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Abstract

Gaseous pollutants at the ground level seriously threaten the urban air quality environment and
public health. There are few estimates of gaseous pollutants that are spatially and temporally
resolved and continuous across China. This study takes advantage of big data and artificial
intelligence technologies to generate seamless daily maps of three major ambient pollutant gases,
i.e., NOz, SO2, and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km.
Cross-validation between our estimates and ground observations illustrated a high data quality on a
daily basis for surface NO2, SOz, and CO concentrations, with mean coefficients of determination
(root-mean-square errors) of 0.84 (7.99 pg/m?), 0.84 (10.7 pg/m®), and 0.80 (0.29 mg/m°),
respectively. We found that the COVID-19 lockdown had sustained impacts on gaseous pollutants,
where surface CO recovered to its normal level in China on around the 34™ day after the Lunar New
Year, while surface SOz and NOz rebounded more than twice slower due to more CO emissions
from increased residents' indoor cooking and atmospheric oxidation capacity. Surface NO2, SOz,
and CO reached their peak annual concentrations of 21.3 + 8.8 pg/m?®, 23.1 = 13.3 ug/m?, and 1.01
+0.29 mg/m’ in 2013, then continuously declined over time by 12%, 55%, and 17%, respectively,
until 2020. The declining rates were more prominent from 2013 to 2017 due to the sharper
reductions in anthropogenic emissions but have slowed down in recent years. Nevertheless, people
still suffer from high-frequency risk exposure to surface NOz2 in eastern China, while surface SO2
and CO have almost reached the recommended air quality guidelines level since 2018, benefiting
from the implemented stricter “ultra-low” emission standards. This reconstructed dataset of surface
gaseous pollutants will benefit future (especially short-term) air pollution and environmental health-

related studies.
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1. Introduction

Air pollution has been a major environmental concern, affecting human health, weather, and climate
(Anenberg et al., 2022; Kan et al., 2012; Li et al., 2017a; Murray et al., 2020; Orellano et al., 2020),
thus drawing worldwide attention. The sources of air pollution are complex. They include natural
sources such as wildfires and anthropogenic emissions, including pollutants discharged from
industrial production [e.g., smoke/dust, sulfur oxides, nitrogen oxides (NOx), and volatile organic
compounds (VOCs)], hazardous substances released from burning coal during heating seasons [e.g.,
dust, sulfur dioxide (SO2), and carbon monoxide (CO)], and waste gases (e.g., CO, SOz, and NOx)
generated by transportation, especially in big cities.

Among various air pollutants, the following have been most widely recognized: particulate matter
with diameters smaller than 2.5 pm and 10 um (PM2.s and PMio) and gaseous pollutants [e.g.,
ozone (0O3), nitrogen dioxide (NO2), SO2, and CO, among others]. Many countries have built
ground-based networks to monitor a variety of conventional pollutants in real time. China has
experienced serious ambient air pollution for a long time, prompting the establishment of a large-
scale air quality monitoring network (MEE, 2018a). Over the years, much effort has been made to
model different species of air pollutants. Many studies focused on particulate matter in China have

been carried out (Gao et al., 2022: Li et al., 2017b; Li et al., 2022b; Ma et al., 2022; Yang et al.,

2022; Zhang et al., 2018). The global COVID-19 pandemic has motivated many attempts to
estimate surface NO2 concentrations from satellite-retrieved tropospheric NO2 products (Tian et al.,
2020; WHO, 2020), e.g., from the Ozone Monitoring Instrument (OMI) onboard the NASA Aura
spacecraft and the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus
Sentinel-5 Precursor satellite, adopting different statistical regression (Chi et al., 2021; Qin et al.,
2017; Zhang et al., 2018) and artificial intelligence (Chen et al., 2019; Chi et al., 2022; Dou et al.,
2021; Liu, 2021; Wang et al., 2021; Zhan et al., 2018) models. By comparison, surface SO2 and CO
in China are less studied, limited by weaker signals and a lack of good-quality satellite tropospheric
products (Han et al., 2022b; Li et al., 2020; Liu et al., 2019; Wang et al., 2021). Such studies still
face more challenges, e.g., satellite data gaps and missing values that seriously limit their

application and the neglect of spatiotemporal differences in air pollution in the modeling process. In



66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

addition, most previous studies mainly focused on studying a single or a few species during
relatively short observational periods.

In view of the above problems, the purpose of this paper is to reconstruct daily concentrations of
three ambient gaseous pollutants (i.e., NO2, SO2, and CO) in China. To this end, relying on the
dense national ground-based observation network and big data, including satellite remote sensing
products, meteorological reanalysis, chemical model simulations, and emission inventories, we are
capable of mapping three pollutant gases seamlessly (100% spatial coverage) on a daily basis at a
uniform spatial resolution of 10 km since 2013 in China. Estimates were made using an extended
and powerful machine-learning model incorporating spatiotemporal information, i.e., space-time
extra-trees. Natural and anthropogenic effects on air pollution, including their physical mechanisms
and chemical reactions, were accounted for in the modeling. Using this dataset, spatiotemporal
variations of the gaseous pollutants, the impacts of environmental protection policies and the
COVID-19 epidemic, and population risk exposure to gaseous pollution are investigated.

To date, we have combined the advantages of artificial intelligence and big data to construct a
virtually complete set of major air quality parameters concerning both particulate and gaseous
pollutants over a long period of time across China, including PM1 (1 km, 2000—Present) (Wei et al.,
2019), PM2.s (1 km, 2000—Present) (Wei et al., 2020; Wei et al., 2021a), PMio (1 km, 2000—Present)
(Wei et al., 2021b), O3 (10 km, 1979—Present) (Wei et al., 2022a; He et al., 2022b), and NO2 (1 km,
2019-Present) (Wei et al., 2022b), serving environmental, public health, economy, and other related
research. This study is the continuation of our previous studies, which adds two new species of SO2
and CO for the first time and also dates the data records of NO2 back to 2013. Instead of devoting
itself to a single pollutant, this study deals with all gaseous pollutants of compatible quality over the
same period with the same spatial coverage and resolution. In particular, considering that there are
few public datasets of these three gaseous pollutants with such spatiotemporal coverages focusing
on the whole of China, this is highly valuable for the sake of studying their variations, relative
proportions, and attribution of emission sources, as well as their diverse and joint effects of different

pollutant species on public health.

2. Materials and methods
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2.1 Big data

2.1.1 Ground-based measurements

Hourly measurements of ground-level NO2, SOz, and CO concentrations from ~1600 reference-
grade ground-based monitoring stations (Figure 1) collected from the China National
Environmental Monitoring Centre (CNEMC) network were employed in the study. This network
includes urban assessing stations, regional assessing stations, background stations, source impact
stations, and traffic stations, set up in a reasonable overall layout that covers industrial (~14%),
urban (~31%), suburban (~39%), and rural (~16%) areas to improve the spatial representations,
continuity, and comparability of observations (HJ 664-2013) (MEE, 2013a). NO2 is measured by
chemiluminescence and differential optical absorption spectroscopy (DOAS), and SO2 uses
ultraviolet fluorescence and DOAS, while CO adopts non-dispersive infrared spectroscopy and gas
filter correlation infrared spectroscopy. These measurements have been fully validated and have the
same average error of indication of +2% F.S. for the three gaseous pollutants considered here, with
additional quality-control checks such as zero and span noise and zero and span drift (HJ 193-2013
and HJ 654-2013) (MEE, 2013b, 2013c). They have also been used as ground truth in almost all air
pollutant modelling studies in China (Ma et al., 2022; Zhang et al., 2022a). All stations use the same
technique to measure each gas routinely and continuously 24 hours a day at about the sea level
without time series gaps. However, the reference state (i.e., observational conditions like
temperature and pressure) changed from the standard condition (i.e., 273 K and 1013 hPa) to the
room condition (i.e., 298 K and 1013 hPa) on 31 August 2018 (MEE, 2018a). We thus first
converted observations of the three gaseous pollutants after this date to the uniform standard
condition for consistency. Here, daily values for each air pollutant were averaged from at least 30%

of valid hourly measurements at each station in each year from 2013 to 2020.

[Please insert Figure 1 here]

2.1.2 Main predictors
A new daily tropospheric NO2 dataset at a horizontal resolution of 0.25° % 0.25° in China was
employed, created using a developed framework integrating OMI/Aura Quality Assurance for

Essential Climate Variables (QA4ECV) and Global Ozone Monitoring Experiment—2B (GOME-2B)
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offline tropospheric NOz retrievals passing quality controls (i.e., cloud fraction < 0.3, surface albedo
< 0.3, and solar zenith angle < 85°) (He et al., 2020). The reconstructed tropospheric NO2 agreed
well (R = 0.75-0.85) with Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS)
measurements. Through this data fusion, the daily spatial coverage of satellite tropospheric NO2
was significantly improved in China (average = 87%). Areas with a small number of missing values
were imputed via a nonparametric machine-learning model by regressing the conversion
relationship with Copernicus Atmosphere Monitoring Service (CAMS) tropospheric NO2
assimilations (0.75° x 0.75°), making sure that the interpolation was consistent with the OMI/Aura
overpass time (Inness et al., 2019; Wang et al., 2020b). The gap-filled tropospheric NO2 was
reliable compared with measurements (R = 0.94—0.98) (Wei et al., 2022b). The above two-step gap-
filling procedures allowed us to generate a daily seamless tropospheric NO: dataset that removes
the effects of clouds from satellite observations.

Here, the reconstructed daily seamless tropospheric NOz, together with CAMS daily ground-level
NO: assimilations (0.75° x 0.75°) averaged from all 3-hourly data in a day and monthly NOx
anthropogenic emissions (0.1° x 0.1°) (Inness et al., 2019), were used as the main predictors for
estimating surface NO». Limited by the quality of direct satellite observations, daily model-
simulated SO2 and CO surface mass concentrations, averaged from all available data in a day
provided by one-hourly Modern-Era Retrospective Analysis for Research and Applications, version
2 (MERRA-2, 0.625° x 0.5°), 3-hourly CAMS (0.75° x 0.75°), and 3-hourly Goddard Earth
Observing System Forward-Processing (0.3125° x 0.25°) global reanalyses were used as main
predictors to retrieve surface SO2 and CO, together with CAMS monthly SO2 and CO

anthropogenic emissions.

2.1.3 Auxiliary factors

Meteorological factors have important diverse effects on air pollutants (He et al., 2017; Li et al.,
2019), e.g., the boundary-layer height reflects their vertical distribution and variations (Li et al.,
2017a; Seo et al., 2017); temperature, humidity, and pressure can affect their photochemical
reactions (Li et al., 2019; Xu et al., 2011; Zhang et al., 2019a); and rainfall and wind can also

influence their removal, accumulation, and transport (Dickerson et al., 2007; Li et al., 2019). Eight
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daily meteorological variables, provided by the ERAS5-Land (0.1° x 0.1°) (Mufioz-Sabater et al.,
2021) and ERAS global reanalysis (0.25° x 0.25°) (Hersbach et al., 2020), were calculated (i.e.,
accumulated for precipitation and evaporation while averaged for the others) from all hourly data in
a day, used as auxiliary variables to improve the modelling of gaseous pollutants. Other auxiliary
remote-sensing data used to describe land-use cover/change [i.e., Moderate Resolution Imaging
Spectroradiometer (MODIS) normalized difference vegetation index (NDVI), 0.05° x 0.05°] and
population distribution density (i.e., LandScan™, 1 km) were employed as inputs to the machine-
learning model because they are highly related to the type of pollutant emission and amounts of
anthropogenic emissions, as well as the surface terrain [i.e., Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM), 90m], which can affect the transmission of air pollutants.
Table S1 provides detailed information about all the data used in this study. All variables were

aggregated or resampled into a 0.1° x 0.1° resolution for consistency.

2.2 Pollutant gas modelling

Here, the developed Space-Time Extra-Tree (STET) model, integrating spatiotemporal
autocorrelations of and differences in air pollutants to the Extremely Randomized Trees (ERT) (Wei
et al., 2022a), was extended to estimate surface gaseous pollutants, i.e., NO2, SOz, and CO. ERT is
an ensemble machine-learning model based on the decision tree, capable of solving the
nonparametric multivariable nonlinear regression problem. Ensemble learning can avoid the lack of
learning ability of a single learner, greatly improving accuracy. The introduced randomness
enhances the model's anti-noise ability and minimizes the sensitivity to outliers and
multicollinearity issues. It can handle high latitude, discrete or continuous data without data
normalization and is easy to implement and parallel. However, several limitations exist, e.g., it is
difficult to make predictions beyond the range of training data, and there will be an over-fitting
issue on some regression problems with high noise. The training efficiency diminishes with
increasing memory occupation when the number of decision trees is large (Geurts et al., 2006).
Compared with traditional tree-based models (e.g., random forest), ERT has a stronger randomness
which randomly selects a feature subset at each node split and randomly obtains the optimal branch

attributes and thresholds. This helps to create more independent decision trees, further reducing
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model variance and improving training accuracy (Geurts et al., 2006). The STET model has been
successfully applied in estimating high-quality surface O3 in our previous study (Wei et al., 2022a).
It is thus extended here to regress the nonlinear conversion relationships between ground-based
measurements and the main predictors and auxiliary factors for other species of gaseous pollutants.
For surface NO2, the STET model was applied to the main variables of the satellite tropospheric
NO2 column, modelled surface NO2 mass, and NOx emissions, together with ancillary variables of
the previously mentioned meteorological, surface, and population variables (Equation 1). For
surface SO2 (Equation 2) and CO (Equation 3), modelled surface SO2 and CO concentrations and
SO2 and CO emissions were used as main predictors along with the same auxiliary variables as NO2

to construct the STET models separately.

NOZ(ijt)~ fSTET(SNOZ(ijt)!MNOZ(ijt)'ENO'xijm' Meteorologyijt, NDVIijm'DEMijy!POPijy'PS' Pt)r (1)

SOZ(ijt)~ fSTET(MSOZ(ijt)' ESOZ(l]m)' Meteorologyijt, NDVIum, DEML POPijy, PS! Pt), (2)

Jy?

CO;je~ fsrer(MCO;j, ECO;jm, Meteorology;jr, NDVI;jm, DEM;;,,, POP;jy, Ps, P;), (3)

where NO,(;j¢), SO,ij1), and €O, indicate daily ground-based NO2, SO2, and CO measurements at
one grid (7, j) on the rth day of a year; SN0, indicates the daily satellite tropospheric NO2 column
at one grid (i, j) on the tth day of a year; MNO, ), MSOy ), and MCO;j, indicate daily model-
simulated surface NO2, SO2, and CO concentrations at one grid (7, j) on the t#th day of a year;
ENOx;y,, ESOy(ijmy, and ECO;jn, indicate monthly anthropogenic NOx, SOz, and CO emissions at one
grid (7, /) in the mth month of a year; Meteorology;j, represents each meteorological variable at one
grid (7, /) on the 7th day of a year; DEM;

and POP;;, indicate the elevation and population at one

Jjy Jjy

grid (i, j) of a year; and P, and P; indicate the space and time terms (Wei et al., 2022a).

3. Results and discussion

3.1 Seamless mapping of surface gaseous pollutants

Using the constructed STET model, we generated daily 10 km resolution datasets with complete
coverage (spatial coverage = 100%) for three ground-level gaseous pollutants from 2013 to 2020 in

China, called ChinaHighNO2, ChinaHighSO2, and ChinaHighCO. Monthly and annual maps were
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generated by directly averaging daily data at each grid. They belong to a series of public long-term,
full-coverage, high-resolution, and high-quality datasets of a variety of ground-level air pollutants
for China [ChinaHighAirPollutants (CHAP)] developed by our team. Figure 2 shows spatial
distributions of the three pollutant gases across China on a typical day (1 January 2018). The spatial
patterns of these gaseous pollutants were consistent with those observed on the ground, especially
in highly polluted areas, e.g., severe surface NO2 pollution in the North China Plain (NCP) and high
surface SO2 emissions in Shanxi Province. The unique advantage of our dataset is that it can
provide valuable gaseous pollutant information on a daily basis at locations in China where ground
measurements are not available. This addresses the major issues of scanning gaps and numerous
missing values in satellite remote sensing retrievals at cloudy locations, e.g., the average spatial
coverage of the official OMI/Aura daily tropospheric NO2 product is only 42% over the whole of
China during the period 2013-2020 (Figure S1). Our dataset provides spatially complete coverage,
significantly increasing daily satellite observations by 58%. In addition, reanalysis data do not
simulate surface masses of gaseous pollutants well, underestimating them compared to our results
and ground-based observations in China (Figure S2). This is especially so for SOz, where high-
pollution hot spots are easily misidentified. Validation illustrates that our regressed results for
surface NO2, SO2, and CO agree better with ground measurements than modelled results (slopes are
close to 1, and correlations > 0.93), 1.9-6.4 times stronger in slope, 1.3-3.5 times higher in
correlation, but 5.9-7.7 times smaller in differences (Figure S3). This shows that our model can take
advantage of big data to significantly correct and reconstruct gaseous simulation results via data

mining using machine learning.
[Please insert Figure 2 here]

Figure 3 shows annual and seasonal maps for each gas pollutant during the period 2013-2020
across China. Multi-year mean surface NO2, SOz, and CO concentrations were 20.3 + 4.7 ug/m?,
16.2 £ 7.7 pg/m>, and 0.86 + 0.22 mg/m>, respectively. Pollutant gases varied significantly in space
across China, where high surface NO: levels were mainly distributed in typical urban
agglomerations, e.g., the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River and Pearl River

Deltas (YRD and PRD), and scattered large cities with intensive human activities and highly
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developed transportation systems (e.g., Urumgqi, Chengdu, Xi'an, and Wuhan, among others). High
surface SO2 concentrations were mainly observed in northern China (e.g., Shanxi, Hebei, and
Shandong Provinces), associated with combustion emissions from anthropogenic sources, and the
Yunnan Guizhou Plateau in southwest China, likely associated with emissions from volcanic
eruptions. By contrast, except in some areas in central China (e.g., Shanxi and Hebei), surface CO
concentrations were overall low.

Significant differences in spatial patterns were seen at the seasonal level. Surface NO2, SOz, and CO
in summer (average = 15.9 £ 4.7 ug/m?, 22.9 + 13.4 pg/m?, and 1.1 £ 0.3 mg/m?, respectively) were
the lowest, thanks to favorable meteorological conditions, e.g., abundant precipitation and high air
humidity conducive to flushing and scavenging of different air pollutants (Yoo et al., 2014). Strong
sunlight and high temperature also accelerate the photochemical reactions of NO2 loss (Shah et al.,
2020). Pollution levels were highest in winter, with average values increasing by ~1.5—-1.9 times
those in summer. This difference was much larger in central and eastern China, e.g., 2.3-3.4 times
higher in the BTH due to large amounts of direct NOx, SOz, and CO emissions from burning coal
for heating in winter in northern China. The spatial patterns of the three gaseous pollutants were

similar in spring and autumn.
[Please insert Figure 3 here]

3.2 Changes in gaseous pollution and exposure risk

3.2.1 Short-term epidemic effects on air quality

Many studies have focused on the effects of the COVID-19 epidemic on air quality (WHO, 2020).
Most of them were done using ground-based observations (Huang et al., 2020; Su et al., 2020),
tropospheric gas columns (Field et al., 2021; Levelt et al., 2022), or retrieved surface masses
(Cooper et al., 2022; Ling and Li, 2021). The resulting conclusions could be affected by insufficient
spatial representation due to the uneven distribution of ground monitors or a large number of
missing values in space due to the influence of clouds. The unique advantage of our seamless day-
to-day gaseous pollutant dataset can make up for these shortcomings, allowing us to assess the
changes more accurately and quantitatively in gaseous pollutants during the epidemic.

We first compared the spatial differences in monthly relative differences from February to April

10
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between 2020 and 2019 in China (Figure 4). In February, surface NOz sharply reduced in China,
especially in key urban agglomerations and megacities, showing relative changes of greater than
50%. A significant decrease in surface SOz (> 40%) was observed in northern areas where heavy
industry is the mainstay in China (e.g., Tianjin, Hebei, and Shandong), while little change was seen
in southern China. Surface CO also showed drastic decreases, but the amplitude was smaller than
the other two gaseous pollutants. These were attributed to extensive plant closures and traffic
controls due to the lockdown, which started at the end of January 2020, significantly reducing

anthropogenic NOx, SO2, and CO emissions (Ding et al., 2020; Yang et al., 2022; Zheng et al.,

2021). In March, surface NO2 was still generally lower than the historical level in most eastern
areas, especially in areas where the epidemic was severe, i.e., Wuhan, Hubei Province, and its
surrounding areas. The decrease in surface SOz largely slowed by more than two times in the NCP
and central China, while surface CO almost returned to normal levels in most areas in China. In
April, surface NO2 and SOz were comparable to historical concentrations (within + 10%), even
increasing in some areas of southern and northeastern areas due to rebounding anthropogenic
emissions (Ding et al., 2020), especially in Hubei Province, indicating that their surface levels were

almost recovered.
[Please insert Figure 4 here]

Most previous studies have focused mainly on changes during the lockdown, with little attention
paid to the recovery. We thus compared the time series of daily population-weighted concentrations
of the three gaseous pollutants after the Lunar New Year between 2020 and 2019 in China (Figure
5). After the beginning of New Year's Eve, surface gaseous pollutants showed a significant decrease
in both the normal and epidemic years due to the closure of factories, with decreasing
anthropogenic emissions during the Spring Festival holiday. However, gaseous pollutants in the
normal year rose rapidly after they fell to their lowest levels due to the return to work after the
holidays. By contrast, their levels continued to decrease in 2020 and were lower than historical
levels due to the sustained impacts of the strict lockdowns. They hit bottom in the 4™ week after the
Lunar New Year, then began to increase gradually. Surface NO2 and SOz recovered in the middle of

the 11" week (around the 72" and 75" days) after the Lunar New Year (i.e., 2020 and 2019

11
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concentrations intersected and then alternately changed). However, surface CO levels recovered at
the end of the 5™ week (around the 34" day), more than twice faster than NO2 and SO: levels. This
is attributed to more CO emissions from increased residents' indoor cooking (Zheng et al., 2018),

increased atmospheric oxidation capacity (Huang et al., 2020; Wei et al., 2022a), and a potentially

higher sensitivity to temperature rises (Lin et al., 2021).
[Please insert Figure 5 here]

3.2.2 Temporal variations and policy implications

Figures S4-S6 show annual mean maps of each gaseous pollutant from 2013 to 2020 in China.
Surface NO2, SO2, and CO changed greatly, peaking in 2013, with average values of 21.3 + 8.8
pg/m? 23.1 £ 13.3 pg/m?, and 1.01 + 0.29 mg/m>, respectively. They reached their lowest levels in
2020, particularly due to the noticeable effects of the COVID-19 epidemic. In general, national
ambient NO2, SOz, and CO concentrations decreased by approximately 12%, 55%, and 17% from
2013 to 2020, respectively. Large seasonal differences were observed in the amplitude of gaseous
pollutant (Figure 6), e.g., surface NO2 decreased the most in winter, especially in the three urban
agglomerations (]24-31%), changing the least in autumn (especially in the YRD). Surface SO2
showed much larger decreases in all seasons, especially during the cold seasons (|55-81%), due to
the implementation of stricter “ultra-low” emission standards (Li et al., 2022a; Zhang et al., 2019b).

Surface CO had similar seasonal changes as SOz but 1.5-3.3 times smaller in amplitude.
[Please insert Figure 6 here]

To better investigate the spatiotemporal variations of ambient gaseous pollution, we calculated
linear trends and significance levels using monthly anomalies by removing seasonal cycles. Most of
China showed significant decreasing trends, with average annual rates of 0.23 ug/m?, 2.01 pg/m?,
and 0.05 mg/m? for surface NO2, SOz, and CO (p < 0.001), respectively (Figure 7), especially in
three urban agglomerations and large cities (e.g., Wuhan and Chengdu). The largest downward
trends mainly occurred in northern and central China, especially in the BTH (Table 3). This is
mainly due to the change in fuel for heating from coal to gas widespread across China in winter

(Wang et al., 2020a), greatly reducing emissions of precursor gases (Koukouli et al., 2018).
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Increasing trends of surface NO2 were, however, found in Ningxia and Shanxi Provinces in central
China due to increased traffic emissions and new coal-burning power plants in underdeveloped
areas without strict regulations on NOx emissions (Li et al., 2022a; Maji and Sarkar, 2020; Van Der
Acetal., 2017).

We then divided the study period into three periods to investigate the impact of major
environmental protection policies on air quality implemented in China (Figure 7). During the Clear
Air Action Plan (CAAP, 2013-2017), the rates of decrease for surface NO2, SOz, and CO
accelerated in most populated areas in China, especially urban areas. This was due to dramatic
reductions in main pollutant emissions like SO2 and NOx (by 59% and 21%, respectively) through
the upgrading of key industries, industrial structure adjustments, and coal-fired boiler remediation
(Zhang et al., 2019b). In addition, the majority of gaseous pollutants had dropped continuously
during the Blue Sky Defense War (BSDW, 2018-2020), benefiting from continuous reductions in
total air pollutant emissions and the impacts of COVID-19 (Jiang et al., 2021; Zheng et al., 2021).
However, areas with trends passing the significance level sharply shrank, especially for surface SOx.
During the 13" Five-Year-Plan (FYP, 2016-2020), the decreasing trends of the three gaseous
pollutants across China slowed down compared to those during CAAP. Large decreases in surface
NO:2 were mainly found in the BTH region and Henan Province, while slightly increasing trends
occurred in southern China. Surface SO: significantly decreased in most areas, where a greater
downward trend was observed in Shanxi Province, mainly due to the reduction in coal consumption
thanks to a strengthened clean-heating policy (Lee et al., 2021). Surface CO also continuously
decreased, more rapidly in central China but less rapidly elsewhere. The continuous decline in
gaseous pollutants is due to the binding reductions in total emissions of major pollutants like NOx

(171%) and SO2 ([48%) in China (Wan et al., 2022; Wu et al., 2022c).
[Please insert Figure 7 here]

3.2.3 Population-risk exposure to gaseous pollution
With the daily seamless datasets, we can evaluate the spatial and temporal variations of short-term
population-risk exposure to the three gaseous pollutants by calculating the number of days in a

given year exceeding the new recommended short-term minimum interim target (IT1) and desired
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air quality guidelines (AQGQG) level defined by the WHO in 2021 (WHO, 2021). The area exceeding
the recommended levels (i.e., daily NO2 > 120 pg/m?, SO2 > 125 pg/m?, and CO > 7 mg/m?) was
generally small in eastern China (Figure S7). High NOz-exposure risks were mainly found in
Beijing and Hebei Province and a handful of big cities (e.g., Jinan, Wuhan, Shanghai, and
Guangzhou), while high SO2-exposure risks were mainly observed in Hebei, Shandong, and
Shaanxi Provinces. The risk of high CO pollution was small, only found in some scattered areas in
the NCP. In general, both the area and the possibility of occurrence exposure to high pollution has
gradually decreased over time, almost disappearing since 2018.

By contrast, most areas of eastern China had a surface NOz exposure exceeding the AQG level
(Figure 8), especially in the north and economically developed areas in the south (proportion >
80%). Both the extent and intensity are decreasing over time, but it is still a problem, suggesting
that stronger NOx controls are needed in the future. Most of the main air pollution transmission belt
in China (i.e., the “2 + 26” cities, Figure 1) had surface SO2 levels exceeding the AQG level at the
beginning of the study period. Thanks to strict control measures, these polluted areas sharply
decreased after 2015, almost disappearing in 2020. Controlling CO was much more successful in
China, with less than 10% of the days in the BTH exceeding the acceptable standard in the early
part of the study period. Most areas have reached the CO AQG level since 2018.

[Please insert Figure 8 here]

Figure 9 shows the percentage of days with pollution levels exceeding WHO air quality standards in
three key regions. BTH was the only region experiencing high NO2 and SOz exposure risks (i.e.,
daily mean > IT1), dropping to zero since 2017 and 2016, while YRD and PRD had no high risks of
exposure to the three gaseous pollutants (Figure 9a-b). There was also no regional high CO-
pollution risk (Figure 9c). However, although declining continuously, regional surface NO: levels
failed to meet the short-term AQG level in 2020, with 61-73% of the days exceeding the AQG level.
More efforts toward mitigating NO2 levels in these key regions are thus needed. Continual

decreases in the number of days above the AQG level were also observed in surface SOz, reducing
to near zero in 2014, 2016, and 2018 in the PRD, YRD, and BTH, respectively. Less than 3% of the
days in the BTH and YRD had surface CO levels exceeding the AQG level. Surface CO levels were
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always below the AQG level in the PRD.
[Please insert Figure 9 here]

3.3 Data quality assessment

Here, the widely used out-of-sample 10-fold cross-validation (10-CV) method was adopted to
evaluate the overall estimation accuracy of gaseous pollutants (Rodriguez et al., 2010; Wei et al.,
2022a). An additional out-of-station 10-CV approach was used to validate the prediction accuracy
of gaseous pollutants, performed based on measurements from ground monitoring stations. These
measurements were randomly divided into ten subsets, of which data samples from nine subsets
were used for model training and the remaining subset for model validation. This was done 10 times,
in turn, to ensure that data from all stations were tested. This procedure generates independent
training samples and test samples made in different locations, used to indicate the spatial prediction
ability of the model in areas where ground-based measurements are unavailable (Wei et al., 2022a;

Wu et al., 2021).

3.3.1 Estimate and prediction accuracy

Figure 10 shows the CV results of all daily estimates and predictions for ground-level NO2, SO2,
and CO concentrations from 2013 to 2020 in China (sample size: N =~ 3.6 million). Surface NO2
and SO concentrations mainly fell in the range of 200 to 500 ug/m>. Daily estimates were highly
correlated to observations, with the same coefficients of determination (R? = 0.84) and slopes close
to 1 (0.86 and 0.84, respectively). Average root-mean-square error (RMSE) [mean absolute error
(MAE)] values of surface NO2 and SO: estimates were 7.99 (5.34) and 10.07 (4.68) ug/m?, and
normalized RMSE (NRMSE) values were 0.25 and 0.51, respectively. Most daily CO observations
were less than 10 mg/m?, agreeing well with our daily estimates (R? = 0.80, slope = 0.79), and the
average RMSE (MAE) and NRMSE values were 0.29 (0.16) mg/m® and 0.3. Compared to
estimation accuracies (Figure 10a-c), prediction accuracies slightly decreased, which is acceptable
considering the weak signals of trace gases. Daily surface SO2, NO2, and CO predictions (Figure
10d-f) agree well with ground measurements, with spatial R? values of 0.70, 0.68, and 0.61,
respectively. Their respective RMSE (MAE) values were 14.28 (8.1) pg/m?, 11.57 (7.06) ug/m’,
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and 0.42 (0.24) mg/m>, and NRMSE values were 0.35, 0.71, and 0.42, respectively, representing the

accuracy for areas without ground monitoring stations.
[Please insert Figure 10 here]

The performance of our air pollution modelling was also evaluated on an annual basis, showing that
our model works well in estimating and predicting the concentrations of different surface gaseous
pollutants in different years (Table 1). The model performance has continuously improved over time,
as indicated by increasing correlations and decreasing uncertainties. This is because of the
increasing density of ground stations (especially in the suburban areas of cities) and updated quality
control of measurements, e.g., improving the sampling flow calibration of monitoring instruments,
flow calibration of dynamic calibrators, and revision of precision/accuracy review and data validity
judgment (HJ 818-2018) (MEE, 2018b). This has led to an increase in the number of data samples
(e.g., from 169 thousand in 2013 to more than 522 thousand in 2020) and improvement in their

quality.
[Please insert Table 1 here]

Figure 11 shows the spatial validation of estimated daily pollutant gases across China. In general,
our model works well at the site scale, with average CV-R? values of 0.77, 0.72, and 0.72, and
NRMSE values of 0.25, 0.43, and 0.26 for surface NO2, SO2, and CO, respectively. In addition,
approximately 93%, 80%, and 84% of the stations had at least moderate agreements (CV-R? > 0.6)
between our estimates and ground measurements. Except for some scattered sites, the estimation
uncertainties were generally less than 0.3, 0.5, and 0.3 in more than 80%, 77%, and 76% of the

stations for the above three gaseous pollutant species, respectively.
[Please insert Figure 11 here]

Figure 12 shows the temporal validation of ground-level gaseous pollutants as a function of ground
measurements in China. On the monthly scale (Figure 12a-c), we collected a total of ~119,000
matched samples of the three gaseous pollutants. Accuracies significantly improved, with increasing

R? (decreasing RMSE) values of 0.93 (4.41 pg/m?), 0.97 (4.03 ug/m?), and 0.94 (0.13 mg/m?) for
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surface NO2, SOz, and CO, respectively. On the annual scale (Figure 12d-f), more than ~10,000
matched samples were collected, showing better agreement with observations (e.g., R?> = 0.94, 0.98,
and 0.97) and lower uncertainties (e.g., RMSE = 3.06 ug/m?, 2.46 ug/m*, and 0.07 mg/m?>) for the

above three gaseous pollutants, respectively.
[Please insert Figure 12 here]

3.3.2 Comparison with previous studies

We compared our results with those from previous studies on the estimation of the three gaseous
pollutants using different developed models focusing on the whole of China. Here, only those
studies applying the same out-of-sample cross-validation approach against ground-based
measurements collected from the same CNEMC network were selected (Table 2). The statistics
shown in the table come from the publications themselves because their generated datasets are not
publicly available. We have applied the same validation method and ground measurements as those
used in the previous studies. Most generated surface NO2 datasets had numerous missing values in
space limited by direct OMI/Aura satellite observations at spatial resolutions from 0.125°% 0.125°
to 0.25°%0.25° (Chen et al., 2019; Chi et al., 2021; Dou et al., 2021; Xu et al., 2019; Zhan et al.,
2018). Some studies improved the spatial resolution by introducing NO: data from the recently
launched Sentinel-5 TROPOMI satellite, but data are only available from October 2018 onward
(Chi et al., 2022; Liu, 2021; Wang et al., 2021; Wei et al., 2022b). Surface SO2 estimated from an
SO2 emission inventory and surface CO from Measurement of Pollution in the Troposphere
(MOPITT) and TROPOMI retrievals have a much lower data quality, with smaller R? values by 12—
57% and larger RMSE values by 41-47% against ground measurements compared to ours (Li et al.,
2020; Liu et al., 2019; Wang et al., 2021). Overall, our gaseous pollutant datasets are superior to
those from previous studies in terms of overall accuracy, spatial coverage, and length of data

records.
[Please insert Table 2 here]

3.4 Successful applications
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Our surface gaseous pollutant datasets have been freely available to the public online since March
2021 (See data availability). A large number of studies have used the three gaseous pollutant
datasets generated in this study to study their single or joint impacts on environmental health from
both long-term and short-term perspectives, benefiting from the unique daily spatially seamless
coverage. For example, a nearly linear relationship between long-term ambient NO2 and adult
mortality in China was observed (Zhang et al., 2022b); ambient NO2 hindered the survival of
middle-aged and elderly people (Wang et al., 2023) while acute exposure to ambient SO: increased
the risk of asthma mortality in China (Li et al., 2023b; Liu et al., 2022b; Liu et al., 2023). Long-
term SO2 and CO exposure can increase the incidence rate of visual impairment in children in China
(Chen et al., 2022a), and short-term exposure to ambient CO can significantly increase the
probability of hospitalization for stroke sequelae (Wang et al., 2022b). Regional and national cohort
studies have shown that exposure, especially short-term exposure, to multiple ambient gaseous
(NOz, SOz, and CO) and particulate pollutants have negative effects of varying degrees on a variety
of diseases, like all-cause mortality (Feng et al., 2023), dementia mortality (Liu et al., 2022a),
myocardial infarction mortality (Ma et al., 2023), cause-specific cardiovascular disease (Xu et al.,
2022a; Xu et al., 2022b), respiratory diseases (Li et al., 2023a), ischemic and hemorrhagic stroke
(Cai et al., 2022; He et al., 2022a; Wu et al., 2022b; Xu et al., 2022c), metabolic syndrome (Guo et
al., 2022; Han et al., 2022a), influenza-like illness (Lu et al., 2023), incident dyslipidemia (Hu et al.,
2023), diabetes (Mei et al., 2023), blood pressure (Song et al., 2022; Wu et al., 2022a), renal/ kidney
function (Li et al., 2022c¢; Li et al., 2023c¢), neurodevelopmental delay (Su et al., 2022), serum liver
enzymes (Li et al., 2022d), overweight and obesity (Chen et al., 2022b), insomnia (Xu et al., 2021),
and sleep quality (Wang et al., 2022a). These studies attest well to the value of the CHAP dataset

regarding current and future public health issues, among others.

4. Summary and conclusions

Exposure to gaseous pollution is detrimental to human health, a major public concern in heavily
polluted regions like China, where ground-based observations are not as rich as in major developed
countries. Moreover, pollutants travel long distances, affecting large downstream regions. To

remedy such limitations, this study applied the machine-learning model called Space-Time Extra-
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Tree to estimate ambient gaseous pollutants across China, with extensive input variables measured
by monitors and satellites, and models. Daily 10 km resolution (approximately 0.1°x 0.1°) seamless
(spatial coverage = 100%) datasets for ground-level NO2, SOz, and CO concentrations in China
from 2013 to 2020 were generated. These datasets were cross-evaluated in terms of overall
accuracy and predictive ability at different spatiotemporal levels. National daily estimates
(predictions) of surface NO2, SOz, and CO were highly consistent with ground measurements, with
average out-of-sample (out-of-station) CV-R? values of 0.84 (0.68), 0.84 (0.7), and 0.8 (0.61), and
RMSEs of 7.99 (11.57) pug/m?, 10.7 (14.28) pg/m?, and 0.29 (0.42) mg/m?, respectively.

Ambient pollutant gases varied significantly in space and time, with high levels mainly found in the
North China Plain, especially in winter, due to more anthropogenic emissions, such as coal burning
for heating. All gaseous pollutants sharply declined in China during the COVID-19 outbreak, while
large differences were observed during their recovery times. For example, surface CO was the first
to return to its historical level within the fifth week after the Lunar New Year in 2020, about twice
faster as surface NO2 and SOz levels. This is attributed to more home cooking and enhanced
atmospheric oxidation. Temporally, surface NO2, SOz, and CO levels in China gradually decreased
from peaks in 2013 (average = 21.3 £ 8.8 ug/m>, 23.1 + 13.3 pg/m?, and 1.01 £ 0.29 mg/m?,
respectively), with annual rates of decrease of 0.23 pg/m?, 2.01 pg/m?, and 0.05 mg/m?>,
respectively (p < 0.001), until 2020. Improvements in air quality have been made in the last eight
years, thanks to the implementation of a series of environmental protection policies, greatly
reducing pollutant emissions. In addition, both the areal extents of regions experiencing gaseous
pollution and the probability of gaseous pollution occurring have gradually decreased over time,
especially for surface CO and SOz, which have almost reached the short-term air quality guidelines
level recommended by the WHO in most areas in China in 2020. This high-quality daily seamless
dataset of gaseous pollutants will benefit future environmental and health-related studies focused on
China, especially studies investigating short-term air pollution exposure.

Although a lot of new and/or useful data and analyses are presented in this study, they still suffer

from some limitations. For example, our estimated surface SO2 and CO concentrations should have

larger uncertainties than those of NO2 since model simulations stead of satellite retrievals are

supplemented during modelling to compensate for the lack of data in China. However, these data
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often have large biases in the remote regions with few observations as in western China (Li et al.,

2022b), as the surface measurements from MEE are mainly over eastern China. More influential

factors stemming from regional economic and development differences, and more parameters

describing the complex meteorological system (e.g.. winds at 850 hPa and the pressure system in

the mid-troposphere) need to be considered in developing more powerful artificial intelligence

models, which could be helpful in improving the accuracy of air pollutant retrievals. The

spatiotemporal resolutions of gaseous pollutants will be further improved by integrating information
from polar-orbiting and geostationary satellites to investigate diurnal variations. In a future study,
we will also reconstruct data records over the last two decades and investigate their long-term
spatiotemporal variations, filling the gap of missing observations. This will help us understand their

formation mechanisms and impacts on fine particulate matter and ozone pollution in China.

Data availability

CNEMC measurements of gaseous pollutants are available at http://www.cnemc.cn. The

reconstructed OMI/Aura tropospheric NO2 product is available at

https://doi.org/10.6084/m9.figshare.13126847. MODIS series products and the MERRA-2

reanalysis are available at https://search.earthdata.nasa.gov/. The SRTM DEM is available at

https://www2.jpl.nasa.gov/srtm/, and LandScan™ population information is available at

https://landscan.ornl.gov/. The ERAS reanalysis is available at https://cds.climate.copernicus.eu/,

GEOS CF data are available at https://portal.nccs.nasa.gov/datashare/gmao/, and the CAMS

reanalysis and emission inventory are available at https://ads.atmosphere.copernicus.eu/.

The ChinaHighAirPollutants (CHAP) dataset is open access and freely available at https://weijing-

rs.github.io/product.html. The ChinaHighNO: dataset is available at

https://doi.org/10.5281/zenodo.4641542, the ChinaHighSO: dataset is available at

https://doi.org/10.5281/zenodo.4641538, and the ChinaHighCO dataset is available at

https://doi.org/10.5281/zenodo.4641530.
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Figure 1. Geographical locations of ground-based stations from the China National Environmental
Monitoring Centre network (marked as yellow dots) monitoring gaseous pollutants across China.
The background shows the nighttime-light level, an estimate of population. Purple boundaries three
typical urban agglomerations: the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta
(YRD), and the Pearl River Delta (PRD).
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Figure 2. A typical example of (a-c) big-data-derived (horizontal resolution = 10 km) seamless
surface NO2 (ug/m?), SOz (ug/m?), and CO (mg/m?) concentrations and (d-f) corresponding ground
measurements on 1 January 2018 in China.
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980
981  Figure 3. Annual and seasonal mean maps (horizontal resolution = 10 km) of surface NO2 (ng/m?),

982 SOz (ug/m?®), and CO (mg/m?) averaged over the period 20132020 in China.

34



983
984

985
986
987

February

March

April
- .

Figure 4. Relative changes (%) in surface NO2, SO2, and CO concentrations in February, March,
and April between 2019 and 2020 in populated areas of China. The area outlined in magenta and the
star in each panel indicate Hubei Province and Wuhan City, respectively.
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Figure 5. Time series of the seven-day moving averages of daily population-weighted surface (a)
NOz, (b) SO2, and (c) CO concentrations after the Lunar New Year of 2019 and 2020 in China. The
black circle in each panel shows the turning point when the gaseous pollutants began to return to

their normal levels.
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Figure 7. Temporal trends of surface NO2, SOz, and CO concentrations during the whole period
(2013-2020), the Clean Air Action Plan (2013-2017), the Blue Sky Defense War (2018-2020), and
the 13rd Five-Year Plan (2016-2020) in populated areas of China. Only regions with trends that are

significant at the 95% (p < 0.05) confidence level are shown.
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Figure 8. Spatial distributions of the percentage of days exceeding the WHO recommended short-
term desired air quality guidelines (AQG) level for surface NO: (daily mean > 25 pg/m?), SOz
(daily mean > 40 pg/m?), and CO (daily mean > 4 mg/m?®) for each year from 2013 to 2020 in

populated areas of eastern China.
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Figure 9. Percentage of days (%) exceeding the WHO recommended short-term (a-c) minimum
interim target (IT1) and (d-f) desired air quality guidelines (AQG) level for surface NO2, SO2, and
CO for each year from 2013 to 2020 in three typical urban agglomerations: the Beijing-Tianjin-
Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD).
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1018  Figure 10. Density plots of daily (a-c) estimates and (d-f) predictions of ground-level NO> (pg/m?),
1019 SOz (ug/m?®), and CO (mg/m?) concentrations as a function of ground measurements in China from

1020 2013 to 2020 using the out-of-sample (top panels) and out-of-station (bottom panels) cross-
1021 validation methods.
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Figure 11. Sample-based spatial validation of daily ground-level NOz (ng/m?), SOz (ng/m?), and
CO (mg/m?) estimates at each individual monitoring station in China from 2013 to 2020: (a-c)
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Figure 12. Sample-based temporal validation of (a-c) monthly and (d-f) yearly composites of
ground-level NO2 (ug/m?), SOz (ug/m?), and CO (mg/m?) as a function of ground measurements



1033  Tables

1034
1035  Table 1. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for
1036 each year in China from 2013 to 2020.
Sample Overall accuracy Predictive ability
Year  Size NO» SO2 co NO» SO, co
N(10% R* RMSE R? RMSE R RMSE R? RMSE R?! RMSE R? RMSE
2013 169 077 1248 083 1797 080 056 053 1816  0.68 2504 060  0.78
2014 324 076 1097 083 1587 077 038 054 1556  0.66 2245 051  0.57
2015 518 079 9.34 080 1371 074 038 061 1310 061 1949 050 0.5
2016 516 082 859 083 1126 076 034 064 1220 065 1628 057 046
2017 527 086 7.57 086 779 082 024 072 1067 074 1080 070  0.32
2018 513 087 6.92 083  5.61 082 020 076 933 068 780 069 026
2019 515 087 6.78 081 48 082 020 077 923 0.66  6.63 070 025
2020 522 089 5.78 080 402 082 017 079 804 062 557 069 023
1037
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Table 2. Comparison of long-term datasets of different gaseous pollutants in China.
Species Model \It/;llflselgg rseps E(l;[lllelliion Main input ;/:rlifgnon CV-R? RMSE Literature
NO» RF-STK Yes 0.25° OoMI 2013-2016  0.62 13.3 (Zhan et al., 2018)
RF-K Yes 0.25° OMI 2013-2018  0.64 11.4 (Dou et al., 2021)
KCS Yes 0.125° OMI 20142016  0.72 7.9 (Chen et al., 2019)
LUR Yes 0.125° OMI 20142015 0.78 - (Xuetal., 2019)
LME Yes 0.1° OMI 2014-2020  0.65 7.9 (Chi et al., 2021)
XGBoost  Yes 0.125° TROPOMI 2018-2020  0.67 6.4 (Chi et al., 2022)
XGBoost  Yes 0.05° TROPOMI 2018-2019  0.83 7.6 (Liu, 2021)
LightGBM No 0.05° TROPOMI 2018-2020  0.83 6.6 (Wang et al., 2021)
SWDF No 0.01° TROPOMI 2019-2020  0.93 4.9 (Wei et al., 2022b)
STET No 0.1° Big data 2013-2020  0.84 8.0 This study
SO, RF No 0.25° Emissions  2013-2014  0.64 17.1 (Li et al., 2020)
STET No 0.1 Big data 2013-2020  0.84 10.1 This study
CO RF-STK Yes 0.1 MOPITT 2013-2016  0.51 0.54 (Liu et al., 2019)
LightGBM No 0.07° TROPOMI 2018-2020  0.71 0.26 (Wang et al., 2021)
STET No 0.1° Big data 2013-2020  0.80 0.29 This study
KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed effect model;
LUR: land use regression; MOPITT: Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring
Instrument; RF: random forest; RF-K: random forest integrated with K-means; RF-STK: random-forest-spatiotemporal-
kriging model; STET: space-time extremely randomized tree; SWDF: spatiotemporally weighted deep forest;
TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting
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