
 

Anonymous Referee #1 

  

Wei et al. estimated long-term daily seamless different ground-level gaseous pollutants with 

high accuracy using machine learning and big data by combing monitors, satellites, and 

models. The public dataset are important to study air quality in China and also have been 

widely adopted in public health-related studies. The study is well organized and the results are 

well presented. However, the manuscript still suffers from some flaws. I recommend the 

manuscript for publication after the following comments are well addressed. 

 

Major comments: 

The authors have constructed many air quality dataset (e.g., PM5, PM10) across China. Please 

introduce the novelty of this study compared with previous studies. I think it is essential to 

add these contents in the introduction. 

Response: Yes, we have constructed a virtually a complete set of major air quality parameters 

concerning both gaseous and particulate pollutants over a long period of time across China. 

While we have published a few studies on different parameters, this study adds to the list with 

the following unique aspects. First, it adds two new species of SO2 and CO for the first time.  

Instead of devoting to a single pollutant, this paper deals with all gaseous pollutants of 

compatible quality over the same period with the same spatial coverage and resolution. This is 

highly valuable for the sake of studying their variations, relative proportions and attribution of 

emission sources. Per your suggestion, they are clarified in the following revised texts:  

 

“To date, we have combined the advantages of artificial intelligence and big data to construct 

a virtually complete set of major air quality parameters concerning both particulate and 

gaseous pollutants over a long period of time across China, including PM1 (2000–Present, 

Wei et al., 2019), PM2.5 (2000–Present, Wei et al., 2020; Wei et al., 2021a), PM10 (2000–

Present, Wei et al., 2021b), O3 (1979–Present, Wei et al., 2022a; He et al., 2022), and NO2 

(2019–Present, Wei et al., 2022b), serving environmental, public health, economy, and other 

related research. This study is the continuation of our previous studies, which adds two new 

species of SO2 and CO for the first time and also dates the data records of NO2 back to 2013. 

Instead of devoting itself to a single pollutant, this paper deals with all gaseous pollutants of 

compatible quality over the same period with the same spatial coverage and resolution. In 

particular, considering that there are few public datasets of these three gaseous pollutants with 

such spatiotemporal coverages focusing on the whole of China, this is highly valuable for the 

sake of studying their variations, relative proportions, and attribution of emission sources, as 

well as their diverse and joint effects of different pollutant species on public health.” 

 

The authors should discuss the limitations of this paper and prospects for future work in the 

conclusion. The development of high-resolution dataset might not be the final aim. 

Response: We have discussed the limitations of our study and prospects for future work in the 

revised conclusion as follows: 

 

“Although a lot of new and/or useful data and analyses are presented in this study, they still 

suffer from some limitations. For example, input variables related to the emission inventory, 



 

modeled simulations, and assimilations still have considerable uncertainties. More influential 

factors stemming from regional economic and development differences need to be considered 

in more powerful artificial intelligence models to improve the prediction accuracy of air 

pollutants. The spatiotemporal resolutions of gaseous pollutants will be further improved by 

integrating information from polar-orbiting and geostationary satellites to investigate diurnal 

variations. In a future study, we will also reconstruct data records over the last two decades 

and investigate their long-term spatiotemporal variations, filling the gap of missing 

observations. This will help us understand their formation mechanisms and impacts on fine 

particulate matter and ozone pollution in China.” 

 

Specific comments: 

Line 41-43: Please spell out these abbreviations, e.g., NOx, VOCs, et al. Also, please double-

check and correct such issues throughout the paper. 

Response: We have corrected and spelled out all abbreviations throughout the paper. 

 

Lines 48 and 54: Should be MEE and WHO. 

Response: Corrected. 

 

Lines 64-69: The authors are suggested to highlight the main purpose and provide more 

descriptions of the main work here to enrich the Introduction. 

Response: We have clarified the main purpose and added more descriptions of our study in 

the revised Introduction as follows: 

 

“In view of the above problems, the purpose of this paper is to reconstruct daily 

concentrations of three ambient gaseous pollutants (i.e., NO2, SO2, and CO) in China. To this 

end, relying on the dense national ground-based observation network and big data, including 

satellite remote sensing products, meteorological reanalysis, chemical model simulations, and 

emission inventories, we are capable of mapping three pollutant gases seamlessly (100% 

spatial coverage) on a daily basis at a uniform spatial resolution of 10 km since 2013 in 

China. Estimates were made using an extended and powerful machine-learning model 

incorporating spatiotemporal information, i.e., space-time extra-trees. Natural and 

anthropogenic effects on air pollution, including their physical mechanisms and chemical 

reactions, were accounted for in the modeling. Using this dataset, spatiotemporal variations of 

the gaseous pollutants, the impacts of environmental protection policies and the COVID-19 

epidemic, and population risk exposure to gaseous pollution are investigated.” 

 

Lines 83-88: A long sentence suggests splitting. 

Response: Done per your suggestion. 

 

Line 97: 0.1° × 0.1°? 

Response: Corrected. 

 

Figures 2 and 3: Please clarify which cross-validated method was used. 

Response: We have clarified this in the captions of these figures. 



 

 

Section 3.2.3: Besides annual variations, it is also interesting to see how three gaseous 

pollutants changed in different seasons on both the national and regional scales during the 

study period. 

Response: Thanks for your suggestion. We have discussed the changes in gaseous pollutants 

at the seasonal level in China and three key regions in the revised Section 3.2.2 as follows: 

 

“Large seasonal differences were observed in the amplitude of gaseous pollutant (Figure 6), 

e.g., surface NO2 decreased the most in winter, especially in the three urban agglomerations 

(↓24–31%), changing the least in autumn (especially in the YRD). Surface SO2 showed much 

larger decreases in all seasons, especially during the cold seasons (↓55–81%), due to the 

implementation of stricter “ultra-low” emission standards (Q. Zhang et al., 2019; Li et al., 

2022a). Surface CO had similar seasonal changes as SO2 but 1.5–3.3 times smaller in 

amplitude.” 

 

 

Figure 6. Relative changes (%) in seasonal mean surface NO2, SO2, and CO concentrations 

between 2013 and 2020 over (a) China, (b) the Beijing-Tianjin-Hebei (BTH) region, (c) the 

Yangtze River Delta (YRD), and (d) the Pearl River Delta (PRD).  

 

Lines 286 and 294: References are needed to support the evidence here. 

Response: Done per your suggestion.  

 

Figures 9 and 10: Since the air quality guidelines have been newly updated in 2021, it is 

suggested to show the spatial distributions and variations of the percentage of polluted days 

exceeding both the WHO recommended long-term and short-term AQG levels and interim 

targets. 



 

Response: Thanks for your suggestions. We have updated this section by discussing the 

spatiotemporal variations of national and regional polluted days according to the new WHO 

recommended AQG levels and interim targets in the revision as follows: 

 

“With the daily seamless datasets, we can evaluate the spatial and temporal variations of 

short-term population-risk exposure to the three gaseous pollutants by calculating the number 

of days in a given year exceeding the new recommended short-term minimum interim target 

(IT1) and desired air quality guidelines (AQG) level defined by the WHO in 2021 (WHO, 

2021). The area exceeding the recommended levels (i.e., daily NO2 > 120 μg/m3, SO2 > 125 

μg/m3, and CO > 7 mg/m3) was generally small in eastern China (Figure S7). High NO2-

exposure risks were mainly found in Beijing and Hebei Province and a handful of big cities 

(e.g., Jinan, Wuhan, Shanghai, and Guangzhou), while high SO2-exposure risks were mainly 

observed in Hebei, Shandong, and Shaanxi Provinces. The risk of high CO pollution was 

small, only found in some scattered areas in the NCP. In general, both the area and the 

possibility of occurrence exposure to high pollution has gradually decreased over time, almost 

disappearing since 2018.  

By contrast, most areas of eastern China had a surface NO2 exposure exceeding the AQG 

level (Figure 8), especially in the north and economically developed areas in the south 

(proportion > 80%). Both the extent and intensity are decreasing over time, but it is still a 

problem, suggesting that stronger NOx controls are needed in the future. Most of the main air 

pollution transmission belt in China (i.e., the “2 + 26” cities, Figure 1) had surface SO2 levels 

exceeding the AQG level at the beginning of the study period. Thanks to strict control 

measures, these polluted areas sharply decreased after 2015, almost disappearing in 2020. 

Controlling CO was much more successful in China, with less than 10% of the days in the 

BTH exceeding the acceptable standard in the early part of the study period. Most areas have 

reached the CO AQG level since 2018. 

 

 
Figure 8. Spatial distributions of the percentage of days exceeding the WHO recommended 

short-term desired air quality guidelines level for surface NO2 (daily mean > 25 μg/m3), SO2 



 

(daily mean > 40 μg/m3), and CO (daily mean > 4 mg/m3) for each year from 2013 to 2020 in 

populated areas in eastern China. 

 

Figure 9 shows the percentage of days with pollution levels exceeding WHO air quality 

standards in three key regions. BTH was the only region experiencing high NO2 and SO2 

exposure risks (i.e., daily mean > IT1), dropping to zero since 2017 and 2016, while YRD and 

PRD had no high risks of exposure to the three gaseous pollutants (Figure 9a-b). There was 

also no regional high CO-pollution risk (Figure 9c). However, although declining 

continuously, regional surface NO2 levels failed to meet the short-term AQG level in 2020, 

with 61–73% of the days exceeding the AQG level. More efforts toward mitigating NO2 

levels in these key regions are thus needed. Continual decreases in the number of days above 

the AQG level were also observed in surface SO2, reducing to near zero in 2014, 2016, and 

2018 in the PRD, YRD, and BTH, respectively. Less than 3% of the days in the BTH and 

YRD had surface CO levels exceeding the AQG level. Surface CO levels were always below 

the AQG level in the PRD.” 

 

 

Figure 9. Percentage of days (%) exceeding the WHO recommended short-term (a-c) 

minimum interim target (IT1) and (d-f) desired air quality guidelines (AQG) level for surface 

NO2, SO2, and CO for each year from 2013 to 2020 in three typical urban agglomerations: the 

Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River 

Delta (PRD).” 

  



 

Anonymous Referee #2 

 

The manuscript by Wei and colleagues titled “Ground-level gaseous pollutants across China: 

daily seamless mapping and long-term spatiotemporal variations” professes to generate 

seamless daily maps of three major pollutant gases, NO2, SO2, and CO, across China from 

2013 to 2020 at a uniform spatial resolution of 10 km. While the topic is overall still quite 

interesting for the global air quality community, the manuscript has a number of serious 

scientific flaws which unfortunately led me to the recommendation of rejection. These issues 

are explained below, but are also clearly noted and commented upon in the annotated text that 

is included with this review. 

Response: We appreciate the time and effort the reviewer spent on this manuscript and the 

insightful comments and constructive suggestions. We have carefully considered each 

comment and addressed them one by one in the revised manuscript. Responses to each 

comment made as annotated text in the manuscript are also given 

 

The main premise of the generation of the daily maps of gaseous concentration is that the 

authors used artificial intelligence technologies and big data to produce these maps. The 

model used is not at all adequately described: it is simply named, Space-Time Extra-Tree, and 

a reference to a previous work that produced O3 maps is given. This is not at all sufficient for 

the reader of this work to assess the model, its strengths, its limitations, nor to assess whether 

a model that functioned well for one gas would work for another gas. 

Response: Thanks for your suggestion. We have added more descriptions of the extended 

model, including its strengths and limitations, in the revision as follows: 

 

“Here, the developed Space-Time Extra-Tree (STET) model, integrating spatiotemporal 

autocorrelations of and differences in air pollutants to the Extremely Randomized Trees 

(ERT) (Wei et al., 2022a), was extended to estimate surface gaseous pollutants, i.e., NO2, SO2, 

and CO. ERT is an ensemble machine-learning model based on the decision tree, capable of 

solving the nonparametric multivariable nonlinear regression problem. Ensemble learning can 

avoid the lack of learning ability of a single learner, greatly improving accuracy. The 

introduced randomness enhances the model's anti-noise ability and minimizes the sensitivity 

to outliers and multicollinearity issues. It can handle high latitude, discrete or continuous data 

without data normalization and is easy to implement and parallel. However, several 

limitations exist, e.g., it is difficult to make predictions beyond the range of training data, and 

there will be an over-fitting issue on some regression problems with high noise. The training 

efficiency diminishes with increasing memory occupation when the number of decision trees 

is large (Geurts et al., 2006). 

Compared with traditional tree-based models (e.g., random forest), ERT has a stronger 

randomness which randomly selects a feature subset at each node split and randomly obtains 

the optimal branch attributes and thresholds. This helps to create more independent decision 

trees, further reducing model variance and improving training accuracy (Geurts et al., 2006). 

The STET model has been successfully applied in estimating high-quality surface O3 in our 

previous study (Wei et al., 2022a). It is thus extended here to regress the nonlinear conversion 

relationships between ground-based measurements and the main predictors and auxiliary 



 

factors for other species of gaseous pollutants. For surface NO2, the STET model was applied 

to the main variables of the satellite tropospheric NO2 column, modelled surface NO2 mass, 

and NOx emissions, together with ancillary variables of the previously mentioned 

meteorological, surface, and population variables (Equation 1). For surface SO2 (Equation 2) 

and CO (Equation 3),  modelled surface SO2 and CO concentrations and SO2 and CO 

emissions were used as main predictors along with the same auxiliary variables as NO2 to 

construct the STET models separately.” 

 

Section 2.2 is extremely poor in reproducible content in that respect. The input parameters 

used in the model are not at all adequately described: in section 2.1.2 a long list of satellite, 

reanalysis, and model datasets are more or less simply named, without the most pertinent 

details of provenance, usability, references, validation and quality assurance being provided. 

Exactly how these input parameters were used in the STET model are not explained at all. 

Furthermore, these datasets have obvious important differences, for e.g. the OMI/GOME2 

VCDs and the CAMS reanalysis VCDs, there is no discussion how these were merged into a 

usable dataset. 

Response: We have rewritten this section by introducing each input parameter in detail 

separately, including their provenance, usability, references, validation and quality assurance, 

and their role in the model. We have also discussed how to merge the different tropospheric 

NO2 VCDs and cited the corresponding references in the revision as follows: 

 

“2.1.2 Main predictors 

A new daily tropospheric NO2 dataset at a horizontal resolution of 0.25° × 0.25° in China 

(https://doi.org/10.6084/m9.figshare.13126847) was employed, created by Q. He et al. (2020) 

using a developed framework integrating OMI/Aura Quality Assurance for Essential Climate 

Variables (QA4ECV) and Global Ozone Monitoring Experiment–2B (GOME-2B) offline 

tropospheric NO2 retrievals passing quality controls (i.e., cloud fraction < 0.3, surface albedo 

< 0.3, and solar zenith angle < 85°). The reconstructed tropospheric NO2 agreed well (R = 

0.75–0.85) with Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) 

measurements (H. He et al., 2020). Through this data fusion, the daily spatial coverage of 

satellite tropospheric NO2 was significantly improved in China (average = 87%). Areas with a 

small number of missing values were imputed via a nonparametric machine-learning model 

by regressing the conversion relationship with Copernicus Atmosphere Monitoring Service 

(CAMS) tropospheric NO2 assimilations (0.75° × 0.75°), making sure that the interpolation 

was consistent with the OMI/Aura overpass time (Inness et al., 2019; Y. Wang et al., 2020). 

The gap-filled tropospheric NO2 was reliable compared with measurements (R = 0.94–0.98) 

(Wei et al., 2022b). The above two-step gap-filling procedures allowed us to generate a daily 

seamless tropospheric NO2 dataset that removes the effects of clouds from satellite 

observations. 

Here, the reconstructed daily seamless tropospheric NO2, together with CAMS daily ground-

level NO2 assimilations (0.75° × 0.75°) averaged from all 3-hourly data in a day and monthly 

NOx anthropogenic emissions (0.1° × 0.1°) (Inness et al., 2019), were used as the main 

predictors for estimating surface NO2. Limited by the quality of direct satellite observations, 

daily model-simulated SO2 and CO surface mass concentrations, averaged from all available 

https://doi.org/10.6084/m9.figshare.13126847


 

data in a day provided by one-hourly Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2, 0.625° × 0.5°), 3-hourly CAMS (0.75° × 0.75°), and 3-

hourly Goddard Earth Observing System Forward-Processing (0.3125° × 0.25°) global 

reanalyses were used as main predictors to retrieve surface SO2 and CO, together with CAMS 

monthly SO2 and CO anthropogenic emissions. 

 

2.1.3 Auxiliary factors 

Meteorological factors have important diverse effects on air pollutants (J. He et al., 2017; R. 

Li et al., 2019), e.g., the boundary-layer height reflects their vertical distribution and 

variations (Z. Li et al., 2017; Seo et al., 2017); temperature, humidity, and pressure can affect 

their photochemical reactions (W. Y. Xu et al., 2011; T. Li et al., 2019; C. Zhang et al., 

2019a); and rainfall and wind can also influence their removal, accumulation, and transport 

(Dickerson et al., 2007; R. Li et al., 2019). Eight daily meteorological variables, provided by 

the ERA5-Land (0.1° × 0.1°; Muñoz-Sabater et al., 2021) and ERA5 global reanalysis (0.25° 

× 0.25°; Hersbach et al., 2020), were calculated (i.e., accumulated for precipitation and 

evaporation while averaged for the others) from all hourly data in a day, used as auxiliary 

variables to improve the modelling of gaseous pollutants. Other auxiliary remote-sensing data 

used to describe land-use cover/change [i.e., Moderate Resolution Imaging Spectroradiometer 

(MODIS) normalized difference vegetation index (NDVI), 0.05° × 0.05°] and population 

distribution density (i.e., LandScanTM, 1 km) were employed as inputs to the machine-

learning model because they are highly related to the type of pollutant emission and amounts 

of anthropogenic emissions, as well as the surface terrain [i.e., Shuttle Radar Topography 

Mission (SRTM) digital elevation model (DEM), 90m], which can affect the transmission of 

air pollutants. Table 1 provides detailed information about all the data used in this study.” 

 

The meteorological ERA5 data are on a 3h level, how were these turned into daily means, and 

what does it actually mean that they did, etc., is an issue also not discussed. 

Response: Meteorological ERA5 data are hourly. Here, for precipitation and evaporation, the 

hourly amounts on a day are accumulated to obtain the daily values. For the other 

meteorological variables, all hourly data are averaged to obtain daily values. These auxiliary 

variables were used to improve the modelling of gaseous pollutants. We have clarified this in 

the revision (see the response to your last comment). 

 

The main input parameters, both for the training of the model and the verification of the 

model, i.e. the ground-based measurements are not at all adequately described. In section 

2.1.1 it is not at all clear what these “reference-grade ground-based monitoring” stations are, 

how they were chosen, if and how the data pass QA/QC protocols, what the reference state is, 

how these stations were split for the verification of the STET and the training of the STET, 

how the gaps in the datasets were dealt with, how the hourly observations were turned into 

daily, etc.  

Response: We have described the ground-based measurements used in detail and clarified 

how the ground monitors were used for training and validation in the revision: 

 

“2.1.1 Ground-based measurements 



 

Hourly measurements of ground-level NO2, SO2, and CO concentrations from ~2000 

reference-grade ground-based monitoring stations (Figure 1) collected from the China 

National Environmental Monitoring Centre (CNEMC) network (https://www.cnemc.cn/en/) 

were employed in the study. This network includes urban assessing stations, regional 

assessing stations, background stations, source impact stations, and traffic stations, set up in a 

reasonable overall layout that covers industrial (~14%), urban (~31%), suburban (~39%), and 

rural (~16%) areas to improve the spatial representation, continuity, and comparability of 

observations (HJ 664-2013) (MEE, 2013a). NO2 is measured by chemiluminescence and 

differential optical absorption spectroscopy (DOAS), and SO2 uses ultraviolet fluorescence 

and DOAS, while CO adopts non-dispersive infrared spectroscopy and gas filter correlation 

infrared spectroscopy. These measurements have been fully validated and have the same 

average error of indication of ±2% F.S. for the three gaseous pollutants considered here, with 

additional quality-control checks such as zero and span noise and zero and span drift (HJ 193-

2013 and HJ 654-2013) (MEE, 2013b, 2013c). They have also been used as ground truth in 

almost all air pollutant modelling studies in China (Ma et al., 2022; B. Zhang et al., 2022a). 

All stations use the same technique to measure each gas routinely and continuously 24 hours a 

day at about the sea level without time series gaps. However, the reference state (i.e., 

observational conditions like temperature and pressure) changed from the standard condition 

(i.e., 273 K and 1013 hPa) to the room condition (i.e., 298 K and 1013 hPa) on 31 August 

2018 (MEE, 2018a). We thus first converted observations of the three gaseous pollutants after 

this date to the uniform standard condition for consistency. Here, daily values for each air 

pollutant were averaged from at least 30% of valid hourly measurements at each station in 

each year from 2013 to 2020.” 

 

“3.3 Data quality assessment 

An additional out-of-station 10-CV approach was used to validate the prediction accuracy of 

gaseous pollutants, performed based on measurements from ground monitoring stations. 

These measurements were randomly divided into ten subsets, of which data samples from 

nine subsets were used for model training and the remaining subset for model validation. This 

was done 10 times, in turn, to ensure that data from all stations were tested. This procedure 

generates independent training samples and test samples made in different locations, used to 

indicate the spatial prediction ability of the model in areas where ground-based measurements 

are unavailable (S. Wu et al., 2021; Wei et al., 2022a).” 

 

The results are not sufficient to support the interpretations and conclusions. The section starts, 

not with the expected maps of the input parameters, maps of the output parameters and maps 

of the ground-based stations, but with model performance scatter plots which are not at all 

explained as to what is being compared to what. Absolute levels are also provided for biases 

which have no meaning whatsoever if the actual levels of these gases around China are not 

provided to begin with.  

Response: We apologize for the confusing logic in describing the results. We have adjusted 

this part by first introducing the seamless mapping results in sequence (i.e., daily and seasonal 

distributions, temporal changes like COVID lockdown effects, and population-risk exposure 

to gaseous pollutants). We then evaluated the quality of the datasets by comparing them with 



 

ground measurements in the revision, as suggested. Note that we have replaced RMSE 

absolute values with normalized RMSE (NRMSE) values to better describe the estimated 

biases and uncertainties for gaseous pollutants in China in the revision. 

 

A section is also provided, 3.3, where this dataset is being compared, basically via Table 4, to 

numerous other related works. How the comparisons were made is unclear, how the statistics 

shown in the table were created is unclear, how so different datasets were homoegenized 

before comparison is unclear, and the final statement that our gaseous pollutant datasets are 

superior to those from the studies is not at all shown in this work. It is impossible to assess the 

interpretations and conclusions stated by the authors based on the information provided in the 

results section. 

Response: Yes, in this section, we compared our results with those from previous studies on 

the estimation of the three gaseous pollutants using different developed models focusing on 

the whole of China. Here, only those studies applying the same out-of-sample cross-validation 

approach against ground-based measurements collected from the same CNEMC network were 

selected. The statistics shown in the table come from the publications themselves because 

their generated datasets are not publicly available. We have applied the same validation 

method and ground measurements as those used in the previous studies. We have clarified this 

in the revision. 

 

Another premise that the authors mention numerous times, in the title even, is that the new 

dataset is long-term and that it will benefit future (especially short-term) air pollution and 

environmental health-related studies. They provide a section, 3.4, where they enumerate 

successful applications however it is unclear if these studies used their previous work on O3, 

or other similar works. The benefits of this work should be clearly stated, to support this 

work, and not generalities. 

Response: Results from all the studies listed in this section were obtained using the three 

gaseous pollutant (i.e., NO2, SO2, and CO) datasets generated in this study. We have clearly 

stated the benefits according to your suggestion in the revision as follows: 

 

“A large number of studies have used the three gaseous pollutant datasets generated in this 

study to study their single or joint impacts on environmental health from both long-term and 

short-term perspectives, benefiting from the unique daily spatially seamless coverage. For 

example, a nearly linear relationship between long-term ambient NO2 and adult mortality in 

China was observed (Y. Zhang et al., 2022). Y. Wang et al. (2023) reported that ambient NO2 

hindered the survival of middle-aged and elderly people. Long-term SO2 and CO exposure 

can increase the incidence rate of visual impairment in children in China (L. Chen et al., 

2022a), and short-term exposure to ambient CO can significantly increase the probability of 

hospitalization for stroke sequelae (R. Wang et al., 2022). Regional and national cohort 

studies have shown that exposure, especially short-term exposure, to multiple ambient 

gaseous (NO2, SO2, and CO) and particulate pollutants have negative effects of varying 

degrees on a variety of diseases, like cause-specific cardiovascular disease (R. Xu et al., 

2022a,b), ischemic and hemorrhagic stroke ( Cai et al., 2022; He et al., 2022; H. Wu et al., 

2022b; R. Xu et al., 2022c), asthma mortality (W. Liu et al., 2022), dementia mortality (T. Liu 



 

et al., 2022), metabolic syndrome (S. Han et al., 2022), blood pressure (Song et al., 2022; H. 

Wu et al., 2022a), renal function (S. Li et al., 2022), neurodevelopmental delay (X. Su et al., 

2022), serum liver enzymes (Y. Li et al., 2022), overweight and obesity (L. Chen et al., 

2022b), insomnia (J. Xu et al., 2021), and sleep quality (L. Wang et al., 2022).” 

 

Concluding, while is it possible that this work has potential for air quality-related studies, 

through the current manuscript the description of experiments and calculations is not 

sufficiently complete and precise to allow their reproduction by fellow scientists and provide 

traceability of results. I recommend to the authors to take the opportunity of this review to 

reconsider their strategy for their future publications. 

Response: We appreciate your comments and suggestions, which have greatly improved our 

paper. We have added more descriptions of the experiments and calculations according to 

your suggestions, making this study reproducible by others. We will keep this in mind as we 

work on our future publications.  

 

Response to each comment copied from the annotated text in the paper. 

Line 19: You are showing eight years in your work. This cannot be considered a "long 

period". I am weary about not only the main take away message of this work but also the 

usability by the community. 

Response: We have deleted “long period” from the sentence and removed such descriptions 

throughout the paper. 

 

Line 21: Acronyms need to be added. 

Response: Done per your suggestion. 

 

Line 22: Cross-validation between what and what? this information should be clear at this 

stage of the abstract. 

Response: We have added “between our estimates and ground observations” here. 

 

Line 23: “out-of-bag”. Please consult with the journal if this terminology is encouraged. 

Response: We have deleted it here. 

 

Lines 24-26: This is too vague as a phrase for an abstract. 

Response: We have rephrased this sentence as “We found that the COVID-19 lockdown had 

sustained impacts on gaseous pollutants, where surface CO recovered to its normal level in 

China on around the 34th day after the Lunar New Year, while surface SO2 and NO2 

rebounded more than twice slower due to more CO emissions from increased residents' indoor 

cooking and atmospheric oxidation capacity.” 

 

Lines 26-27: In absolute numbers, this really does not mean much. Only relative terms. Plus 

the std is needed as well, especially for values calculated for 7 years only. 

Response: We have rephrased this sentence as “Surface NO2, SO2, and CO reached their peak 

annual concentrations of 21.3 ± 8.8 µg/m3, 23.1 ± 13.3 µg/m3, and 1.01 ± 0.29 mg/m3 in 

2013, then continuously declined over time by 12%, 55%, and 17%, respectively, until 2020.” 



 

 

Line 28: “three urban agglomerations” Which is where? what is the source of CO, SO2 & 

NO2 for all three? 

Response: We have deleted this from the abstract. 

 

Lines 28-32: Too vague for an abstract. What is the reason for this? 

Response: We have clarified the reasons here and rephrased the sentence as “The declining 

rates were more prominent from 2013 to 2017 due to the sharper reductions in anthropogenic 

emissions but have slowed down in recent years. Nevertheless, people still suffer from high-

frequency risk exposure to surface NO2 in eastern China, while surface SO2 and CO have 

almost reached the recommended air quality guidelines level since 2018, benefiting from the 

implemented stricter “ultra-low” emission standards.” 

 

Lines 32-33: “ChinaHighNO2, ChinaHighSO2, and ChinaHighCO” What do these names 

mean? 

Response: They are the names of the three gaseous pollutant datasets produced in this study. 

This has been deleted from the abstract. 

 

Line 38: Li et al., 2017a should precede 2017b. 

Response: In this paper, the following way of citing other work was followed. To distinguish 

between first authors with the same surname, their first-name initials were used when citing 

their work. This avoids using suffixes “a”, “b”, etc. after the publication year if the 

publication year happens to be the same. Suffixes “a”, “b”, etc. were only used if referring to 

works published in the same year by the same first author.  

 

Line 44: followings -> following; matters -> matter 

Response: Corrected. 

 

Line 52: “By contrast, ground-level gaseous pollutants have been much less studied.” A quick 

search in Scopus using simply air quality and NOx and China seems to disrepute this fact. 

Response: We have removed this statement from the revision. 

 

Line 55: Add acronyms and spacecraft. 

Response: Done per your suggestion. 

 

Line 64: “a long-term”. 7 years is not long term. Re-phrase. 

Response: We have deleted it from the sentence. 

 

Lines 74-76: This is really poor in describing the datasets. Where are these stations? which 

network do they belong to? are they open source? have they been validated? which method is 

used to measure the gases? have they been already used in other studies? what percentage of 

them are urban, suburban, industrial, rural? are they all at sea level, or are some above the 

PBL? All this information has to be presented here. 

Response: We have added a figure showing the locations of the stations used in this study. 



 

They belong to the China National Environmental Monitoring Centre (CNEMC) network 

(open-source available at https://www.cnemc.cn/en/). This network includes urban assessing 

stations, regional assessing stations, background stations, source impact stations, and traffic 

stations, set up in a reasonable overall layout that covers industrial (~14%), urban (~31%), 

suburban (~39%), and rural (~16%) areas to improve the spatial representations, continuity, 

and comparability of observations (HJ 664-2013) (MEE, 2013a). NO2 is measured by 

chemiluminescence and differential optical absorption spectroscopy (DOAS), and SO2 uses 

ultraviolet fluorescence and DOAS, while CO adopts non-dispersive infrared spectroscopy 

and gas filter correlation infrared spectroscopy. All stations use the same technique to measure 

each gas routinely and continuously 24 hours a day at about the sea level without time series 

gaps. These measurements have been fully validated and have the same average error of 

indication of ±2% F.S. for the three gaseous pollutants considered here (HJ 193-2013 and HJ 

654-2013) (MEE, 2013b, 2013c). They have been used as ground truth in almost all air 

pollutant modelling studies in China (Ma et al., 2022; B. Zhang et al., 2022). We have 

clarified this in the revised Section 2.1.1. 

 

Line 76: What is this reference state? why do you need to convert the concentrations? what is 

the conversion about, i.e., from what to what? 

Response: The reference state refers to observation conditions like the temperature and 

pressure of gaseous pollutants. The reference state changed from the standard condition (i.e., 

273 K and 1013 hPa) to the room condition (i.e., 298 K and 1013 hPa) on 31 August 2018 

(MEE, 2018a). We thus first converted observations of the three gaseous pollutants after this 

date to the uniform standard condition for consistency. We have clarified this in the revision. 

 

Lines 78-79: How many hourly measurements did you permit in order to make the daily 

mean? did you simply average or is there an error estimate? are all 2000 stations using the 

same technique to measure each gas? did they all have timeseries without gaps? 

Response: Here, daily values for each air pollutant were averaged from at least 30% of valid 

hourly measurements at each station in each year. All stations use the same technique to 

measure each gas routinely and continuously 24 hours a day at about the sea level without 

time series gaps. We have clarified this in the revision. 

 

Line 79: Who is providing this QA/QC? what does it entail? you need references and a 

discussion showing the quality of the input data. 

Response: The QA/QC is performed by the China National Environmental Monitoring Centre 

(CNEMC) during specification and test procedures for continuous automated monitoring of 

gaseous pollutants, including multiple quality-control checks like zero and span noise and 

zero and span drift (HJ 193-2013 and HJ 654-2013) (MEE, 2013b, 2013c). We have clarified 

this in the revision. 

 

Line 84: Which version of the data? where did you download them from? what QA/QC did 

you apply? for which geographical region? add proper references to the people who created 

the data, add validation paper of this data.  

Response: This new daily tropospheric NO2 dataset focused on China was created by He et al. 

https://www.cnemc.cn/en/


 

(2020) using a developed framework integrating OMI/Aura Quality Assurance for Essential 

Climate Variables (QA4ECV) and Global Ozone Monitoring Experiment–2B (GOME-2B) 

offline tropospheric NO2 retrievals passing quality controls (i.e., cloud fraction < 0.3, surface 

albedo < 0.3, and solar zenith angle < 85°). The reconstructed tropospheric NO2 agrees well 

(R = 0.75–0.85) with Multi-AXis Differential Optical Absorption Spectroscopy (MAX-

DOAS) measurements. This dataset has only one version (so no version ID) and can be 

downloaded directly from https://doi.org/10.6084/m9.figshare.13126847. We have added 

information about this and cited the relevant reference for this dataset in the revision as you 

suggested. Details can be found in He et al. (2020): 

 

He, Q., Qin, K., Cohen, J. B., Loyola, D., Li, D., Shi, J., and Xue, Y.: Spatially and temporally 

coherent reconstruction of tropospheric NO2 over China combining OMI and GOME-2B 

measurements, Environmental Research Letters, 15, 125011, 

https://doi.org/10.1088/1748-9326/abc7df, 2020. 

 

Furthermore, it is impossible to have daily seamless tropospheric NO2 data from satellite 

observations due to clouds. How did you tackle that? Which CAMS simulations? how did you 

gap-fill? how did you deal with the jumps in absolute values? References are needed for the 

CAMS simulations and their validation. 

Response: Daily seamless tropospheric NO2 data were generated via a two-step gap-filling 

procedure. The first step is data fusion by integrating OMI/Aura and GOME-2B tropospheric 

NO2 retrievals. The next step is data imputation by regressing CAMS tropospheric NO2 

assimilations (Inness et al., 2019) with a machine-learning model. We have clarified this and 

cited the reference for the CAMS simulations and validation in the revision. 

 

“Through this data fusion, the daily spatial coverage of satellite tropospheric NO2 was 

significantly improved in China (average = 87%). Areas with a small number of missing 

values were imputed via a nonparametric machine-learning model by regressing the 

conversion relationship with Copernicus Atmosphere Monitoring Service (CAMS) 

tropospheric NO2 assimilations (0.75° × 0.75°), making sure that the interpolation was 

consistent with the OMI/Aura overpass time (Inness et al., 2019; Y. Wang et al., 2020). The 

gap-filled tropospheric NO2 was reliable compared with measurements (R = 0.94–0.98) (Wei 

et al., 2022b). The above two-step gap-filling procedures allowed us to generate a daily 

seamless tropospheric NO2 dataset that removes the effects of clouds from satellite 

observations.” 

 

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., 

Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, 

Z., Massart, S., Parrington, M., Peuch, V. H., Razinger, M., Remy, S., Schulz, M., and 

Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 

3515-3556, 10.5194/acp-19-3515-2019, 2019. 

Wang, Y., Ma, Y. F., Eskes, H., Inness, A., Flemming, J., and Brasseur, G. P.: Evaluation of the 

CAMS global atmospheric trace gas reanalysis 2003–2016 using aircraft campaign 

observations, Atmos. Chem. Phys., 20, 4493-4521, 10.5194/acp-20-4493-2020, 2020. 



 

 

Lines 86-88: What did you use NDVI data for NO2 studies? why annual population? These 

phrases make no sense one after the other. Simply enumerating datasets is not a proper 

description either of the datasets nor as to how they were used. 

Response: Thanks for your suggestion. We have introduced and described each dataset 

separately in the revision. NDVI and population are two auxiliary remote-sensing variables 

input to the machine-learning model, used to describe land-use cover/change and population 

distribution density because they are highly related to the type of pollutant emission and 

amounts of anthropogenic emissions. Annual population data is used here because the 

population does not change much in a year. Note that LandScanTM population information is 

widely used, with high spatial (1 km) and temporal (updated annually) resolutions. 

 

Lines 88-89: Why do you need meteorological fields? which versions of the reanalysis did 

you use?  

Response: The reason is that meteorological factors have important diverse effects on air 

pollutants (J. He et al., 2017; R. Li et al., 2019), e.g., the boundary-layer height reflects their 

vertical distribution and variations (Z. Li et al., 2017; Seo et al., 2017); temperature, humidity, 

and pressure can affect their photochemical reactions (W. Y. Xu et al., 2011; T. Li et al., 2019; 

C. Zhang et al., 2019); and rainfall and wind can also influence their removal, accumulation, 

and transport (Dickerson et al., 2007; R. Li et al., 2019). Meteorological fields are thus used 

as auxiliary variables to improve the modelling of gaseous pollutants and are provided by the 

ERA5 global reanalysis. ERA5 has only one version (so no version ID) and can be 

downloaded directly from the Climate Data Store (https://cds.climate.copernicus.eu/). Table 

S1 now includes an extra column showing data versions (where applicable). 

 

It is also muddled, CAMS is mentioned in line 85 and the again in line 95.  

Response: They are two different things. The former are CAMS tropospheric NO2 

assimilations, used for filling the gaps in satellite tropospheric NO2, while the latter are 

CAMS daily ground-level NO2 assimilations, used as one of the main predictors for 

estimating surface NO2. We have clarified this in the revision. 

 

This paragraph is extremely poor, it does not described datasets properly nor does it explain 

what these datasets will be used for. 

Response: We have rephrased this part by describing each dataset separately and explaining 

their purposes according to your suggestion as follows: 

 

“2.1.1 Main predictors 

A new daily tropospheric NO2 dataset at a horizontal resolution of 0.25° × 0.25° in China 

(https://doi.org/10.6084/m9.figshare.13126847) was employed, created by Q. He et al. (2020) 

using a developed framework integrating OMI/Aura Quality Assurance for Essential Climate 

Variables (QA4ECV) and Global Ozone Monitoring Experiment–2B (GOME-2B) offline 

tropospheric NO2 retrievals passing quality controls (i.e., cloud fraction < 0.3, surface albedo 

< 0.3, and solar zenith angle < 85°). The reconstructed tropospheric NO2 agreed well (R = 

0.75–0.85) with Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) 

https://cds.climate.copernicus.eu/
https://doi.org/10.6084/m9.figshare.13126847


 

measurements (H. He et al., 2020). Through this data fusion, the daily spatial coverage of 

satellite tropospheric NO2 was significantly improved in China (average = 87%). Areas with a 

small number of missing values were imputed via a nonparametric machine-learning model 

by regressing the conversion relationship with Copernicus Atmosphere Monitoring Service 

(CAMS) tropospheric NO2 assimilations (0.75° × 0.75°), making sure that the interpolation 

was consistent with the OMI/Aura overpass time (Inness et al., 2019; Y. Wang et al., 2020). 

The gap-filled tropospheric NO2 was reliable compared with measurements (R = 0.94–0.98) 

(Wei et al., 2022b). The above two-step gap-filling procedures allowed us to generate a daily 

seamless tropospheric NO2 dataset that removes the effects of clouds from satellite 

observations. 

Here, the reconstructed daily seamless tropospheric NO2, together with CAMS daily ground-

level NO2 assimilations (0.75° × 0.75°) averaged from all 3-hourly data in a day and monthly 

NOx anthropogenic emissions (0.1° × 0.1°) (Inness et al., 2019), were used as the main 

predictors for estimating surface NO2. Limited by the quality of direct satellite observations, 

daily model-simulated SO2 and CO surface mass concentrations, averaged from all available 

data in a day provided by one-hourly Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2, 0.625° × 0.5°), 3-hourly CAMS (0.75° × 0.75°), and 3-

hourly Goddard Earth Observing System Forward-Processing (0.3125° × 0.25°) global 

reanalyses were used as main predictors to retrieve surface SO2 and CO, together with CAMS 

monthly SO2 and CO anthropogenic emissions. 

 

2.1.2 Auxiliary factors 

Meteorological factors have important diverse effects on air pollutants (J. He et al., 2017; R. 

Li et al., 2019), e.g., the boundary-layer height reflects their vertical distribution and 

variations (Z. Li et al., 2017; Seo et al., 2017); temperature, humidity, and pressure can affect 

their photochemical reactions (W. Y. Xu et al., 2011; T. Li et al., 2019; C. Zhang et al., 

2019a); and rainfall and wind can also influence their removal, accumulation, and transport 

(Dickerson et al., 2007; R. Li et al., 2019). Eight daily meteorological variables, provided by 

the ERA5-Land (0.1° × 0.1°; Muñoz-Sabater et al., 2021) and ERA5 global reanalysis (0.25° 

× 0.25°; Hersbach et al., 2020), were calculated (i.e., accumulated for precipitation and 

evaporation while averaged for the others) from all hourly data in a day, used as auxiliary 

variables to improve the modelling of gaseous pollutants. Other auxiliary remote-sensing data 

used to describe land-use cover/change [i.e., Moderate Resolution Imaging Spectroradiometer 

(MODIS) normalized difference vegetation index (NDVI), 0.05° × 0.05°] and population 

distribution density (i.e., LandScanTM, 1 km) were employed as inputs to the machine-

learning model because they are highly related to the type of pollutant emission and amounts 

of anthropogenic emissions, as well as the surface terrain [i.e., Shuttle Radar Topography 

Mission (SRTM) digital elevation model (DEM), 90m], which can affect the transmission of 

air pollutants. Table 1 provides detailed information about all the data used in this study.” 

 

Line 113-114: You have not mentioned using satellite SO2 and CO. This phrase is not 

understood. 

Response: We have deleted this redundant sentence to avoid ambiguity. 

 



 

Equations 1-3: These equations make not sense to whoever does not know what fstet does. 

You need to described the methodology in much more detail, a simple reference to a previous 

paper is not enough, nor does it convince the reader that the methodology will work for the 

species discussed here. 

Response: We have described the methodology and extended model in more detail, including 

strengths and limitations, in the revision as follows: 

 

“Here, the developed Space-Time Extra-Tree (STET) model, integrating spatiotemporal 

autocorrelations of and differences in air pollutants to the Extremely Randomized Trees 

(ERT) (Wei et al., 2022a), was extended to estimate other surface pollutant gases, i.e., NO2, 

SO2, and CO. ERT is an ensemble machine-learning model based on the decision tree, capable 

of solving the nonparametric multivariable nonlinear regression problem. Ensemble learning 

can avoid the lack of learning ability of a single learner, greatly improving accuracy. The 

introduced randomness enhances the model's anti-noise ability and minimizes the sensitivity 

to outliers and multicollinearity issues. It can handle high latitude, discrete or continuous data 

without data normalization and is easy to implement and parallel. However, several 

limitations exist, e.g., it is difficult to make predictions beyond the range of training data, and 

there will be an over-fitting issue on some regression problems with high noise. The training 

efficiency will reduce with increasing memory occupation when the number of decision trees 

is large (Geurts et al., 2006). 

Compared with traditional tree-based models (e.g., random forest), ERT has a stronger 

randomness which randomly selects a feature subset at each node split and randomly obtains 

the optimal branch attribute and threshold. This helps to create more independent decision 

trees, further reducing model variance and improving training accuracy (Geurts et al., 2006). 

The STET model has been successfully applied in estimating high-quality surface O3 in our 

previous study (Wei et al., 2022a). It is thus extended here to regress the nonlinear conversion 

relationships between ground-based measurements and the main predictors and auxiliary 

factors for other species of gaseous pollutants. For surface NO2, the STET model was applied 

to the main variables of the satellite tropospheric NO2 column, modelled surface NO2 mass, 

and NOx emissions, together with ancillary variables of the previously mentioned 

meteorological, surface, and population variables (Equation 1). For surface SO2 (Equation 2) 

and CO (Equation 3), modelled surface SO2 and CO concentrations and SO2 and CO 

emissions were used as main predictors along with the same auxiliary variables as NO2 to 

construct the STET models separately:” 

 

Line 132-137: You have to first describe the product you are creating. Then you can discuss 

the data quality. A simple reference to a previous paper is not enough. 

Response: We have moved this part of the discussion on data quality after the product 

description in the revision, as you suggested. 

 

Line 140: You first have to show your product, on a map. Have you captured the geographical 

spread properly? then you should show seasonal maps. have you captured the seasonality 

properly? then you should discuss other patterns, for e.g. the COVID lockdown effect. On 

maps.  



 

Response: We admit that the logic of the article is somewhat confusing. We have adjusted the 

order by first showing and discussing the mapping results in the revision, according to your 

suggestions.  

 

The scatter plots of Figure 1 cannot be the first result you present of your work. In your title 

you claim "seamless mapping". This should be they first thing you demonstrate. 

Response: We revised this section by first demonstrating the "seamless mapping" of our 

product, then discussing the validation results, as you suggested. 

 

Lines 143-144: What is this dataset? is it open source? where is it being used? 

Response: ChinaHighAirPollutants (CHAP, available at https://weijing-

rs.github.io/product.html) is the name of a series of public high-resolution, high-quality data 

sets of a variety of ground-level air pollutants for China developed by our team, including the 

three gaseous pollutants generated in this study. We have clarified this in the revision. 

 

Lines 146-148: The methodology was poorly described, hence it is impossible for the reader 

to understand and assess the validity of these numbers. 

Response: We have re-described the methodology in more detail according to your 

suggestions (see the response to your previous comment). 

 

Line 155: Are these spatial correlations? temporal correlations? after deseasonalisation? 

before? There are too many issues left un-described for the reader to assess your writings. 

Response: These are spatial correlations between our original predictions and ground 

measurements of three gaseous pollutants using the out-of-station cross-validation method. 

We have clarified this in the revision. 

 

Line 161: Table 1 in not discussed anywhere in the text. 

Response: It is now Table S1 in the revision. 

 

Lines 164-165: You have to show the geographical spread of your stations on a map.  

Response: We have added a figure (Figure 1) showing the geographical locations of ground-

based monitoring stations in the revision. 

 

Also, you have to show how you separated the stations for the training and the validation 

parts. 

Response: The out-of-station ten-cross validation approach randomly divides the ground 

monitoring stations into ten subsets, of which data samples from nine subsets are used for 

model training, and the remaining subset for model validation. It runs 10 times, in turn, to 

ensure that data from all monitors are tested. This procedure generates independent training 

samples and test samples made in different locations, used to indicate the spatial prediction 

ability of the model in areas where ground-based measurements are unavailable. We have 

clarified this in the revised Section 3.3.1. 

 

Lines 165-167: Who performs this QC? how is this QC performed? a proper reference should 



 

be described here. 

Response: Here, the QA/QC was performed in 2018 by the China National Environmental 

Monitoring Centre (CNEMC) with updated technical specifications for the operation and 

quality control of ambient air quality continuous automated monitoring of gaseous pollutants, 

including the improvement of sampling flow calibration of monitoring instruments, flow 

calibration of dynamic calibrators, and revision of precision/accuracy review and data validity 

judgment (HJ 818-2018) (MEE, 2018b). We have clarified this in the revision (see revised 

Section 3.3.1). 

 

Lines 173-177: So, for all 3 species, 80-83% of the stations shown an CVR2 > 0.6. Hence, 

either all three capture or all three do not capture the daily variability. RMSE absolute values 

give no information to the reader, if the typical levels for surface pollutants is not known. 

Furthermore, these levels vary greately depending on the location of the station. This part is 

also poorly written. 

Response: We agree. We have replaced RMSE absolute values with normalized RMSE 

(NRMSE) values to better describe the estimated uncertainties for gaseous pollutants in the 

revision. Also, we have rephrased this part as follows: 

 

“In general, our model works well at the site scale, with average CV-R2 values of 0.77, 0.72, 

and 0.72, and NRMSE values of 0.25, 0.43, and 0.26 for surface NO2, SO2, and CO, 

respectively. In addition, approximately 93%, 80%, and 84% of the stations had at least 

moderate agreements (CV-R2 > 0.6) between our estimates and ground measurements. Except 

for some scattered sites, the estimation uncertainties were generally less than 0.3, 0.5, and 0.3 

in more than 80%, 77%, and 76% of the stations for the above three gaseous pollutant species, 

respectively.” 

 

Lines 182-183: All monitoring stations or just the validation stations? this is not explained 

properly. 

Response: Here refers to the validation stations, now explained in the revision. 

 

Lines 188-190: Figure 3 does not demonstrate what you claim here. 

Response: We have deleted this sentence from the revision. 

 

Lines 199-201: How does Figure 4 compare to the input datasets? if you plot the CAMS 

reanalysis set, and their difference, by how much do they differ? do they auto-correlate? This 

is a very important point that needs addressing. 

Response: We have compared our results with the input CAMS reanalysis dataset by plotting 

the spatial distributions and calculating their correlations and differences against surface 

observations in the revision: 

 

“In addition, reanalysis data do not simulate surface masses of gaseous pollutants well, 

underestimating them compared to our results and ground-based observations in China 

(Figure S2). This is especially so for SO2, where high-pollution hot spots are easily 

misidentified. Validation illustrates that our regressed results for surface NO2, SO2, and CO 



 

agree better with ground measurements than modelled results (slopes are close to 1, and 

correlations > 0.93), 1.9–6.4 times stronger in slope, 1.3–3.5 times higher in correlation, but 

5.9–7.7 times smaller in differences (Figure S3). This shows that our model can take 

advantage of big data to significantly correct and reconstruct gaseous simulation results via 

data mining using machine learning.” 

 

Line 203: Average over all of China? average during a year? 

Response: It is averaged over all of China during the period 2013–2020. We have clarified 

this in the revision. 

 

Line 204: Daily data satellite observations? 

Response: Corrected. 

 

Line 220: How does meteorology affect SO2 and CO? Furthermore, NO2 is affected by the 

sunlight and the photochemical reactions taking place, this is not a meteorological condition. 

Response: The lowest levels of gaseous pollutants in summer are due to favorable 

meteorological conditions, e.g., abundant precipitation and high air humidity conducive to 

flushing and scavenging different air pollutants (Yoo et al., 2014). We agree with you that 

NO2 is also affected by strong sunlight and high temperature that accelerate the 

photochemical reactions of NO2 loss (Shah et al., 2020). We have clarified this and cited the 

references in the revision. 

  

Section 3.2.2: Many studies have been performed over China for the COVID lockdown 

effects on air quality. How does your work add to the knowledge already in existence? 

Response: We agree with you that there are many studies focused on the effects of the 

COVID-19 epidemic (WHO, 2020) on air quality. Most of them were done using ground-

based observations (Huang et al., 2020; T. Su et al., 2020), tropospheric gas columns (Field et 

al., 2021; Levelt et al., 2022), or retrieved surface masses (Ling and Li, 2021; Cooper et al., 

2022). The resulting conclusions could be affected by insufficient spatial representation due to 

the uneven distribution of ground monitors or a large number of missing values in space due 

to the influence of clouds. The unique advantage of our seamless day-to-day gaseous pollutant 

dataset can make up for these shortcomings, allowing us to more accurately and quantitatively 

assess the changes in gaseous pollutants during the epidemic. In addition, most previous 

studies have focused mainly on changes during the lockdown, with little attention paid to the 

recovery. Our study quantified this. We found that surface CO was the first to return to its 

historical level within the fifth week after the Lunar New Year in 2020, about twice faster as 

surface NO2 and SO2 levels. This is attributed to more home cooking and enhanced 

atmospheric oxidation. We have clarified this in the revised Section 3.2.1. 

 

Lines 254-255: Since your dataset is a seamless 10x10km map of all three pollutants, the 

availability of ground based monitoring stations should not affect you. This is the main point 

of your work. Hence, I fail to see why you limit yourself to the locations where ground-based 

monitoring exists. 

Response: We agree with you. We have removed such descriptions and redrew the figure by 



 

including western China. We discussed the temporal variations of gaseous pollutants for the 

whole of China in the revision. 

 

Line 258: The 2020 levels were affected by COVID.  

Response: We agree with you and have clarified this in the revision. 

 

Line 264: For which species? is 1.1microgram a significant amount? 

Response: We have rephrased the sentence as “Most of China showed significant decreasing 

trends, with average annual rates of 0.23 µg/m3, 2.01 µg/m3, and 0.05 mg/m3 for surface NO2, 

SO2, and CO, respectively” in the revision. A decile rate of 1.1 µg/m3 is a significant amount 

because the average surface NO2, SO2, and CO levels in China were only 20.3 ± 4.7 µg/m3, 

16.2 ± 7.7 µg/m3, and 0.86 ± 0.22 mg/m3 during the period 2013–2020. 

 

Lines 269-270: What is the reason for this? 

Response: Increasing trends of surface NO2 were found in Ningxia and Shanxi Provinces in 

central China due to increased traffic emissions and new coal-burning power plants in 

underdeveloped areas without strict regulations on NOx emissions (van der A et al., 2017; 

Maji and Sarkar, 2020; Li et al., 2022a). We have clarified this in the revision. 

 

Line 299: “Level 2 limitation” What does this mean? 

Response: Level 2 limitation refers to the secondary concentration limit of ambient air quality 

standards formulated by China (GB3095-2012). In the revised version, we have replaced it 

with the newly defined air quality guidelines (AQG) formulated by WHO in 2021, according 

to the suggestion of Reviewer 1.  

 

Line 300: Exposure to what? 

Response: Exposure to three gaseous pollutants, clarified in the revision. 

 

Line 303: This phrase contradicts what you stated before and Figure 9. 

Response: We have deleted this phrase from the revision.  

 

Line 313: “Regionally” For which regions? 

Response: Here we mean the regional scale. 

  

Lines 314-316: Since Figure 10 refers to three regions, why is only BTH discussed here? 

Response: The BTH region was the only region with high NO2, SO2, and CO exposure risks. 

The other two regions had no such risks. We have added “YRD and PRD had no high risks of 

exposure to the three gaseous pollutants …” in the revision. 

 

Section 3.3: This section is overall poor. There is no mention as to how the comparison was 

made.  

Response: Here, only those studies applying the same out-of-sample cross-validation 

approach against ground-based measurements collected from the same CNEMC network were 

selected. This makes our comparison fair. We have clarified this in the revision. 



 

 

0.125x0.125 in degrees is roughly 12.5x12.5 km which is very close to your 10x10km. Hence, 

you cannot claim that the other datasets have "low spatial resolutions". 

Response: We have rephrased the sentence as “Most generated surface NO2 datasets had  

numerous missing values in space limited by direct OMI satellite observations at spatial 

resolutions from 0.125°× 0.125° to 0.25°×0.25°” in the revision. 

 

Line 336: By how much? compared to your quality? 

Response: Surface SO2 estimated from an SO2 emission inventory and surface CO from 

Measurement of Pollution in the Troposphere (MOPITT) and TROPOMI retrievals have a 

lower data quality, with smaller R2 values by 12–57% and larger RMSE values by 41–47% 

against ground measurements compared to ours (D. Liu et al., 2019; R. Li et al., 2020; Y. 

Wang et al., 2021). We have added this in the revision. 

 

Line 344: Where? add link. 

Response: We have added the links for the datasets of the three surface gaseous pollutants. 

 

Lines 348-354: Have all these studies based their results directly on your database? is this 

implied here? 

Response: Yes, the results of all the studies listed in this section were obtained using the three 

gaseous pollutant datasets (i.e., NO2, SO2, and CO) generated in this study. We have clarified 

this in the revision. 


