 

fine resolution to be representative of the site. In the surface layer, the FSR, FV and 

the atmospheric stability are the main factors controlling the wind profile (Gryning 

et al., 2007). Unfortunately, there is no field observation data of FV and FSR at 

Qingdao station. Therefore, we can only obtain the corresponding parameters from 

the reanalysis data (ERA5). However, it should be noted that for some parameters, 

such as FSR, Temp and Press, we have used the fine resolution or site observation 

data to investigate their impact on model accuracy. At land stie, FSR is a measure of 

surface resistance, which is derived from the vegetation type and snow cover (Smith, 

1988). Li et al. (2021) retrieved the FSR in Chinese mainland based on MODIS 0.05 

* 0.05-degree surface type data. They confirm that the FSR at cropland is most likely 

to 0.3 m. The surface type of Qingdao station is cropland. Therefore, we set the FSR 

to 0.3 to compare with the FSR from ERA5. In fact, the FSR from ERA5 also 

approximates a constant value (0.3 m). In addition, the Temp and Press obtained 

from field observation are also compared with that from ERA5. Fig. S1 shows the 

influence of different sources of parameters on RF model accuracy. It can find that 

for these three parameters, the use of field observation or ERA5 data has little impact 

on the accuracy of the RF model. Therefore, we finally decided to use ERA5 data as 

input.  

 

Figure S1. Comparison of the RF model accuracy under different input. Red and 

blue points represent the results from ERA5 data and field observation (or fine 

resolution), respectively.  

In the revised manuscript, we added a section about the feature selection of RF 

model. Following the research of Gregori et al. (2022), the inputs, which cannot 

cause a 2% reduction in correlation coefficient, are regarded as irrelevant feature 

and removed. The final input variables of RF are WS10, FV, Char, SHF and WS300. 

The specific modifications are as follows: 

“To estimate the WS120, WS160 and WS200, we need to build RF model on 120 m (RF120), 

160 m (RF160) and 200 m (RF200), respectively. For each model, it is necessary to select 



the main features from the inputs to avoid data redundancy and reduce the 

complexity of the model (Ma et al., 2021). Following the research of Gregori et al. 

(2022), the inputs, which cannot cause a 2% reduction in correlation coefficient, are 

regarded as irrelevant feature and removed. Figure 3 shows the importance analysis 

of inputs for three RF models. The relevant features are marked by red bars. The 

irrelevant features are marked by blue bars, which are not regarded as final inputs 

in three RF models. For three RF models, the relevant features are both WS10, FV, 

Char, SHF and WS300. It indicates that the factors such as surface friction, heat 

transfer and high-altitude wind speed constraints are considered in the construction 

of RF models. In addition, it is surprising that FSR has such low importance in three 

RF models construction. FSR is a measure of surface resistance, which directly 

affects the near-surface wind speed (Smith, 1988). At a land station, the FSR is 

derived from the vegetation type (Li et al., 2021). The surface type of Qingdao station 

is cropland. Li et al. (2021) confirms that the FSR at cropland is most likely to 0.3 m. 

In training data, the FSR from ERA5 also approximates a constant value (0.3 m). 

Since the constant variable has no meaning for RF model construction, the RF model 

divides FSR into irrelevant variable. Therefore, the final inputs for three RF models 

are WS10, FV, Char, SHF and WS300.” 

All the above response and revisions had been incorporated into section 3.2 of 

this revised manuscript. 

 

3. In any case, as regards the revision, the authors have tried to address all the comments 

from the two reviewers. Grammatical and spelling mistakes are still there, both in the 

original and in the newly added or modified parts. 

Response: Thanks for pointing these issues out. We tried our best to correct spelling 

and grammatical errors in the revised manuscript. 

 

4. In reference to my previous question 4 (A strong limitation of the work is that the 

comparison of observations with model estimations is carried out at a single location, 

whereas the retrievals are then used at eight different stations. It is not clear if the results 

obtained at the single station, from which a single ML algorithm was selected, also 

apply to the other stations, and why.), I am not satisfied with the answer as it refers to 

a general statement on the method not specific to this work. 

Response: In the revised manuscript, we focused on the inversion of near-surface 

wind profile based on the data of Qingdao station. Therefore, this section is changed 

to analyze the generalization and applicability of RF in Qingdao Station. The specific 

modifications are as follows: 

“The accuracy and generalization of the RF model depend on training and 

testing samples (Ma et al., 2021). However, the training and testing samples are 

obtained at 0800 and 2000 LST. It needs to discuss whether the RF model also applies 

to other times. This depends on whether the RF model has enough generalization for 

the training samples, and whether the inputs at other times have appeared in the 

training samples. Fig. S3-S5 shows the difference between estimated wind speed and 

observed wind speed of three RF models, which as a function of the inputs. For three 



RF models, the deviations are relatively stable and not change with the increase of 

inputs. It indicates that three RF models have good generalization for the training 

and testing samples. This is due to the fact that RF tends to increase random 

disturbance in the sample space, parameter space and model space, thereby reducing 

the impact of "cases" and improving the generalization ability (Breiman, 2001). 

Moreover, Fig. S6 shows the distribution of inputs at different time. The red dashed 

lines represent the maximum and minimum values of each variable at training 

samples. In the range of the red line, three RF models can provide stable output due 

to its good generalization ability. It can be found that almost all the inputs have 

appeared in training samples. Therefore, three RF models have sufficient 

generalization and can be used at other times.” 

 

5. Also the response to question 5 (What do you mean by “goal of carbon emission 

peak”? Revise) is not satisfying since it refers to a policy perhaps well known for 

Chinese but not to the general reader. 

Response: Yes, it refers to a policy in China. The Chinese government proposes to 

peak its carbon dioxide emissions before 2030 and achieve carbon neutrality before 

2060. To facilitate understanding, we deleted this sentence. 

 

6. Finally, response to question 45 (Lines 248-257: The explanation is not clear: revise. 

Also, I don’t understand the need to discuss the difference (a sort of mean bias) when 

you were discussing the RMSE and R values. Also, it would be needed to understand 

if the fitting and comparison of model estimations with observations vary with hour of 

the day, season, or other factors. Also, the discussion could be improved because for 

instance from Figure 5 I can observe that: RF model is the best but tends to overestimate 

small values and underestimate high values; similar discussions also for the other 

models.) is not convincing enough because it does not explain why there are different 

effects of the seasonal variability on the various models (some are not affected). Also, 

it does not focus on the subdiurnal variability. 

Response: According to your suggestion, we have added many discussions and 

explanations in this section. The specific modifications are as follows: 

 

Figure 4. Vertical profiles of the mean wind speed from different methods at (a) all 

time, (b) 0800 and (c) 2000 LST. Red, black and blue lines represent mean wind 



profile from RS, PLM and RF, respectively. Corresponding color shading areas 

represent one standard deviation.  

“In addition, for both PLM and RF, the retrieved wind profile at 2000 LST is 

closer to the RS observations. The comparisons between the observed wind speed and 

the estimated wind speed for PLM and RS under different time is shown in Fig. S7. 

The fitting results of PLM and RF at 2000 LST are slightly higher than that at 0800 

LST. It indicates that the performance of PLM and RF vary with hour of the day. 

This is due to the wind profile depends not only on the surface friction but also on 

the atmospheric stratification (Gryning et al., 2007). The surface layer is in an 

unstable stratification due to heat transfer caused by solar radiation during daytime, 

while the surface layer tends to stable stratification due to surface radiation cools 

during nighttime (Yu et al., 2022; Solanki et al., 2022). The WS120, WS160 and WS200 

are more vulnerable to the surface turbulence due to the unstable stratification 

during daytime. Therefore, the performance of PLM and RF at nighttime is better 

than that at daytime. 

Figure 6 shows the comparisons between the observed results and the estimated 

results for PLM and RF under different season. The red, green, blue and black 

represent the spring, summer, autumn and winter, respectively. At three heights, the 

performance of PLM is the best in winter and the worst in summer. It shows that the 

performance of PLM is affected by seasonal factors, which is likely due to the wind 

shear varying dramatically with season (Banuelos-Ruedas et al., 2010). Pérez et al. 

(2005) indicates that the surface layer wind speed profile is mainly affected by the 

convection produced by surface heating in summer. The WS120, WS160 and WS200 

affect by the surface due to the unstable stratification, which leads that the PLM 

performs worst in summer. In contrast, during winter, the surface temperature is 

generally lower than the air temperature aloft creating a stable inversion (Yu et al., 

2022; Liu et al., 2022). The WS120, WS160 and WS200 are disconnected from the 

surface due to stable stratification. It leads that the PLM performs best in winter. As 

for RF, although the performance in spring is slightly lower than that in other 

seasons, the fitting results at four seasons are significantly improved compared with 

the PLM. This indicates that RF is least affected by seasons. The reason is that the 

RF model is less subjective than PLM because they are data driven. Overall, in terms 

of stability and accuracy, the RF is more suitable for estimating wind speed at hub 

height.” 

 

7. Line 9: Perhaps you mean “goal of reducing carbon dioxide emissions”? 

Response: Yes, amended as suggested. 

 

8. Line 11: change “the” with “a” 

Response: Amended as suggested. 

 

9. Lines 40-43: Quite simplicist explanation. 

Response: We have revised the introduction. This sentence has been deleted. 



 

10. Line 64: What is the “peak carbon dioxide emissions”? It is not clear to the non-

Chinese reader. 

Response: Amended as “The Chinese government proposes to peak its carbon dioxide 

emissions before 2030 and achieve carbon neutrality before 2060 (Pei et al., 2022)”. 

 

11. Lines 82-85: Revise this sentence, there is no principal sentence. 

Response: Amended as “Due to the influence of inhomogeneous underlying surface, 

land sea difference and ubiquitous atmospheric turbulence, wind varies constantly 

and greatly in the vertical (Tieleman 1992; Coleman et al., 2021).” 

 

12. Lines 92-93: WRF is just one of the regional/mesoscale models available. Need to 

clarify better this aspect and the comparison with ERA5 (based on reanalysis and not 

on a simulation) 

Response: We have revised the introduction. This sentence has been deleted. 

 

13. Line 94: Not relevant if you do not specify which are those limitations. 

Response: We deleted it. 

 

14. Lines 127-134: Geographic information and background are not enough for a non-

chinese reader. 

Response: In the revised manuscript, we focused on the inversion of near-surface 

wind profile based on the data of Qingdao station. Therefore, this section is modified 

as follows: 

“The spatial distribution and surface type of this station are shown in Fig. 1. 

Geographically, Qingdao station is located on the south of Shandong Peninsula and 

lies to the west of the Yellow Sea. To be more specific, this station is set up in the 

suburb, surrounded by cropland. The altitude of this station is 12 m above mean sea 

level.” 



 

Figure 1. Geographical distribution and surface type of the radar wind profiler 

observational station at Qingdao. 

 

15. Line 218: change “need” to “needs.” 

Response: Amended as suggested. 

 

16. Lines 589-595: What about the output data and the codes used in this work? 

Response: Amended as “The output data and codes used in this paper can be provided 

for non-commercial research purposes upon motivated request (Jianping Guo, Email: 

jpguocams@gmail.com)”. 

 

 


