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Abstract 16 

Gaseous pollutants at the ground level seriously threaten the urban air quality environment and 17 

public health. There are few estimates of gaseous pollutants that are spatially and temporally 18 

resolved and continuous across China. This study takes advantage of big data and artificial 19 

intelligence technologies to generate seamless daily maps of three major ambient pollutant gases, 20 

i.e., NO2, SO2, and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km. 21 

Cross-validation between our estimates and ground observations illustrated a high data quality on a 22 

daily basis for surface NO2, SO2, and CO concentrations, with mean coefficients of determination 23 

(root-mean-square errors) of 0.84 (7.99 μg/m3), 0.84 (10.7 μg/m3), and 0.80 (0.29 mg/m3), 24 

respectively. We found that the COVID-19 lockdown had sustained impacts on gaseous pollutants, 25 

where surface CO recovered to its normal level in China on around the 34th day after the Lunar New 26 

Year, while surface SO2 and NO2 rebounded more than twice slower due to more CO emissions 27 

from increased residents' indoor cooking and atmospheric oxidation capacity. Surface NO2, SO2, 28 

and CO reached their peak annual concentrations of 21.3 ± 8.8 µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 29 

± 0.29 mg/m3 in 2013, then continuously declined over time by 12%, 55%, and 17%, respectively, 30 

until 2020. The declining rates were more prominent from 2013 to 2017 due to the sharper 31 

reductions in anthropogenic emissions but have slowed down in recent years. Nevertheless, people 32 

still suffer from high-frequency risk exposure to surface NO2 in eastern China, while surface SO2 33 

and CO have almost reached the recommended air quality guidelines level since 2018, benefiting 34 

from the implemented stricter “ultra-low” emission standards. This reconstructed dataset of surface 35 

gaseous pollutants will benefit future (especially short-term) air pollution and environmental health-36 

related studies.  37 
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1. Introduction 38 

Air pollution has been a major environmental concern, affecting human health, weather, and climate  39 

(Anenberg et al., 2022; Kan et al., 2012; Li et al., 2017a; Murray et al., 2020; Orellano et al., 2020), 40 

thus drawing worldwide attention. The sources of air pollution are complex. They include natural 41 

sources such as wildfires and anthropogenic emissions, including pollutants discharged from 42 

industrial production [e.g., smoke/dust, sulfur oxides, nitrogen oxides (NOx), and volatile organic 43 

compounds (VOCs)], hazardous substances released from burning coal during heating seasons [e.g., 44 

dust, sulfur dioxide (SO2), and carbon monoxide (CO)], and waste gases (e.g., CO, SO2, and NOx) 45 

generated by transportation, especially in big cities. 46 

Among various air pollutants, the following have been most widely recognized: particulate matter 47 

with diameters smaller than 2.5 µm and 10 µm (PM2.5 and PM10) and gaseous pollutants [e.g., 48 

ozone (O3), nitrogen dioxide (NO2), SO2, and CO, among others]. Many countries have built 49 

ground-based networks to monitor a variety of conventional pollutants in real time. China has 50 

experienced serious ambient air pollution for a long time, prompting the establishment of a large-51 

scale air quality monitoring network (MEE, 2018a). Over the years, much effort has been made to 52 

model different species of air pollutants. Many studies focused on particulate matter in China have 53 

been carried out (Gao et al., 2022; Li et al., 2017b; Li et al., 2022b; Ma et al., 2022; Yang et al., 54 

2022; Zhang et al., 2018). The global COVID-19 pandemic has motivated many attempts to 55 

estimate surface NO2 concentrations from satellite-retrieved tropospheric NO2 products (Tian et al., 56 

2020; WHO, 2020), e.g., from the Ozone Monitoring Instrument (OMI) onboard the NASA Aura 57 

spacecraft and the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus 58 

Sentinel-5 Precursor satellite, adopting different statistical regression (Chi et al., 2021; Qin et al., 59 

2017; Zhang et al., 2018) and artificial intelligence (Chen et al., 2019; Chi et al., 2022; Dou et al., 60 

2021; Liu, 2021; Wang et al., 2021; Zhan et al., 2018) models. By comparison, surface SO2 and CO 61 

in China are less studied, limited by weaker signals and a lack of good-quality satellite tropospheric 62 

products (Han et al., 2022b; Li et al., 2020; Liu et al., 2019; Wang et al., 2021). Such studies still 63 

face more challenges, e.g., satellite data gaps and missing values that seriously limit their 64 

application and the neglect of spatiotemporal differences in air pollution in the modeling process. In 65 
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addition, most previous studies mainly focused on studying a single or a few species during 66 

relatively short observational periods. 67 

In view of the above problems, the purpose of this paper is to reconstruct daily concentrations of 68 

three ambient gaseous pollutants (i.e., NO2, SO2, and CO) in China. To this end, relying on the 69 

dense national ground-based observation network and big data, including satellite remote sensing 70 

products, meteorological reanalysis, chemical model simulations, and emission inventories, we are 71 

capable of mapping three pollutant gases seamlessly (100% spatial coverage) on a daily basis at a 72 

uniform spatial resolution of 10 km since 2013 in China. Estimates were made using an extended 73 

and powerful machine-learning model incorporating spatiotemporal information, i.e., space-time 74 

extra-trees. Natural and anthropogenic effects on air pollution, including their physical mechanisms 75 

and chemical reactions, were accounted for in the modeling. Using this dataset, spatiotemporal 76 

variations of the gaseous pollutants, the impacts of environmental protection policies and the 77 

COVID-19 epidemic, and population risk exposure to gaseous pollution are investigated. 78 

To date, we have combined the advantages of artificial intelligence and big data to construct a 79 

virtually complete set of major air quality parameters concerning both particulate and gaseous 80 

pollutants over a long period of time across China, including PM1 (1 km, 2000–Present) (Wei et al., 81 

2019), PM2.5 (1 km, 2000–Present) (Wei et al., 2020; Wei et al., 2021a), PM10 (1 km, 2000–Present) 82 

(Wei et al., 2021b), O3 (10 km, 1979–Present) (Wei et al., 2022a; He et al., 2022b), and NO2 (1 km, 83 

2019–Present) (Wei et al., 2022b), serving environmental, public health, economy, and other related 84 

research. This study is the continuation of our previous studies, which adds two new species of SO2 85 

and CO for the first time and also dates the data records of NO2 back to 2013. Instead of devoting 86 

itself to a single pollutant, this study deals with all gaseous pollutants of compatible quality over the 87 

same period with the same spatial coverage and resolution. In particular, considering that there are 88 

few public datasets of these three gaseous pollutants with such spatiotemporal coverages focusing 89 

on the whole of China, this is highly valuable for the sake of studying their variations, relative 90 

proportions, and attribution of emission sources, as well as their diverse and joint effects of different 91 

pollutant species on public health. 92 

 93 

2. Materials and methods 94 
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2.1 Big data 95 

2.1.1 Ground-based measurements 96 

Hourly measurements of ground-level NO2, SO2, and CO concentrations from ~1600 reference-97 

grade ground-based monitoring stations (Figure 1) collected from the China National 98 

Environmental Monitoring Centre (CNEMC) network were employed in the study. This network 99 

includes urban assessing stations, regional assessing stations, background stations, source impact 100 

stations, and traffic stations, set up in a reasonable overall layout that covers industrial (~14%), 101 

urban (~31%), suburban (~39%), and rural (~16%) areas to improve the spatial representations, 102 

continuity, and comparability of observations (HJ 664-2013) (MEE, 2013a). NO2 is measured by 103 

chemiluminescence and differential optical absorption spectroscopy (DOAS), and SO2 uses 104 

ultraviolet fluorescence and DOAS, while CO adopts non-dispersive infrared spectroscopy and gas 105 

filter correlation infrared spectroscopy. These measurements have been fully validated and have the 106 

same average error of indication of ±2% F.S. for the three gaseous pollutants considered here, with 107 

additional quality-control checks such as zero and span noise and zero and span drift (HJ 193-2013 108 

and HJ 654-2013) (MEE, 2013b, 2013c). They have also been used as ground truth in almost all air 109 

pollutant modelling studies in China (Ma et al., 2022; Zhang et al., 2022a). All stations use the same 110 

technique to measure each gas routinely and continuously 24 hours a day at about the sea level 111 

without time series gaps. However, the reference state (i.e., observational conditions like 112 

temperature and pressure) changed from the standard condition (i.e., 273 K and 1013 hPa) to the 113 

room condition (i.e., 298 K and 1013 hPa) on 31 August 2018 (MEE, 2018a). We thus first 114 

converted observations of the three gaseous pollutants after this date to the uniform standard 115 

condition for consistency. Here, daily values for each air pollutant were averaged from at least 30% 116 

of valid hourly measurements at each station in each year from 2013 to 2020. 117 

[Please insert Figure 1 here] 118 

2.1.2 Main predictors 119 

A new daily tropospheric NO2 dataset at a horizontal resolution of 0.25° × 0.25° in China was 120 

employed, created using a developed framework integrating OMI/Aura Quality Assurance for 121 

Essential Climate Variables (QA4ECV) and Global Ozone Monitoring Experiment–2B (GOME-2B) 122 
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offline tropospheric NO2 retrievals passing quality controls (i.e., cloud fraction < 0.3, surface albedo 123 

< 0.3, and solar zenith angle < 85°) (He et al., 2020). The reconstructed tropospheric NO2 agreed 124 

well (R = 0.75–0.85) with Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) 125 

measurements. Through this data fusion, the daily spatial coverage of satellite tropospheric NO2 126 

was significantly improved in China (average = 87%). Areas with a small number of missing values 127 

were imputed via a nonparametric machine-learning model by regressing the conversion 128 

relationship with Copernicus Atmosphere Monitoring Service (CAMS) tropospheric NO2 129 

assimilations (0.75° × 0.75°), making sure that the interpolation was consistent with the OMI/Aura 130 

overpass time (Inness et al., 2019; Wang et al., 2020b). The gap-filled tropospheric NO2 was 131 

reliable compared with measurements (R = 0.94–0.98) (Wei et al., 2022b). The above two-step gap-132 

filling procedures allowed us to generate a daily seamless tropospheric NO2 dataset that removes 133 

the effects of clouds from satellite observations. 134 

Here, the reconstructed daily seamless tropospheric NO2, together with CAMS daily ground-level 135 

NO2 assimilations (0.75° × 0.75°) averaged from all 3-hourly data in a day and monthly NOx 136 

anthropogenic emissions (0.1° × 0.1°) (Inness et al., 2019), were used as the main predictors for 137 

estimating surface NO2. Limited by the quality of direct satellite observations, daily model-138 

simulated SO2 and CO surface mass concentrations, averaged from all available data in a day 139 

provided by one-hourly Modern-Era Retrospective Analysis for Research and Applications, version 140 

2 (MERRA-2, 0.625° × 0.5°), 3-hourly CAMS (0.75° × 0.75°), and 3-hourly Goddard Earth 141 

Observing System Forward-Processing (0.3125° × 0.25°) global reanalyses were used as main 142 

predictors to retrieve surface SO2 and CO, together with CAMS monthly SO2 and CO 143 

anthropogenic emissions. 144 

 145 

2.1.3 Auxiliary factors 146 

Meteorological factors have important diverse effects on air pollutants (He et al., 2017; Li et al., 147 

2019), e.g., the boundary-layer height reflects their vertical distribution and variations (Li et al., 148 

2017a; Seo et al., 2017); temperature, humidity, and pressure can affect their photochemical 149 

reactions (Li et al., 2019; Xu et al., 2011; Zhang et al., 2019a); and rainfall and wind can also 150 

influence their removal, accumulation, and transport (Dickerson et al., 2007; Li et al., 2019). Eight 151 
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daily meteorological variables, provided by the ERA5-Land (0.1° × 0.1°) (Muñoz-Sabater et al., 152 

2021) and ERA5 global reanalysis (0.25° × 0.25°) (Hersbach et al., 2020), were calculated (i.e., 153 

accumulated for precipitation and evaporation while averaged for the others) from all hourly data in 154 

a day, used as auxiliary variables to improve the modelling of gaseous pollutants. Other auxiliary 155 

remote-sensing data used to describe land-use cover/change [i.e., Moderate Resolution Imaging 156 

Spectroradiometer (MODIS) normalized difference vegetation index (NDVI), 0.05° × 0.05°] and 157 

population distribution density (i.e., LandScanTM, 1 km) were employed as inputs to the machine-158 

learning model because they are highly related to the type of pollutant emission and amounts of 159 

anthropogenic emissions, as well as the surface terrain [i.e., Shuttle Radar Topography Mission 160 

(SRTM) digital elevation model (DEM), 90m], which can affect the transmission of air pollutants. 161 

Table S1 provides detailed information about all the data used in this study. All variables were 162 

aggregated or resampled into a 0.1° × 0.1° resolution for consistency. 163 

 164 

2.2 Pollutant gas modelling 165 

Here, the developed Space-Time Extra-Tree (STET) model, integrating spatiotemporal 166 

autocorrelations of and differences in air pollutants to the Extremely Randomized Trees (ERT) (Wei 167 

et al., 2022a), was extended to estimate surface gaseous pollutants, i.e., NO2, SO2, and CO. ERT is 168 

an ensemble machine-learning model based on the decision tree, capable of solving the 169 

nonparametric multivariable nonlinear regression problem. Ensemble learning can avoid the lack of 170 

learning ability of a single learner, greatly improving accuracy. The introduced randomness 171 

enhances the model's anti-noise ability and minimizes the sensitivity to outliers and 172 

multicollinearity issues. It can handle high latitude, discrete or continuous data without data 173 

normalization and is easy to implement and parallel. However, several limitations exist, e.g., it is 174 

difficult to make predictions beyond the range of training data, and there will be an over-fitting 175 

issue on some regression problems with high noise. The training efficiency diminishes with 176 

increasing memory occupation when the number of decision trees is large (Geurts et al., 2006). 177 

Compared with traditional tree-based models (e.g., random forest), ERT has a stronger randomness 178 

which randomly selects a feature subset at each node split and randomly obtains the optimal branch 179 

attributes and thresholds. This helps to create more independent decision trees, further reducing 180 
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model variance and improving training accuracy (Geurts et al., 2006). The STET model has been 181 

successfully applied in estimating high-quality surface O3 in our previous study (Wei et al., 2022a). 182 

It is thus extended here to regress the nonlinear conversion relationships between ground-based 183 

measurements and the main predictors and auxiliary factors for other species of gaseous pollutants. 184 

For surface NO2, the STET model was applied to the main variables of the satellite tropospheric 185 

NO2 column, modelled surface NO2 mass, and NOx emissions, together with ancillary variables of 186 

the previously mentioned meteorological, surface, and population variables (Equation 1). For 187 

surface SO2 (Equation 2) and CO (Equation 3),  modelled surface SO2 and CO concentrations and 188 

SO2 and CO emissions were used as main predictors along with the same auxiliary variables as NO2 189 

to construct the STET models separately. 190 

 191 

𝑁𝑂 ~ 𝑓 𝑆𝑁𝑂 , 𝑀𝑁𝑂 , 𝐸𝑁𝑂𝑥 , 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦 , 𝑁𝐷𝑉𝐼 , 𝐷𝐸𝑀 , 𝑃𝑂𝑃 , 𝑃 , 𝑃 ,  (1) 192 

𝑆𝑂 ~ 𝑓 𝑀𝑆𝑂 , 𝐸𝑆𝑂 , 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦 , 𝑁𝐷𝑉𝐼 , 𝐷𝐸𝑀 , 𝑃𝑂𝑃 , 𝑃 , 𝑃  , (2) 193 

𝐶𝑂 ~ 𝑓 𝑀𝐶𝑂 , 𝐸𝐶𝑂 , 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦 , 𝑁𝐷𝑉𝐼 , 𝐷𝐸𝑀 , 𝑃𝑂𝑃 , 𝑃 , 𝑃 ,  (3) 194 

 195 

where 𝑁𝑂 , 𝑆𝑂 , and 𝐶𝑂  indicate daily ground-based NO2, SO2, and CO measurements at 196 

one grid (i, j) on the tth day of a year; 𝑆𝑁𝑂  indicates the daily satellite tropospheric NO2 column 197 

at one grid (i, j) on the tth day of a year; 𝑀𝑁𝑂 , 𝑀𝑆𝑂 , and 𝑀𝐶𝑂  indicate daily model-198 

simulated surface NO2, SO2, and CO concentrations at one grid (i, j) on the tth day of a year; 199 

 𝐸𝑁𝑂𝑥𝑖𝑗𝑚, 𝐸𝑆𝑂 , and 𝐸𝐶𝑂  indicate monthly anthropogenic NOx, SO2, and CO emissions at one 200 

grid (i, j) in the mth month of a year; 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦  represents each meteorological variable at one 201 

grid (i, j) on the tth day of a year; 𝐷𝐸𝑀  and 𝑃𝑂𝑃  indicate the elevation and population at one 202 

grid (i, j) of a year; and 𝑃  and 𝑃  indicate the space and time terms (Wei et al., 2022a). 203 

 204 

3. Results and discussion 205 

3.1 Seamless mapping of surface gaseous pollutants 206 

Using the constructed STET model, we generated daily 10 km resolution datasets with complete 207 

coverage (spatial coverage = 100%) for three ground-level gaseous pollutants from 2013 to 2020 in 208 

China, called ChinaHighNO2, ChinaHighSO2, and ChinaHighCO. Monthly and annual maps were 209 
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generated by directly averaging daily data at each grid. They belong to a series of public long-term, 210 

full-coverage, high-resolution, and high-quality datasets of a variety of ground-level air pollutants 211 

for China [ChinaHighAirPollutants (CHAP)] developed by our team. Figure 2 shows spatial 212 

distributions of the three pollutant gases across China on a typical day (1 January 2018). The spatial 213 

patterns of these gaseous pollutants were consistent with those observed on the ground, especially 214 

in highly polluted areas, e.g., severe surface NO2 pollution in the North China Plain (NCP) and high 215 

surface SO2 emissions in Shanxi Province. The unique advantage of our dataset is that it can 216 

provide valuable gaseous pollutant information on a daily basis at locations in China where ground 217 

measurements are not available. This addresses the major issues of scanning gaps and numerous 218 

missing values in satellite remote sensing retrievals at cloudy locations, e.g., the average spatial 219 

coverage of the official OMI/Aura daily tropospheric NO2 product is only 42% over the whole of 220 

China during the period 2013–2020 (Figure S1). Our dataset provides spatially complete coverage, 221 

significantly increasing daily satellite observations by 58%. In addition, reanalysis data do not 222 

simulate surface masses of gaseous pollutants well, underestimating them compared to our results 223 

and ground-based observations in China (Figure S2). This is especially so for SO2, where high-224 

pollution hot spots are easily misidentified. Validation illustrates that our regressed results for 225 

surface NO2, SO2, and CO agree better with ground measurements than modelled results (slopes are 226 

close to 1, and correlations > 0.93), 1.9–6.4 times stronger in slope, 1.3–3.5 times higher in 227 

correlation, but 5.9–7.7 times smaller in differences (Figure S3). This shows that our model can take 228 

advantage of big data to significantly correct and reconstruct gaseous simulation results via data 229 

mining using machine learning. 230 

[Please insert Figure 2 here] 231 

Figure 3 shows annual and seasonal maps for each gas pollutant during the period 2013–2020 232 

across China. Multi-year mean surface NO2, SO2, and CO concentrations were 20.3 ± 4.7 µg/m3, 233 

16.2 ± 7.7 µg/m3, and 0.86 ± 0.22 mg/m3, respectively. Pollutant gases varied significantly in space 234 

across China, where high surface NO2 levels were mainly distributed in typical urban 235 

agglomerations, e.g., the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River and Pearl River 236 

Deltas (YRD and PRD), and scattered large cities with intensive human activities and highly 237 
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developed transportation systems (e.g., Urumqi, Chengdu, Xi'an, and Wuhan, among others). High 238 

surface SO2 concentrations were mainly observed in northern China (e.g., Shanxi, Hebei, and 239 

Shandong Provinces), associated with combustion emissions from anthropogenic sources, and the 240 

Yunnan Guizhou Plateau in southwest China, likely associated with emissions from volcanic 241 

eruptions. By contrast, except in some areas in central China (e.g., Shanxi and Hebei), surface CO 242 

concentrations were overall low.  243 

Significant differences in spatial patterns were seen at the seasonal level. Surface NO2, SO2, and CO 244 

in summer (average = 15.9 ± 4.7 µg/m3, 22.9 ± 13.4 µg/m3, and 1.1 ± 0.3 mg/m3, respectively) were 245 

the lowest, thanks to favorable meteorological conditions, e.g., abundant precipitation and high air 246 

humidity conducive to flushing and scavenging of different air pollutants (Yoo et al., 2014). Strong 247 

sunlight and high temperature also accelerate the photochemical reactions of NO2 loss (Shah et al., 248 

2020). Pollution levels were highest in winter, with average values increasing by ~1.5–1.9 times 249 

those in summer. This difference was much larger in central and eastern China, e.g., 2.3–3.4 times 250 

higher in the BTH due to large amounts of direct NOx, SO2, and CO emissions from burning coal 251 

for heating in winter in northern China. The spatial patterns of the three gaseous pollutants were 252 

similar in spring and autumn. 253 

[Please insert Figure 3 here] 254 

3.2 Changes in gaseous pollution and exposure risk 255 

3.2.1 Short-term epidemic effects on air quality 256 

Many studies have focused on the effects of the COVID-19 epidemic on air quality (WHO, 2020). 257 

Most of them were done using ground-based observations (Huang et al., 2020; Su et al., 2020), 258 

tropospheric gas columns (Field et al., 2021; Levelt et al., 2022), or retrieved surface masses 259 

(Cooper et al., 2022; Ling and Li, 2021). The resulting conclusions could be affected by insufficient 260 

spatial representation due to the uneven distribution of ground monitors or a large number of 261 

missing values in space due to the influence of clouds. The unique advantage of our seamless day-262 

to-day gaseous pollutant dataset can make up for these shortcomings, allowing us to assess the 263 

changes more accurately and quantitatively in gaseous pollutants during the epidemic. 264 

We first compared the spatial differences in monthly relative differences from February to April 265 
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between 2020 and 2019 in China (Figure 4). In February, surface NO2 sharply reduced in China, 266 

especially in key urban agglomerations and megacities, showing relative changes of greater than 267 

50%. A significant decrease in surface SO2 (> 40%) was observed in northern areas where heavy 268 

industry is the mainstay in China (e.g., Tianjin, Hebei, and Shandong), while little change was seen 269 

in southern China. Surface CO also showed drastic decreases, but the amplitude was smaller than 270 

the other two gaseous pollutants. These were attributed to extensive plant closures and traffic 271 

controls due to the lockdown, which started at the end of January 2020, significantly reducing 272 

anthropogenic NOx, SO2, and CO emissions (Ding et al., 2020; Yang et al., 2022; Zheng et al., 273 

2021). In March, surface NO2 was still generally lower than the historical level in most eastern 274 

areas, especially in areas where the epidemic was severe, i.e., Wuhan, Hubei Province, and its 275 

surrounding areas. The decrease in surface SO2 largely slowed by more than two times in the NCP 276 

and central China, while surface CO almost returned to normal levels in most areas in China. In 277 

April, surface NO2 and SO2 were comparable to historical concentrations (within ± 10%), even 278 

increasing in some areas of southern and northeastern areas due to rebounding anthropogenic 279 

emissions (Ding et al., 2020), especially in Hubei Province, indicating that their surface levels were 280 

almost recovered. 281 

[Please insert Figure 4 here] 282 

Most previous studies have focused mainly on changes during the lockdown, with little attention 283 

paid to the recovery. We thus compared the time series of daily population-weighted concentrations 284 

of the three gaseous pollutants after the Lunar New Year between 2020 and 2019 in China (Figure 285 

5). After the beginning of New Year's Eve, surface gaseous pollutants showed a significant decrease 286 

in both the normal and epidemic years due to the closure of factories, with decreasing 287 

anthropogenic emissions during the Spring Festival holiday. However, gaseous pollutants in the 288 

normal year rose rapidly after they fell to their lowest levels due to the return to work after the 289 

holidays. By contrast, their levels continued to decrease in 2020 and were lower than historical 290 

levels due to the sustained impacts of the strict lockdowns. They hit bottom in the 4th week after the 291 

Lunar New Year, then began to increase gradually. Surface NO2 and SO2 recovered in the middle of 292 

the 11th week (around the 72nd and 75th days) after the Lunar New Year (i.e., 2020 and 2019 293 
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concentrations intersected and then alternately changed). However, surface CO levels recovered at 294 

the end of the 5th week (around the 34th day), more than twice faster than NO2 and SO2 levels. This 295 

is attributed to more CO emissions from increased residents' indoor cooking (Zheng et al., 2018), 296 

increased atmospheric oxidation capacity (Huang et al., 2020; Wei et al., 2022a), and a potentially 297 

higher sensitivity to temperature rises (Lin et al., 2021).  298 

[Please insert Figure 5 here] 299 

3.2.2 Temporal variations and policy implications 300 

Figures S4-S6 show annual mean maps of each gaseous pollutant from 2013 to 2020 in China. 301 

Surface NO2, SO2, and CO changed greatly, peaking in 2013, with average values of 21.3 ± 8.8 302 

µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 ± 0.29 mg/m3, respectively. They reached their lowest levels in 303 

2020, particularly due to the noticeable effects of the COVID-19 epidemic. In general, national 304 

ambient NO2, SO2, and CO concentrations decreased by approximately 12%, 55%, and 17% from 305 

2013 to 2020, respectively. Large seasonal differences were observed in the amplitude of gaseous 306 

pollutant (Figure 6), e.g., surface NO2 decreased the most in winter, especially in the three urban 307 

agglomerations (↓24–31%), changing the least in autumn (especially in the YRD). Surface SO2 308 

showed much larger decreases in all seasons, especially during the cold seasons (↓55–81%), due to 309 

the implementation of stricter “ultra-low” emission standards (Li et al., 2022a; Zhang et al., 2019b). 310 

Surface CO had similar seasonal changes as SO2 but 1.5–3.3 times smaller in amplitude. 311 

[Please insert Figure 6 here] 312 

To better investigate the spatiotemporal variations of ambient gaseous pollution, we calculated 313 

linear trends and significance levels using monthly anomalies by removing seasonal cycles. Most of 314 

China showed significant decreasing trends, with average annual rates of 0.23 µg/m3, 2.01 µg/m3, 315 

and 0.05 mg/m3 for surface NO2, SO2, and CO (p < 0.001), respectively (Figure 7), especially in 316 

three urban agglomerations and large cities (e.g., Wuhan and Chengdu). The largest downward 317 

trends mainly occurred in northern and central China, especially in the BTH (Table 3). This is 318 

mainly due to the change in fuel for heating from coal to gas widespread across China in winter 319 

(Wang et al., 2020a), greatly reducing emissions of precursor gases (Koukouli et al., 2018). 320 
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Increasing trends of surface NO2 were, however, found in Ningxia and Shanxi Provinces in central 321 

China due to increased traffic emissions and new coal-burning power plants in underdeveloped 322 

areas without strict regulations on NOx emissions (Li et al., 2022a; Maji and Sarkar, 2020; Van Der 323 

A et al., 2017).  324 

We then divided the study period into three periods to investigate the impact of major 325 

environmental protection policies on air quality implemented in China (Figure 7). During the Clear 326 

Air Action Plan (CAAP, 2013–2017), the rates of decrease for surface NO2, SO2, and CO 327 

accelerated in most populated areas in China, especially urban areas. This was due to dramatic 328 

reductions in main pollutant emissions like SO2 and NOx (by 59% and 21%, respectively) through 329 

the upgrading of key industries, industrial structure adjustments, and coal-fired boiler remediation 330 

(Zhang et al., 2019b). In addition, the majority of gaseous pollutants had dropped continuously 331 

during the Blue Sky Defense War (BSDW, 2018–2020), benefiting from continuous reductions in 332 

total air pollutant emissions and the impacts of COVID-19 (Jiang et al., 2021; Zheng et al., 2021). 333 

However, areas with trends passing the significance level sharply shrank, especially for surface SO2. 334 

During the 13th Five-Year-Plan (FYP, 2016–2020), the decreasing trends of the three gaseous 335 

pollutants across China slowed down compared to those during CAAP. Large decreases in surface 336 

NO2 were mainly found in the BTH region and Henan Province, while slightly increasing trends 337 

occurred in southern China. Surface SO2 significantly decreased in most areas, where a greater 338 

downward trend was observed in Shanxi Province, mainly due to the reduction in coal consumption 339 

thanks to a strengthened clean-heating policy (Lee et al., 2021). Surface CO also continuously 340 

decreased, more rapidly in central China but less rapidly elsewhere. The continuous decline in 341 

gaseous pollutants is due to the binding reductions in total emissions of major pollutants like NOx 342 

(↓71%) and SO2 (↓48%) in China (Wan et al., 2022; Wu et al., 2022c). 343 

[Please insert Figure 7 here] 344 

3.2.3 Population-risk exposure to gaseous pollution 345 

With the daily seamless datasets, we can evaluate the spatial and temporal variations of short-term 346 

population-risk exposure to the three gaseous pollutants by calculating the number of days in a 347 

given year exceeding the new recommended short-term minimum interim target (IT1) and desired 348 
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air quality guidelines (AQG) level defined by the WHO in 2021 (WHO, 2021). The area exceeding 349 

the recommended levels (i.e., daily NO2 > 120 μg/m3, SO2 > 125 μg/m3, and CO > 7 mg/m3) was 350 

generally small in eastern China (Figure S7). High NO2-exposure risks were mainly found in 351 

Beijing and Hebei Province and a handful of big cities (e.g., Jinan, Wuhan, Shanghai, and 352 

Guangzhou), while high SO2-exposure risks were mainly observed in Hebei, Shandong, and 353 

Shaanxi Provinces. The risk of high CO pollution was small, only found in some scattered areas in 354 

the NCP. In general, both the area and the possibility of occurrence exposure to high pollution has 355 

gradually decreased over time, almost disappearing since 2018.  356 

By contrast, most areas of eastern China had a surface NO2 exposure exceeding the AQG level 357 

(Figure 8), especially in the north and economically developed areas in the south (proportion > 358 

80%). Both the extent and intensity are decreasing over time, but it is still a problem, suggesting 359 

that stronger NOx controls are needed in the future. Most of the main air pollution transmission belt 360 

in China (i.e., the “2 + 26” cities, Figure 1) had surface SO2 levels exceeding the AQG level at the 361 

beginning of the study period. Thanks to strict control measures, these polluted areas sharply 362 

decreased after 2015, almost disappearing in 2020. Controlling CO was much more successful in 363 

China, with less than 10% of the days in the BTH exceeding the acceptable standard in the early 364 

part of the study period. Most areas have reached the CO AQG level since 2018. 365 

[Please insert Figure 8 here] 366 

Figure 9 shows the percentage of days with pollution levels exceeding WHO air quality standards in 367 

three key regions. BTH was the only region experiencing high NO2 and SO2 exposure risks (i.e., 368 

daily mean > IT1), dropping to zero since 2017 and 2016, while YRD and PRD had no high risks of 369 

exposure to the three gaseous pollutants (Figure 9a-b). There was also no regional high CO-370 

pollution risk (Figure 9c). However, although declining continuously, regional surface NO2 levels 371 

failed to meet the short-term AQG level in 2020, with 61–73% of the days exceeding the AQG level. 372 

More efforts toward mitigating NO2 levels in these key regions are thus needed. Continual 373 

decreases in the number of days above the AQG level were also observed in surface SO2, reducing 374 

to near zero in 2014, 2016, and 2018 in the PRD, YRD, and BTH, respectively. Less than 3% of the 375 

days in the BTH and YRD had surface CO levels exceeding the AQG level. Surface CO levels were 376 
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always below the AQG level in the PRD. 377 

[Please insert Figure 9 here] 378 

3.3 Data quality assessment 379 

Here, the widely used out-of-sample 10-fold cross-validation (10-CV) method was adopted to 380 

evaluate the overall estimation accuracy of gaseous pollutants (Rodriguez et al., 2010; Wei et al., 381 

2022a). An additional out-of-station 10-CV approach was used to validate the prediction accuracy 382 

of gaseous pollutants, performed based on measurements from ground monitoring stations. These 383 

measurements were randomly divided into ten subsets, of which data samples from nine subsets 384 

were used for model training and the remaining subset for model validation. This was done 10 times, 385 

in turn, to ensure that data from all stations were tested. This procedure generates independent 386 

training samples and test samples made in different locations, used to indicate the spatial prediction 387 

ability of the model in areas where ground-based measurements are unavailable (Wei et al., 2022a; 388 

Wu et al., 2021). 389 

 390 

3.3.1 Estimate and prediction accuracy 391 

Figure 10 shows the CV results of all daily estimates and predictions for ground-level NO2, SO2, 392 

and CO concentrations from 2013 to 2020 in China (sample size: N ≈ 3.6 million). Surface NO2 393 

and SO2 concentrations mainly fell in the range of 200 to 500 µg/m3. Daily estimates were highly 394 

correlated to observations, with the same coefficients of determination (R2 = 0.84) and slopes close 395 

to 1 (0.86 and 0.84, respectively). Average root-mean-square error (RMSE) [mean absolute error 396 

(MAE)] values of surface NO2 and SO2 estimates were 7.99 (5.34) and 10.07 (4.68) µg/m3, and 397 

normalized RMSE (NRMSE) values were 0.25 and 0.51, respectively. Most daily CO observations 398 

were less than 10 mg/m3, agreeing well with our daily estimates (R2 = 0.80, slope = 0.79), and the 399 

average RMSE (MAE) and NRMSE values were 0.29 (0.16) mg/m3 and 0.3. Compared to 400 

estimation accuracies (Figure 10a-c), prediction accuracies slightly decreased, which is acceptable 401 

considering the weak signals of trace gases. Daily surface SO2, NO2, and CO predictions (Figure 402 

10d-f) agree well with ground measurements, with spatial R2 values of 0.70, 0.68, and 0.61, 403 

respectively. Their respective RMSE (MAE) values were 14.28 (8.1) µg/m3, 11.57 (7.06) µg/m3, 404 
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and 0.42 (0.24) mg/m3, and NRMSE values were 0.35, 0.71, and 0.42, respectively, representing the 405 

accuracy for areas without ground monitoring stations. 406 

[Please insert Figure 10 here] 407 

The performance of our air pollution modelling was also evaluated on an annual basis, showing that 408 

our model works well in estimating and predicting the concentrations of different surface gaseous 409 

pollutants in different years (Table 1). The model performance has continuously improved over time, 410 

as indicated by increasing correlations and decreasing uncertainties. This is because of the 411 

increasing density of ground stations (especially in the suburban areas of cities) and updated quality 412 

control of measurements, e.g., improving the sampling flow calibration of monitoring instruments, 413 

flow calibration of dynamic calibrators, and revision of precision/accuracy review and data validity 414 

judgment (HJ 818-2018) (MEE, 2018b). This has led to an increase in the number of data samples 415 

(e.g., from 169 thousand in 2013 to more than 522 thousand in 2020) and improvement in their 416 

quality. 417 

[Please insert Table 1 here] 418 

Figure 11 shows the spatial validation of estimated daily pollutant gases across China. In general, 419 

our model works well at the site scale, with average CV-R2 values of 0.77, 0.72, and 0.72, and 420 

NRMSE values of 0.25, 0.43, and 0.26 for surface NO2, SO2, and CO, respectively. In addition, 421 

approximately 93%, 80%, and 84% of the stations had at least moderate agreements (CV-R2 > 0.6) 422 

between our estimates and ground measurements. Except for some scattered sites, the estimation 423 

uncertainties were generally less than 0.3, 0.5, and 0.3 in more than 80%, 77%, and 76% of the 424 

stations for the above three gaseous pollutant species, respectively. 425 

[Please insert Figure 11 here] 426 

Figure 12 shows the temporal validation of ground-level gaseous pollutants as a function of ground 427 

measurements in China. On the monthly scale (Figure 12a-c), we collected a total of ~119,000 428 

matched samples of the three gaseous pollutants. Accuracies significantly improved, with increasing 429 

R2 (decreasing RMSE) values of 0.93 (4.41 µg/m3), 0.97 (4.03 µg/m3), and 0.94 (0.13 mg/m3) for 430 
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surface NO2, SO2, and CO, respectively. On the annual scale (Figure 12d-f), more than ~10,000 431 

matched samples were collected, showing better agreement with observations (e.g., R2 = 0.94, 0.98, 432 

and 0.97) and lower uncertainties (e.g., RMSE = 3.06 µg/m3, 2.46 µg/m3, and 0.07 mg/m3) for the 433 

above three gaseous pollutants, respectively.  434 

[Please insert Figure 12 here]  435 

3.3.2 Comparison with previous studies 436 

We compared our results with those from previous studies on the estimation of the three gaseous 437 

pollutants using different developed models focusing on the whole of China. Here, only those 438 

studies applying the same out-of-sample cross-validation approach against ground-based 439 

measurements collected from the same CNEMC network were selected (Table 2). The statistics 440 

shown in the table come from the publications themselves because their generated datasets are not 441 

publicly available. We have applied the same validation method and ground measurements as those 442 

used in the previous studies. Most generated surface NO2 datasets had numerous missing values in 443 

space limited by direct OMI/Aura satellite observations at spatial resolutions from 0.125°× 0.125° 444 

to 0.25°×0.25° (Chen et al., 2019; Chi et al., 2021; Dou et al., 2021; Xu et al., 2019; Zhan et al., 445 

2018). Some studies improved the spatial resolution by introducing NO2 data from the recently 446 

launched Sentinel-5 TROPOMI satellite, but data are only available from October 2018 onward 447 

(Chi et al., 2022; Liu, 2021; Wang et al., 2021; Wei et al., 2022b). Surface SO2 estimated from an 448 

SO2 emission inventory and surface CO from Measurement of Pollution in the Troposphere 449 

(MOPITT) and TROPOMI retrievals have a much lower data quality, with smaller R2 values by 12–450 

57% and larger RMSE values by 41–47% against ground measurements compared to ours (Li et al., 451 

2020; Liu et al., 2019; Wang et al., 2021). Overall, our gaseous pollutant datasets are superior to 452 

those from previous studies in terms of overall accuracy, spatial coverage, and length of data 453 

records. 454 

[Please insert Table 2 here] 455 

3.4 Successful applications 456 
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Our surface gaseous pollutant datasets have been freely available to the public online since March 457 

2021 (See data availability). A large number of studies have used the three gaseous pollutant 458 

datasets generated in this study to study their single or joint impacts on environmental health from 459 

both long-term and short-term perspectives, benefiting from the unique daily spatially seamless 460 

coverage. For example, a nearly linear relationship between long-term ambient NO2 and adult 461 

mortality in China was observed (Zhang et al., 2022b); ambient NO2 hindered the survival of 462 

middle-aged and elderly people (Wang et al., 2023) while acute exposure to ambient SO2 increased 463 

the risk of asthma mortality in China (Li et al., 2023b; Liu et al., 2022b; Liu et al., 2023). Long-464 

term SO2 and CO exposure can increase the incidence rate of visual impairment in children in China 465 

(Chen et al., 2022a), and short-term exposure to ambient CO can significantly increase the 466 

probability of hospitalization for stroke sequelae (Wang et al., 2022b). Regional and national cohort 467 

studies have shown that exposure, especially short-term exposure, to multiple ambient gaseous 468 

(NO2, SO2, and CO) and particulate pollutants have negative effects of varying degrees on a variety 469 

of diseases, like all-cause mortality (Feng et al., 2023), dementia mortality (Liu et al., 2022a), 470 

myocardial infarction mortality (Ma et al., 2023), cause-specific cardiovascular disease (Xu et al., 471 

2022a; Xu et al., 2022b), respiratory diseases (Li et al., 2023a), ischemic and hemorrhagic stroke 472 

(Cai et al., 2022; He et al., 2022a; Wu et al., 2022b; Xu et al., 2022c), metabolic syndrome (Guo et 473 

al., 2022; Han et al., 2022a), influenza-like illness (Lu et al., 2023), incident dyslipidemia (Hu et al., 474 

2023), diabetes (Mei et al., 2023), blood pressure (Song et al., 2022; Wu et al., 2022a), renal/ kidney 475 

function (Li et al., 2022c; Li et al., 2023c), neurodevelopmental delay (Su et al., 2022), serum liver 476 

enzymes (Li et al., 2022d), overweight and obesity (Chen et al., 2022b), insomnia (Xu et al., 2021), 477 

and sleep quality (Wang et al., 2022a). These studies attest well to the value of the CHAP dataset 478 

regarding current and future public health issues, among others. 479 

 480 

4. Summary and conclusions 481 

Exposure to gaseous pollution is detrimental to human health, a major public concern in heavily 482 

polluted regions like China, where ground-based observations are not as rich as in major developed 483 

countries. Moreover, pollutants travel long distances, affecting large downstream regions. To 484 

remedy such limitations, this study applied the machine-learning model called Space-Time Extra-485 
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Tree to estimate ambient gaseous pollutants across China, with extensive input variables measured 486 

by monitors and satellites, and models. Daily 10 km resolution (approximately 0.1°× 0.1°) seamless 487 

(spatial coverage = 100%) datasets for ground-level NO2, SO2, and CO concentrations in China 488 

from 2013 to 2020 were generated. These datasets were cross-evaluated in terms of overall 489 

accuracy and predictive ability at different spatiotemporal levels. National daily estimates 490 

(predictions) of surface NO2, SO2, and CO were highly consistent with ground measurements, with 491 

average out-of-sample (out-of-station) CV-R2 values of 0.84 (0.68), 0.84 (0.7), and 0.8 (0.61), and 492 

RMSEs of 7.99 (11.57) μg/m3, 10.7 (14.28) μg/m3, and 0.29 (0.42) mg/m3, respectively. 493 

Ambient pollutant gases varied significantly in space and time, with high levels mainly found in the 494 

North China Plain, especially in winter, due to more anthropogenic emissions, such as coal burning 495 

for heating. All gaseous pollutants sharply declined in China during the COVID-19 outbreak, while 496 

large differences were observed during their recovery times. For example, surface CO was the first 497 

to return to its historical level within the fifth week after the Lunar New Year in 2020, about twice 498 

faster as surface NO2 and SO2 levels. This is attributed to more home cooking and enhanced 499 

atmospheric oxidation. Temporally, surface NO2, SO2, and CO levels in China gradually decreased 500 

from peaks in 2013 (average = 21.3 ± 8.8 µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 ± 0.29 mg/m3, 501 

respectively), with annual rates of decrease of 0.23 µg/m3, 2.01 µg/m3, and 0.05 mg/m3, 502 

respectively (p < 0.001), until 2020. Improvements in air quality have been made in the last eight 503 

years, thanks to the implementation of a series of environmental protection policies, greatly 504 

reducing pollutant emissions. In addition, both the areal extents of regions experiencing gaseous 505 

pollution and the probability of gaseous pollution occurring have gradually decreased over time, 506 

especially for surface CO and SO2, which have almost reached the short-term air quality guidelines 507 

level recommended by the WHO in most areas in China in 2020. This high-quality daily seamless 508 

dataset of gaseous pollutants will benefit future environmental and health-related studies focused on 509 

China, especially studies investigating short-term air pollution exposure. 510 

Although a lot of new and/or useful data and analyses are presented in this study, they still suffer 511 

from some limitations. For example, our estimated surface SO2 and CO concentrations should have 512 

larger uncertainties than those of NO2 since model simulations stead of satellite retrievals are 513 

supplemented during modelling to compensate for the lack of data in China. However, these data 514 
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often have large biases in the remote regions with few observations as in western China (Li et al., 515 

2022b), as the surface measurements from MEE are mainly over eastern China. More influential 516 

factors stemming from regional economic and development differences, and more parameters 517 

describing the complex meteorological system (e.g., winds at 850 hPa and the pressure system in 518 

the mid-troposphere) need to be considered in developing more powerful artificial intelligence 519 

models, which could be helpful in improving the accuracy of air pollutant retrievals. The 520 

spatiotemporal resolutions of gaseous pollutants will be further improved by integrating information 521 

from polar-orbiting and geostationary satellites to investigate diurnal variations. In a future study, 522 

we will also reconstruct data records over the last two decades and investigate their long-term 523 

spatiotemporal variations, filling the gap of missing observations. This will help us understand their 524 

formation mechanisms and impacts on fine particulate matter and ozone pollution in China. 525 

 526 

Data availability 527 

CNEMC measurements of gaseous pollutants are available at http://www.cnemc.cn. The 528 

reconstructed OMI/Aura tropospheric NO2 product is available at 529 

https://doi.org/10.6084/m9.figshare.13126847. MODIS series products and the MERRA-2 530 

reanalysis are available at https://search.earthdata.nasa.gov/. The SRTM DEM is available at 531 

https://www2.jpl.nasa.gov/srtm/, and LandScanTM population information is available at 532 

https://landscan.ornl.gov/. The ERA5 reanalysis is available at https://cds.climate.copernicus.eu/, 533 

GEOS CF data are available at https://portal.nccs.nasa.gov/datashare/gmao/, and the CAMS 534 

reanalysis and emission inventory are available at https://ads.atmosphere.copernicus.eu/. 535 

 536 

The ChinaHighAirPollutants (CHAP) dataset is open access and freely available at https://weijing-537 

rs.github.io/product.html. The ChinaHighNO2 dataset is available at 538 

https://doi.org/10.5281/zenodo.4641542, the ChinaHighSO2 dataset is available at 539 

https://doi.org/10.5281/zenodo.4641538, and the ChinaHighCO dataset is available at 540 

https://doi.org/10.5281/zenodo.4641530.  541 
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Figures 967 

 968 

 969 
Figure 1. Geographical locations of ground-based stations from the China National Environmental 970 
Monitoring Centre network (marked as yellow dots) monitoring gaseous pollutants across China. 971 

The background shows the nighttime-light level, an estimate of population. Purple boundaries  three 972 
typical urban agglomerations: the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta 973 

(YRD), and the Pearl River Delta (PRD). 974 
  975 
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 976 

Figure 2. A typical example of (a-c) big-data-derived (horizontal resolution = 10 km) seamless 977 
surface NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) concentrations and (d-f) corresponding ground 978 

measurements on 1 January 2018 in China.  979 
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 980 
Figure 3. Annual and seasonal mean maps (horizontal resolution = 10 km) of surface NO2 (µg/m3), 981 

SO2 (µg/m3), and CO (mg/m3) averaged over the period 2013–2020 in China. 982 
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 983 
Figure 4. Relative changes (%) in surface NO2, SO2, and CO concentrations in February, March, 984 

and April between 2019 and 2020 in populated areas of China. The area outlined in magenta and the 985 
star in each panel indicate Hubei Province and Wuhan City, respectively. 986 

  987 



36 
 

 988 
Figure 5. Time series of the seven-day moving averages of daily population-weighted surface (a) 989 

NO2, (b) SO2, and (c) CO concentrations after the Lunar New Year of 2019 and 2020 in China. The 990 
black circle in each panel shows the turning point when the gaseous pollutants began to return to 991 

their normal levels. 992 
  993 
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 994 

Figure 6. Relative changes (%) in seasonal mean surface NO2, SO2, and CO concentrations 995 
between 2013 and 2020 over (a) China, (b) the Beijing-Tianjin-Hebei (BTH) region, (c) the Yangtze 996 

River Delta (YRD), and (d) the Pearl River Delta (PRD). 997 
 998 
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 999 
Figure 7. Temporal trends of surface NO2, SO2, and CO concentrations during the whole period 1000 

(2013–2020), the Clean Air Action Plan (2013–2017), the Blue Sky Defense War (2018–2020), and 1001 
the 13rd Five-Year Plan (2016–2020) in populated areas of China. Only regions with trends that are 1002 

significant at the 95% (p < 0.05) confidence level are shown.  1003 
  1004 
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 1005 
Figure 8. Spatial distributions of the percentage of days exceeding the WHO recommended short-1006 

term desired air quality guidelines (AQG) level for surface NO2 (daily mean > 25 μg/m3), SO2 1007 
(daily mean > 40 μg/m3), and CO (daily mean > 4 mg/m3) for each year from 2013 to 2020 in 1008 

populated areas of eastern China. 1009 
  1010 
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 1011 

Figure 9. Percentage of days (%) exceeding the WHO recommended short-term (a-c) minimum 1012 
interim target (IT1) and (d-f) desired air quality guidelines (AQG) level for surface NO2, SO2, and 1013 

CO for each year from 2013 to 2020 in three typical urban agglomerations: the Beijing-Tianjin-1014 
Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). 1015 
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 1017 

Figure 10. Density plots of daily (a-c) estimates and (d-f) predictions of ground-level NO2 (µg/m3), 1018 
SO2 (µg/m3), and CO (mg/m3) concentrations as a function of ground measurements in China from 1019 

2013 to 2020 using the out-of-sample (top panels) and out-of-station (bottom panels) cross-1020 
validation methods. 1021 
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 1023 

Figure 11. Sample-based spatial validation of daily ground-level NO2 (µg/m3), SO2 (µg/m3), and 1024 
CO (mg/m3) estimates at each individual monitoring station in China from 2013 to 2020: (a-c) 1025 

accuracy (i.e., CV-R2) and (d-f) uncertainty (i.e., NRMSE). 1026 

1027 
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 1028 

Figure 12. Sample-based temporal validation of (a-c) monthly and (d-f) yearly composites of 1029 
ground-level NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) as a function of ground measurements 1030 

from 2013 to 2020 in China. 1031 
  1032 
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Tables 1033 

 1034 
Table 1. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for 1035 

each year in China from 2013 to 2020. 1036 

Year 

Sample 
size  

Overall accuracy Predictive ability 

NO2  SO2  CO  NO2  SO2  CO  

N (103) R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

2013 169 0.77 12.48 0.83 17.97 0.80 0.56 0.53 18.16 0.68 25.04 0.60 0.78 

2014 324 0.76 10.97 0.83 15.87 0.77 0.38 0.54 15.56 0.66 22.45 0.51 0.57 

2015 518 0.79 9.34 0.80 13.71 0.74 0.38 0.61 13.10 0.61 19.49 0.50 0.55 

2016 516 0.82 8.59 0.83 11.26 0.76 0.34 0.64 12.20 0.65 16.28 0.57 0.46 

2017 527 0.86 7.57 0.86 7.79 0.82 0.24 0.72 10.67 0.74 10.80 0.70 0.32 

2018 513 0.87 6.92 0.83 5.61 0.82 0.20 0.76 9.33 0.68 7.80 0.69 0.26 

2019 515 0.87 6.78 0.81 4.84 0.82 0.20 0.77 9.23 0.66 6.63 0.70 0.25 

2020 522 0.89 5.78 0.80 4.02 0.82 0.17 0.79 8.04 0.62 5.57 0.69 0.23 

  1037 
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Table 2. Comparison of long-term datasets of different gaseous pollutants in China. 1038 

Species Model 
Missing 
values

Spatial 
resolution 

Main input
Validation 
period

CV-R2 RMSE Literature 

NO2 RF-STK Yes 0.25° OMI 2013−2016 0.62 13.3 (Zhan et al., 2018) 

 RF-K Yes 0.25° OMI 2013−2018 0.64 11.4 (Dou et al., 2021) 

 KCS Yes 0.125° OMI 2014−2016 0.72 7.9 (Chen et al., 2019) 

 LUR Yes 0.125° OMI 2014−2015 0.78 - (Xu et al., 2019) 

 LME Yes 0.1° OMI 2014−2020 0.65 7.9 (Chi et al., 2021) 

 XGBoost Yes 0.125° TROPOMI 2018−2020 0.67 6.4 (Chi et al., 2022) 

 XGBoost Yes 0.05° TROPOMI 2018−2019 0.83 7.6 (Liu, 2021) 

 LightGBM No 0.05° TROPOMI 2018−2020 0.83 6.6 (Wang et al., 2021) 

 SWDF No 0.01° TROPOMI 2019−2020 0.93 4.9 (Wei et al., 2022b) 

 STET No 0.1° Big data 2013−2020 0.84 8.0 This study 

SO2 RF No 0.25° Emissions 2013−2014 0.64 17.1 (Li et al., 2020) 

 STET No 0.1 Big data 2013−2020 0.84 10.1 This study 

CO RF–STK Yes 0.1 MOPITT 2013−2016 0.51 0.54 (Liu et al., 2019) 

 LightGBM No 0.07° TROPOMI 2018−2020 0.71 0.26 (Wang et al., 2021) 

 STET No 0.1° Big data 2013−2020 0.80 0.29 This study 

KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed effect model; 1039 
LUR: land use regression; MOPITT: Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring 1040 
Instrument; RF: random forest; RF-K: random forest integrated with K-means; RF-STK: random-forest-spatiotemporal-1041 
kriging model; STET: space-time extremely randomized tree; SWDF: spatiotemporally weighted deep forest; 1042 
TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting 1043 


