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Abstract 9 

Recent studies have reported that interactions between live bacteria and organic matter can 10 

potentially affect the carbon budget in clouds, which has important atmospheric and climate 11 

implications. However, bacteria in clouds are subject to a variety of atmospheric stressors, 12 

which can adversely affect their survival and energetic metabolism, and consequently their 13 

ability to biodegrade organic compounds. At present, the effects of cloud water pH and solar 14 

radiation on bacteria are not well understood. In this study, we investigated how cloud water 15 

pH (pH 3 to 6) and exposure to solar radiation impact the survival and energetic metabolism 16 

of two Enterobacter bacterial strains that were isolated from ambient air collected in Hong 17 

Kong and their ability to biodegrade organic acids. Experiments were conducted using 18 

simulated sunlight (wavelength 320 to 700 nm) and microcosms comprised of artificial cloud 19 

water that mimicked the pH and chemical composition of cloud water in Hong Kong, South 20 

China. Our results showed that the energetic metabolism and survival of both strains depended 21 

on the pH. Low survival rates were observed for both strains at pH < 4 regardless whether the 22 

strains were exposed to simulated sunlight. At pH 4 to 5, the energetic metabolism and survival 23 

of both strains were negatively impacted only when they were exposed to simulated sunlight. 24 

Organic compounds such as lipids and peptides were detected during exposure to simulated 25 

sunlight at pH 4 to 5. In contrast, there were minimal effects on the energetic metabolism and 26 

survival of both strains when they were exposed to simulated sunlight at pH > 5. The 27 

biodegradation of organic acids was found to depend on the presence (or absence) of simulated 28 

sunlight and the pH of the artificial cloud water medium. Overall, this study provides new 29 

insights into how two common atmospheric stressors, cloud water pH and exposure to solar 30 

radiation, can influence the survival and energetic metabolism of bacteria, and consequently 31 

the roles that they play in cloud processes.    32 
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1. Introduction 46 

Clouds are an important medium for the aqueous-phase formation and transformation 47 

of organic and inorganic compounds. In addition to inorganic and organic compounds, clouds 48 

contain biological matter including biological debris (e.g., dead cells, cell fragments) and live 49 

microorganisms (e.g., bacteria, fungal spores) (Bauer et al., 2002; Jaenicke, 2005; Burrows et 50 

al., 2009). Live microorganisms are mainly emitted directly into the atmosphere from natural 51 

sources (Jaenicke, 2005; Möhler et al., 2007; Burrows et al., 2009; Attard et al., 2012; Hu et 52 

al., 2018). Once airborne, they can participate in a variety of atmospheric processes such as 53 

cloud formation, precipitation, ice nucleation, and the microbial degradation of atmospheric 54 

organics (Amato et al., 2005; Delort et al., 2010; Vaitilingom et al., 2010; Vaitilingom et al., 55 

2013; Morris et al., 2014; Morris et al., 2017; Hu et al., 2018; Huang et al., 2021; Zhang et al., 56 

2021). Bacteria are incorporated into clouds through nucleation and scavenging processes 57 

(Möhler et al., 2007). So far, only bacterial communities in clouds in some areas (e.g., Puy de 58 

Dôme in France, Mt. Tai in North China) have been extensively investigated. These studies 59 

showed that the bacterial communities in clouds are highly complex and diverse, and mainly 60 

originate from vegetation, soil, and water bodies (Vaïtilingom et al., 2012; Wei et al., 2017; 61 

Zhu et al., 2018). A significant fraction of the bacteria in clouds may be major allergens and/or 62 

pathogens that originate mainly from anthropogenic activities, and their concentrations usually 63 

increase during air pollution episodes (Wei et al., 2017; Peng et al., 2019). The cell 64 

concentrations of bacteria in clouds typically range from about 102 to 105 cells mL-1 (Amato et 65 

al., 2005; Burrows et al., 2009; Amato et al., 2017). At present, our knowledge on bacterial 66 

communities in clouds are limited to the few areas that have been studied (e.g., Puy de Dôme 67 

in France, Mt. Tai in North China) (Amato et al., 2005; Amato et al., 2017; Wei et al., 2017; 68 

Péguilhan et al., 2021). Cultural bacteria typically makes up a very small fraction (about 1%) 69 

of the entire bacteria community in clouds (Amato et al., 2005). 70 

Airborne bacteria are comprised of both dead or dormant cells and metabolically active 71 

cells. Previous culture-based and culture-independent analyses of bacteria isolated from cloud 72 

water have shown that some of these bacteria species are metabolically active (Amato et al., 73 

2007; Krumins et al., 2014; Amato et al., 2019). Previous studies have reported that the 74 

Deleted: and microbiological-ecosystem interactions 75 

Deleted: However, a76 

Deleted: metabolically active 77 

Deleted: ,78 

Deleted: and only to cultural bacteria which typically 79 

makes up about 1% of the entire bacteria community 80 



 

3 

 

degradation of organic compounds as a result of microbiological-chemical interactions 81 

between live bacteria and organic matter can play an important role in influencing the carbon 82 

budget in clouds, which will have important atmospheric and climate implications (Delort et 83 

al., 2010; Vaitilingom et al., 2010; Vaitilingom et al., 2013; Ervens and Amato, 2020). Many 84 

bacteria species have the enzymes needed to biodegrade organic compounds. Some of the 85 

bacteria species isolated from cloud water could biodegrade organic acids, formaldehyde, 86 

methanol, phenolic compounds, and amino acids (Ariya et al., 2002; Husárová et al., 2011; 87 

Vaïtilingom et al., 2011; Jaber et al., 2020; Jaber et al., 2021). However, the bacteria are 88 

exposed to a variety of stressors that can negatively impact their survival and microbial activity 89 

in clouds. Joly et al. (2015) previously investigated the individual impacts of osmotic shocks, 90 

freeze-thaw cycles, and exposure to light and H2O2 on the survival of different bacterial strains 91 

in microcosms mimicking cloud water chemical composition at Puy de Dôme. Osmotic shocks 92 

and freeze-thaw cycles reportedly had the greatest negative impacts on the survival of bacteria, 93 

while exposure to light and H2O2 had limited impacts on the survival of bacteria. However, 94 

there are other stressors that bacteria in clouds are commonly subjected to beyond the four 95 

stressors investigated by Joly et al. (2015). In addition, when combined together, the stressors 96 

may have synergistic negative impacts on the survival and microbial activity of bacteria in 97 

clouds. The potentially synergistic negative impacts that stressors have on the survival and 98 

microbial activity of bacteria in clouds have yet to be investigated. Some bacteria species 99 

respond to stressors by releasing organic compounds (e.g., proteins, pigments, lipids) as a 100 

defensive mechanism (Davey and O'toole, 2000; Delort et al., 2010; Flemming and Wingender, 101 

2010; Vaïtilingom et al., 2012; Matulova et al., 2014). When bacteria species cannot withstand 102 

the stress, the resulting cellular damage and lysis will lead to the release of biological material. 103 

In addition, the ability of bacteria to biodegrade organic compounds in clouds will decrease if 104 

their metabolism and survival are negatively impacted.   105 

Cloud water acidity is another stressor that bacteria are subjected to in clouds. There 106 

has been limited study on the impact of cloud water pH on the survival and microbial activity 107 

of bacteria in clouds. However, some studies have reported that the cloud water pH impacts 108 

the diversity and composition of bacterial communities (Amato et al., 2005; Peng et al., 2019). 109 
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For instance, spore-forming bacteria were abundant in pH 4.9 cloud water at Puy de Dôme, 118 

while more diverse and higher concentrations of non-spore-forming bacteria were observed in 119 

pH 5.8 cloud water (Amato et al., 2005). The pH of cloud water typically lies between 3 and 6 120 

(Pye et al., 2020), with a global mean of around pH 5.2 (Shah et al., 2020). Areas with high 121 

inputs of sulfuric acid and/or nitric acid combined with low inputs of ammonia, dust, and sea 122 

salt, especially in parts of East Asia, have moderately acidic to highly acidic cloud water (pH 123 

< 5) (Li et al., 2020; Pye et al., 2020; Shah et al., 2020; Qu and Han, 2021). To the best of our 124 

knowledge, there has been no studies on how moderately acidic to highly acidic cloud water 125 

affects the survival and microbial activity of bacteria. The effects of light exposure on the 126 

survival and microbial activity of bacteria are also ambiguous. Some studies reported that 127 

exposure to UVA and visible light will lead to the formation of intracellular reactive oxidative 128 

species, which can damage important cell components and cause cell death (Anglada et al., 129 

2015). However, exposure to light reportedly did not impact the survival rates of bacterial 130 

strains from Pseudomonas syringae, Arthrobacter sp., and Sphingomonas sp. (Joly et al., 131 

2015). While it is possible that exposure to acidic cloud water and light have a synergistic effect 132 

on the survival and microbial activity of bacteria, previous laboratory investigations were 133 

mainly performed in microcosms with the pH set between 5 to 7 to mimic cloud water in areas 134 

that have high inputs of ammonia, dust, and sea salt, such as the Puy de Dôme (Vaïtilingom et 135 

al., 2011; Joly et al., 2015; Jaber et al., 2021; Jaber et al., 2020).  136 

This study investigates how cloud water pH and exposure to solar radiation affect the 137 

survival and energetic metabolism of bacteria and their ability to biodegrade organic 138 

compounds in clouds. We designed a series of laboratory experiments in microcosms 139 

containing artificial cloud water that mimicked the pH and chemical composition of 140 

atmospheric cloud water collected at the Tai Mo Shan station in Hong Kong, South China. 141 

South China is a region with moderately acidic to highly acidic cloud water due to its higher 142 

concentrations of acidic ions (e.g., SO4
2-, NO3

-) compared to alkaline ions (e.g., NH4
+, Ca2+) 143 

(Li et al., 2020; Qu and Han, 2021). Different pH (pH 3.3 to 5.9) and irradiation (illuminated 144 

vs. dark) conditions were employed in the experiments, during which we analyzed the 145 

biological material and organic compounds in the artificial cloud water medium at different 146 
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reaction time points. Since cloud water bacterial isolates from the Tai Mo Shan station are not 147 

available, two Enterobacter bacterial strains that were isolated from ambient air in Hong Kong 148 

were used as model bacteria in this study. In general, our current knowledge of the diversity 149 

and composition of bacteria communities in cloud water in Hong Kong and South China is 150 

very limited due to the scarcity of characterization studies conducted in this region. Results 151 

from a previous study reported that Enterobacter was one of the bacteria species in cloud water 152 

collected at the Nanling Mountain station in South China (Peng et al., 2019). Enterobacter 153 

bacteria has been detected in urban aerosols in different parts of the world, including South 154 

China (Chen et al., 2012; Després et al., 2012; Ding et al., 2015; Zhou et al., 2018; Prokof’eva 155 

et al., 2021). In addition, the enrichment of Enterobacter bacteria in the atmosphere during air 156 

pollution episodes has been reported in parts of Asia, America, and Europe (Romano et al., 157 

2019; Ruiz-Gil et al., 2020; Romano et al., 2021). Since organic acids are ubiquitous in clouds 158 

(Tsai and Kuo, 2013; Löflund et al., 2002; Sun et al., 2016; Li et al., 2020) and can be 159 

biodegraded by most bacteria (Vaitilingom et al., 2010; Vaïtilingom et al., 2011), we chose 160 

seven organic acids that are commonly detected in clouds (formic acid, acetic acid, oxalic acid, 161 

maleic acid, malonic acid, glutaric acid, and methanesulfonic acid) as model organic 162 

compounds for our investigations of how cloud water pH and light exposure affect the ability 163 

of bacteria to biodegrade organic compounds in clouds.  164 

2. Methods 165 

2.1. Strain isolation and whole genome sequencing 166 

Two new strains (B0910 and pf0910) belonging to Enterobacter species were isolated 167 

by exposing nutrient agar plates to ambient air in an urban environment (22.3360° N, 168 

114.1732° E) at a height of 50 m above sea level during the summer season (~22 ℃) in Hong 169 

Kong. The genomes of the two strains were sequenced using a GridION sequencer (Oxford 170 

Nanopore Technologies) by following the manufacturer’s workflow. Genome assembly and 171 

the downstream genomic analyses are described in detail in Section S1. Based on genome 172 

comparison, E. hormaechei B0910 is most similar to Enterobacter hormaechei subsp. 173 

hoffmannii DSM 14563 (Average Nucleotide Identity (ANI) = 98.92) and E. hormaechei 174 
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pf0910 to Enterobacter hormaechei subsp. steigerwaltii DSM 16691 (ANI = 98.73) (Figure 190 

S1). E. hormaechei B0910 has a chromosome (4.69 Mbp) with 4875 coding sequences (CDSs) 191 

and a single plasmid (373 Kbp) with 383 CDSs. E. hormaechei pf0910 strain has a chromosome 192 

(4.78 Mbp) with 5072 CDSs and two plasmids of 281 Kbp (344 CDSs) and 73 Kbp (79 CDSs). 193 

2.2. General experimental approach  194 

To simulate cloud water conditions in Hong Kong, artificial cloud water containing 195 

major organic and inorganic ions in cloud water previously collected at the Tai Mo Shan station 196 

(TMS; 22°24’N, 114°16’E, 957 m a.s.l.) were used in each experiment. Organic (acetic acid, 197 

formic acid, oxalic acid, pyruvic acid) and inorganic (magnesium chloride, calcium chloride, 198 

potassium chloride, sodium chloride, ammonium sulfate, ammonium nitrate, sodium hydroxide 199 

and hydrochloric acid) compounds were used to prepare the artificial cloud water. Experiments 200 

were performed using a Rayonet photoreactor (RPR-200, Southern New England Ultraviolet 201 

Company). We followed the method employed in previous studies (George et al., 2015; Huang 202 

et al., 2018; Misovich et al., 2021; Li et al., 2022) and used eight lamps with outputs centered 203 

at different wavelengths to roughly simulate the range of solar radiation wavelengths (320 to 204 

700 nm) inside the photoreactor. Figure S2 shows the resulting photon flux inside the 205 

photoreactor. The temperature (25 ℃) during the experiment was regulated by a fan located at 206 

the bottom of the photoreactor.  207 

The two strains were grown in LB broth at 37 ℃ to stationary phase. The culture was 208 

then centrifuged at 6000 rpm for 10 min at 4 ℃ and the cell pellets were rinsed with artificial 209 

cloud water (Table S1) three times. For investigations of the time evolution in the survival and 210 

energetic metabolism of bacteria at different pH under illuminated vs. dark conditions (Section 211 

2.2), the cells were re-suspended in artificial cloud water to an initial concentration of ~105 212 

cells mL-1. For investigations of the biodegradation of organic acids by bacteria at different pH 213 

under illuminated vs. dark conditions (Section 2.3), the cells were re-suspended in artificial 214 

cloud water to an initial concentration of ~106 cells mL-1. A calibration curve was used to 215 

convert between optical density and bacterial cell concentration.  216 
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Quartz tubes containing bacterial cells suspended in artificial cloud water (5 mL) were 218 

placed on a rotating vial rack in the middle of the photoreactor. The quartz tubes for the dark 219 

control experiments were wrapped in aluminum foil and placed inside the photoreactor. The 220 

pH of the artificial cloud water did not change significantly during the experiments. Aliquots 221 

of the solutions were taken at every hour over 12 hours for various offline chemical analyses. 222 

Colony Forming Unit (CFU) counts on LB agar at 37 ℃ for 16 hours was also performed to 223 

determine the culturable bacterial cell concentrations, which was used to calculate the bacteria 224 

survival rates. The adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratios were 225 

measured using an assay kit (EnzyLightTM, BioAssay Systems) and a biolumineter 226 

(SpectraMax M2e) to determine changes in the bacteria energetic metabolism. All the 227 

experiments and measurements were performed in triplicates 228 

2.3. Investigations of the survival and energetic metabolism of bacteria at different pH 229 

under illuminated vs. dark conditions 230 

Six pH conditions (pH 3.3, 4.3, 4.5, 4.7, 5.2 and 5.9) were chosen for this set of 231 

experiments, which were performed under both dark and illuminated conditions. The six pH 232 

conditions investigated fall within the range of pH values for cloud water previously measured 233 

at Tai Mo Shan (pH 3.0 to 5.9) (Li et al., 2020). The pH of the artificial cloud water used to 234 

suspend the bacterial cells was adjusted using sodium hydroxide and hydrochloric acid. Table 235 

S1 shows the resulting concentrations of organic and inorganic ions in the artificial cloud water 236 

used in these experiments, which are similar to those in cloud water collected at Tai Mo Shan 237 

by Li et al. (2020).  238 

During some experiments, aliquots of the solutions were taken at time points 0 h, 2 h, 239 

4 h, 8 h, and 12 h and analyzed by ultra-performance liquid chromatography-mass spectrometry 240 

(UPLC-MS). Each aliquot of solution was first passed through a 0.22 µm filter to remove intact 241 

bacterial cells. Water-insoluble and water-soluble biological material and organic compounds 242 

were then extracted from these filtered solutions using the method described in Section S2. 200 243 

µL of the extract was then transferred into glass vial inserts for UPLC-MS analysis. Non-244 

targeted UPLC-MS analysis was performed using an ultrahigh performance liquid 245 
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chromatography system (ExionLC AD system, Sciex) coupled to a high-resolution quadrupole-250 

time-of-flight mass spectrometer (TripleTOF 6600 system, Sciex) equipped with electrospray 251 

ionization (ESI). Chromatographic separation was performed on a Kinetex HILIC LC column 252 

(100 × 2.1 mm, 2.6 µm, 100 Å, Phenomenex) using positive ESI mode. Since very low signals 253 

were obtained for negative ESI mode, we did not use it for our analysis. Details about the 254 

UPLC-MS operation, data processing, and statistical analysis can be found in Section S3. 255 

2.4. Investigations of the biodegradation of organic acids at different pH under 256 

illuminated vs. dark conditions 257 

The biodegradation of seven organic acids (formic acid, acetic acid, oxalic acid, maleaic 258 

acid, malonic acid, glutaric acid, and methanesulfonic acid (MSA)) that were mixed together 259 

were measured at pH 4.3 and pH 5.9 under both dark and illuminated conditions. The 260 

concentrations for each of the forementioned organic acids in cloud water and rain water 261 

typically fall within the range of 1 to 10 µM (Tsai and Kuo, 2013; Löflund et al., 2002; Sun et 262 

al., 2016; Li et al., 2020). Due to the detection limits of the IC system used to measure the 263 

organic acids, the concentration for each organic acid was set to 50 µM (Table S2), which is 264 

around 10 times higher than the concentrations typically measured in cloud water. The 265 

concentrations of inorganic ions in the artificial cloud water were also increased by 10 times. 266 

Vaitilingom et al. (2010) previously reported that the same biodegradation rates will be 267 

obtained as long as the concentration ratio of the chemical compounds to bacterial cells is 268 

constant. However, the authors drew this conclusion based on experiments performed using a 269 

Pseudomonas graminis bacterial strain incubated in the presence of a single organic compound 270 

as the carbon source. At present, it is unclear whether this conclusion can be extrapolated to 271 

other bacteria species incubated in the presence of multiple organic compounds, and this 272 

warrants further study. Nevertheless, we made the same assumption (i.e., the same 273 

biodegradation rates will be obtained as long as the concentration ratio of the chemical 274 

compounds to bacterial cells is constant) as was done in previous studies that investigated the 275 

biodegradation of multiple organic compounds by different bacteria species (Vaïtilingom et al., 276 

2011; Jaber et al., 2020; Jaber et al., 2021). Hence, the bacteria concentration used was set to 277 

106 cells mL-1 to maintain the same concentration ratio of the organic acids to bacterial cells. 278 
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Table S2 shows the resulting concentrations of the organic and inorganic ions in the artificial 286 

cloud water used in these experiments. 287 

During each experiment, aliquots of the solutions were taken every 2 hours over 12 288 

hours. The organic acid concentrations in each filtered aliquot of solution were measured by 289 

ion chromatography (IC) using a Dionex ICS-1100 (ThermoFisher Scientific) system. Details 290 

of the IC operation can be found in Section S4. To calculate the initial biodegradation rate, the 291 

time evolution of each organic acid concentration over 12 h was plotted and fitted with the 292 

following equation (Vaïtilingom et al., 2011; Jaber et al., 2020; Jaber et al., 2021): 293 

ln (
𝐶

𝐶0
) = 𝑓(𝑡) = −𝑘 × 𝑡        (1) 294 

where 𝑘 (𝑠−1) is the rate constant obtained from the exponential fit to the decay of the organic 295 

acid. The following equation was used to calculate the biodegradation rate per bacteria cell (R): 296 

R =
𝑘×𝐶0

[𝐶𝑒𝑙𝑙]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
, (𝑚𝑜𝑙 𝑐𝑒𝑙𝑙−1𝑠−1)     (2) 297 

where 𝐶0 (𝑚𝑜𝑙 ∙ 𝐿−1) is the initial concentration of the organic acid, [𝐶𝑒𝑙𝑙]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (𝑐𝑒𝑙𝑙 ∙298 

𝐿−1)  is the concentration of bacterial cells in the experiment. Control experiments were 299 

performed under illuminated and dark conditions using solutions that contained organic acids 300 

but no bacterial cells. The organic acids did not degrade in these control experiments. 301 

3. Results and discussion 302 

3.1. Impact of pH on the survival and energetic metabolism of bacteria under illuminated 303 

and dark conditions 304 

Figure 1 shows the survival rates and ADP/ATP ratios of the E. hormaechei B0910 and 305 

E. hormaechei pf0910 strains over time under illuminated and dark conditions at different 306 

artificial cloud water pH. The ADP/ATP ratio is used as an indicator of the bacteria’s metabolic 307 

activity and survival rate in this study. Growing cells usually maintain a constant ADP/ATP 308 

ratio because whenever there is a decrease in intracellular ATP production, its degradation 309 

product ADP will be resynthesized to form ATP to maintain intracellular ATP concentrations 310 

(Koutny et al., 2006; Guan and Liu, 2020). In contrast, when there is a disruption in the 311 

metabolism of ATP production, ATP cannot be resynthesized from ADP even though ATP is 312 
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still converted to ADP, which will cause the ADP/ATP ratio to increase (Koutny et al., 2006; 324 

Guan and Liu, 2020). 325 

The artificial cloud water pH clearly had a significant effect on the survival rates and 326 

ADP/ATP ratios of the two strains. At pH 3.3, the concentrations of viable cells decreased to 327 

zero after 20 minutes regardless whether the strains were exposed to light. For pH 4.3, 4.5 and 328 

4.7, the survival and ADP/ATP ratios of the two strains depended on whether they were 329 

exposed to light. There were no significant changes in the survival rates and ADP/ATP ratios 330 

for both strains under dark conditions. In contrast, the concentrations of viable cells for both 331 

strains gradually decreased when they were exposed to light. Consistent with the lower survival 332 

rates, the ADP/ATP ratios for both strains increased over time. The survival rates and 333 

ADP/ATP ratios were the lowest and highest, respectively, at pH 4.3 after 12 h of illumination. 334 

There were no significant changes in the survival rates and ADP/ATP ratios of both strains at 335 

pH 5.2 and 5.9 under illuminated and dark conditions.  336 

 337 
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  340 

Figure 1. Survival rates and ADP/ATP ratios of the E. hormaechei B0910 and E. hormaechei 341 

pf0910 strains at pH 3.3 to pH 5.9 under illuminated and dark conditions over time. The 342 
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survival rate is defined as the number concentration of culturable viable cells divided by the 343 

initial number concentration of culturable viable cells at time point 0 min. Error bars represent 344 

one standard deviation from the mean of biological triplicates. 345 

Figure 1 clearly shows that the artificial cloud water pH and exposure to light can have 346 

a synergistic effect on the survival and energetic metabolism of E. hormaechei B0910 and E. 347 

hormaechei pf0910. Based on these results, both strains will likely survive during the daytime 348 

and nighttime in pH > 5 cloud water. However, cloud water pH will play an important role in 349 

dictating the fraction of the bacteria that will survive in the daytime at pH 4 to 5. A low pH 350 

environment can lower the internal pH of cells, which affects essential pH-dependent biological 351 

and cellular functions such as decreased enzymatic activity, compromised cellular processes 352 

(e.g., central metabolic pathways, ATP production), and protein denaturation in cells (Bearson 353 

et al., 1997; Lund et al., 2014). Our genomic analysis revealed that the two strains have genes 354 

encoding a F1F0-type ATP synthase, which can export protons from their cytoplasm to cope 355 

with pH stress (Krulwich et al., 2011). In addition, genes encoding potassium transporters, 356 

which may be involved in pH homeostasis (i.e., both Kup-type low-affinity and Kdp-type high-357 

affinity potassium transporters) (Brzoska et al., 2022) were found in the genome of both strains 358 

(Table S3). Our results indicated that both strains will likely survive in pH 4 to 5 cloud water 359 

at night. However, being in cloud water at pH 4 to 5 will likely negatively impact the ability of 360 

cells to tolerate sunlight, which will affect their survival during the daytime. Based on our 361 

results, we estimate that the half-lives of the bacteria strains in pH 4.3 cloud water under 362 

illumination conditions (e.g., light intensity, wavelengths) similar to those in our study are 363 

around 430 min. The half-lives of the bacteria strains in pH < 4 are cloud water are lower. 364 

Based on our results, we estimate that the daytime and nighttime half-lives of the bacteria 365 

strains in pH 3.3 cloud water are around 2 min.  366 

3.2. Compounds released by bacteria under acidic and illuminated conditions 367 

Some bacteria species adapt to sunlight exposure and acidic environments by deploying 368 

adaptation strategies and defensive mechanisms such as undergoing DNA repair, aggregation-369 

promoting, and pigmentation mechanisms (Bearson et al., 1997; Davey and O'toole, 2000; 370 
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Delort et al., 2010; Flemming and Wingender, 2010; Vaïtilingom et al., 2012; Matulova et al., 373 

2014; Guan and Liu, 2020). Some of these adaptation strategies and defensive mechanisms will 374 

cause the bacteria to release organic compounds into cloud water (Davey and O'toole, 2000; 375 

Delort et al., 2010; Flemming and Wingender, 2010; Vaïtilingom et al., 2012; Matulova et al., 376 

2014). In addition, bacterial cellular damage and lysis will lead to the release of biological 377 

material and organic compounds. To investigate the compounds released by E. hormaechei 378 

B0910 and E. hormaechei pf0910 during exposure to light and acidic environments, we used 379 

UPLC-MS to analyze the solutions in experiments where pH 4.3 and pH 5.9 artificial cloud 380 

water were used. The UPLC-MS measurements revealed that cell lysis led to the release of 381 

water-soluble and water-insoluble compounds when the two strains were exposed to light at 382 

pH 4.3. The quantities of these compounds changed with light exposure time. In contrast, no 383 

water-soluble and water-insoluble compounds were detected in the solutions of the two strains 384 

under dark conditions at pH 4.3, and under dark and illuminated conditions at pH 5.9. This 385 

suggested that these two strains did not release organic compounds and the cells remained 386 

intact under these conditions. It is also possible that these two strains released organic 387 

compounds as an adaption strategy and/or defensive mechanism but the concentrations of these 388 

compounds were below the detection limits of our UPLC-MS instrument. 389 

Principal component analysis (PCA) with 95% confidence ellipse was applied to the 390 

UPLC-MS data of the detected water-soluble and water-insoluble compounds to identify 391 

discriminations between samples with different light exposure times. In each PCA plot (Figure 392 

2), samples with the same light exposure time clustered together. While there was slight overlap 393 

between some of the clusters in the PCA plots, the clusters were mostly separated from one 394 

another. Partial least squares discrimination analysis (PLS-DA) was applied to the UPLC-MS 395 

data to identify water-soluble and water-insoluble compounds that showed significant changes 396 

in their relative abundances during exposure to light. 259 water-soluble compounds and 215 397 

water-insoluble compounds were identified for E. hormaechei B0910 (Figure S3), while 209 398 

water-soluble compounds and 251 water-insoluble compounds were identified for E. 399 

hormaechei pf0910 (Figure S4). We identified the molecular formulas and chemical structures 400 

of 78 water-soluble compounds and 144 water-insoluble compounds released by E. hormaechei 401 
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B0910, and 118 water-soluble compounds and 114 water-insoluble compounds released by E. 403 

hormaechei pf0910. These identified compounds were subsequently classified into different 404 

classes based on their chemical functionalities.  405 

 406 

Figure 2. PCA results of UPLC-MS data: (a) water-soluble compounds and (b) water-insoluble 407 

compounds from E. hormaechei B0910, and (c) water-soluble compounds and (d) water-408 

insoluble compounds from E. hormaechei pf0910 during exposure to light at pH 4.3. Each 409 

cluster representing a different light exposure time (i.e., 0 h, 2 h, 4 h, 8 h, and 12 h) has nine 410 

points since three samples were taken at each light exposure time, and UPLC-MS analysis was 411 

performed in triplicate for each sample. 412 
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Figures 3 and S5 show the time evolution of the UPLC-MS total ion chromatograph 413 

(TIC) signals of the different classes of water-soluble and water-insoluble compounds released 414 

by E. hormaechei B0910 and E. hormaechei pf0910 over time, respectively. The UPLC-MS 415 

TIC signals of the classes of water-soluble and water-insoluble compounds released by the two 416 

strains increased with light exposure time. The increase in the UPLC-MS TIC signals coincided 417 

with the decrease in the bacteria survival rate and the increase in the ADP/ATP ratio. Even 418 

though the heatmaps showed that some of the compounds had noticeable changes in their 419 

relative abundances during exposure to light (Figures S3 and S4), the relative abundances of 420 

the different classes of compounds contributed to the total TIC at each time point did not change 421 

substantially (Figures S6 and S7). 422 

 423 
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Figure 3. Time evolution of the UPLC-MS total ion chromatograph (TIC) signals of (a) water-424 

soluble compounds, and (b) water-insoluble compounds from E. hormaechei B0910 during 425 

exposure to light at pH 4.3 over time. These compounds are classified based on their chemical 426 

functionality. Also shown are the time evolution of the survival rate and ADP/ATP ratio of E. 427 

hormaechei B0910.  428 

To better understand the compounds released by the two strains, the O/C and H/C 429 

elemental ratios of the identified compounds were used to construct Van Krevelen (VK) 430 

diagrams. Regions of the VK diagrams were assigned to eight chemical classes based on the 431 

combined O/C and H/C ratios: lipids, unsaturated hydrocarbons, condensed aromatic 432 

structures, peptides, lignin, tannin, amino sugars, and carbohydrates (Table S4) (Bianco et al., 433 

2018; Laszakovits and Mackay, 2022). Rivas-Ubach et al. (2018) previously reported that the 434 

region of the VK diagram assigned to amino sugars overlaps with the region for nucleic acids. 435 

Figures S8 and S9 show the VK diagrams for water-soluble and water-insoluble compounds 436 

released by E. hormaechei B0910, respectively, while Figures S10 and S11 show the VK 437 

diagrams for water-soluble and water-insoluble compounds released by E. hormaechei pf0910, 438 

respectively. Majority of the water-soluble and water-insoluble compounds released from both 439 

strains (50% to 60%) were assigned as lipids based on their O/C and H/C ratios, while the 440 

second most abundant compound class was peptides (10% to 20%). The two least abundant 441 

compound classes were amino sugars/nucleic acids and carbohydrates. Since the dry matter of 442 

a typical bacterial cell contains approximately 55% proteins and amino acids, 24% nucleic 443 

acids, 10% carbohydrates, 7% lipids, and 5% inorganic minerals and trace elements (Watson 444 

et al., 2007), the differences in the abundance of compound classes detected vs. the dry matter 445 

of a typical bacterial cell indicated that cellular components were likely biologically and/or 446 

chemically modified during and after cell lysis during exposure to light. For instance, the large 447 

abundance of peptides detected could be a result of biological and/or chemical modifications 448 

of proteins and amino acids, which comprise majority of the dry matter of a typical bacterial 449 

cell. Peptide bonds are formed by biochemical reactions where a water molecule is removed as 450 

the amino group of one amino acid is joined to the carboxyl group of a neighboring amino acid. 451 

The large abundance of lipids was unsurprising since lipids are the main component of cell 452 
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membranes so large quantities of lipids are expected from the lysed cells. Most of the lipid 461 

molecules released during cell lysis may not have undergone biological and/or chemical 462 

modifications under our experimental conditions. The two least abundant compound classes 463 

were amino sugars/nucleic acids and carbohydrates. This was somewhat surprising since 464 

nucleic acids and carbohydrates are abundant in the dry matter of a typical bacterial cell. It is 465 

possible that these compounds were biologically and/or chemically modified to form other 466 

compounds (e.g., exopolymeric substances) during exposure to light (Matulova et al., 2014). 467 

In addition, the extraction procedure employed (Section S2) may not have extracted these 468 

compounds effectively for analysis. For instance, nucleic acids and carbohydrates are polar 469 

molecules, which are difficult to retain on the solid phase extraction columns used in this study. 470 

These compounds may also have been poorly separated in UPLC and/or inefficiently ionized 471 

by ESI.  472 

These detected compounds indicated that bacterial cell lysis could be a source for 473 

carbon in cloud water. Many of the compound classes detected in this study have previously 474 

been measured in atmospheric cloud water. For instance, large abundances of peptide-like 475 

compounds and lipid-like compounds have been measured in cloud water from Puy de Dôme 476 

(Bianco et al., 2018; Bianco et al., 2019), which is consistent with the detection of large 477 

abundances of compounds assigned to the peptide and lipid compound classes in this study. 478 

This suggested that peptide-like and lipid-like compounds could be used as biomarkers to 479 

evaluate bacterial contributions to atmospheric samples. Previous studies have used fatty acids, 480 

which are integral building blocks of lipids, in atmospheric samples as biomarkers for 481 

characterizing and quantifying bacteria, and assessing the atmospheric transport of bacteria 482 

(Kawamura et al., 2003; Lee et al., 2004; Tyagi et al., 2015). While this study shows that 483 

bacterial cell lysis will release large quantities of peptide-like and lipid-like compounds, using 484 

these compounds as biomarkers for bacterial cell lysis in atmospheric samples will likely be 485 

complex as the concentrations of these compounds will likely change with time. This is because 486 

peptide-like and lipid-like compounds will undergo chemical and biological transformations 487 

after they have been released during cell lysis, which will impact their concentrations in 488 

atmospheric samples. Amino acids, which are building blocks of peptides, are known to 489 
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undergo chemical reactions with oxidants in cloud water, (Bianco et al., 2016). In addition, 497 

peptide-like and lipid-like compounds can be produced and/or consumed by cloud 498 

microorganisms to maintain their metabolism (Bianco et al., 2019; Jaber et al., 2021).  499 

3.3. Impact of pH on the biodegradation of organic acids by bacteria under illuminated 500 

and dark conditions 501 

The biodegradation of seven organic acids (i.e., formic acid, acetic acid, oxalic acid, 502 

maleic acid, malonic acid, glutaric acid and MSA) that were mixed together were measured 503 

under dark and illuminated conditions at pH 4.3 and pH 5.9. Only some of the seven organic 504 

acids were biodegraded by the two strains. Based on our experimental conditions (liquid water 505 

content ≈ 1012 μg m-3, the density of water) and the organic acids’ Henry’s law constants, these 506 

organic acids will be in the aqueous phase and are not expected to volatilize during these 507 

experiments. Thus, the observed decays were due to bacterial metabolism. E. hormaechei 508 

B0910 biodegraded formate and oxalate under dark and illuminated conditions at pH 4.3 and 509 

pH 5.9, and biodegraded malonate and maleate only under dark conditions at pH 4.3 and pH 510 

5.9. In contrast, E. hormaechei pf0910 biodegraded only formate and oxalate under dark and 511 

illuminated conditions at pH 4.3 and pH 5.9. Biodegradation was not observed for acetate, 512 

MSA, and glutarate.  513 

Table S5 summarizes the enzymes or metabolic pathways related to the biodegradation 514 

of organic acids in the two strains. Genes encoding formate dehydrogenases were identified in 515 

both genomes, which is consistent with the observed formate biodegradation. However, no 516 

known genes for oxalic acid biodegradation (Liu et al., 2021) were found in the genomes of 517 

both strains, which suggested the presence of yet to be characterized pathways that catalyzed 518 

the biodegradation. Interestingly, a protein with Cupin 2 domain was found in both genomes. 519 

The Cupin superfamily consists of a diverse range of enzymes including oxalate oxidase and 520 

oxalate decarboxylase that can biodegrade oxalic acid (Burrell et al., 2007).  521 

Only the E. hormaechei B0910 strain was observed to biodegrade malonic acid. 522 

Interestingly, the malonyl-CoA-acyl carrier transcacylase observed in the E. hormaechei 523 

pf0910 strain seems to be a fusion protein, which may render it ineffective in utilizing malonic 524 
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acid. Although no gene encoding maleate isomerase was identified in the genomes of both 534 

strains, the maleic acid biodegradation observed can be attributed to the activity of other 535 

enzymes with broad substrates specificity (Hatakeyama et al., 2000). The genes encoding for 536 

the small and large protein subunits that together form the 3-isopropylmalate dehydratase, the 537 

enzyme that isomerizes 2-isopropylmalate to 3-isopropylmalate, were found in both the 538 

Enterobacter strains. The small and large protein subunits of this enzyme are homologous to 539 

the small (51% amino acid identity) and large (59% amino acid identity) protein subunit 540 

constituents of maleate hydratase (HbzIJ) from Pseudomonas alcaligenes NCIMB 9867 that 541 

converts maleate to D-malate (Liu et al., 2015). Given the high protein homology, we speculate 542 

that the 3-isopropylmalate dehydratase in the Enterobacter strains may have a broader substrate 543 

specificity than known and it may be able to biodegrade maleate. 544 

The lack of biodegradation of acetic acid, MSA, and glutaric acid in the experiments 545 

could be partly explained by the genomic information. Both strains have genes that encode 546 

enzymes involved in the biodegradation (Table S5) and associated uptake transporters (i.e., 547 

acetate permease (ActP) and succinate-acetate/proton symporter (SatP)) of acetic acid. The 548 

lack of the corresponding biodegradation in the experiments could be due to the low uptake of 549 

acetic acid by cells as ActP functions to scavenge low concentrations of the compound 550 

(Gimenez et al., 2003) while SatP could be inhibited by formic acid found in the cloud water 551 

medium (Sá-Pessoa et al., 2013). Genes encoding the two-component alkanesulfonate 552 

monooxygenase for MSA biodegradation were found in both strains, but they were likely not 553 

expressed as sulfur was not deficient in the cloud water medium (Kahnert et al., 2000; Eichhorn 554 

and Leisinger, 2001), which is consistent with the absence of MSA biodegradation in the 555 

experiments. While genes encoding succinate-semialdehyde dehydrogenase/glutarate-556 

semialdehyde dehydrogenase, which display a reversible conversion between glutarate-557 

semialdehyde and glutarate in the KEGG database (Kanehisa et al., 2022), were found in both 558 

strains, to the best of our knowledge there is no report of experimental results confirming that 559 

the reaction can go in the reverse direction from glutarate to glutarate-semialdehyde. In 560 

addition, a study of glutaric semialdehyde dehydrogenase reported the irreversible nature of 561 
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the catalysis of glutarate semialdehyde to glutarate (Ichihara and Ichihara, 1961). Thus, it is 563 

not surprising that glutarate biodegradation was not observed for the two strains. 564 

Figure 4 summarizes the measured biodegradation rates of the organic acids for the two 565 

strains under dark and illuminated conditions at pH 4.3 and pH 5.9. These biodegradation rates 566 

were determined from fits to the decays of the organic acids from reaction time 0 to 12 hour in 567 

each experiment (Section 2.4). The measured biodegradation rates were around 10−19 to 10−18 568 

mol cell−1 s−1, which were on the same order of magnitude as the bacterial strains isolated from 569 

cloud water and implemented into cloud models (Vaitilingom et al., 2010; Vaïtilingom et al., 570 

2011; Fankhauser et al., 2019). Although both strains were affiliated to E. hormaechei, the 571 

artificial cloud water pH and exposure to light impacted their biodegradation of organic acids 572 

differently. The rates at which formate and oxalate were biodegraded by E. hormaechei B0910 573 

had the following order: dark conditions at pH 5.9 > illuminated conditions at pH 5.9 > dark 574 

conditions at pH 4.3 > illuminated conditions at pH 4.3. This order was different for E. 575 

hormaechei pf0910: dark conditions at pH 5.9 > dark conditions at pH 4.3 > illuminated 576 

conditions at pH 5.9 > illuminated conditions at pH 4.3. Despite the effects that the artificial 577 

cloud water pH and exposure to light had on the formate and oxalate biodegradation, the fastest 578 

and slowest biodegradation rates only differed by a factor of 1.4 to 3.7. Figure S12 compares 579 

the biodegradation rates measured at pH 4.3 vs. pH 5.9, and under illuminated vs. dark 580 

conditions. For the effect of artificial cloud water pH on the biodegradation of organic acids by 581 

E. hormaechei B0910, the differences in the biodegradation rates were statistically significant 582 

for the four acids (Student’s t test, p value < 0.05). Conversely, the differences in the 583 

biodegradation rates of formate and oxalate as a result of light exposure were statistically 584 

significant at pH 5.9 (Student’s t test, p value < 0.05). For the effect of artificial cloud water 585 

pH on the biodegradation of organic acids by E. hormaechei pf0910, only the difference in the 586 

dark biodegradation of oxalate was statistically significant (Student’s t test, p value < 0.05). In 587 

contrast, light exposure reduced the formate biodegradation rates significantly at both pH 4.3 588 

and pH 5.9 (Student’s t test, p value < 0.05), and the oxalate biodegradation rate significantly 589 

at pH 5.9 (Student’s t test, p value < 0.05).  590 
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 597 

Figure 4. Biodegradation rates of oxalate, maleate, and malonate by (a) E. hormaechei B0910 598 

and (b) E. hormaechei pf0910 under light and dark conditions at pH 4.3 and pH 5.9. Error bars 599 

represent one standard deviation from the mean biodegradation rate. 600 

The survival rates and ADP/ATP ratios of both strains were also monitored during the 601 

biodegradation experiments (Figure S13). There were no significant changes in the survival 602 

rates and ADP/ATP ratios of both strains during the biodegradation process under dark 603 

conditions at pH 4.3, as well as under dark and illuminated conditions at pH 5.9. In contrast, 604 

the concentrations of viable cells gradually decreased until only 48% and 60% of the initial 605 

concentrations of viable cells remained at 12 h for E. hormaechei B0910 and E. hormaechei 606 

pf0910, respectively, during exposure to light at pH 4.3. The ADP/ATP ratios for both strains 607 

also increased during this time period, consistent with the lower metabolic activity and lower 608 

survival rate. 609 
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A simple kinetic analysis was performed to identify the factors that will impact the 610 

relative contributions of bacterial activity vs. ·OH/NO3· chemistry in cloud water during the 611 

daytime and nighttime. Details of the calculations performed in this kinetic analysis can be 612 

found in Section S5. Our approach of considering daytime and nighttime processes separately 613 

was different from the approach used by previous studies, which determined the relative 614 

contributions of bacterial activity and chemical reactions on the degradation of organic 615 

compounds by only considering dark biodegradation processes and ·OH photochemical 616 

reactions (Vaïtilingom et al., 2011; Jaber et al., 2020; Jaber et al., 2021). Here, biodegradation 617 

rates that were measured under illuminated conditions were used for the daytime scenario, 618 

while biodegradation rates that were measured under dark conditions were used for the 619 

nighttime scenario. We used the average of biodegradation rates measured for the two strains 620 

for our calculations. Formate, oxalate, and malonate were chosen for our analysis since their 621 

·OH and NO3· reaction rate constants were available in the literature. ·OH and NO3· are the 622 

main tropospheric aqueous-phase free radicals during the daytime and nighttime, respectively 623 

(Herrmann et al., 2010). The average measured biodegradation rates of formate, oxalate, and 624 

malonate were first converted to biodegradation rate constants. These biodegradation rate 625 

constants and the corresponding ·OH and NO3· reaction rate constants provided by the 626 

literature (Table 1) were subsequently used for calculations of the biodegradation rates and 627 

chemical reaction rates in cloud water (Section S5). A bacteria concentration of 8 × 107 cell L-628 

1 was assumed in our calculations for the daytime scenario at pH ~5 and the nighttime scenarios 629 

at pH ~4 and ~5, which was the same bacteria concentration used in previous studies and 630 

represented the highest estimate of actual live bacteria concentrations (i.e., 100% of 631 

metabolically active cells) (Vaïtilingom et al., 2011; Jaber et al., 2020; Jaber et al., 2021). Based 632 

on our investigations of the survival and energetic metabolism of bacteria under illuminated 633 

conditions at pH 4 to 5 (Figure 1), we expect the bacteria concentrations to gradually decrease 634 

for the daytime scenario at pH ~4. Thus, for simplicity, we assumed a lower bacteria 635 

concentration in our calculations for the daytime scenario at pH ~4, whereby we multiplied the 636 

bacteria concentration of 8 × 107 cell L-1 by a factor of 0.75. This factor was obtained by taking 637 

the average survival rates for the two strains from reaction time 0 to 12 hour in our experiments 638 

conducted under illuminated conditions at pH 4.3 (Figure S13). The rates of oxidation by ·OH 639 
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and NO3· chemical reactions will depend on their respective concentrations. Hence, we used 646 

the average ·OH and NO3· concentrations reported by Herrmann et al. (2010) for remote, 647 

marine, and urban environments in our calculations (Table S6) (Herrmann et al., 2010).  648 

Table 1. Rate constants used to estimate the loss rates by biodegradation and chemical reactions 649 

(i.e., ·OH oxidation (daytime) and NO3· (nighttime)).  650 

 Rate constant (Daytime) 

Reaction Formic Oxalic Reference 

Chemical 
𝑘𝑂𝐻,𝐴𝑐𝑖𝑑 

(𝐿 𝑚𝑜𝑙−1 𝑠−1) 
2.40 × 109 1.60 × 108 

(Ervens et 

al., 2003) 
     

Biodegradation 

𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 (pH ~4) 

(𝐿 𝑐𝑒𝑙𝑙−1𝑠−1) 
1.53 × 10−13 2.65 × 10−15 This study 

𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 (pH ~5) 

(𝐿 𝑐𝑒𝑙𝑙−1𝑠−1) 
1.92 × 10−13 2.36 × 10−14 This study 

 651 

 Rate constant (Nighttime) 

Reaction Formate Oxalate  Malonate Reference 

Chemical 
𝑘𝑁𝑂3,𝐴𝑐𝑖𝑑 

(𝐿 𝑚𝑜𝑙−1 𝑠−1) 
4.20 × 107 4.40 × 107 5.60 × 106 

(Herrmann 

et al., 2010) 
      

Biodegradation 

𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 (pH ~4) 

(𝐿 𝑐𝑒𝑙𝑙−1𝑠−1) 
1.92 × 10−13 5.18 × 10−15 2.81 × 10−15 This study 

𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 (pH ~5) 

(𝐿 𝑐𝑒𝑙𝑙−1𝑠−1) 
2.59 × 10−13 7.80 × 10−14 4.55 × 10−14 This study 

Calculations were performed for a variety of remote, marine, and urban environments 652 

with different formate, oxalate, and malonate concentrations that were previously reported in 653 

the literature (Table S7). Figure 5 shows the predicted relative contributions of bacterial 654 

activity vs. ·OH/NO3· chemistry in remote, marine, and urban environments. ·OH 655 

photochemistry will make a larger contribution to the daytime degradation of formate and 656 

oxalate in remote and marine environments due to the high ·OH concentrations in these 657 

environments (2.2 × 10-14 M and 2 × 10-12 M, respectively). In contrast, bacterial activity will 658 

play a bigger role in the daytime degradation of formate in urban environments due to their 659 

lower ·OH concentrations (3.5 × 10-15 M). However, ·OH photochemistry will play a larger 660 

role in the daytime degradation of oxalate in urban environments due to the slow oxalate 661 

biodegradation rates. The low nighttime NO3· concentrations in remote and marine 662 
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environments (5.1 × 10-15 M and 6.9 × 10-15 M, respectively) will result in bacterial activity 665 

playing a bigger role in the nighttime degradation of formate, oxalate, and malonate in these 666 

two environments. In urban environments, bacterial activity will play a bigger role in the 667 

nighttime degradation of formate, but the nighttime degradation of oxalate and malonate will 668 

be dominated by NO3· chemistry due to the slow biodegradation rates of oxalate and malonate.  669 

Our simple kinetic analysis indicated that the organic acid, cloud water pH, radical 670 

oxidant concentration, and time of day (i.e., daytime vs. nighttime) will impact the relative 671 

contributions of bacterial activity vs. ·OH/NO3· chemistry in the aqueous phase. However, 672 

there are a number of caveats that should be noted. First, the biodegradation rates used in this 673 

analysis were from experiments conducted at 25 °C, which may be more representative of 674 

warmer regions during the summer (e.g., Hong Kong and parts of South China). Slower 675 

biodegradation rates will likely be measured at lower temperatures (Ariya et al., 2002; 676 

Vaitilingom et al., 2010; Husárová et al., 2011; Vaïtilingom et al., 2011), which will impact 677 

the relative contributions of bacterial activity vs. ·OH/NO3· chemistry. Second, our analysis 678 

did not account for how the presence of aqueous-phase oxidants (e.g., ·OH in the daytime, 679 

NO3· in the nighttime) will impact the survival and energetic metabolism of bacteria, which in 680 

turn will impact the relative contributions of bacterial activity vs. ·OH/NO3· chemistry. Third, 681 

our analysis did not account for the physical separation of cloud droplets containing bacteria 682 

cells from cell-free cloud droplets. Only a small fraction of cloud droplets will contain 683 

metabolically active bacteria cells, and the bacterial metabolism cannot affect the composition 684 

of organic acids in cell-free cloud droplets (Fankhauser et al., 2019; Khaled et al., 2021). 685 

Hence, only ·OH/NO3· chemistry will govern the degradation of organic acids in cell-free 686 

droplets. Consequently, not accounting for the physical separation of cloud droplets containing 687 

bacteria cells from cell-free cloud droplets will result in an overestimation of the overall 688 

contribution of bacterial activity to the biodegradation of organic compounds (Fankhauser et 689 

al., 2019; Khaled et al., 2021). Fourth, our analysis only considers biodegradation and chemical 690 

reactions occurring in the aqueous phase and ignores gas-aqueous phase exchanges and gas-691 

phase chemical reactions. Nah et al. (2018) previously showed that the gas-aqueous phase 692 

partitioning of organic acids will depend on the organic acid’s Henry’s law constant and acid 693 

Deleted: verall, o694 

Deleted: the measured biodegradation rates can be 695 

competitive with aqueous-phase chemical reactions in 696 

transforming carboxylicorganic acids in cloud water, but it 697 

will depend on 698 

Deleted: carboxylic699 



 

25 

 

dissociation constants, liquid water concentration, temperature, and pH (Section S6). Figure 700 

S14 shows that a significant fraction of formic acid will be in the gas phase at pH 4 and 5 under 701 

cloud water conditions, whereas all of oxalic acid, malonic acid, and maleic acid will be in the 702 

aqueous phase at pH 4 and 5 under cloud water conditions. This suggests that gas-phase 703 

chemical reactions will likely play an important role in consuming formic acid, whereas the 704 

consumption of oxalic acid, malonic acid, and maleic acid will likely mainly be through 705 

bacterial activity and chemical reactions in the aqueous phase. Quantifying the exact 706 

contributions of aqueous-phase bacterial activity vs. aqueous-phase ·OH/NO3· chemistry vs. 707 

gas-phase ·OH/NO3· chemistry under different cloud water pH conditions will require a multi-708 

phase box model similar to the one used by Khaled et al. (2021). This is beyond the scope of 709 

the current study but can be a subject of future studies.       710 
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 711 

Figure 5. Predicted relative contributions of bacterial activity and chemical reaction (i.e., ·OH 712 

oxidation (daytime) and NO3· (nighttime)) to the degradation of organic compounds in the 713 

aqueous phase in remote, marine, and urban areas. This figure is based on estimated loss rates 714 

shown in Table S7. 715 

4. Summary and implications 716 
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In this study, we investigated how cloud water pH and exposure to solar radiation 721 

impact the survival and energetic metabolism of bacteria and their ability to biodegrade organic 722 

acids in clouds. Laboratory experiments were performed using artificial solar radiation and 723 

artificial cloud water that mimicked the pH and composition of cloud water previously 724 

collected in South China, which is a region with fairly acidic cloud water (pH 3 to 5.9). Using 725 

two E. hormaechei strains that were isolated from ambient air in Hong Kong, we observed that 726 

the energetic metabolism and survival of both strains depended on the artificial cloud water 727 

pH. Low survival rates were observed for both strains at pH < 4 regardless whether the strains 728 

were exposed to light. At pH 4 to 5, the energetic metabolism and survival of both strains were 729 

only negatively impacted when they were exposed to light. In contrast, there were minimal 730 

effects on the energetic metabolism and survival of both strains when they were exposed to 731 

simulated sunlight at pH > 5. In addition, the biodegradation of organic acids depended on the 732 

presence (or absence) of light and the artificial cloud water pH. The measured biodegradation 733 

rates were around 10−19 to 10−18 mol cell−1 s−1, which were on the same order of magnitude as 734 

the bacterial strains isolated from cloud water and implemented into cloud models (Vaitilingom 735 

et al., 2010; Vaïtilingom et al., 2011; Fankhauser et al., 2019). Our analysis indicated that the 736 

organic acid, cloud water pH, radical oxidant concentration, and the time of day will impact 737 

the relative contributions of bacterial activity vs. ·OH/NO3· chemistry in the aqueous phase .  738 

This study has two important implications for our understanding of bacteria in clouds. 739 

First, this study underscores the importance of accounting for cloud water pH when simulating 740 

cloud processes involving metabolically active bacteria in atmospheric models, including 741 

microbiological-chemical interactions between live bacteria and organic matter. Results from 742 

this study imply the cloud water pH will impact the bacteria’s ability to survive and thrive in 743 

during the daytime and/or nighttime. The pH of cloud water typically lies between 3 and 6 (Pye 744 

et al., 2020). Regions with high inputs of sulfuric acid and/or nitric acid combined with low 745 

inputs of ammonia, dust, and sea salt, such as South China, will have moderately acidic to 746 

highly acidic cloud water (Li et al., 2020; Pye et al., 2020; Shah et al., 2020; Qu and Han, 747 

2021). Most of the bacteria in the atmosphere are neutrophiles that generally survive and thrive 748 

in less acidic environments. Hence, even though our study focuses on two Enterobacter strains, 749 
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we hypothesize that cloud water pH will also affect the ability of other neutrophilic bacteria 762 

species to survive and remain metabolically active. Second, results from this study imply that 763 

it is important to consider the potential synergistic negative impacts that different stressors have 764 

on the survival and microbial activity of bacteria in clouds. Much of our current knowledge on 765 

the effect of different stressors (osmotic shocks, freeze-thaw cycles, and exposure to light and 766 

H2O2) on the survival of bacteria in clouds originate from a previous study by Joly et al. (2015) 767 

who investigated the impacts of these four stressors individually. However, as demonstrated in 768 

this study, when combined together, some stressors (in this case, cloud water pH and exposure 769 

to sunlight) can have synergistic negative impacts on the survival and microbial activity of 770 

bacteria in clouds.  771 

While this study builds on our existing knowledge of how different stressors will impact 772 

the survival and energetic metabolism of bacteria and their ability to biodegrade organic matter 773 

in clouds, there are a number of caveats that should be noted. First, we were limited to using 774 

bacterial strains isolated from ambient air in this study due to the unavailability of bacteria 775 

isolates from cloud water in South China. Thus, if available, this work could be extended to 776 

bacteria isolates from cloud water in South China in the future to determine the pH conditions 777 

at which these isolates can survive and participate in microbiological-chemical interactions 778 

during the daytime and/or nighttime. The effect of cloud water pH on bacteria species that are 779 

reportedly common in cloud water (e.g., Sphingomonadales, Rhodospirillales, Rhizobiales, 780 

Burkholderiales, Pseudomonadales (Vaïtilingom et al., 2012; Zhu et al., 2018; Peng et al., 781 

2019)) should also be investigated. Second, all the experiments in this study were conducted at 782 

25 °C, which may be more representative of warmer regions during the summer (e.g., Hong 783 

Kong and parts of South China). Several studies have reported slower biodegradation rates at 784 

lower temperatures (Ariya et al., 2002; Vaitilingom et al., 2010; Husárová et al., 2011; 785 

Vaïtilingom et al., 2011), which suggest that cloud water temperature may influence the 786 

survival and energetic metabolism of bacteria. Third, the photon intensity in the photoreactor 787 

was kept constant in all the experiments. However, sunlight intensity will change throughout 788 

the day in the atmosphere. Fourth, this study does not consider how the presence of aqueous-789 

phase oxidants (e.g., ·OH in the daytime, NO3· in the nighttime) will impact the survival and 790 
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energetic metabolism of bacteria in clouds. Hence, the effects of temperature, light intensity, 792 

and oxidants on the impact the survival and energetic metabolism of bacteria and their ability 793 

to biodegrade organic matter in clouds should be investigated in future studies.  794 
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 18 

Figure S1. Average nucleotide identity (ANI) value of Enterobacter strains B00910, pf0910, 19 

and six others. Strain 1: Enterobacter hormaechei subsp. oharae DSM 16687; Strain 2: 20 

Enterobacter hormaechei subsp.hoffmannii DSM 14563; Strain 3: Enterobacter hormaechei 21 

ATCC 49162; Strain 4: Enterobacter quasihormaechei. GCF 004331385.1; Strain 5: 22 

Enterobacter xiangfangensis LMG27195; Strain 6: Enterobacter hormaechei subsp. 23 

steigerwaltii DSM 16691. Strains 1 to 6 are the closest identified neighbors with strains B0910 24 

and pf0910. 25 
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 26 

Figure S2. Photon flux inside of the photoreactor (black) and actinic flux for a fall day in Hong 27 

Kong in the morning (red). One lamp with output centered at ~365 nm (RPR-3500A, Southern 28 

New England Ultraviolet Company), four lamps with outputs centered at ~421 nm (RPR-29 

4190A, Southern New England Ultraviolet Company), and three lamps with outputs centered 30 

at ~580 nm (RPR-5750A, Southern New England Ultraviolet Company) were used to 31 

illuminate solutions in the photoreactor. 32 

 33 
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 34 

Figure S3. Heat maps showing the time evolution of (a) water-soluble compounds and (b) 35 

water-insoluble compounds from E. hormaechei B0910 during exposure to simulated sunlight 36 

at pH 4.3. The heat maps were generated from non-targeted UPLC-MS analysis of samples 37 

with different light exposure times. 259 water-soluble compounds and 215 water-insoluble 38 

compounds were selected based on PLS-DA results (VIP > 1.0 criteria). The average UPLC-39 

MS intensity of each compound at each light exposure time was obtained from the nine 40 

replicates. The average UPLC-MS intensities were subsequently log10 transformed and auto 41 

scaled (i.e., mean-centered and divided by the standard deviation of each variable). The color 42 

scale ranges from red color for high abundance to blue for low abundance.   43 
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 44 

Figure S4. Heat maps showing the time evolution of (a) water-soluble compounds and (b) 45 

water-insoluble compounds from E. hormaechei pf0910 during exposure to simulated sunlight 46 

at pH 4.3. The heat maps were generated from non-targeted UPLC-MS analysis of samples 47 

with different light exposure times. 209 water-soluble compounds and 251 water-insoluble 48 

compounds were selected based on PLS-DA results (VIP > 1.0 criteria). The average UPLC-49 

MS intensity of each compound at each light exposure time was obtained from the nine 50 

replicates. The average UPLC-MS intensities were subsequently log10 transformed and auto 51 

scaled (i.e., mean-centered and divided by the standard deviation of each variable). The color 52 

scale ranges from red color for high abundance to blue for low abundance.   53 
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 54 

Figure S5. Time evolution of the UPLC-MS total ion chromatograph (TIC) signals of (a) 55 

water-soluble compounds, and (b) water-insoluble compounds from E. hormaechei pf0910 56 

during exposure to simulated sunlight at pH 4.3 over time. These compounds are classified 57 

based on their chemical functionality. Also shown are the time evolution of the survival rate 58 

and ADP/ATP ratio of E. hormaechei pf0910. 59 
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 60 

Figure S6. Relative abundance of the different classes of (a) water-soluble compounds, and (b) 61 

water-insoluble compounds from E. hormaechei B0910 during exposure to simulated sunlight 62 

at pH 4.3.  63 
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 64 

Figure S7. Relative abundance of the different classes of (c) water-soluble compounds, and (d) 65 

water-insoluble compounds from E. hormaechei pf0910 during exposure to simulated sunlight 66 

at pH 4.3.  67 
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 68 

Figure S8. Van Krevelen diagrams of water-soluble compounds from E. hormaechei B0910 69 

during exposure to simulated sunlight at pH 4.3 taken at different time points of the experiment: 70 

(a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. The color of each symbol denotes its UPLC-MS 71 

intensity at that specific time point normalized to its maximum UPLC-MS intensity obtained 72 

during the entire experiment. Symbols that are colored white indicates that these compounds 73 

were not detected at that specific time point. The Van Krevelen diagrams are divided into eight 74 

chemical classes based on their O/C and H/C ratios: (1) lipids, (2) unsaturated hydrocarbons, 75 

(3) condensed aromatic structures, (4) peptides, (5) lignin, (6) tannin, (7) amino sugars, and (8) 76 

carbohydrates.  77 
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 78 

Figure S9. Van Krevelen diagrams of water-insoluble compounds from E. hormaechei B0910 79 

during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. 80 

The color of each symbol denotes its UPLC-MS intensity at that specific time point normalized 81 

to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are 82 

colored white indicates that these compounds were not detected at that specific time point. The 83 

Van Krevelen diagrams are divided into eight chemical classes based on their O/C and H/C 84 

ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, 85 

(5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates.  86 
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 87 

Figure S10. Van Krevelen diagrams of water-soluble compounds from E. hormaechei pf0910 88 

during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. 89 

The color of each symbol denotes its UPLC-MS intensity at that specific time point normalized 90 

to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are 91 

colored white indicates that these compounds were not detected at that specific time point. The 92 

Van Krevelen diagrams are divided into eight chemical classes based on their O/C and H/C 93 

ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, 94 

(5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates.  95 
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 96 

Figure S11. Van Krevelen diagrams of water-insoluble compounds from E. hormaechei 97 

pf0910 during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 98 

12 h. The color of each symbol denotes its UPLC-MS intensity at that specific time point 99 

normalized to its maximum UPLC-MS intensity obtained during the entire experiment. 100 

Symbols that are colored white indicates that these compounds were not detected at that 101 

specific time point. The Van Krevelen diagrams are divided into eight chemical classes based 102 

on their O/C and H/C ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic 103 

structures, (4) peptides, (5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates.  104 
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 105 

Figure S12. Biodegradation rates of oxalate, maleate, and malonate by (a) E. hormaechei 106 

B0910 and (b) E. hormaechei pf0910 under light and dark conditions at pH 4.3 and pH 5.9. 107 

Error bars represent one standard deviation from the mean of biological triplicates. Statistical 108 

analysis was performed using the Student’s t test (ns: not significant, *: p value < 0.05, **: p 109 

value < 0.01, ***: p value < 0.001). 110 
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 111 

Figure S13. Survival and ADP/ATP ratios of E. hormaechei B0910 and E. hormaechei pf0910 112 

under illuminated and dark conditions at pH 4.3 and pH 5.9 in the solutions containing the 113 

seven organic acids. Error bars represent one standard deviation from the mean of biological 114 

triplicates.  115 

 116 
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 121 

Figure S14. Calculated pH-dependent molar fraction of formic acid in the aqueous phase 122 

(𝜀(𝐻𝐴(𝑎𝑞))) and pH-dependent molar fractions of oxalic acid, malonic acid, and maleic acid 123 

in the aqueous phase (𝜀(𝐻2𝐴(𝑎𝑞))) under cloud water conditions (Section S6 and Table S8). 124 

A liquid water concentration of 106 μg m-3 (Ervens et al., 2011) was assumed in these 125 

calculations. A significant fraction of formic acid will be in the gas phase at pH 4 and 5 under 126 

cloud water conditions, whereas all of the oxalic acid, malonic acid, and maleic acid will be in 127 

the aqueous phase at pH 4 and 5 under cloud water conditions (note that their values overlap 128 

one another at 𝜀(𝐻2𝐴(𝑎𝑞)) = 1). These differences were due primarily to the large differences 129 

in their water solubility (i.e., Henry’s law constants) (Table S8). 130 

 131 
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Table S1. Chemical composition of the artificial cloud water used to prepare bacterial cells 142 

and perform experiments that investigated the effects of cloud water pH and light exposure on 143 

the survival and energetic metabolism of bacteria. In the experiments, the pH of the artificial 144 

cloud water was adjusted while keeping the final organic and inorganic ion composition the 145 

same.  146 

Organic ion µM Inorganic ion µM 

Formate 17.1 Na+ 93 

Acetate 10.2 NH4
+ 235 

Pyruvate 2.7 K+ 8 

Oxalate 10.3 Mg2+ 23 
  Ca2+ 49 
  Cl- 138 

  SO4
2- 305 

 147 

 148 

 149 

Table S2. Chemical composition of the artificial cloud water used for organic acid 150 

biodegradation experiments.  151 

Organic ion µM Inorganic ion µM 

Formate 50 Na+ 930 

Acetate 50 NH4
+ 2350 

Pyruvate 50 K+ 80 

Oxalate 50 Mg2+ 230 

Succinate 50 Ca2+ 490 

Maleate 50 Cl- 1380 

Malonate 50 SO4
2- 3050 

Glutarate 50   

MSA 50   

 152 

 153 

 154 
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Table S3. Genes involved in the pH homeostasis in the two E. hormaechei strains. 159 

Transporters Protein subunits E. hormaechei B0910 E. hormaechei pf0910 

  CDS CDS 

F1F0-type ATP 

synthase 

Subunit a, AtpB MOG78_16595 MMW20_13045 

Subunit c, AtpE MOG78_16590 MMW20_13050 

Subunit b, AtpF MOG78_16585 MMW20_13055 

Subunit delta, AtpH MOG78_16580 MMW20_13060 

Subunit alpha, AtpA MOG78_16575 MMW20_13065 

Subunit gamma, AtpG MOG78_16570 MMW20_13070 

Subunit beta, AtpD MOG78_16565 MMW20_13075 

Subunit epsilon, AtpC MOG78_16560 MMW20_13080 

Kdp-type high-

affinity potassium 

transporter 

Potassium-binding ATPase 

subunit KdpA 
MOG78_10080 MMW20_19865 

Potassium-binding ATPase 

subunit KdpB 
MOG78_10085 MMW20_19860 

Potassium-binding ATPase 

subunit KdpC 
MOG78_10090 MMW20_19855 

Potassium-binding ATPase 

subunit KdpF 
MOG78_10075 

Gene sequence found but CDS is 

not annotated. 

(Chromosome genome nucleotide 

position: 3800683-3800772) 

Kup-type low-

affinity potassium 

transporter 

Kup MOG78_16640 MMW20_13000 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 
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Table S4. Stoichiometric ranges of the eight chemical classes in VK diagrams (Bauer et al., 169 

2002; Jaenicke, 2005). 170 

Chemical class H/C O/C 

Amino sugar (Burrows et al., 

2009) 

1.62 ≤ H/C ≤ 2.35 0.56 ≤ O/C ≤ 0.95 

Carbohydrate (Jaenicke, 2005) 1.53 ≤ H/C ≤ 2.20 0.56 ≤ O/C ≤ 1.23 

Lignin (Möhler et al., 2007) 0.86 ≤ H/C ≤ 1.34 0.21 ≤ O/C ≤ 0.44 

Lipid (Burrows et al., 2009) 1.34 ≤ H/C ≤ 2.18 0.01 ≤ O/C ≤ 0.35 

Peptide (Attard et al., 2012) 1.33 ≤ H/C ≤ 1.84 0.17 ≤ O/C ≤ 0.48 

Tannin (Hu et al., 2018) 0.70 ≤ H/C ≤ 1.01 0.16 ≤ O/C ≤ 0.84 

Unsaturated hydrocarbons 

(Amato et al., 2005) 

0.67 ≤ H/C ≤ 1.5 0 ≤ O/C ≤ 0.10 

Condensed aromatic structures 

(Delort et al., 2010) 

0.20 ≤ H/C ≤ 0.67 0 ≤ O/C ≤ 0.67 

 171 
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Table S5. Genes involved in the biodegradation of organic acids in the two E. hormaechei 173 

strains. 174 

Organic 

acid 
Genes E. hormaechei B0910 E. hormaechei pf0910 

  
Biodegradation CDS Biodegradation CDS 

Yes/No Absent/Present Yes/No Absent/Present 

Formic acid 
Formate 

dehydrogenase 
Yes 

MOG78_16880; 

MOG78_16875; 

MOG78_16870; 

MOG78_06810 

Yes 

MMW20_12765; 

MMW20_12770; 

MMW20_12775; 

MMW20_22665 

Oxalic acid 

Oxalate 

decarboxylase 
Yes Absent Yes Absent 

Oxalate oxidase Yes Absent Yes Absent 

Formyl-

CoA:oxalate 

CoA-transferase 

Yes Absent Yes Absent 

Succinyl-

CoA:oxalate 

CoA-transferase 

Yes Absent Yes Absent 

Hypothetical 

protein 

(Cupin 2 protein)a 

Yes MOG78_20825 Yes MMW20_08875 

Malonic acid 

Malonate 

decarboxylase 
Yes 

MOG78_18565; 

MOG78_18550; 

MOG78_18545; 

MOG78_18540; 

MOG78_18530 

No 

MMW20_11060; 

MMW20_11075; 

MMW20_11080; 

MMW20_11085; 

MMW20_11095 

Malonate CoA-

transferase 
Yes Absent No Absent 

Malonate-
semialdehyde 

dehydrogenase 

Yes Absent No Absent 

Malonyl-
CoA/methylmalon

yl-CoA synthetase 

Yes Absent No Absent 

Maleic acid 

Maleate isomerase Yes Absent No Absent 

Maleate hydratase Yes Absent No Absent 

3-isopropylmalate 

dehydratasea 
Yes 

MOG78_13080; 

MOG78_13075 
No 

MMW20_17000; 

MMW20_17005 

Acetic acid 

Acetyl-CoA 

synthetase 
No MOG78_14765 No MMW20_14980 

Acetate kinase No MOG78_01250 No MMW20_05785 

Aldehyde 

dehydrogenase 
No MOG78_17415 No MMW20_12230 

ActPb No MOG78_14775 No MMW20_14970 
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SatPb No MOG78_13285 No MMW20_16750 

Methane 

sulfonic acid 

Alkanesulfonate 

monooxygenase 
No 

MOG78_08820; 

MOG78_08810 
No 

MMW20_21175; 

MMW20_21185 

Glutaric acid 

Succinate-

semialdehyde 

dehydrogenase / 

glutarate-

semialdehyde 

dehydrogenasec 

No 
MOG78_19060; 

MOG78_13695 
No 

MMW20_10560; 

MMW20_16345 

Glutaryl-CoA 

synthetase 
No Absent No Absent 

Glutarate 

dioxygenase 
No Absent No Absent 

a Genes are not canonical but may involve in the biodegradation of organic acids.  178 
b Transporter proteins involved in uptake of acetic acid for biodegradation 179 
c No reverse catalysis in the direction from glutarate to glutarate-semialdehyde has been 180 

reported in the literature. 181 

 182 

 183 

Table S6. Concentration of radicals and cells used to estimate the loss rates by biodegradation 184 

and chemical reactions in Table S6.  185 

Radical concentration/ 

Cell concentration 
Area Concentration Reference 

·OH (M) 

Remote 2.2 × 10−14 
(Vaitilingom 

et al., 2010) 

Marine 2.0 × 10−12 
(Vaitilingom 

et al., 2013) 

Urban 3.5 × 10−15 
(Morris et 

al., 2014) 

NO3· (M) 

Remote 5.1 × 10−15 
(Morris et 

al., 2017) 

Marine 6.9 × 10−15 
(Hu et al., 

2018) 

Urban 1.4 × 10−13 
(Huang et 

al., 2021) 

Cell (cell L-1)  8.0 × 107 
(Zhang et 

al., 2021) 

 186 

Deleted: carboxylic187 
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Table S7. Estimations of the loss rates of formate, oxalate, and malonate by biodegradation and chemical reactions (i.e., ·OH oxidation (daytime) and NO3· (nighttime)). These loss rates were calculated based on 189 

concentrations and pH measured at the different sites. Equations used in these calculations can be found in Section S6. References used to obtain the pH of cloud/rainwater and organic acids are indicated in superscripts. 190 

The biodegradation and chemical reaction loss rates calculated here were used to generate Figure 5. 191 

Daytime 192 

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1) 

Location (remote) Category pH 
Formate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (remote) 

Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (remote) 

Mount Lu(Möhler et al., 2007) Cloud 

3.81 

(Vaïtilingom 

et al., 2012) 

10.83 (Wei 

et al., 2017) 
1.34×10-10  5.72×10-10 

4.95 (Zhu et 

al., 2018) 
1.06×10-12  1.74×10-11 

Mount Lu(Wei et al., 2017) Rain 
4.44 (Peng 

et al., 2019) 

10.21 

(Amato et 

al., 2005) 

1.26×10-10  5.39×10-10 
2.54 

(Burrows et 

al., 2009) 

5.44×10-13  8.92×10-12 

Mount Heng(Amato et al., 

2017) 
Cloud 

3.8 (Amato 

et al., 2005) 

19.65 

(Amato et 

al., 2017) 

2.43×10-10  1.04×10-9 
5.11 (Wei et 

al., 2017) 
1.10×10-12  1.80×10-11 

Mount Heng(Delort et al., 

2010) 
Rain 

4.35 

(Vaitilingom 

et al., 2010) 

14.30 

(Vaitilingom 

et al., 2013) 

1.77×10-10  7.55×10-10 

1.66 

(Ervens and 

Amato, 

2020) 

3.55×10-13  5.83×10-12 

Mangdang Mountain(Ariya et 

al., 2002) 
Rain 

4.81 

(Husárová 

et al., 2011) 

7.90 

(Vaïtilingom 

et al., 2011) 

9.78×10-11  4.17×10-10 
1.80 (Jaber 

et al., 2020) 
3.86×10-13  6.34×10-12 

Taiwan(Jaber et al., 2021) Cloud 
3.91 (Joly et 

al., 2015) 

5.74 (Davey 

and O'toole, 

2000) 

7.11×10-11  3.03×10-10 
6.60 (Delort 

et al., 2010) 
1.42×10-12  2.32×10-11 

Kleiner Feldberg, 

Germany(Flemming and 

Wingender, 2010) 

Cloud 

3.9-4.6 

(Vaïtilingom 

et al., 2012) 

3.26 

(Matulova 

et al., 2014) 

4.03×10-11  1.72×10-10 ND    

Whiteface Mountain, 

USA(Amato et al., 2005) 
Cloud 

3.1-4.4 

(Peng et al., 

2019) 

25.20 

(Amato et 

al., 2005) 

3.12×10-10  1.33×10-9 
9.66 (Pye et 

al., 2020) 
2.07×10-12  3.40×10-11 

Rax, Austria(Shah et al., 2020) Cloud 
3.84 (Li et 

al., 2020) 

13.25 (Pye 

et al., 2020) 
1.64×10-10  7.00×10-10 

5.11 (Shah 

et al., 2020) 
1.10×10-12  1.80×10-11 

Sonnblick, Austria(Qu and 

Han, 2021) 
Cloud 

5.0-6.5 

(Anglada et 

al., 2015) 

6.30 (Joly et 

al., 2015) 
 9.79×10-11 3.33×10-10 

1.89 

(Vaïtilingom 

et al., 2011) 

 3.61×10-12 6.65×10-12 

Mount Tai, China(Joly et al., 

2015) 
Cloud 

4.6 (Jaber et 

al., 2021) 

31.80 (Jaber 

et al., 2020) 
3.94×10-10  1.68×10-9 

11.10 (Li et 

al., 2020) 
2.38×10-12  3.91×10-11 

Shangzhong(Qu and Han, 

2021) 
Rain ND 

4.95 (Peng 

et al., 2019) 
6.13×10-11  2.61×10-10 

1.16 (Chen 

et al., 2012) 
2.48×10-13  4.07×10-12 

São Paulo State, 

Brazil(Després et al., 2012) 
Rain 

4.96 (Ding 

et al., 2015) 

7.80 (Zhou 

et al., 2018) 
 1.21×10-10 4.12×10-10 

1.20 

(Prokof’eva 

et al., 2021) 

 2.29×10-12 4.22×10-12 

           

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1) 

Location (Marine) Category pH 
Formate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (marine) 

Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (marine) 

Puerto Rico Cloud 

5.5 

(Romano et 

al., 2019) 

1.00 (Ruiz-

Gil et al., 

2020) 

 1.55×10-11 4.80×10-9 
0.50 

(Romano et 

al., 2021) 

 9.55×10-13 1.60×10-10 

Puerto Rico(Tsai and Kuo, 

2013) 
Rain 

5.3 (Löflund 

et al., 2002) 

0.20 (Sun et 

al., 2016) 
 3.11×10-12 9.60×10-10 

0.00 (Li et 

al., 2020) 
   

Deleted: S6193 
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Puy de dome(Vaitilingom et 

al., 2010) 
Cloud 

6.1 

(Vaïtilingom 

et al., 2011) 

4.90 

(George et 

al., 2015) 

 7.61×10-11 2.35×10-8 
1.00 (Huang 

et al., 2018) 
 1.91×10-12 3.20×10-10 

           

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1) 

Location (Urban)   Formate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (urban) 

Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) ·OH (urban) 

Shenzhen, South 

China(Misovich et al., 2021) 
Rain 

4.56 (Li et 

al., 2020) 

2.26 (Tsai 

and Kuo, 

2013) 

2.80×10-11  1.90×10-11 
0.58 

(Löflund et 

al., 2002) 

1.23×10-13  3.22×10-13 

Anshun(Sun et al., 2016) Rain 
4.67 (Li et 

al., 2020) 

8.77 

(Vaitilingom 

et al., 2010) 

1.09×10-10  7.37×10-11 
2.84 (Jaber 

et al., 2020) 
6.09×10-13  1.59×10-12 

Newark US East Coast(Jaber 

et al., 2021) 
Rain 

4.6 

(Vaïtilingom 

et al., 2011) 

4.44 (Jaber 

et al., 2020) 
5.50×10-11  3.73×10-11 

0.68 (Jaber 

et al., 2021) 
1.46×10-13  3.81×10-13 

Hong Kong SAR(Bearson et 

al., 1997) 
Cloud 

3.87 (Lund 

et al., 2014) 

17.10 

(Bearson et 

al., 1997) 

2.12×10-10  1.44×10-10 

10.30 

(Davey and 

O'toole, 

2000) 

2.21×10-12  5.77×10-12 

Puy de dome(Delort et al., 

2010) 
Cloud 

3.9 

(Flemming 

and 

Wingender, 

2010) 

33.20 

(Vaïtilingom 

et al., 2012) 

4.11×10-10  2.79×10-10 
9.30 

(Matulova 

et al., 2014) 

1.99×10-12  5.21×10-12 

ND: No data 195 

Nighttime 196 

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1)  Malonate loss rate (M s-1) 

Location (remote) Category pH Formate (µM) bio (pH ~4) bio (pH ~5) NO3· (remote) 
Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (remote) 

Malonate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (remote) 

Mount Lu(Guan and 

Liu, 2020) 
Cloud 

3.81 

(Davey and 

O'toole, 

2000) 

10.83 (Delort et 

al., 2010) 
1.69×10-10  2.32×10-12 

4.95 

(Flemming 

and 

Wingender, 

2010) 

2.07×10-12  1.11×10-12 ND    

Mount Lu(Vaïtilingom 

et al., 2012) 
Rain 

4.44 

(Matulova 

et al., 2014) 

10.21 (Bianco 

et al., 2018) 
1.59×10-10  2.19×10-12 

2.54 

(Laszakovit

s and 

Mackay, 

2022) 

1.06×10-12  5.69×10-13 ND    

Mount Heng(Watson et 

al., 2007) 
Cloud 

3.8 (Rivas-

Ubach et 

al., 2018) 

19.65 

(Matulova et al., 

2014) 

3.06×10-10  4.21×10-12 
5.11 

(Bianco et 

al., 2016) 

2.14×10-12  1.15×10-12 ND    

Mount Heng(Tyagi et 

al., 2015) 
Rain 

4.35 (Jaber 

et al., 2021) 

14.30 (Bianco 

et al., 2019) 
2.23×10-10  3.06×10-12 

1.66 

(Vaitilingo

m et al., 

2010) 

6.94×10-13  3.71×10-13 ND    

Mangdang 

Mountain(Vaïtilingom 

et al., 2011) 

Rain 

4.81 

(Fankhause

r et al., 

2019) 

7.90 (Makuc et 

al., 2001) 
1.23×10-10  1.69×10-12 

1.80 

(Tilgner et 

al., 2021) 

7.55×10-13  4.04×10-13 
1.40 (Koutny 

et al., 2006) 
 5.16×10-12 4.00×10-14 

Taiwan(Guan and Liu, 

2020) 
Cloud 

3.91 

(Vaïtilingo

m et al., 

2011) 

5.74 (Jaber et 

al., 2020) 
8.95×10-11  1.23×10-12 

6.60 (Jaber 

et al., 2021) 
2.77×10-12  1.48×10-12 

0.16 

(Herrmann et 

al., 2010) 

3.65×10-14  4.57×10-15 
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Kleiner Feldberg, 

Germany(Vaïtilingom 

et al., 2011) 

Cloud 

3.9-4.6 

(Jaber et al., 

2020) 

3.26 (Jaber et 

al., 2021) 
5.08×10-11  6.98×10-13 ND    ND    

Whiteface Mountain, 

USA(Herrmann et al., 

2010) 

Cloud 

3.1-4.4 

(Ervens et 

al., 2003) 

25.20 

(Herrmann et 

al., 2010) 

3.93×10-10  5.40×10-12 

9.66 

(Vaitilingo

m et al., 

2010) 

4.05×10-12  2.17×10-12 
7.69 

(Vaïtilingom et 

al., 2011) 

1.75×10-12  2.20×10-13 

Rax, 

Austria(Fankhauser et 

al., 2019) 

Cloud 
3.84 (Pye et 

al., 2020) 

13.25 (Li et al., 

2020) 
2.07×10-10  2.84×10-12 

5.11 (Pye et 

al., 2020) 
2.14×10-12  1.15×10-12 

1.92 (Shah et 

al., 2020) 
4.38×10-13  5.49×10-14 

Sonnblick, Austria(Qu 

and Han, 2021) 
Cloud 

5.0-6.5 

(Vaïtilingo

m et al., 

2012) 

6.30 (Zhu et al., 

2018) 
 1.32×10-10 1.35×10-12 

1.89 (Peng 

et al., 2019) 
 1.19×10-11 4.24×10-13 

0.38 (Ariya et 

al., 2002) 
 1.42×10-12 1.10×10-14 

Mount Tai, 

China(Vaitilingom et 

al., 2010) 

Cloud 

4.6 

(Husárová 

et al., 2011) 

31.80 4.96×10-10  6.81×10-12 

11.10 

(Vaïtilingo

m et al., 

2011) 

4.65×10-12  2.49×10-12 ND    

Shangzhong(Xu et al., 

2009) 
Rain  4.95 7.71×10-11  1.06×10-12 1.16 4.84×10-13  2.59×10-13 ND    

São Paulo State, 

Brazil(Coelho et al., 

2011) 

Rain 

4.96 

(Coelho et 

al., 2011) 

7.80 (Coelho et 

al., 2011) 
 1.63×10-10 1.67×10-12 

1.20 

(Coelho et 

al., 2011) 

 7.57×10-12 2.69×10-13 ND    

               

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1)  Malonate loss rate (M s-1) 

Location (marine)  pH Formate (µM) bio (pH ~4) bio (pH ~5) NO3· (marine) 
Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (marine) 

Malonate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (marine) 

Puerto Rico(Gioda et 

al., 2011) 
Cloud 

5.5 (Gioda 

et al., 2011) 

1.00 (Gioda et 

al., 2011) 
 2.09×10-11 2.90×10-13 

0.50 (Gioda 

et al., 2011) 
 3.16×10-12 1.52×10-13 ND    

Puerto Rico(Gioda et 

al., 2011) 
Rain 

5.3 (Gioda 

et al., 2011) 

0.20 (Gioda et 

al., 2011) 
 4.19×10-12 5.80×10-14 ND    ND    

Puy de 

dôme(Vaitilingom et 

al., 2013) 

Cloud 

6.1 

(Vaitilingo

m et al., 

2013) 

4.90 

(Vaitilingom et 

al., 2013) 

 1.03×10-10 1.42×10-12 

1.00 

(Vaitilingo

m et al., 

2013) 

 6.31×10-12 3.04×10-13 
0.40 

(Vaïtilingom et 

al., 2012) 

 1.47×10-12 1.55×10-14 

               

    Formate loss rate (M s-1)  Oxalate loss rate (M s-1)  Malonate loss rate (M s-1) 

Location (urban)  pH Formate (µM) bio (pH ~4) bio (pH ~5) NO3· (urban) 
Oxalate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (urban) 

Malonate 

(µM) 
bio (pH ~4) bio (pH ~5) NO3· (urban) 

Shenzhen, South 

China(Huang et al., 

2010) 

Rain 

4.56 

(Huang et 

al., 2010) 

2.26 (Huang et 

al., 2010) 
3.52×10-11  1.33×10-11 

0.58 

(Huang et 

al., 2010) 

2.41×10-13  3.54×10-12 ND    

Anshun(Zhang et al., 

2011) 
Rain 

4.67 (Zhang 

et al., 2011) 

8.77 (Zhang et 

al., 2011) 
1.37×10-10  5.16×10-11 

2.84 (Zhang 

et al., 2011) 
1.19×10-12  1.75×10-11 ND    

Newark US East 

Coast(Song and Gao, 

2009) 

Rain 

4.6 (Song 

and Gao, 

2009) 

4.44 (Song and 

Gao, 2009) 
6.92×10-11  2.61×10-11 

0.68 (Song 

and Gao, 

2009) 

2.85×10-13  4.19×10-12 
0.29(Song and 

Gao, 2009) 
6.61×10-14  2.27×10-13 

Hong Kong SAR(Li et 

al., 2020) 
Cloud 

3.87 (Li et 

al., 2020) 

17.10 (Li et al., 

2020) 
2.66×10-10  1.01×10-10 

10.30 (Li et 

al., 2020) 
4.32×10-12  6.34×10-11 

1.36 (Zhao et 

al., 2019) 
3.10×10-13  1.07×10-12 

Puy de 

dome(Vaitilingom et 

al., 2013) 

Cloud 

3.9 

(Vaitilingo

m et al., 

2013) 

33.20 

(Vaitilingom et 

al., 2013) 

5.17×10-10  1.95×10-10 

9.30 

(Vaitilingo

m et al., 

2013) 

3.90×10-12  5.73×10-11 
3.50 

(Vaitilingom et 

al., 2013) 

7.97×10-13  2.74×10-12 

ND: No data197 
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Table S8. Acid dissociation constants and Henry’s law coefficients at 25 ℃ used to generate 198 

𝜀(𝐻𝐴(𝑎𝑞)) and 𝜀(𝐻2𝐴(𝑎𝑞)) S curves in Figure S14 199 

Organic acid First acid 

dissociation constant 

(𝐾𝑎1) (mol L-1) 

Second acid 

dissociation constant 

(𝐾𝑎2) (mol L-1) 

Henry’s law constant 

(𝐻𝐻𝐴 or 𝐻𝐻2𝐴) 

(mol L-1 atm-1) 

Formic acid 1.78 × 10−4 

(Haynes, 2014) 

Not applicable 9.53 × 103 

 

Oxalic acid 5.62 × 10−2 

(Haynes, 2014) 

1.55 × 10−4 

(Haynes, 2014) 

6.11 × 108 

(Nah et al., 2018)a 

Malonic acid 1.48 × 10−3 

(Williams, 2022) 

2.04 × 10−6 

(Williams, 2022) 

3.85 × 1010 

(Compernolle and 

Müller, 2014) 

Maleic acid 1.26 × 10−2 

(Weast and Astle, 

1981) 

8.51 × 10−7 

(Weast and Astle, 

1981) 

1.42 × 1010 

(Lide and Frederikse, 

1995) 
aWhile we used the Henry’s law coefficient provided by Nah et al. (2018), it should be noted 200 

that the authors obtained this value by taking the average of 𝐻𝐶2𝐻2𝑂4
 values provided by Clegg 201 

et al. (1996), Compernolle and Muller (2014) and Saxena and Hildemann (1996), and 202 

accounted for the effect of temperature using the equations provided by Sander (2015).    203 

 204 

Section S1. Genome assembly, annotation, and taxonomic analysis 205 

Genome assembly of the sequencing reads was performed using the NECAT pipeline 206 

(v0.0.1_update20200803) (Chen et al., 2021) with the default parameters. The reads were first 207 

corrected (PREP_OUTPUT_COVERAGE = 40, CNS_OUTPUT_COVERAGE = 30, 208 

MIN_READ_LENGTH = 3000) and then the corrected reads were assembled 209 

(OVLP_FAST_OPTIONS = -n 500 -z 20 -b 2000 -e 0.5 -j 0 -u 1 -a 1000, 210 

OVLP_SENSITIVE_OPTIONS = -n 500 -z 10 -e 0.5 -j 0 -u 1 -a 1000). Both the correction 211 

and assembly steps were progressive with multiple processing steps to improve the accuracy 212 

and completeness. The quality of the assembled genomes was evaluated using the 213 

Benchmarking Universal Single-copy Orthologs (BUSCO v5.3.1) tool based on the database 214 

of enterobacterales_odb10 (Manni et al., 2021). For both strains B00910 and pf0910, complete 215 

circular chromosomes and plasmids were obtained. 216 

Genome annotation was performed using Prokka (v1.14.6) (Seemann, 2014) with the 217 

default parameters. Whole genome-based taxonomic analysis was conducted using the Type 218 

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted ...

Formatted Table

Formatted: Superscript

Formatted ...

Formatted: Superscript

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Superscript

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Superscript

Formatted: Line spacing:  single

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Deleted: (Zhu et al., 2018)219 

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: Not Bold



25 

 

(Strain) Genome Server (TYGS) (Meier-Kolthoff and Göker, 2019). Average Nucleotide 220 

Identity (ANI) was calculated by fastANI (v1.33) (Jain et al., 2018). Metabolic pathways were 221 

analyzed using the KEGG Mapper (Kanehisa et al., 2022) and the RAST server (Aziz et al., 222 

2008). The sequences of the two genomes have been deposited in NCBI under the BioProject 223 

number PRJNA812965. 224 

Section S2. Extraction of water-insoluble and water-soluble biological material and 225 

organic compounds for UPLC-MS analysis 226 

A modified Bligh & Dyer (BD) protocol was performed to extract water-insoluble 227 

organic compounds (Sündermann et al., 2016). Briefly, 3 mL of methanol (Duskan, LC-MS 228 

grade)/chloroform (RCI, HPLC grade) (1:2, v/v) was added to a filtered 5 mL sample solution 229 

and vortexed for 5 min, after which the samples were centrifuged at 3000 rpm for 10 min at 10 230 

℃. The bottom layer was collected into a clean 2 mL centrifuge tube and dried in a concentrator 231 

using nitrogen gas. The dried extracts were redissolved in 500 µL of acetonitrile (Duskan, LC-232 

MS grade) and stored at -20 ℃ prior to UPLC-MS analysis. Solid-phase extraction (SPE) was 233 

performed to remove the inorganic salts and extract the water-soluble organic compounds using 234 

hydrophobic lipophilic balanced (HLB) cartridges (Oasis HLB, 6cc 500 mg). The HLB 235 

cartridges were first preconditioned with 1 mL methanol and 2 mL Milli-Q water. A 10 mL 236 

filtered sample solution was then loaded into the SPE cartridge and washed with 20 mL Milli-237 

Q water under vacuum at a flow rate of 5 mL/min. The elution was performed by adding 1.5 238 

mL methanol (Duskan, LC-MS grade). The eluent was evaporated to dryness under nitrogen 239 

gas and reconstituted in 500 µL acetonitrile (Duskan, LC-MS grade).  240 

Section S3. UPLC-MS operation, data processing, and statistical analysis 241 

Chromatographic separation was performed on a Kinetex HILIC LC column (100 × 2.1 242 

mm, 2.6 µm, 100 Å, Phenomenex). The flow rate was fixed at 0.3 mL/min with ultra-pure 243 

water containing 5 mM ammonium acetate (Fisher, LC-MS grade) as mobile phase A and 244 

acetonitrile (Duskan, LC-MS grade) for mobile phase B. The following gradient program was 245 

used: 0 to 2 min 95% A; 2 to 4 min linear gradient to 80% B; 4 to 11 min linear gradient to 246 
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65% B; 11 to 12.5 min 65% B; 12.5 to 13 min linear gradient to 95% B; 13 to 15 min 247 

equilibration wash with 95% B. Injection volume was set at 10 uL. The information dependent 248 

analysis (IDA) acquisition was acquired with MS scan (100 to 1200 m/z) followed by MS/MS 249 

scan (50 to 1200 m/z) in positive ion mode. The following MS conditions were used: 30 PSI 250 

curtain gas, 60 PSI ion source gas, 3000 V ESI ion spray voltage, 320 ℃ source temperature, 251 

10 V collision energy for MS, and 80 V declustering potential. MS/MS was acquired with a 252 

collision energy was 20 V with 5 V spread. The raw MS data was processed for peak detection, 253 

retention time correction, alignment, and integration using the XCMS software built into the 254 

web-based Galaxy platform (https://umsa.cerit-sc.cz/) (Gowda et al., 2014). The processed data 255 

was then uploaded to MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (Pang et al., 2021) 256 

to identify cellular compounds that had prominent ion intensities. 257 

The raw UPLC-MS data first underwent preprocessing, normalization, and quality 258 

control steps using the XCMS software built into the web-based Galaxy platform (available at: 259 

https://umsa.cerit-sc.cz/). The raw data was processed for peak detection, alignment, and 260 

framing. This generated a table that displayed the retention time, mass-to-charge ratio (m/z), 261 

and the intensity/peak area for each peak. The quality control step was performed to assess the 262 

stability of the intensities of peaks (“features”) between samples. This was performed using 263 

quality control samples, which were mixtures of equal amounts of experimental samples taken 264 

at each time point of the experiment. The relative standard deviation (RSD) of each feature in 265 

the quality control sample was compared to those in the experimental samples. Features with 266 

higher RSD in the quality control sample than in the experimental samples were excluded, 267 

while features with RSD < 30% were retained for further analysis. Multivariable statistical 268 

analysis was performed on the retained features using principal component analysis (PCA) with 269 

95% confidence ellipse and partial least squares discrimination analysis (PLS-DA) to identify 270 

potential discriminations between the experimental samples. Heatmaps were generated to 271 

determine how the retained features changed at different time points during the experiment. A 272 

selection of discriminant ions and buckets was done based on the variable importance in 273 

projection (VIP) values. Features with VIP values greater than 1.0 were used for the 274 

identification step. MS/MS analysis was performed for the structural identification of 275 

https://umsa.cerit-sc.cz/
https://www.metaboanalyst.ca/
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compounds. The structure of each compound was deduced based on its adducts, isotopes, and 276 

MS/MS fragments using the SCIEX OS-Q software (AB Sciex). Information about 277 

compounds’ chemical structures, m/z, and retention times were subsequently uploaded to 278 

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/), which used this information to identify 279 

the compounds.  280 

Section S4. IC operation 281 

Organic acid concentrations were measured using a Dionex ICS-1100 (ThermoFisher 282 

Scientific) system. Separation was achieved using a Dionex IonPac AS18 (4 × 250 mm) anion 283 

exchange column (Thermo Scientific) equipped with a Dionex IonPac AG18 (4 × 50 mm) 284 

guard column (Thermo Scientific). 16 mM potassium hydroxide (Fisher, ≥85%) was used as 285 

the mobile phase at a flow rate of 1.0 mL/min for a 30 min run time. Each aliquot of solution 286 

was passed through a syringe filter before IC analysis.  287 

Section S5. Estimation of biodegradation and chemical reaction rates (M s-1) in cloud 288 

water 289 

S5.1. Biodegradation 290 

The decay in the concentration of a specific organic acid as a function of time (0 to 12 291 

hours) during a biodegradation experiment can be described by the following equation:    292 

𝑑[𝐴𝑐𝑖𝑑]

𝑑𝑡
= 𝑘𝑐𝑒𝑙𝑙

′ × [𝐴𝑐𝑖𝑑] = 𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 × [𝑐𝑒𝑙𝑙]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 × [𝐴𝑐𝑖𝑑]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 293 

where 𝑘𝑐𝑒𝑙𝑙
′  (𝑠−1) is the pseudo first order rate constant obtained from fitting the decay of the 294 

organic acid, and [𝐴𝑐𝑖𝑑]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (𝑚𝑜𝑙 𝐿−1) is the initial concentration of the organic acid 295 

used in the biodegradation experiment. 𝑘𝑐𝑒𝑙𝑙
′  is the product of the concentration of bacteria cells 296 

used in the experiment ( [𝑐𝑒𝑙𝑙]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡, 𝑐𝑒𝑙𝑙 𝐿−1 ) and the biodegradation rate constant 297 

(𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑, 𝐿 𝑐𝑒𝑙𝑙−1𝑠−1).  298 

The loss rate of the organic acid in cloud water resulting from biodegradation is:   299 

𝑑[𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑

𝑑𝑡
= 𝑘𝑐𝑒𝑙𝑙,𝑎𝑐𝑖𝑑 × [𝑐𝑒𝑙𝑙]𝑐𝑙𝑜𝑢𝑑 × [𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑 300 
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where [𝑐𝑒𝑙𝑙]𝑐𝑙𝑜𝑢𝑑 (𝑐𝑒𝑙𝑙 𝐿−1) is the concentration of bacteria cells present in cloud water, and 397 

[𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑 (𝑚𝑜𝑙 𝐿−1) is the concentration of the organic in cloud water.  398 

S5.2. Chemical reactions 399 

The loss rates of the organic acid in cloud water resulting from reactions with ·OH and 400 

NO3· are:   401 

𝑑[𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑

𝑑𝑡
= 𝑘𝑂𝐻,𝑎𝑐𝑖𝑑 × [∙ 𝑂𝐻]𝑐𝑙𝑜𝑢𝑑 × [𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑 402 

𝑑[𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑

𝑑𝑡
= 𝑘𝑁𝑂3,𝑎𝑐𝑖𝑑 × [𝑁𝑂3 ∙]𝑐𝑙𝑜𝑢𝑑 × [𝐴𝑐𝑖𝑑]𝑐𝑙𝑜𝑢𝑑 403 

where 𝑘𝑂𝐻,𝑎𝑐𝑖𝑑  ( 𝐿 𝑚𝑜𝑙−1𝑠−1 ) and 𝑘𝑁𝑂3,𝑎𝑐𝑖𝑑  ( 𝐿 𝑚𝑜𝑙−1𝑠−1 ) are the rate constants for the 404 

reactions of the organic acid with ·OH and NO3·, respectively, and [∙ 𝑂𝐻]𝑐𝑙𝑜𝑢𝑑  (𝑚𝑜𝑙 𝐿−1) and 405 

[𝑁𝑂3 ∙]𝑐𝑙𝑜𝑢𝑑  (𝑚𝑜𝑙 𝐿−1) are the concentrations of ·OH and NO3· in cloud water, respectively.  406 

Section S6. Gas-aqueous phase partitioning of monocarboxylic and dicarboxylic acids 407 

Meskhidze et al. (2003) and Guo et al. (2016) previously introduced the concept of “S 408 

curves”, which describe how the pH of the aqueous phase affects the gas-aqueous partitioning 409 

of acidic and basic species. It is assumed that the equilibrium between gas and aqueous phases 410 

involves the dissolution of the acidic/basic species into the aqueous phase, followed by the 411 

dissociation of the dissolved species. Assuming unity activity coefficients, for monocarboxylic 412 

acids (HA, e.g., formic acid), the pH-dependence of the molar fraction of HA in the aqueous 413 

phase (𝜀(𝐻𝐴(𝑎𝑞))) is described by the following equation (Nah et al., 2018): 414 

𝜀(𝐻𝐴(𝑎𝑞)) =
𝐻𝐻𝐴𝑊𝑅𝑇(10−𝑝𝐻 + 𝐾𝑎1) × 0.987 × 10−14

10−𝑝𝐻 + 𝐻𝐻𝐴𝑊𝑅𝑇(10−𝑝𝐻 + 𝐾𝑎1) × 0.987 × 10−14
 415 

where 𝑊  is liquid water concentration (μg m-3), 𝐻𝐻𝐴  (mole L-1 atm-1) is the Henry’s law 416 

constants for monocarboxylic acid, 𝐾𝑎1 (mole L-1) is the first acid dissociation constant, R is 417 

the gas constant (8.314 m3 Pa K-1 mol-1), and T is temperature (K). The complete derivation for 418 

𝜀(𝐻𝐴(𝑎𝑞)) can be found in the SI of Guo et al. (2015). 419 

 Assuming unity activity coefficients, for dicarboxylic acids (H2A, e.g., oxalic acid, 420 
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malonic acid, and maleic acid), the pH-dependence of the molar fraction of H2A in the aqueous 426 

phase (𝜀(𝐻2𝐴(𝑎𝑞))) can eventually be simplified to the following equation (Nah et al., 2018): 427 

𝜀(𝐻2𝐴(𝑎𝑞)) ≅
𝐻𝐻2𝐴𝑊𝑅𝑇(10−𝑝𝐻 + 𝐾𝑎1) × 0.987 × 10−14

10−𝑝𝐻 + 𝐻𝐻2𝐴𝑊𝑅𝑇(10−𝑝𝐻 + 𝐾𝑎1) × 0.987 × 10−14
 428 

where 𝑊  is liquid water concentration (μg m-3), 𝐻𝐻2𝐴 (mole L-1 atm-1) is the Henry’s law 429 

constants for monocarboxylic acid, 𝐾𝑎1 (mole L-1) is the first acid dissociation constant, R is 430 

the gas constant (8.314 m3 Pa K-1 mol-1), and T is temperature (K). The complete derivation for 431 

𝜀(𝐻2𝐴(𝑎𝑞)) can be found in the SI of Nah et al. (2018), which also includes discussions of the 432 

assumptions made during the derivation process which will lead to the disappearance of the 433 

second acid dissociation constant (𝐾𝑎2) term during the process of simplifying the equation. 434 

 435 
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