¹ Supplement of

Impacts of biomass burning and photochemical processing on the light absorption of brown carbon in the southeastern Tibetan Plateau

4 Jie Tian^{1,2}, Qiyuan Wang^{1,2}, Yongyong Ma³, Jin Wang¹, Yongming Han^{1,2}, and Junji Cao^{1,4}

5 ¹Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth

6 Environment, Chinese Academy of Sciences, Xi'an 710061, China

7 ²CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China

8 ³Meteorological Institute of Shaanxi Province, Xi'an 710015, China

9 ⁴Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

10

11 Correspondence: Qiyuan Wang (wangqy@ieecas.cn) and Junji Cao (jjcao@mail.iap.ac.cn)

Figure S1. Hourly variations in (a) OA mass concentrations and (b) submicron aerosol light absorption coefficients (b_{abs}) at

Figure S2. Frequency histograms of hourly absorption Ångström exponent (AAE) values during the entire campaign.

Figure S3. Pearson correlations between OA mass concentration and light absorption coefficient of BrC ($b_{abs-BrC}$) at the wavelength (λ) of (a) 370 nm, (b) 470 nm, (c) 520 nm, (d) 590 nm, and (e) 660 nm.

22 Figure S4. Variations of po-OOA mass concentration and its fraction in OA as a function of RH. The data are grouped in RH

23 bins (10 % increment).

Figure S5. Light absorption coefficient of BrC ($b_{abs-BrC}$) at 370 nm from BBOA and po-OOA and its fraction in the total reconstructed BrC absorption at different periods.