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Abstract 16 

Gaseous pollutants at the ground level seriously threaten the urban air quality environment and 17 

public health. There are few estimates of gaseous pollutants that are spatially and temporally 18 

resolved and continuous across China. This study takes advantage of big data and artificial 19 

intelligence technologies to generate seamless daily maps of three major ambient pollutant gases, 20 

i.e., NO2, SO2, and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km. 21 

Cross-validation between our estimates and ground observations illustrated a high data quality on a 22 

daily basis for surface NO2, SO2, and CO concentrations, with mean coefficients of determination 23 

(root-mean-square errors) of 0.84 (7.99 μg/m3), 0.84 (10.7 μg/m3), and 0.80 (0.29 mg/m3), 24 

respectively. We found that the COVID-19 lockdown had sustained impacts on gaseous pollutants, 25 

where surface CO recovered to its normal level in China on around the 34th day after the Lunar New 26 

Year, while surface SO2 and NO2 rebounded more than twice slower due to more CO emissions 27 

from increased residents' indoor cooking and atmospheric oxidation capacity. Surface NO2, SO2, 28 

and CO reached their peak annual concentrations of 21.3 ± 8.8 µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 29 

± 0.29 mg/m3 in 2013, then continuously declined over time by 12%, 55%, and 17%, respectively, 30 

until 2020. The declining rates were more prominent from 2013 to 2017 due to the sharper 31 

reductions in anthropogenic emissions but have slowed down in recent years. Nevertheless, people 32 

still suffer from high-frequency risk exposure to surface NO2 in eastern China, while surface SO2 33 

and CO have almost reached the recommended air quality guidelines level since 2018, benefiting 34 

from the implemented stricter “ultra-low” emission standards. This reconstructed dataset of surface 35 

gaseous pollutants will benefit future (especially short-term) air pollution and environmental health-36 

related studies. 37 

  38 
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1. Introduction 39 

Air pollution has been a major environmental concern, affecting human health, weather, and climate  40 

(Kinney, 2008; Sun et al., 2010; Kan et al., 2012; Z. Li et al., 2017; Murray et al., 2020; Orellano et 41 

al., 2020; Anenberg et al., 2022), thus drawing worldwide attention. The sources of air pollution are 42 

complex. They include natural sources such as wildfires and anthropogenic emissions, including 43 

pollutants discharged from industrial production [e.g., smoke/dust, sulfur oxides, nitrogen oxides 44 

(NOx), and volatile organic compounds (VOCs)], hazardous substances released from burning coal 45 

during heating seasons [e.g., dust, sulfur dioxide (SO2), and carbon monoxide (CO)], and waste 46 

gases (e.g., CO, SO2, and NOx) generated by transportation, especially in big cities. 47 

Among various air pollutants, the following have been most widely recognized: particulate matter 48 

with diameters smaller than 2.5 µm and 10 µm (PM2.5 and PM10) and gaseous pollutants [e.g., 49 

ozone (O3), nitrogen dioxide (NO2), SO2, and CO, among others]. Many countries have built 50 

ground-based networks to monitor a variety of conventional pollutants in real time. China has 51 

experienced serious ambient air pollution for a long time, prompting the establishment of a large-52 

scale air quality monitoring network (MEE, 2018a). Over the years, much effort has been made to 53 

model different species of air pollutants. Many studies focused on particulate matter in China have 54 

been carried out (Fang et al., 2016; T. Li et al., 2017; G. Chen et al., 2018; Z. Zhang et al., 2018; Ma 55 

et al., 2022). The global COVID-19 pandemic has motivated many attempts to estimate surface 56 

NO2 concentrations from satellite-retrieved tropospheric NO2 products (Tian et al., 2020; WHO, 57 

2020), e.g., from the Ozone Monitoring Instrument (OMI) onboard the NASA Aura spacecraft and 58 

the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 59 

Precursor satellite, adopting different statistical regression (Qin et al., 2017; Z. Zhang et al., 2018; 60 

Chi et al., 2021) and artificial intelligence (Zhan et al., 2018; Z.-Y. Chen et al., 2019; Dou et al., 61 

2021; Liu, 2021; Y. Wang et al., 2021; Chi et al., 2022) models. By comparison, surface SO2 and 62 

CO in China are less studied, limited by weaker signals and a lack of good-quality satellite 63 

tropospheric products (D. Liu et al., 2019; R. Li et al., 2020; Y. Wang et al., 2021; W. Han et al., 64 

2022b). Such studies still face more challenges, e.g., satellite data gaps and missing values that 65 

seriously limit their application and the neglect of spatiotemporal differences in air pollution in the 66 
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modeling process. In addition, most previous studies mainly focused on studying a single or a few 67 

species during relatively short observational periods. 68 

In view of the above problems, the purpose of this paper is to reconstruct daily concentrations of 69 

three ambient gaseous pollutants (i.e., NO2, SO2, and CO) in China. To this end, relying on the 70 

dense national ground-based observation network and big data, including satellite remote sensing 71 

products, meteorological reanalysis, chemical model simulations, and emission inventories, we are 72 

capable of mapping three pollutant gases seamlessly (100% spatial coverage) on a daily basis at a 73 

uniform spatial resolution of 10 km since 2013 in China. Estimates were made using an extended 74 

and powerful machine-learning model incorporating spatiotemporal information, i.e., space-time 75 

extra-trees. Natural and anthropogenic effects on air pollution, including their physical mechanisms 76 

and chemical reactions, were accounted for in the modeling. Using this dataset, spatiotemporal 77 

variations of the gaseous pollutants, the impacts of environmental protection policies and the 78 

COVID-19 epidemic, and population risk exposure to gaseous pollution are investigated. 79 

To date, we have combined the advantages of artificial intelligence and big data to construct a 80 

virtually complete set of major air quality parameters concerning both particulate and gaseous 81 

pollutants over a long period of time across China, including PM1 (2000–Present, Wei et al., 2019), 82 

PM2.5 (2000–Present, Wei et al., 2020; Wei et al., 2021a), PM10 (2000–Present, Wei et al., 2021b), 83 

O3 (1979–Present, Wei et al., 2022a; He et al., 2022), and NO2 (2019–Present, Wei et al., 2022b), 84 

serving environmental, public health, economy, and other related research. This study is the 85 

continuation of our previous studies, which adds two new species of SO2 and CO for the first time 86 

and also dates the data records of NO2 back to 2013. Instead of devoting itself to a single pollutant, 87 

this study deals with all gaseous pollutants of compatible quality over the same period with the 88 

same spatial coverage and resolution. In particular, considering that there are few public datasets of 89 

these three gaseous pollutants with such spatiotemporal coverages focusing on the whole of China, 90 

this is highly valuable for the sake of studying their variations, relative proportions, and attribution 91 

of emission sources, as well as their diverse and joint effects of different pollutant species on public 92 

health. 93 

 94 

2. Materials and methods 95 
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2.1 Big data 96 

2.1.1 Ground-based measurements 97 

Hourly measurements of ground-level NO2, SO2, and CO concentrations from ~2000 reference-98 

grade ground-based monitoring stations (Figure 1) collected from the China National 99 

Environmental Monitoring Centre (CNEMC) network (open-source available at 100 

https://www.cnemc.cn/en/) were employed in the study. This network includes urban assessing 101 

stations, regional assessing stations, background stations, source impact stations, and traffic 102 

stations, set up in a reasonable overall layout that covers industrial (~14%), urban (~31%), suburban 103 

(~39%), and rural (~16%) areas to improve the spatial representations, continuity, and 104 

comparability of observations (HJ 664-2013) (MEE, 2013a). NO2 is measured by 105 

chemiluminescence and differential optical absorption spectroscopy (DOAS), and SO2 uses 106 

ultraviolet fluorescence and DOAS, while CO adopts non-dispersive infrared spectroscopy and gas 107 

filter correlation infrared spectroscopy. These measurements have been fully validated and have the 108 

same average error of indication of ±2% F.S. for the three gaseous pollutants considered here, with 109 

additional quality-control checks such as zero and span noise and zero and span drift (HJ 193-2013 110 

and HJ 654-2013) (MEE, 2013b, 2013c). They have also been used as ground truth in almost all air 111 

pollutant modelling studies in China (Ma et al., 2022; B. Zhang et al., 2022a). All stations use the 112 

same technique to measure each gas routinely and continuously 24 hours a day at about the sea 113 

level without time series gaps. However, the reference state (i.e., observational conditions like 114 

temperature and pressure) changed from the standard condition (i.e., 273 K and 1013 hPa) to the 115 

room condition (i.e., 298 K and 1013 hPa) on 31 August 2018 (MEE, 2018a). We thus first 116 

converted observations of the three gaseous pollutants after this date to the uniform standard 117 

condition for consistency. Here, daily values for each air pollutant were averaged from at least 30% 118 

of valid hourly measurements at each station in each year from 2013 to 2020. 119 

[Please insert Figure 1 here] 120 

2.1.2 Main predictors 121 

A new daily tropospheric NO2 dataset at a horizontal resolution of 0.25° × 0.25° in China 122 

(https://doi.org/10.6084/m9.figshare.13126847) was employed, created by Q. He et al. (2020) using 123 
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a developed framework integrating OMI/Aura Quality Assurance for Essential Climate Variables 124 

(QA4ECV) and Global Ozone Monitoring Experiment–2B (GOME-2B) offline tropospheric NO2 125 

retrievals passing quality controls (i.e., cloud fraction < 0.3, surface albedo < 0.3, and solar zenith 126 

angle < 85°). The reconstructed tropospheric NO2 agreed well (R = 0.75–0.85) with Multi-AXis 127 

Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements (H. He et al., 2020). 128 

Through this data fusion, the daily spatial coverage of satellite tropospheric NO2 was significantly 129 

improved in China (average = 87%). Areas with a small number of missing values were imputed via 130 

a nonparametric machine-learning model by regressing the conversion relationship with Copernicus 131 

Atmosphere Monitoring Service (CAMS) tropospheric NO2 assimilations (0.75° × 0.75°), making 132 

sure that the interpolation was consistent with the OMI/Aura overpass time (Inness et al., 2019; Y. 133 

Wang et al., 2020). The gap-filled tropospheric NO2 was reliable compared with measurements (R = 134 

0.94–0.98) (Wei et al., 2022b). The above two-step gap-filling procedures allowed us to generate a 135 

daily seamless tropospheric NO2 dataset that removes the effects of clouds from satellite 136 

observations. 137 

Here, the reconstructed daily seamless tropospheric NO2, together with CAMS daily ground-level 138 

NO2 assimilations (0.75° × 0.75°) averaged from all 3-hourly data in a day and monthly NOx 139 

anthropogenic emissions (0.1° × 0.1°) (Inness et al., 2019), were used as the main predictors for 140 

estimating surface NO2. Limited by the quality of direct satellite observations, daily model-141 

simulated SO2 and CO surface mass concentrations, averaged from all available data in a day 142 

provided by one-hourly Modern-Era Retrospective Analysis for Research and Applications, version 143 

2 (MERRA-2, 0.625° × 0.5°), 3-hourly CAMS (0.75° × 0.75°), and 3-hourly Goddard Earth 144 

Observing System Forward-Processing (0.3125° × 0.25°) global reanalyses were used as main 145 

predictors to retrieve surface SO2 and CO, together with CAMS monthly SO2 and CO 146 

anthropogenic emissions. 147 

 148 

2.1.3 Auxiliary factors 149 

Meteorological factors have important diverse effects on air pollutants (J. He et al., 2017; R. Li et 150 

al., 2019), e.g., the boundary-layer height reflects their vertical distribution and variations (Z. Li et 151 

al., 2017; Seo et al., 2017); temperature, humidity, and pressure can affect their photochemical 152 
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reactions (W. Y. Xu et al., 2011; T. Li et al., 2019; C. Zhang et al., 2019a); and rainfall and wind can 153 

also influence their removal, accumulation, and transport (Dickerson et al., 2007; R. Li et al., 2019). 154 

Eight daily meteorological variables, provided by the ERA5-Land (0.1° × 0.1°; Muñoz-Sabater et 155 

al., 2021) and ERA5 global reanalysis (0.25° × 0.25°; Hersbach et al., 2020), were calculated (i.e., 156 

accumulated for precipitation and evaporation while averaged for the others) from all hourly data in 157 

a day, used as auxiliary variables to improve the modelling of gaseous pollutants. Other auxiliary 158 

remote-sensing data used to describe land-use cover/change [i.e., Moderate Resolution Imaging 159 

Spectroradiometer (MODIS) normalized difference vegetation index (NDVI), 0.05° × 0.05°] and 160 

population distribution density (i.e., LandScanTM, 1 km) were employed as inputs to the machine-161 

learning model because they are highly related to the type of pollutant emission and amounts of 162 

anthropogenic emissions, as well as the surface terrain [i.e., Shuttle Radar Topography Mission 163 

(SRTM) digital elevation model (DEM), 90m], which can affect the transmission of air pollutants. 164 

Table S1 provides detailed information about all the data used in this study. All variables were 165 

aggregated or resampled into a 0.1° × 0.1° resolution for consistency.  166 

 167 

2.2 Pollutant gas modelling 168 

Here, the developed Space-Time Extra-Tree (STET) model, integrating spatiotemporal 169 

autocorrelations of and differences in air pollutants to the Extremely Randomized Trees (ERT) (Wei 170 

et al., 2022a), was extended to estimate surface gaseous pollutants, i.e., NO2, SO2, and CO. ERT is 171 

an ensemble machine-learning model based on the decision tree, capable of solving the 172 

nonparametric multivariable nonlinear regression problem. Ensemble learning can avoid the lack of 173 

learning ability of a single learner, greatly improving accuracy. The introduced randomness 174 

enhances the model's anti-noise ability and minimizes the sensitivity to outliers and 175 

multicollinearity issues. It can handle high latitude, discrete or continuous data without data 176 

normalization and is easy to implement and parallel. However, several limitations exist, e.g., it is 177 

difficult to make predictions beyond the range of training data, and there will be an over-fitting 178 

issue on some regression problems with high noise. The training efficiency diminishes with 179 

increasing memory occupation when the number of decision trees is large (Geurts et al., 2006). 180 

Compared with traditional tree-based models (e.g., random forest), ERT has a stronger randomness 181 
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which randomly selects a feature subset at each node split and randomly obtains the optimal branch 182 

attributes and thresholds. This helps to create more independent decision trees, further reducing 183 

model variance and improving training accuracy (Geurts et al., 2006). The STET model has been 184 

successfully applied in estimating high-quality surface O3 in our previous study (Wei et al., 2022a). 185 

It is thus extended here to regress the nonlinear conversion relationships between ground-based 186 

measurements and the main predictors and auxiliary factors for other species of gaseous pollutants. 187 

For surface NO2, the STET model was applied to the main variables of the satellite tropospheric 188 

NO2 column, modelled surface NO2 mass, and NOx emissions, together with ancillary variables of 189 

the previously mentioned meteorological, surface, and population variables (Equation 1). For 190 

surface SO2 (Equation 2) and CO (Equation 3),  modelled surface SO2 and CO concentrations and 191 

SO2 and CO emissions were used as main predictors along with the same auxiliary variables as NO2 192 

to construct the STET models separately. 193 

 194 

𝑁𝑂ଶሺ௧ሻ~ 𝑓ௌ்ா்ሺ𝑆𝑁𝑂ଶሺ௧ሻ, 𝑀𝑁𝑂ଶሺ௧ሻ, 𝐸𝑁𝑂𝑥, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦௧, 𝑁𝐷𝑉𝐼, 𝐷𝐸𝑀௬, 𝑃𝑂𝑃௬, 𝑃௦, 𝑃௧ሻ,  (1) 195 

𝑆𝑂ଶሺ௧ሻ~ 𝑓ௌ்ா்ሺ𝑀𝑆𝑂ଶሺ௧ሻ, 𝐸𝑆𝑂ଶሺሻ, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦௧, 𝑁𝐷𝑉𝐼, 𝐷𝐸𝑀௬, 𝑃𝑂𝑃௬, 𝑃௦, 𝑃௧ሻ , (2) 196 

𝐶𝑂௧~ 𝑓ௌ்ா்൫𝑀𝐶𝑂௧, 𝐸𝐶𝑂, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦௧, 𝑁𝐷𝑉𝐼, 𝐷𝐸𝑀௬, 𝑃𝑂𝑃௬, 𝑃௦, 𝑃௧൯,  (3) 197 

 198 

where 𝑁𝑂ଶሺ௧ሻ, 𝑆𝑂ଶሺ௧ሻ, and 𝐶𝑂௧ indicate daily ground-based NO2, SO2, and CO measurements at 199 

one grid (i, j) on the tth day of a year; 𝑆𝑁𝑂ଶሺ௧ሻ indicates the daily satellite tropospheric NO2 column 200 

at one grid (i, j) on the tth day of a year; 𝑀𝑁𝑂ଶሺ௧ሻ, 𝑀𝑆𝑂ଶሺ௧ሻ, and 𝑀𝐶𝑂௧ indicate daily model-201 

simulated surface NO2, SO2, and CO concentrations at one grid (i, j) on the tth day of a year; 202 

 𝐸𝑁𝑂𝑥𝑖𝑗𝑚, 𝐸𝑆𝑂ଶሺሻ, and 𝐸𝐶𝑂 indicate monthly anthropogenic NOx, SO2, and CO emissions at one 203 

grid (i, j) in the mth month of a year; 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦௧ represents each meteorological variable at one 204 

grid (i, j) on the tth day of a year; 𝐷𝐸𝑀௬ and 𝑃𝑂𝑃௬ indicate the elevation and population at one 205 

grid (i, j) of a year; and 𝑃௦ and 𝑃௧ indicate the space and time term (Wei et al., 2022a). 206 

 207 

3. Results and discussion 208 

3.1 Seamless mapping of surface gaseous pollutants 209 

Using the constructed STET model, we generated daily 10 km resolution datasets with complete 210 
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coverage (spatial coverage = 100%) for three ground-level gaseous pollutants from 2013 to 2020 in 211 

China, called ChinaHighNO2, ChinaHighSO2, and ChinaHighCO. Monthly and annual maps were 212 

generated by directly averaging daily data at each grid. They belong to a series of public high-213 

resolution and high-quality datasets of a variety of ground-level air pollutants for China 214 

[ChinaHighAirPollutants (CHAP), available at https://weijing-rs.github.io/product.html] developed 215 

by our team. Figure 2 shows spatial distributions of the three pollutant gases across China on a 216 

typical day (1 January 2018). The spatial patterns of these gaseous pollutants were consistent with 217 

those observed on the ground, especially in highly polluted areas, e.g., severe surface NO2 pollution 218 

in the North China Plain (NCP) and high surface SO2 emissions in Shanxi Province. The unique 219 

advantage of our dataset is that it can provide valuable gaseous pollutant information on a daily 220 

basis at locations in China where ground measurements are not available. This addresses the major 221 

issues of scanning gaps and numerous missing values in satellite remote sensing retrievals at cloudy 222 

locations, e.g., the average spatial coverage of the official OMI/Aura daily tropospheric NO2 223 

product is only 42% over the whole of China during the period 2013–2020 (Figure S1). Our dataset 224 

provides spatially complete coverage, significantly increasing daily satellite observations by 58%. 225 

In addition, reanalysis data do not simulate surface masses of gaseous pollutants well, 226 

underestimating them compared to our results and ground-based observations in China (Figure S2). 227 

This is especially so for SO2, where high-pollution hot spots are easily misidentified. Validation 228 

illustrates that our regressed results for surface NO2, SO2, and CO agree better with ground 229 

measurements than modelled results (slopes are close to 1, and correlations > 0.93), 1.9–6.4 times 230 

stronger in slope, 1.3–3.5 times higher in correlation, but 5.9–7.7 times smaller in differences 231 

(Figure S3). This shows that our model can take advantage of big data to significantly correct and 232 

reconstruct gaseous simulation results via data mining using machine learning. 233 

[Please insert Figure 2 here] 234 

Figure 3 shows annual and seasonal maps for each gas pollutant during the period 2013–2020 235 

across China. Multi-year mean surface NO2, SO2, and CO concentrations were 20.3 ± 4.7 µg/m3, 236 

16.2 ± 7.7 µg/m3, and 0.86 ± 0.22 mg/m3, respectively. Pollutant gases varied significantly in space 237 

across China, where high surface NO2 levels were mainly distributed in typical urban 238 
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agglomerations, e.g., the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River and Pearl River 239 

Deltas (YRD and PRD), and scattered large cities with intensive human activities and highly 240 

developed transportation systems (e.g., Urumqi, Chengdu, Xi'an, and Wuhan, among others). High 241 

surface SO2 concentrations were mainly observed in northern China (e.g., Shanxi, Hebei, and 242 

Shandong Provinces), associated with combustion emissions from anthropogenic sources, and the 243 

Yunnan Guizhou Plateau in southwest China, likely associated with emissions from volcanic 244 

eruptions. By contrast, except in some areas in central China (e.g., Shanxi and Hebei), surface CO 245 

concentrations were overall low.  246 

Significant differences in spatial patterns were seen at the seasonal level. Surface NO2, SO2, and CO 247 

in summer (average = 15.9 ± 4.7 µg/m3, 22.9 ± 13.4 µg/m3, and 1.1 ± 0.3 mg/m3, respectively) were 248 

the lowest, thanks to favorable meteorological conditions, e.g., abundant precipitation and high air 249 

humidity conducive to flushing and scavenging of different air pollutants (Yoo et al., 2014). Strong 250 

sunlight and high temperature also accelerate the photochemical reactions of NO2 loss (Shah et al., 251 

2020). Pollution levels were highest in winter, with average values increasing by ~1.5–1.9 times 252 

those in summer. This difference was much larger in central and eastern China, e.g., 2.3–3.4 times 253 

higher in the BTH due to large amounts of direct NOx, SO2, and CO emissions from burning coal 254 

for heating in winter in northern China. The spatial patterns of the three gaseous pollutants were 255 

similar in spring and autumn. 256 

[Please insert Figure 3 here] 257 

3.2 Changes in gaseous pollution and exposure risk 258 

3.2.1 Short-term epidemic effects on air quality 259 

Many studies have focused on the effects of the COVID-19 epidemic on air quality (WHO, 2020). 260 

Most of them were done using ground-based observations (Huang et al., 2020; T. Su et al., 2020), 261 

tropospheric gas columns (Field et al., 2021; Levelt et al., 2022), or retrieved surface masses (Ling 262 

and Li, 2021; Cooper et al., 2022). The resulting conclusions could be affected by insufficient 263 

spatial representation due to the uneven distribution of ground monitors or a large number of 264 

missing values in space due to the influence of clouds. The unique advantage of our seamless day-265 

to-day gaseous pollutant dataset can make up for these shortcomings, allowing us to more 266 
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accurately and quantitatively assess the changes in gaseous pollutants during the epidemic. 267 

We first compared the spatial differences in monthly relative differences from February to April 268 

between 2020 and 2019 in China (Figure 4). In February, surface NO2 sharply reduced in China, 269 

especially in key urban agglomerations and megacities, showing relative changes of greater than 270 

50%. A significant decrease in surface SO2 (> 40%) was observed in northern areas where heavy 271 

industry is the mainstay in China (e.g., Tianjin, Hebei, and Shandong), while little change was seen 272 

in southern China. Surface CO also showed drastic decreases, but the amplitude was smaller than 273 

the other two gaseous pollutants. These were attributed to extensive plant closures and traffic 274 

controls due to the lockdown, which started at the end of January 2020, significantly reducing 275 

anthropogenic NOx, SO2, and CO emissions (Ding et al., 2020; Zheng et al., 2021). In March, 276 

surface NO2 was still generally lower than the historical level in most eastern areas, especially in 277 

areas where the epidemic was severe, i.e., Wuhan, Hubei Province, and its surrounding areas. The 278 

decrease in surface SO2 largely slowed by more than two times in the NCP and central China, while 279 

surface CO almost returned to normal levels in most areas in China. In April, surface NO2 and SO2 280 

were comparable to historical concentrations (within ± 10%), even increasing in some areas of 281 

southern and northeastern areas due to rebounding anthropogenic emissions (Ding et al., 2020), 282 

especially in Hubei Province, indicating that their surface levels were almost recovered. 283 

[Please insert Figure 4 here] 284 

Most previous studies have focused mainly on changes during the lockdown, with little attention 285 

paid to the recovery. We thus compared the time series of daily population-weighted concentrations 286 

of the three gaseous pollutants after the Lunar New Year between 2020 and 2019 in China (Figure 287 

5). After the beginning of New Year's Eve, surface gaseous pollutants showed a significant decrease 288 

in both the normal and epidemic years due to the closure of factories, with decreasing 289 

anthropogenic emissions during the Spring Festival holiday. However, gaseous pollutants in the 290 

normal year rose rapidly after they fell to their lowest levels due to the return to work after the 291 

holidays. By contrast, their levels continued to decrease in 2020 and were lower than historical 292 

levels due to the sustained impacts of the strict lockdowns. They hit bottom in the 4th week after the 293 

Lunar New Year, then began to increase gradually. Surface NO2 and SO2 recovered in the middle of 294 
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the 11th week (around the 72nd and 75th days) after the Lunar New Year. However, surface CO levels 295 

recovered at the end of the 5th week (around the 34th day), more than twice faster than NO2 and SO2 296 

levels. This is attributed to more CO emissions from increased residents' indoor cooking (Zheng et 297 

al., 2018), increased atmospheric oxidation capacity (Huang et al., 2020; Wei et al., 2022a), and a 298 

potentially higher sensitivity to temperature rises (Lin et al., 2021).  299 

[Please insert Figure 5 here] 300 

3.2.2 Temporal variations and policy implications 301 

Figures S4-S6 show annual mean maps of each gaseous pollutant from 2013 to 2020 in China. 302 

Surface NO2, SO2, and CO changed greatly, peaking in 2013, with average values of 21.3 ± 8.8 303 

µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 ± 0.29 mg/m3, respectively. They reached their lowest levels in 304 

2020, particularly due to the noticeable effects of the COVID-19 epidemic. In general, national 305 

ambient NO2, SO2, and CO concentrations decreased by approximately 12%, 55%, and 17% from 306 

2013 to 2020, respectively. Large seasonal differences were observed in the amplitude of gaseous 307 

pollutant (Figure 6), e.g., surface NO2 decreased the most in winter, especially in the three urban 308 

agglomerations (↓24–31%), changing the least in autumn (especially in the YRD). Surface SO2 309 

showed much larger decreases in all seasons, especially during the cold seasons (↓55–81%), due to 310 

the implementation of stricter “ultra-low” emission standards (Q. Zhang et al., 2019; Li et al., 311 

2022a). Surface CO had similar seasonal changes as SO2 but 1.5–3.3 times smaller in amplitude. 312 

[Please insert Figure 6 here] 313 

To better investigate the spatiotemporal variations of ambient gaseous pollution, we calculated 314 

linear trends and significance levels using monthly anomalies by removing seasonal cycles. Most of 315 

China showed significant decreasing trends, with average annual rates of 0.23 µg/m3, 2.01 µg/m3, 316 

and 0.05 mg/m3 for surface NO2, SO2, and CO (p < 0.001), respectively (Figure 7), especially in 317 

three urban agglomerations and large cities (e.g., Wuhan and Chengdu). The largest downward 318 

trends mainly occurred in northern and central China, especially in the BTH (Table 3). This is 319 

mainly due to the change in fuel for heating from coal to gas widespread across China in winter (S. 320 

Wang et al., 2020), greatly reducing emissions of precursor gases (Koukouli et al., 2018). Increasing 321 
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trends of surface NO2 were, however, found in Ningxia and Shanxi Provinces in central China due 322 

to increased traffic emissions and new coal-burning power plants in underdeveloped areas without 323 

strict regulations on NOx emissions (van der A et al., 2017; Maji and Sarkar, 2020; C. Li et al., 324 

2022).  325 

We then divided the study period into three periods to investigate the impact of major 326 

environmental protection policies on air quality implemented in China (Figure 7). During the Clear 327 

Air Action Plan (CAAP, 2013–2017), the rates of decrease for surface NO2, SO2, and CO 328 

accelerated in most populated areas in China, especially urban areas. This was due to dramatic 329 

reductions in main pollutant emissions like SO2 and NOx (by 59% and 21%, respectively) through 330 

the upgrading of key industries, industrial structure adjustments, and coal-fired boiler remediation 331 

(Q. Zhang et al., 2019). In addition, the majority of gaseous pollutants had dropped continuously 332 

during the Blue Sky Defense War (BSDW, 2018–2020), benefiting from continuous reductions in 333 

total air pollutant emissions and the impacts of COVID-19 (Jiang et al., 2021; Zheng et al., 2021). 334 

However, areas with trends passing the significance level sharply shrank, especially for surface 335 

SO2. 336 

During the 13th Five-Year-Plan (FYP, 2016–2020), the decreasing trends of the three gaseous 337 

pollutants across China slowed down compared to those during CAAP. Large decreases in surface 338 

NO2 were mainly found in the BTH region and Henan Province, while slightly increasing trends 339 

occurred in southern China. Surface SO2 significantly decreased in most areas, where a greater 340 

downward trend was observed in Shanxi Province, mainly due to the reduction in coal consumption 341 

thanks to a strengthened clean-heating policy (Lee et al., 2021). Surface CO also continuously 342 

decreased, more rapidly in central China but less rapidly elsewhere. The continuous decline in 343 

gaseous pollutants is due to the binding reductions in total emissions of major pollutants like NOx 344 

(↓71%) and SO2 (↓48%) in China (Wan et al., 2022; X. Wu et al., 2022). 345 

[Please insert Figure 7 here] 346 

3.2.3 Population-risk exposure to gaseous pollution 347 

With the daily seamless datasets, we can evaluate the spatial and temporal variations of short-term 348 

population-risk exposure to the three gaseous pollutants by calculating the number of days in a 349 
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given year exceeding the new recommended short-term minimum interim target (IT1) and desired 350 

air quality guidelines (AQG) level defined by the WHO in 2021 (WHO, 2021). The area exceeding 351 

the recommended levels (i.e., daily NO2 > 120 μg/m3, SO2 > 125 μg/m3, and CO > 7 mg/m3) was 352 

generally small in eastern China (Figure S7). High NO2-exposure risks were mainly found in 353 

Beijing and Hebei Province and a handful of big cities (e.g., Jinan, Wuhan, Shanghai, and 354 

Guangzhou), while high SO2-exposure risks were mainly observed in Hebei, Shandong, and 355 

Shaanxi Provinces. The risk of high CO pollution was small, only found in some scattered areas in 356 

the NCP. In general, both the area and the possibility of occurrence exposure to high pollution has 357 

gradually decreased over time, almost disappearing since 2018.  358 

By contrast, most areas of eastern China had a surface NO2 exposure exceeding the AQG level 359 

(Figure 8), especially in the north and economically developed areas in the south (proportion > 360 

80%). Both the extent and intensity are decreasing over time, but it is still a problem, suggesting 361 

that stronger NOx controls are needed in the future. Most of the main air pollution transmission belt 362 

in China (i.e., the “2 + 26” cities, Figure 1) had surface SO2 levels exceeding the AQG level at the 363 

beginning of the study period. Thanks to strict control measures, these polluted areas sharply 364 

decreased after 2015, almost disappearing in 2020. Controlling CO was much more successful in 365 

China, with less than 10% of the days in the BTH exceeding the acceptable standard in the early 366 

part of the study period. Most areas have reached the CO AQG level since 2018. 367 

[Please insert Figure 8 here] 368 

Figure 9 shows the percentage of days with pollution levels exceeding WHO air quality standards in 369 

three key regions. BTH was the only region experiencing high NO2 and SO2 exposure risks (i.e., 370 

daily mean > IT1), dropping to zero since 2017 and 2016, while YRD and PRD had no high risks of 371 

exposure to the three gaseous pollutants (Figure 9a-b). There was also no regional high CO-372 

pollution risk (Figure 9c). However, although declining continuously, regional surface NO2 levels 373 

failed to meet the short-term AQG level in 2020, with 61–73% of the days exceeding the AQG 374 

level. More efforts toward mitigating NO2 levels in these key regions are thus needed. Continual 375 

decreases in the number of days above the AQG level were also observed in surface SO2, reducing 376 

to near zero in 2014, 2016, and 2018 in the PRD, YRD, and BTH, respectively. Less than 3% of the 377 



15 
 

days in the BTH and YRD had surface CO levels exceeding the AQG level. Surface CO levels were 378 

always below the AQG level in the PRD. 379 

[Please insert Figure 9 here] 380 

3.3 Data quality assessment 381 

Here, the widely used out-of-sample 10-fold cross-validation (10-CV) method was adopted to 382 

evaluate the overall estimation accuracy of gaseous pollutants (Rodriguez et al., 2010; Wei et al., 383 

2022a). An additional out-of-station 10-CV approach was used to validate the prediction accuracy 384 

of gaseous pollutants, performed based on measurements from ground monitoring stations. These 385 

measurements were randomly divided into ten subsets, of which data samples from nine subsets 386 

were used for model training and the remaining subset for model validation. This was done 10 387 

times, in turn, to ensure that data from all stations were tested. This procedure generates 388 

independent training samples and test samples made in different locations, used to indicate the 389 

spatial prediction ability of the model in areas where ground-based measurements are unavailable 390 

(S. Wu et al., 2021; Wei et al., 2022a). 391 

 392 

3.3.1 Estimate and prediction accuracy 393 

Figure 10 shows the CV results of all daily estimates and predictions for ground-level NO2, SO2, 394 

and CO concentrations from 2013 to 2020 in China (sample size: N ≈ 3.6 million). Surface NO2 395 

and SO2 concentrations mainly fell in the range of 200 to 500 µg/m3. Daily estimates were highly 396 

correlated to observations, with the same coefficients of determination (R2 = 0.84) and slopes close 397 

to 1 (0.86 and 0.84, respectively). Average root-mean-square error (RMSE) [mean absolute error 398 

(MAE)] values of surface NO2 and SO2 estimates were 7.99 (5.34) and 10.07 (4.68) µg/m3, and 399 

normalized RMSE (NRMSE) values were 0.25 and 0.51, respectively. Most daily CO observations 400 

were less than 10 mg/m3, agreeing well with our daily estimates (R2 = 0.80, slope = 0.79), and the 401 

average RMSE (MAE) and NRMSE values were 0.29 (0.16) mg/m3 and 0.3. Compared to 402 

estimation accuracies (Figure 10a-c), prediction accuracies slightly decreased, which is acceptable 403 

considering the weak signals of trace gases. Daily surface SO2, NO2, and CO predictions (Figure 404 

10d-f) agree well with ground measurements, with spatial R2 values of 0.70, 0.68, and 0.61, 405 
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respectively. Their respective RMSE (MAE) values were 14.28 (8.1) µg/m3, 11.57 (7.06) µg/m3, 406 

and 0.42 (0.24) mg/m3, and NRMSE values were 0.35, 0.71, and 0.42, respectively, representing the 407 

accuracy for areas without ground monitoring stations. 408 

[Please insert Figure 10 here] 409 

The performance of our air pollution modelling was also evaluated on an annual basis, showing that 410 

our model works well in estimating and predicting the concentrations of different surface gaseous 411 

pollutants in different years (Table 1). The model performance has continuously improved over 412 

time, as indicated by increasing correlations and decreasing uncertainties. This is because of the 413 

increasing density of ground stations (especially in the suburban areas of cities) and updated quality 414 

control of measurements, e.g., improving the sampling flow calibration of monitoring instruments, 415 

flow calibration of dynamic calibrators, and revision of precision/accuracy review and data validity 416 

judgment (HJ 818-2018) (MEE, 2018b). This has led to an increase in the number of data samples 417 

(e.g., from 169 thousand in 2013 to more than 522 thousand in 2020) and improvement in their 418 

quality. 419 

[Please insert Table 1 here] 420 

Figure 11 shows the spatial validation of estimated daily pollutant gases across China. In general, 421 

our model works well at the site scale, with average CV-R2 values of 0.77, 0.72, and 0.72, and 422 

NRMSE values of 0.25, 0.43, and 0.26 for surface NO2, SO2, and CO, respectively. In addition, 423 

approximately 93%, 80%, and 84% of the stations had at least moderate agreements (CV-R2 > 0.6) 424 

between our estimates and ground measurements. Except for some scattered sites, the estimation 425 

uncertainties were generally less than 0.3, 0.5, and 0.3 in more than 80%, 77%, and 76% of the 426 

stations for the above three gaseous pollutant species, respectively. 427 

[Please insert Figure 11 here] 428 

Figure 12 shows the temporal validation of ground-level gaseous pollutants as a function of ground 429 

measurements in China. On the monthly scale (Figure 12a-c), we collected a total of ~119,000 430 

matched samples of the three gaseous pollutants. Accuracies significantly improved, with increasing 431 
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R2 (decreasing RMSE) values of 0.93 (4.41 µg/m3), 0.97 (4.03 µg/m3), and 0.94 (0.13 mg/m3) for 432 

surface NO2, SO2, and CO, respectively. On the annual scale (Figure 12d-f), more than ~10,000 433 

matched samples were collected, showing better agreement with observations (e.g., R2 = 0.94, 0.98, 434 

and 0.97) and lower uncertainties (e.g., RMSE = 3.06 µg/m3, 2.46 µg/m3, and 0.07 mg/m3) for the 435 

above three gaseous pollutants, respectively.  436 

[Please insert Figure 12 here]  437 

3.3.2 Comparison with previous studies 438 

We compared our results with those from previous studies on the estimation of the three gaseous 439 

pollutants using different developed models focusing on the whole of China. Here, only those 440 

studies applying the same out-of-sample cross-validation approach against ground-based 441 

measurements collected from the same CNEMC network were selected (Table 2). The statistics 442 

shown in the table come from the publications themselves because their generated datasets are not 443 

publicly available. We have applied the same validation method and ground measurements as those 444 

used in the previous studies. Most generated surface NO2 datasets had numerous missing values in 445 

space limited by direct OMI/Aura satellite observations at spatial resolutions from 0.125°× 0.125° 446 

to 0.25°×0.25° (Zhan et al., 2018; Z.-Y. Chen et al., 2019; H. Xu et al., 2019; Chi et al., 2021; Dou 447 

et al., 2021). Some studies improved the spatial resolution by introducing NO2 data from the 448 

recently launched Sentinel-5 TROPOMI satellite, but data are only available from October 2018 449 

onward (Liu, 2021; Y. Wang et al., 2021; Chi et al., 2022; Wei et al., 2022b). Surface SO2 estimated 450 

from an SO2 emission inventory and surface CO from Measurement of Pollution in the Troposphere 451 

(MOPITT) and TROPOMI retrievals have a much lower data quality, with smaller R2 values by 12–452 

57% and larger RMSE values by 41–47% against ground measurements compared to ours (D. Liu 453 

et al., 2019; R. Li et al., 2020; Y. Wang et al., 2021). Overall, our gaseous pollutant datasets are 454 

superior to those from previous studies in terms of overall accuracy, spatial coverage, and length of 455 

data records. 456 

[Please insert Table 2 here] 457 

3.4 Successful applications 458 
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Our surface gaseous pollutant datasets have been freely available to the public online since March 459 

2021 (NO2: https://doi.org/10.5281/zenodo.4641542, SO2: https://doi.org/10.5281/zenodo.4641538, 460 

and CO: https://doi.org/10.5281/zenodo.4641530). A large number of studies have used the three 461 

gaseous pollutant datasets generated in this study to study their single or joint impacts on 462 

environmental health from both long-term and short-term perspectives, benefiting from the unique 463 

daily spatially seamless coverage. For example, a nearly linear relationship between long-term 464 

ambient NO2 and adult mortality in China was observed (Y. Zhang et al., 2022). Y. Wang et al. 465 

(2023) reported that ambient NO2 hindered the survival of middle-aged and elderly people. Long-466 

term SO2 and CO exposure can increase the incidence rate of visual impairment in children in China 467 

(L. Chen et al., 2022a), and short-term exposure to ambient CO can significantly increase the 468 

probability of hospitalization for stroke sequelae (R. Wang et al., 2022). Regional and national 469 

cohort studies have shown that exposure, especially short-term exposure, to multiple ambient 470 

gaseous (NO2, SO2, and CO) and particulate pollutants have negative effects of varying degrees on 471 

a variety of diseases, like cause-specific cardiovascular disease (R. Xu et al., 2022a,b), ischemic and 472 

hemorrhagic stroke ( Cai et al., 2022; He et al., 2022; H. Wu et al., 2022b; R. Xu et al., 2022c), 473 

asthma mortality (W. Liu et al., 2022), dementia mortality (T. Liu et al., 2022), metabolic syndrome 474 

(S. Han et al., 2022), blood pressure (Song et al., 2022; H. Wu et al., 2022a), renal function (S. Li et 475 

al., 2022), neurodevelopmental delay (X. Su et al., 2022), serum liver enzymes (Y. Li et al., 2022), 476 

overweight and obesity (L. Chen et al., 2022b), insomnia (J. Xu et al., 2021), and sleep quality (L. 477 

Wang et al., 2022). These studies attest well to the value of the CHAP dataset regarding current and 478 

future public health issues, among others.  479 

 480 

4. Summary and conclusions 481 

Exposure to gaseous pollution is detrimental to human health, a major public concern in heavily 482 

polluted regions like China, where ground-based observations are not as rich as in major developed 483 

countries. Moreover, pollutants travel long distances, affecting large downstream regions. To 484 

remedy such limitations, this study applied the machine-learning model called Space-Time Extra-485 

Tree to estimate ambient gaseous pollutants across China, with extensive input variables measured 486 

by monitors and satellites, and models. Daily 10 km resolution (approximately 0.1°× 0.1°) seamless 487 
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(spatial coverage = 100%) datasets for ground-level NO2, SO2, and CO concentrations in China 488 

from 2013 to 2020 were generated. These datasets were cross-evaluated in terms of overall 489 

accuracy and predictive ability at different spatiotemporal levels. National daily estimates 490 

(predictions) of surface NO2, SO2, and CO were highly consistent with ground measurements, with 491 

average out-of-sample (out-of-station) CV-R2 values of 0.84 (0.68), 0.84 (0.7), and 0.8 (0.61), and 492 

RMSEs of 7.99 (11.57) μg/m3, 10.7 (14.28) μg/m3, and 0.29 (0.42) mg/m3, respectively.  493 

Ambient pollutant gases varied significantly in space and time, with high levels mainly found in the 494 

North China Plain, especially in winter, due to more anthropogenic emissions, such as coal burning 495 

for heating. All gaseous pollutants sharply declined in China during the COVID-19 outbreak, while 496 

large differences were observed during their recovery times. For example, surface CO was the first 497 

to return to its historical level within the fifth week after the Lunar New Year in 2020, about twice 498 

faster as surface NO2 and SO2 levels. This is attributed to more home cooking and enhanced 499 

atmospheric oxidation. Temporally, surface NO2, SO2, and CO levels in China gradually decreased 500 

from peaks in 2013 (average = 21.3 ± 8.8 µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 ± 0.29 mg/m3, 501 

respectively), with annual rates of decrease of 0.23 µg/m3, 2.01 µg/m3, and 0.05 mg/m3, 502 

respectively (p < 0.001), until 2020. Improvements in air quality have been made in the last eight 503 

years, thanks to the implementation of a series of environmental protection policies, greatly 504 

reducing pollutant emissions. In addition, both the areal extents of regions experiencing gaseous 505 

pollution and the probability of gaseous pollution occurring have gradually decreased over time, 506 

especially for surface CO and SO2, which have almost reached the short-term air quality guidelines 507 

level recommended by the WHO in most areas in China in 2020. This high-quality daily seamless 508 

dataset of gaseous pollutants will benefit future environmental and health-related studies focused on 509 

China, especially studies investigating short-term air pollution exposure. 510 

Although a lot of new and/or useful data and analyses are presented in this study, they still suffer 511 

from some limitations. For example, input variables related to the emission inventory, modeled 512 

simulations, and assimilations still have considerable uncertainties. More influential factors 513 

stemming from regional economic and development differences need to be considered in more 514 

powerful artificial intelligence models to improve the prediction accuracy of air pollutants. The 515 

spatiotemporal resolutions of gaseous pollutants will be further improved by integrating information 516 
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from polar-orbiting and geostationary satellites to investigate diurnal variations. In a future study, 517 

we will also reconstruct data records over the last two decades and investigate their long-term 518 

spatiotemporal variations, filling the gap of missing observations. This will help us understand their 519 

formation mechanisms and impacts on fine particulate matter and ozone pollution in China. 520 

 521 

Data availability 522 

CNEMC measurements of gaseous pollutants are available at http://www.cnemc.cn. The 523 

reconstructed OMI/Aura tropospheric NO2 product is available at 524 

https://doi.org/10.6084/m9.figshare.13126847. MODIS series products and the MERRA-2 525 

reanalysis are available at https://search.earthdata.nasa.gov/. The SRTM DEM is available at 526 

https://www2.jpl.nasa.gov/srtm/, and LandScanTM population information is available at 527 

https://landscan.ornl.gov/. The ERA5 reanalysis is available at https://cds.climate.copernicus.eu/, 528 

GEOS CF data are available at https://portal.nccs.nasa.gov/datashare/gmao/, and the CAMS 529 

reanalysis and emission inventory are available at https://ads.atmosphere.copernicus.eu/. 530 
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Figures 919 

 920 

 921 
Figure 1. Geographical locations of ground-based stations from the China National Environmental 922 
Monitoring Centre network (marked as yellow dots) monitoring gaseous pollutants across China. 923 

The background shows the nighttime-light level, an estimate of population. Purple boundaries  three 924 
typical urban agglomerations: the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta 925 

(YRD), and the Pearl River Delta (PRD). 926 
  927 
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 928 

Figure 2. A typical example of (a-c) big-data-derived (horizontal resolution = 10 km) seamless 929 
surface NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) concentrations and (d-f) corresponding ground 930 

measurements on 1 January 2018 in China.  931 
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 932 
Figure 3. Annual and seasonal mean maps (horizontal resolution = 10 km) of surface NO2 (µg/m3), 933 

SO2 (µg/m3), and CO (mg/m3) averaged over the period 2013–2020 in China. 934 
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 935 
Figure 4. Relative changes (%) in surface NO2, SO2, and CO concentrations in February, March, 936 

and April between 2019 and 2020 in populated areas of China. The area outlined in magenta and the 937 
star in each panel indicate Hubei Province and Wuhan City, respectively. 938 
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 940 
Figure 5. Time series of the seven-day moving averages of daily population-weighted surface (a) 941 

NO2, (b) SO2, and (c) CO concentrations after the Lunar New Year of 2019 and 2020 in China. The 942 
black circle in each panel shows the turning point when the gaseous pollutants began to return to 943 

their normal levels. 944 
 945 
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 947 

Figure 6. Relative changes (%) in seasonal mean surface NO2, SO2, and CO concentrations 948 
between 2013 and 2020 over (a) China, (b) the Beijing-Tianjin-Hebei (BTH) region, (c) the Yangtze 949 

River Delta (YRD), and (d) the Pearl River Delta (PRD).  950 
  951 
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 952 
Figure 7. Temporal trends of surface NO2, SO2, and CO concentrations during the whole period 953 

(2013–2020), the Clean Air Action Plan (2013–2017), the Blue Sky Defense War (2018–2020), and 954 
the 13rd Five-Year Plan (2016–2020) in China. Only regions with trends that are significant at the 955 

95% (p < 0.05) confidence level are shown.  956 
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 958 
Figure 8. Spatial distributions of the percentage of days exceeding the WHO recommended short-959 

term desired air quality guidelines level for surface NO2 (daily mean > 25 μg/m3), SO2 (daily 960 
mean > 40 μg/m3), and CO (daily mean > 4 mg/m3) for each year from 2013 to 2020 in populated 961 

areas in eastern China. 962 
  963 
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 964 

Figure 9. Percentage of days (%) exceeding the WHO recommended short-term (a-c) minimum 965 
interim target (IT1) and (d-f) desired air quality guidelines (AQG) level for surface NO2, SO2, and 966 

CO for each year from 2013 to 2020 in three typical urban agglomerations: the Beijing-Tianjin-967 
Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). 968 
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 970 

Figure 10. Density plots of daily (a-c) estimates and (d-f) predictions of ground-level NO2 (µg/m3), 971 
SO2 (µg/m3), and CO (mg/m3) concentrations as a function of ground measurements in China from 972 

2013 to 2020 using the out-of-sample (top panels) and out-of-station (bottom panels) cross-973 
validation methods. 974 
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 976 

Figure 11. Sample-based spatial validation of daily ground-level NO2 (µg/m3), SO2 (µg/m3), and 977 
CO (mg/m3) estimates at each individual monitoring station in China from 2013 to 2020: (a-c) 978 

accuracy (i.e., CV-R2) and (d-f) uncertainty (i.e., NRMSE). 979 

980 
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 981 

Figure 12. Sample-based temporal validation of (a-c) monthly and (d-f) yearly composites of 982 
ground-level NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) as a function of ground measurements 983 

from 2013 to 2020 in China. 984 
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Tables 986 

 987 
Table 1. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for 988 

each year in China from 2013 to 2020. 989 

Year 

Sample 
size  

Overall accuracy Predictive ability 

NO2  SO2  CO  NO2  SO2  CO  

N (103) R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

2013 169 0.77 12.48 0.83 17.97 0.80 0.56 0.53 18.16 0.68 25.04 0.60 0.78 

2014 324 0.76 10.97 0.83 15.87 0.77 0.38 0.54 15.56 0.66 22.45 0.51 0.57 

2015 518 0.79 9.34 0.80 13.71 0.74 0.38 0.61 13.10 0.61 19.49 0.50 0.55 

2016 516 0.82 8.59 0.83 11.26 0.76 0.34 0.64 12.20 0.65 16.28 0.57 0.46 

2017 527 0.86 7.57 0.86 7.79 0.82 0.24 0.72 10.67 0.74 10.80 0.70 0.32 

2018 513 0.87 6.92 0.83 5.61 0.82 0.20 0.76 9.33 0.68 7.80 0.69 0.26 

2019 515 0.87 6.78 0.81 4.84 0.82 0.20 0.77 9.23 0.66 6.63 0.70 0.25 

2020 522 0.89 5.78 0.80 4.02 0.82 0.17 0.79 8.04 0.62 5.57 0.69 0.23 
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Table 2. Comparison of long-term datasets of different gaseous pollutants focusing on the whole of 991 

China. 992 

Species Model 
Missing 
values

Spatial 
resolution 

Main input
Validation 
period

CV-R2 RMSE Literature 

NO2 RF-STK Yes 0.25° OMI 2013−2016 0.62 13.3 (Zhan et al., 2018) 

 RF-K Yes 0.25° OMI 2013−2018 0.64 11.4 (Dou et al., 2021) 

 KCS Yes 0.125° OMI 2014−2016 0.72 7.9 
(Z.-Y. Chen et al., 
2019) 

 LUR Yes 0.125° OMI 2014−2015 0.78 - (H. Xu et al., 2019)

 LME Yes 0.1° OMI 2014−2020 0.65 7.9 (Chi et al., 2021) 

 XGBoost Yes 0.125° TROPOMI 2018−2020 0.67 6.4 (Chi et al., 2022) 

 XGBoost Yes 0.05° TROPOMI 2018−2019 0.83 7.6 (Liu, 2021) 

 LightGBM No 0.05° TROPOMI 2018−2020 0.83 6.6 
(Y. Wang et al., 
2021) 

 SWDF No 0.01° TROPOMI 2019−2020 0.93 4.9 (Wei et al., 2022b) 

 STET No 0.1° Big data 2013−2020 0.84 8.0 This study 

SO2 RF No 0.25° Emissions 2013−2014 0.64 17.1 (R. Li et al., 2020) 

 STET No 0.1 Big data 2013−2020 0.84 10.1 This study 

CO RF–STK Yes 0.1 MOPITT 2013−2016 0.51 0.54 (D. Liu et al., 2019)

 LightGBM No 0.07° TROPOMI 2018−2020 0.71 0.26 
(Y. Wang et al., 
2021) 

 STET No 0.1° Big data 2013−2020 0.80 0.29 This study 

KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed effect model; 993 
LUR: land use regression; MOPITT: Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring 994 
Instrument; RF: random forest; RF-K: random forest integrated with K-means; RF-STK: random-forest-spatiotemporal-995 
kriging model; STET: space-time extremely randomized tree; SWDF: spatiotemporally weighted deep forest; 996 
TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting 997 


