

1 **Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic**
2 **aerosol in Delhi, India**

3 Daniel J. Bryant¹, Beth S. Nelson¹, Stefan J. Swift^{1a}, Sri Hapsari Budisulistiorini¹, Will S. Drysdale^{1,2},
4 Adam R. Vaughan¹, Mike J. Newland^{1b}, James R. Hopkins^{1,2}, James M. Cash^{3,4}, Ben Langford³, Eiko
5 Nemitz³, W. Joe F. Acton^{5c}, C. Nicholas Hewitt⁵, Tuhin Mandal⁶, Bhola R. Gurjar⁶, Shivani^{6d}, Ranu
6 Gadi⁶, James D. Lee^{1,2}, Andrew R. Rickard^{1,2}, Jacqueline F. Hamilton¹

7 1- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York,
8 Heslington, York, YO10 5DD, UK

9 2- National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK

10 3- UK Centre for Ecology and Hydrology, Penicuik, Midlothian, Edinburgh, EH26 0QB, UK

11 4- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Edinburgh, UK

12 5- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK

13 6- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for
14 Women, Delhi, 110006, India

15 ^anow at: J. Heyrovsky Institute of Physical Chemistry, Department of Chemistry of Ions in Gaseous
16 Phase, Prague, Czech Republic

17 ^bnow at: ICARE-CNRS, 1 C Av. de la Recherche Scientifique, 45071 Orléans CEDEX 2, France

18 ^cnow at: School of Geography, Earth and Environmental Sciences, University of Birmingham,
19 Birmingham, B15 2TT, UK

20 ^dnow at: Department of Chemistry, Miranda House, Delhi University, Delhi, 110007, India

21 Correspondence email: daniel.bryant@york.ac.uk

22 **Abstract**

23 Isoprene and monoterpenes emissions to the atmosphere are generally dominated by biogenic
24 sources. The oxidation of these compounds can lead to the production of secondary organic aerosol,
25 however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene
26 and monoterpenes can form SOA heterogeneously via anthropogenic-biogenic interactions resulting
27 in the formation of organosulfates (OS) and nitrooxy-organosulfates (NOS). Delhi, India is one of the
28 most polluted cities in the world, but little is known about the emissions of biogenic VOCs or the
29 sources of SOA. As part of the DELHI-FLUX project, gas phase mixing ratios of isoprene and speciated
30 monoterpenes were measured during pre- and post-monsoon measurement campaigns in central
31 Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon
32 (isoprene: (0.65 ± 0.43) ppbv, limonene: (0.59 ± 0.11) ppbv, α -pinene: (0.13 ± 0.12) ppbv) than the
33 pre-monsoon (isoprene: (0.13 ± 0.18) ppbv, limonene: 0.011 ± 0.025 (ppbv), α -pinene: $0.033 \pm$
34 0.009) period. At night, isoprene and monoterpane concentrations correlated strongly with CO
35 across during the post-monsoon period. Filter samples of particulate matter less than 2.5 microns in
36 diameter ($PM_{2.5}$) were collected and the OS and NOS content analysed using ultrahigh-performance
37 liquid chromatography tandem mass spectrometry (UHPLC-MS²). Inorganic sulfate was shown to
38 facilitate the formation of isoprene OS species across both campaigns. Sulfate contained within OS
39 and NOS species were shown to contribute significantly to the sulfate signal measured via AMS.
40 Strong nocturnal enhancements of NOS species were observed across both campaigns. The total

41 concentration of OS/NOS species contributed an average of $(2.0 \pm 0.9) \%$ and $(1.8 \pm 1.4) \%$ to the
42 total oxidised organic aerosol, and up to a maximum of 4.2 % and 6.6 % across the pre- and post-
43 monsoon periods, respectively. Overall, this study provides the first molecular level measurements
44 of SOA derived from isoprene and monoterpene in Delhi and demonstrates that both biogenic and
45 anthropogenic sources of these compounds can be important in urban areas.

46 **1. Introduction**

47 India is undergoing significant urbanization and industrialisation, with a rapidly increasing
48 population. According to the WHO, India was home to 9 out of the top 10 most polluted cities in the
49 world in 2020 in terms of annual mean $PM_{2.5}$ (particulate matter less than 2.5 micrometres in
50 diameter) concentrations (WHO, 2018). In Delhi, the population-weighted mean $PM_{2.5}$ was estimated
51 to be 209 (range: $120 - 339.5 \mu g m^{-3}$ in 2017, over 40 times the WHO annual mean guidelines of $5 \mu g m^{-3}$, and greater than five times India's own standard of $40 \mu g m^{-3}$ (Balakrishnan et al., 2019). Air
52 pollution is estimated to cause over 1 million deaths per year in India alone (Landrigan et al., 2018).

53 Numerous studies have investigated $PM_{2.5}$ concentrations, characteristics and meteorological effects
54 in Delhi (Anand et al., 2019; Bhandari et al., 2020; Chowdhury et al., 2004; Hama et al., 2020;
55 Kanawade et al., 2020; Miyazaki et al., 2009; Nagar et al., 2017). The key sources of $PM_{2.5}$ identified
56 are secondary aerosol, fossil fuel combustion, municipal waste and biomass burning (Chowdhury et
57 al., 2004; Sharma and Mandal, 2017; Stewart et al., 2021b, 2021a). Previous studies have also shown
58 that alongside extremely high emissions of pollutants, regional sources and meteorology in
59 particular play an important role in high pollution events in Delhi (Bhandari et al., 2020; Sawlani et
60 al., 2019; Schnell et al., 2018; Sinha et al., 2014).

61 Secondary species have been shown to be significant contributors to PM_1 and $PM_{2.5}$ mass in Delhi,
62 with organics contributing 40-70 % of PM_1 mass. (Gani et al., 2019; Shivani et al., 2019; Reyes-
63 Villegas et al., 2021; Sharma and Mandal, 2017) However, limited molecular level analysis of organic
64 aerosol (OA) has been undertaken (Chowdhury et al., 2004; Elzein et al., 2020; Miyazaki et al., 2009;
65 Singh et al., 2021, 2012; Yadav et al., 2021). Kirillova et al., (2014) analysed the sources of water-
66 soluble organic carbon (WSOC) in Delhi, using radiocarbon measurement constraints. The study
67 identified that 79 % of WSOC was classified as non-fossil carbon, attributed to biogenic/biomass
68 burning sources in urban Delhi (Kirillova et al., 2014), similar to other studies from India (Kirillova et
69 al., 2013; Sheesley et al., 2012). Studies across Asia, Europe and North America have also shown high
70 contributions from non-fossil sources to ambient PM concentrations in urban environments (Du et
71 al., 2014; Kirillova et al., 2010; Szidat et al., 2004; Wozniak et al., 2012). The sources of this modern
72 carbon in urban areas are poorly understood, although biomass burning is a key component (Elser et
73 al., 2016; Hu et al., 2016; Lanz et al., 2010; Nagar et al., 2017). Recently in Delhi, solid-fuel
74 combustion sources such as cow dung cake or municipal solid waste have been shown to release
75 over 1000 different organic components into the aerosol phase at emission (Stewart et al., 2021a).
76 Alongside biomass burning, one potential source of this non-fossil aerosol is biogenic secondary
77 organic aerosol (BSOA), which is formed via the oxidation of biogenic volatile organic compounds
78 (BVOCs) and subsequent gas-particle phase transfer (Hallquist et al., 2009; Hoffmann et al., 1997).

79 Isoprene is the most abundant BVOC, with annual global emissions estimates of between 350 - 800
80 $Tg yr^{-1}$ (Guenther et al., 2012; Sindelarova et al., 2014). Globally, isoprene is predominately emitted
81 from biogenic sources, but anthropogenic sources become increasingly important in urban areas
82 especially at night (Borbon et al., 2001; Hsieh et al., 2017; Khan et al., 2018a; Mishra and Sinha,
83 2020; Sahu et al., 2017; Sahu and Saxena, 2015). Monoterpene are another important BSOA
84 precursor, with annual global emissions estimates of between 89 and $177 Tg yr^{-1}$ (Guenther et al.,
85

86 2012; Sindelarova et al., 2014). Monoterpenes while mainly biogenic, are also emitted from
87 anthropogenic sources such as biomass burning, cooking and fragranced consumer products (Cheng
88 et al., 2018; Gkatzelis et al., 2021; Panopoulou et al., 2020, 2021; Stewart et al., 2021b, 2021c; Zhang
89 et al., 2020).

90 Numerous studies have identified and quantified molecular level markers from isoprene and
91 monoterpenes, especially in the Southeastern-US and China (Brüggemann et al., 2019; Bryant et al.,
92 2020, 2021; Hettiyadura et al., 2019; Huang et al., 2016; Rattanavaraha et al., 2016b; Wang et al.,
93 2016, 2018a; Yee et al., 2020). The complex sources of isoprene and monoterpenes in highly
94 polluted urban areas make source identification difficult. As such, the SOA markers in this study will
95 be referred to as originating from isoprene or monoterpenes, but the emissions are likely from a
96 mixture of biogenic and anthropogenic sources as discussed previously. (Cash et al., 2021b; Nelson
97 et al., 2021)

98 Recent studies have started to focus on anthropogenic-biogenic interactions, whereby
99 anthropogenic pollutants such as NO_x and sulfate enhance the formation of biogenically derived SOA
100 species. Increased NO or NO_2 concentrations can lead to higher organonitrate (ON) or nitrooxy-
101 organosulfate (NOS) concentrations through $\text{RO}_2 + \text{NO}$ or $\text{VOC} + \text{NO}_3$ pathways. (Morales et al., 2021;
102 Takeuchi and Ng, 2019) Inorganic sulfate formed from the oxidation of SO_2 plays a pivotal role in OS
103 and NOS formation (Bryant et al., 2020; Budisulistiorini et al., 2015; Glasius et al., 2018; Hettiyadura
104 et al., 2019; Hoyle et al., 2011; Xu et al., 2015). Sulfate allows the acid-catalysed uptake of gas phase
105 oxidation products into the particle phase. Both chamber and ambient studies have shown the direct
106 link between sulfate and OS concentrations (Brüggemann et al., 2020a; Bryant et al., 2020;
107 Budisulistiorini et al., 2015; Gaston et al., 2014; Lin et al., 2012; Riva et al., 2019; Surratt et al.,
108 2008a; Xu et al., 2015). Yee et al., (2020) highlighted markers from both the high/low-NO isoprene
109 oxidation pathways correlated linearly with sulfate over a large range of sulfate concentrations (0.01
110 – 10 $\mu\text{g m}^{-3}$) across central Amazonia during the wet and dry seasons and in the SE-US summer. They
111 conclude that the majority of isoprene oxidation products in pre-industrial settings are still expected
112 to be in the form of isoprene OS (OSi), suggesting that they cannot be thought of as purely a
113 biogenic-anthropogenic product (Yee et al., 2020).

114 In this study, offline $\text{PM}_{2.5}$ filter samples were collected across two campaigns (pre and post-
115 monsoon) in central Delhi, alongside a comprehensive suite of gas and aerosol atmospheric
116 pollutant measurements. Filters were analysed using ultra-high performance liquid chromatography
117 tandem mass spectrometry and isoprene and monoterpane OS/NOS markers identified and
118 quantified. Isoprene and monoterpane emissions were observed to correlate strongly to
119 anthropogenic markers, suggesting a mixed anthropogenic/biogenic sources of these VOCs. OSi
120 species showed strong seasonality and strong correlations to particulate sulfate. NOS species
121 showed strong nocturnal enhancements, likely due to nitrate radical chemistry. This study is the first
122 molecular level particle phase analysis of OS and NOS markers from isoprene and monoterpenes in
123 Delhi and aims to improve our understanding of the sources of isoprene and monoterpane SOA
124 markers and their formation pathways in extremely polluted urban environments.

125 **2.Experimental**

126 **2.1 Filter collection and site information**

127 $\text{PM}_{2.5}$ filter samples were collected as part of the Air Pollution and Human Health (APHH)-India
128 campaign, at the Indira Gandhi Delhi Technical University for Women in New Delhi, India, (28°39'55"
129 N 77°13'56" E). The site is situated inside the third ring road which caters to huge volumes of traffic,

130 with a major road to the east, between the site and the Yamuna River. Two train stations are located
131 to the south and southwest of the site, and there are several green spaces locally in all
132 directions.(Nelson et al., 2021; Stewart et al., 2021c) Filters were collected during two field
133 campaigns in 2018. The first campaign was during the pre-monsoon period, with 35 filters were
134 collected between 28/05/2018 and 05/06/2018. The second campaign during the post-monsoon
135 period, 108 filters were collected between 09/10/2018 and 6/11/2018. Quartz filters (Whatman
136 QMA, 10" by 8") were pre-baked at 550 °C for 5 hours and wrapped in foil before use. Samples were
137 collected using an HiVol sampler (Ecotech 3000, Victoria Australia) with selective PM_{2.5} inlet at a flow
138 rate of 1.33 m³ min⁻¹. Once collected, filters were stored in foil at -20 °C before, during and after
139 transport for UK based analysis.

140 **2.2 Filter extraction**

141 Using a standard square filter cutter, a section of filter was taken with an area of 30.25 cm² which
142 was then cut into roughly 1 cm² pieces and placed in a 20 mL glass vial. Next, 8 mL of LC-MS grade
143 methanol (MeOH, Optima, Fisher Chemical, USA) was added to the sample and sonicated for 45 min.
144 Ice packs were used to keep the bath temperature below room temperature, with the water
145 swapped mid-way through. Using a 5 mL plastic syringe, the MeOH extract was then pushed through
146 a 0.22 µm filter (Millipore) into another sample vial. An additional 2 mL (2 x 1 mL) of MeOH was
147 added to the filter sample, and then extracted through the filter to give a combined extract ~ 10mL.
148 This extract was then reduced to dryness using a Genevac solvent evaporator under vacuum. The dry
149 sample was then reconstituted in 50:50 MeOH:H₂O (Optima, Fisher Chemical, USA) for analysis
150 (Bryant et al., 2020; Spolnik et al., 2018). Extraction efficiencies of 2-methyl-glyceric acid (2-MG-OS)
151 and camphorsulfonic acid were determined using authentic standards spiked onto a pre-baked clean
152 filter and recoveries were calculated to be 71 % and 99 % respectively.

153 **2.3 Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS²)**

154 The extracted fractions of the filter samples were analysed using an Ultimate 3000 UHPLC (Thermo
155 Scientific, USA) coupled to a Q-Exactive Orbitrap MS (Thermo Fisher Scientific, USA) using data
156 dependent tandem mass spectrometry (ddMS²) with heated electrospray ionization source (HESI).
157 The UHPLC method uses a reversed-phase 5 µm, 4.6 mm × 100 mm, polar end capped Accucore
158 column (Thermo Scientific, UK) held at 40 °C. The mobile phase consisted of water (A, optima grade)
159 and methanol (B, optima grade) both with 0.1 % (v/v) of formic acid (98 % purity, Acros Organics).
160 Gradient elution was used, starting at 90 % (A) with a 1-minute post-injection hold, decreasing to 10
161 % (A) at 26 minutes, returning to the starting mobile phase conditions at 28 minutes, followed by a
162 2-minute hold allowing the re-equilibration of the column. The flow rate was set to 0.3 mL min⁻¹. A
163 sample injection volume of 4 µL was used. The capillary and auxiliary gas heater temperatures were
164 set to 320 °C, with a sheath gas flow rate of 45 (arb.) and an auxiliary gas flow rate of 20 (arb.).
165 Spectra were acquired in the negative ionization mode with a scan range of mass-to-charge (*m/z*) 50
166 to 750, with a mass resolution of 140,000. Tandem mass spectrometry was performed using higher-
167 energy collision dissociation with a stepped normalized collision energy of 10,45 and 60. The
168 isolation window was set to *m/z* 2.0 with a loop count of 10, selecting the 10 most abundant species
169 for fragmentation in each scan.

170 A mass spectral library was built using the compound database function in Tracefinder 4.1 General
171 Quan software (Thermo Fisher Scientific, USA). To build the library, compounds from previous
172 studies (Chan et al., 2010; Nestorowicz et al., 2018; Ng et al., 2008; Riva et al., 2016b; Schindelka et
173 al., 2013; Surratt et al., 2008a) were searched for in an afternoon and a night-time filter sample
174 extract analysis using the Xcalibur software. Further details can be found in Bryant et al., 2021 and

175 the SI. Isoprene OS and NOS markers were quantified using authentic standards of 2-MG-OS and 2-
176 methyl tetrol OS (2-MT-OS) with later eluting monoterpene OS and NOS quantified using
177 camphorsulfonic acid. Standards were run across a 9-point calibration curve (2 ppm – 7.8ppb, $R^2 >$
178 0.99) More details about the method can be found in Bryant et al., 2021. Overall uncertainties
179 associated with calibrations, proxy standards and matrix effects were estimated. The uncertainties
180 associated with 2-MG-OS and 2-MT-OS were calculated to be 58.9 % and 37.6 % respectively, mainly
181 due to the large uncertainties in the matrix correction factors. Isoprene SOA markers quantified by
182 the average of 2-MT-OS and 2-MG-OS calibrations have an associated uncertainty of 69.9 %. For
183 monoterpene SOA species which were quantified by camphorsulfonic acid, the associated
184 uncertainty is estimated to be 24.8 %.

185

186 **2.4 Supplementary measurements**

187 A suite of complementary measurements were made alongside the filter collection including
188 VOCs(Stewart et al., 2021c), oxygenated-VOCs, NO_x, CO, O₃, SO₂, HONO, photolysis rates and
189 measurements of PM₁ non-refractory aerosol chemical components with a high resolution Aerosol
190 Mass Spectrometer (HR-AMS). Detailed instrument descriptions can be found in Nelson et al.,
191 (2021). Briefly, VOCs and oxygenated-VOCs were measured via two gas-chromatography (GC)
192 instruments (DC-GS-FID and GC-GC-FID). NO_x was measured via a dual channel chemiluminescence
193 analyser with fitted with a blue light converter for NO₂ (Air Quality Designs Inc., Colorado) alongside
194 CO which was measured with a resonance fluorescent instrument (Model AI5002, Aerolaser GmbH,
195 Germany). O₃ was measured as outlined by Squires et al., (2020) using an ozone analyser (49i,
196 Thermo Scientific). SO₂ was measured using a 43i SO₂ analyser (Thermo scientific). High-resolution
197 aerosol mass spectrometry measurements were conducted as outlined in Cash et al., (2021). Ion
198 chromatography measurements were undertaken by the experimental approach outlined by Xu et
199 al., (2020) as part of an intercomparison study. Briefly, filter cuttings were taken from the filter and
200 extracted ultrasonically for 30 mins in 10 mL of ultrapure water and then filtered before analysis (Xu
201 et al., 2020).

202 Meteorology data was downloaded from the NOAA Integrated Surface Database via the Worldmet R
203 package for the Indira Gandhi International Airport (code: 421810-99999) (Carslaw, D ., accessed:
204 2021). The planetary boundary layer height (PBLH) was obtained from the ERA5 (ECMWF ReAnalysis
205 5) data product at 0.25° resolution in 1-hour time steps at the position Lat 28.625°, Lon. 77.25°. The
206 data for both campaigns was then selected between the start time of the first filter of that
207 campaign, and the end time of the last filter of the same campaign.

208 **3. Results**

209 **3.1 Meteorology**

210 The time series for temperature, RH, planetary boundary layer height (PBLH) and ventilation
211 coefficient (VC) across the pre- and post-monsoon campaigns are shown in Figure S1. For the pre-
212 monsoon campaign, the average air temperature was $(35.8 \pm 4.5) ^\circ\text{C}$ compared to $(24.7 \pm 4.6) ^\circ\text{C}$ in
213 the post-monsoon campaign (Table S2). The pre-monsoon campaign also showed higher average
214 wind speeds, with an average of $(3.8 \pm 1.4) \text{ ms}^{-1}$, compared to $(1.7 \pm 1.3) \text{ ms}^{-1}$ in the post-monsoon
215 campaign. The average RH of the pre- and post-monsoon were $(39.4 \pm 13.6) \%$ and $(57.3 \pm 16.6) \%$
216 respectively, both showing similar diurnals with a minimum around mid-morning and nocturnal
217 maximum (Figure S2). The PBLH shows a similar diurnal between the two campaigns, with the
218 nocturnal boundary layer breaking down around 06:00-07:00 with a midday peak, before re-

219 establishing the nocturnal boundary layer around 19:00. The pre-monsoon PBLH has an average
220 maximum of \sim 2400 m compared to post-monsoon \sim 1700 m and a minimum of 270 m compared to
221 52 m (Figure S2). The ventilation coefficient (VC = wind speed x PBLH) has been used previously to
222 identify periods of adverse meteorological conditions and gives an idea of how stagnant atmospheric
223 conditions are and the general role of the atmosphere in the dilution of species. (Gani et al., 2019)
224 As shown in Figure S1, the conditions during the post-monsoon campaign were much more stagnant
225 than the pre-monsoon campaign. The VC was on average 4.5 times higher during the pre-monsoon
226 campaign compared to the post-monsoon campaign (Table S2) in line with previous studies (Gani et
227 al., 2019; Saha et al., 2019). The more stagnant conditions during the post-monsoon campaign likely
228 traps nocturnal emissions and their reaction products close to the surface, allowing for a significant
229 build-up of concentrations.

230 **3.2 Gas phase observations**

231 Time series of the observed mixing ratios (ppbv) of NO, NO₂ and O₃ are shown in Figure 1, for the
232 pre- and post-monsoon campaigns. The campaign averaged diurnal profiles are shown in Figure S3
233 and the mean, median and maximum mixing ratios are given in Table S2. It should be noted that only
234 one week of data was available for the pre-monsoon period. During the post-monsoon campaign,
235 extremely high mixing ratios of NO were observed with a campaign maximum mixing ratio of \sim 870
236 ppbv during the early morning of the 1st of November. During the early part of the pre-monsoon
237 campaign, a large enhancement in NO was observed with mixing ratios around 400 ppbv (Figure S4),
238 followed by significantly lower concentrations throughout the rest of the campaign. The campaign-
239 average NO diurnal profile shows very high NO mixing ratios at night (pre-: \sim 50 ppbv, post-: \sim 300
240 ppbv), with low afternoon mixing ratios < 2 ppbv due to ozone titration. These high NO
241 concentrations at night likely reduce any night-time chemistry through reactions with NO₃ radicals
242 and ozone. NO₂ during the pre-monsoon was observed to increase as the boundary layer reduced in
243 the late afternoon, with a mid-afternoon minimum. During the post-monsoon, a double peak in
244 concentrations was observed, in line with increasing ozone in the morning, and increasing NO in the
245 afternoon. Ozone showed a strong diurnal variation across both campaigns, with average afternoon
246 mixing ratios \sim 75 ppbv with pre- and post-monsoon maximums of 182 ppbv and 134 ppbv
247 respectively. Night-time O₃ concentrations were significantly higher during the pre-monsoon
248 campaign, likely due to the significantly lower NO concentrations.

249 **3.3 Particle phase observations**

250 The sampling site was heavily polluted in terms of particulate matter. The mean $\pm \sigma$ PM_{2.5}
251 concentration (Table S2) during the pre-monsoon campaign was $(141 \pm 31) \mu\text{g m}^{-3}$ with a spike in
252 concentrations of $672 \mu\text{g m}^{-3}$ on the 01/6/2018 at 21:00 (Figure 1). The diurnal (Figure S5) shows
253 concentrations generally flat throughout the day. During the post-monsoon campaign, the average
254 PM_{2.5} concentration was higher at $(182 \pm 94) \mu\text{g m}^{-3}$, with a spike in concentrations of $695 \mu\text{g m}^{-3}$ at
255 the end of the campaign (Figure 1). The diurnal shows a mid-afternoon minimum with high morning
256 and night concentrations. HR-AMS was used to measure the PM₁ sulfate and total organics.
257 Campaign averaged total organics concentrations were approximately double in the post-monsoon
258 $(48.7 \pm 35.4) \mu\text{g m}^{-3}$ compared to the pre-monsoon $(19.8 \pm 13.7) \mu\text{g m}^{-3}$. During the pre-monsoon
259 campaign, concentrations are generally flat throughout the day, with an increase in the late
260 afternoon, likely as the boundary layer decreases (Figure S5). During the post-monsoon, a much
261 more prominent diurnal is observed, with a mid-day minimum and high night-time concentrations.
262 This diurnal is likely driven by boundary layer conditions. Sulfate averaged $(7.5 \pm 1.8) \mu\text{g m}^{-3}$ during
263 the pre-monsoon campaign, with slightly lower average concentrations observed in the post-

264 monsoon: $(5.6 \pm 2.7) \mu\text{g m}^{-3}$ as shown in Figure S5. The sulfate diurnal variations are similar to those
265 of the organic aerosol.

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Figure 1. Time series of pollutants across the pre- (a,c,e,g,i) and post-monsoon (b,d,f,h,j) campaigns. During the pre-monsoon, NO concentrations were filtered to below 60 ppbv, due to a large enhancement in concentrations at the start of the campaign, the full time series is shown in Figure S4. NO, NO₂, O₃ and HR-AMS – SO₄²⁻ were averaged to 15 minutes. PM_{2.5} was measured hourly.

295

296

297

298

299

300 **3.4 Isoprene and monoterpane measurements**

301 Isoprene was measured hourly using gas-chromatography with flame-ionisation-detection (GC-FID)
302 across the two campaigns (Nelson et al., 2021), with the time series shown in Figure 2. The time
303 series highlights similar diurnal variability each day, driven by biogenic emissions. Figure 3 shows the
304 average diurnal profiles of isoprene during pre-monsoon (a) and post-monsoon (b). The mean
305 isoprene mixing ratios were (1.22 ± 1.28) ppbv and (0.93 ± 0.65) ppbv, with maximum isoprene
306 mixing ratios of 4.6 ppbv and 6.6 ppbv across the pre- and post-monsoon, respectively. This is in the
307 same range as measured in Beijing (winter mean: (1.21 ± 1.03) ppbv, summer mean: (0.56 ± 0.55)
308 ppbv, Acton et al., (2020)), Guangzhou (year round (1.14) ppbv) (Zou et al., 2019) and Taipei
309 (summer daytime: (1.26) ppbv, autumn daytime: (0.38) ppbv) (Wang et al., 2013). The diurnal
310 variability observed in the pre-monsoon period corresponds to a typical biogenic emission driven
311 profile, with a rapid increase of isoprene around 05:00, reaching a peak around or after midday,
312 before a nocturnal minimum. Figure 3 indicates that average daytime peak isoprene mixing ratios
313 during the pre-monsoon campaign were roughly double that of the post-monsoon campaign. In
314 contrast, average nocturnal mixing ratios of isoprene were 5 times higher in the post-monsoon
315 compared to the pre-monsoon ((0.65 ± 0.43) ppbv versus (0.13 ± 0.18) ppbv). In the post-monsoon
316 campaign, isoprene mixing ratios show a strong biogenic emission driven diurnal profile at the start
317 of the campaign. However, towards the end of the post monsoon measurement period, the isoprene
318 mixing ratios become less variable with a high mixing ratio maintained overnight (Figure 2). This is
319 potentially due to more stagnant conditions as observed by the VC in Figure S1.

320

321

322

323

324

325

326

327

328

329

330

331

332
333
334

335
336
337
338

Figure 2. Time series across the pre- (left) and post-monsoon (right) campaigns of Isoprene (a,b), α -pinene (c,d), limonene (d,e). The vertical dotted lines represent midnight for each day.

339 A recent study in Delhi averaged across post-monsoon, summer and winter campaigns found that at
340 vegetative sites biogenic isoprene contributed on average 92 - 96 % to the total isoprene, while at
341 traffic dominated sites only 30 – 39 % of isoprene was from biogenic sources (Kashyap et al., 2019).
342 This is similar to the contributions of biogenic isoprene (40 %) to total isoprene mixing ratios at the
343 traffic dominated Marylebone Road London site.(Khan et al., 2018a) To gain some understanding of

344 the sources of isoprene at our site in Delhi, the observed concentrations of isoprene were correlated
 345 to CO, which is an anthropogenic combustion tracer (Figure 5) similar to previous studies.(Khan et
 346 al., 2018a; Wagner and Kuttler, 2014) The isoprene concentrations were split between night and day
 347 (pre-monsoon; night: 19:00 – 05:00 h, day 05:00 – 19:00 h, post-monsoon; night: 17:00-06:00 h, day:
 348 06:00-17:00 h), based on the observed isoprene diurnals as shown in Figure 3. Isoprene correlated
 349 strongly with CO during the night across both campaigns (pre-monsoon: $R^2= 0.69$, post-monsoon:
 350 $R^2= 0.81$), but no correlation was observed during the day ($R^2 < 0.1$). This suggests that daytime
 351 isoprene is predominantly from biogenic sources, although a small amount will be from
 352 anthropogenic sources, and that nocturnal isoprene is emitted from anthropogenic sources, as seen
 353 in other locations. (Khan et al., 2018b; Panopoulou et al., 2020; Wang et al., 2013) The night-time
 354 isoprene mixing ratios (pre-monsoon: (0.13 ± 0.18) ppbv, post-monsoon: (0.65 ± 0.43) ppbv) were
 355 substantially higher than measured previously in Beijing and London (<50 pptv, (Bryant et al., 2020;
 356 Khan et al., 2018b)), but pre-monsoon concentrations were similar to those observed at night in
 357 Taipei (0.19 ppbv)(Wang et al., 2013). The high night-time concentrations during the post-monsoon
 358 period, towards the end of October are also likely influenced by the formation of a very low
 359 boundary layer, trapping pollutants near the surface, affecting all species similarly. An increase in
 360 biomass burning may also be a factor. Therefore, during the post-monsoon campaign a significant
 361 amount of isoprene oxidation products will be of anthropogenic origin.

379 Figure 3. Diurnal variations across the pre (left) and post-monsoon (right)
 380 campaigns of Isoprene (a,b), limonene (c,d) and α -pinene (e,f). The grey
 shaded area represents the 95 % confidence interval. The green shaded area
 represents the times driven by biogenic emissions, as defined by the isoprene
 diurnals.

381
382
383

384 Several monoterpenes were measured using GCxGC-MS. The time series of two monoterpenes,
385 limonene and α -pinene, are shown in Figure 2. The α -pinene mixing ratio averaged (0.034 ± 0.011)
386 ppbv during the pre-monsoon and (0.10 ± 0.11) ppbv during the post monsoon periods. This is in
387 comparison to limonene, which averaged (0.01 ± 0.02) ppbv and (0.42 ± 0.51) ppbv across the pre-
388 and post-monsoon campaigns, respectively. A strong diurnal variation was observed for both
389 monoterpenes during the post-monsoon, peaking during the night (Figure 3), with a midday
390 minimum. Nocturnal mixing ratios of the two monoterpenes were substantially higher during the
391 post-monsoon (Limonene: (0.59 ± 0.11) ppbv, α -pinene: (0.13 ± 0.12) ppbv) than the pre-monsoon
392 (Limonene: (0.011 ± 0.025) ppbv, α -pinene: (0.033 ± 0.009) ppbv) period. The diurnal variations across
393 both campaigns are likely driven by both emissions as well as boundary layer effects. The boundary layer effect
394 however is much stronger during the post-monsoon, with a shallower nocturnal boundary layer, as such the
395 post-monsoon period has a more pronounced diurnal. Limonene was dominated by 3 short lived spikes in
396 concentrations towards the start of the campaign (Figure 2). α -pinene concentrations generally
397 increased during the morning, before decreasing during the afternoon. Multiple monoterpenes
398 were measured concurrently using GCxGC-MS (Nelson et al., 2021; Stewart et al., 2021c). For all MT
399 species, the post monsoon period had higher mean mixing ratios, with large nocturnal
400 enhancements in mixing ratios. There are likely multiple factors leading the higher concentrations
401 during the post-monsoon, including accumulation due to boundary layer effects, a lack of nocturnal
402 radical chemistry and an increase in biomass burning (Jain et al., 2014). The average isomeric
403 speciation of the measured monoterpenes showed low variability between day and night-time
404 samples during each campaign, but significant differences were observed between the campaigns
405 (Figure 4). Higher contributions from limonene and β -ocimene were observed during the post-
406 monsoon compared to the pre-monsoon. The reason for the difference in composition is likely due
407 to differences in sources and/or sinks between the two periods.

408
409

410

411

412 Figure 4. Average composition of monoterpenes across the pre-monsoon and post-monsoon
413 periods.

414

415

416

417

418

419

420

421

422 During the post-monsoon, α -pinene and limonene correlated strongly with CO during the day (α -
423 pinene; $R^2 = 0.82$, limonene; $R^2 = 0.90$) and moderately at night (α -pinene; $R^2 = 0.49$, limonene; $R^2 =$
424 0.56) as shown in Figure 5, suggesting anthropogenic sources. Other potentially important
425 anthropogenic monoterpene sources include biomass burning, cooking and the use of personal
426 care/volatile chemical products (Coggon et al., 2021; Gkatzelis et al., 2021; Hatch et al., 2019; Klein
427 et al., 2016). The shallow nocturnal boundary layers across both campaigns leads to relatively high
428 concentrations of total monoterpenes, with a maximum mixing ratio of 6 ppbv observed during the
429 post-monsoon (Stewart et al., 2021c). After sunrise, the expanding boundary layer dilutes the high
430 concentrations alongside increasing OH concentrations from photolytic sources such as the
431 photolysis of HONO and carbonyls which likely causes a rapid decrease in the monoterpene mixing
432 ratios. (Lelieveld et al., 2016)

433

434

435

436 Figure 5. Correlations between Isoprene, limonene and α -pinene with CO across the pre (left)
437 and post-monsoon (right) campaigns. The samples are split between daytime (green) and night-
438 time (black) as defined by the Isoprene diurnals in Figure 3.

439

440

441

442

443
444
445

Figure 6. Time series across the pre- (left) and post-monsoon (right) campaigns of the quantified SOA tracers: OSi (a,b), NOSi (c,d), OS_{MT} (e,f), NOS_{MT} (g,h) and the sum of all SOA tracers (i,j) with the average campaign contributions. The vertical dotted lines represent midnight for each day. Only species identified in more than 40 % of the samples for each campaign were included.

At the measured concentrations, monoterpenes and isoprene are an important source of ozone and OH reactivity at this site (Nelson et al., 2021). The resultant oxidised products will also be a key source of SOA production. The UHPLC-MS² analysis identified and quantified 75 potential markers across four classes of SOA, isoprene OS (OSi) and NOS (NOSi) derived species and monoterpene OS (OS_{MT}) and NOS (NOS_{MT}) species. Figure 6 shows the contribution to the total quantified SOA (qSOA),

473 which consists of the time averaged sum of the four SOA classes (OSi, NOSi, OS_{MT}, NOS_{MT}), across the
474 pre- and post-monsoon campaigns. OSi species were the dominant SOA class quantified in this
475 study, contributing 75.6 % and 79.4 % of the qSOA across the pre- and post-monsoon campaigns
476 respectively. NOSi species contributed significantly more to the qSOA during the pre-monsoon (7.6
477 %) compared to the post-monsoon (2.1 %) period. Similar contributions from the monoterpane
478 derived SOA species were observed across both campaigns.

479 **3.5.1 Isoprene OS and NOS markers**

480 OSi species are predominantly formed by photo-oxidation of isoprene by OH radicals with the
481 subsequent products formed dependent on ambient NO concentrations (Wennberg et al., 2018).
482 The pathways are split into high-NO and low-NO, although the NO concentrations that constitute
483 high and low are a sliding scale depending on the amount of reactivity (defined as $([\text{OH}] \times k_{\text{OH}})$)
484 (Newland et al., 2021). Under low-NO conditions, isoprene epoxydiol isomers (IEPOX) (Paulot et al.,
485 2009) are formed which can then undergo reactive uptake to the particle phase by acid-catalysed
486 multiphase chemistry involving inorganic sulfate, to form 2-MT-OS (Lin et al., 2012; Riva et al., 2019;
487 Surratt et al., 2010). Under high-NO conditions, 2-methyl glyceric acid is the dominant gas-phase
488 marker produced, which can undergo reactive uptake to the particle phase to form 2-MG-OS (Lin et
489 al., 2013a; Nguyen et al., 2015; Surratt et al., 2006, 2010).

490 A total of 21 potential OSi C₂₋₅ markers previously identified in chamber studies (Nguyen et al., 2010;
491 Riva et al., 2016a; Surratt et al., 2007, 2008b) and other ambient studies (Bryant et al., 2020;
492 Budisulistiorini et al., 2015; Hettiyadura et al., 2019; Kourtchev et al., 2016; Rattanavaraha et al.,
493 2016a; Wang et al., 2018b, 2021b) were quantified in the collected ambient samples. It should be
494 noted that several of the smaller (C₂₋₃) OSi tracers likely form from glyoxal, methylglyoxal and
495 hydroxyacetone as well as isoprene, and as such present a potential non-isoprene source of OSi
496 (Galloway et al., 2009; Liao et al., 2015).

497 Figure 6 shows the time series of total OSi concentrations observed across pre- (left, 5a) and post-
498 (right, 5b) monsoon campaigns. Total OSi time averaged concentrations (Table 1) were c.a. 2.3 times
499 higher during the post-monsoon ($\sim 556.6 \pm 422.5 \text{ ng m}^{-3}$) campaign than the pre-monsoon campaign
500 ($\sim 237.8 \pm 118.4 \text{ ng m}^{-3}$). These concentrations are similar to those observed in Beijing during summer
501 2017 (237.1 ng m^{-3} , (Bryant et al., 2020)), but higher than those observed in Shanghai in 2018 (40.4
502 ng m^{-3}) and 2019 (34.3 ng m^{-3}) (Wang et al., 2021b). As previously discussed, OSi species have been
503 shown to form via the gas-phase photo-oxidation of isoprene, with the reactive uptake of the
504 oxidised species into the particulate phase via sulfate (Lin et al., 2013a; Surratt et al., 2010).
505 Recently, a heterogeneous photo-oxidation pathway from 2-MT-OS ($\text{C}_5\text{H}_{12}\text{O}_7\text{S}$) to several OSi species
506 was proposed, including $\text{C}_5\text{H}_{10}\text{O}_5\text{S}$, $\text{C}_5\text{H}_8\text{O}_5\text{S}$, $\text{C}_5\text{H}_{12}\text{O}_8\text{S}$, $\text{C}_5\text{H}_{10}\text{O}_8\text{S}$ and $\text{C}_4\text{H}_8\text{O}_5\text{S}$ (Chen et al., 2020). 2-
507 MT-OS showed moderate correlations (pre-monsoon : $R^2 = 0.52-0.72$, post-monsoon: $R^2 = 0.14-0.35$)
508 with these OSi tracers that were lower than observed in Beijing summer ($R^2 = 0.83-0.92$) (Bryant et
509 al., 2020). These correlations could suggest that this is a more common formation route in pre-
510 monsoon Delhi, than in post-monsoon. However, the correlations could also be driven by the
511 common pathways between the OSi species, with the reactive uptake of gas phase intermediates via
512 sulfate reactions. The lower correlations during the post-monsoon could be due to increased
513 influences of anthropogenic sources coupled to the stagnant conditions.

514 Figure 7 shows the binned OSi concentrations for each filter collection time across the pre- and post-
515 monsoon campaigns to create a partial diurnal profile. During the pre-monsoon, the daily variation
516 in OSi concentrations was much clearer, with day-time maxima and nocturnal minima, which are in
517 line with daily peak isoprene (Figure 3) and OH radical concentrations. The highest observed OSi

518 concentrations during the pre-monsoon were $\sim 600 \text{ ng m}^{-3}$, which occurred at the start of the
519 campaign. High isoprene concentrations may have been the cause, but unfortunately isoprene
520 measurements were not available during this period to confirm. However, high OSi concentrations
521 also occurred when particulate inorganic sulfate concentrations were at their highest (Figure S6),
522 while sulfate measured via the HR-AMS was also high during this period (Figure 1). During the post-
523 monsoon, although a similar diurnal pattern was observed, the variation was less pronounced, with
524 higher OSi concentrations observed at the start and end of the campaign (Figure 6). Due to the
525 secondary nature of sulfate, the sulfate concentrations are less likely to be influenced by the
526 boundary layer effects, compared to directly emitted VOCs. The low OSi concentrations during the
527 middle of the campaign, coincide with lower isoprene and inorganic sulfate concentrations, but also
528 low VC values, suggesting more stagnant conditions.

529 The sum of OSi species across all filters sampled showed a variable correlation with particulate
530 sulfate across both campaigns. The pre-monsoon correlation was similar to those observed in
531 Beijing, Guangzhou and the SE-US ($R^2: 0.55$) (Bryant et al., 2020, 2021; Budisulistiorini et al., 2015;
532 Rattanavaraha et al., 2016a) while the post-monsoon was significantly weaker ($R^2: 0.28$). However, a
533 clear relationship between OSi tracers and inorganic sulfate can be seen in Figure 8 across both
534 campaigns, where the highest OSi concentrations occurred under the highest particulate sulfate
535 concentrations. During the post-monsoon campaign, OSi concentrations levelled off at high sulfate
536 concentrations. In the pre-monsoon this levelling off is not observed, potentially due to the lower
537 number of samples. The high concentrations of organics measured by the HR-AMS (Table S2) during
538 the post-monsoon ($48.7 \pm 35.4 \text{ } \mu\text{g m}^{-3}$) compared to the pre-monsoon ($19.8 \pm 13.7 \text{ } \mu\text{g m}^{-3}$), suggests
539 the reactive uptake of the gaseous OSi intermediates to the aerosol phase may be limited due to
540 extensive organic coatings on the sulfate aerosol. Multiple studies have now shown that organic
541 coatings on sulfate aerosol can limit the reactive uptake of IEPOX, suggesting the pre-monsoon is
542 volume limited but the post-monsoon is diffusion limited. (Gaston et al., 2014; Lin et al., 2014; Riva
543 et al., 2016c)

544 Isoprene NOS (NOSi) have been shown to be produced by photo-oxidation in the presence of NO
545 and from NO_3 oxidation chemistry (Hamilton et al., 2021; Ng et al., 2017; Surratt et al., 2008b). Ten
546 different NOSi tracers were screened for across the two campaigns, with eight identified in the pre-
547 monsoon and ten in the post-monsoon. These tracers included: mono-nitrated ($\text{C}_5\text{H}_9\text{O}_{10}\text{NS}$,
548 $\text{C}_5\text{H}_{11}\text{O}_9\text{NS}$, $\text{C}_5\text{H}_{11}\text{O}_8\text{NS}$), di-nitrated ($\text{C}_5\text{H}_{10}\text{O}_{11}\text{N}_2\text{S}$), and tri-nitrated ($\text{C}_5\text{H}_9\text{O}_{13}\text{N}_3\text{S}$) species. These tracers
549 have been identified previously in China (Bryant et al., 2020, 2021; Hamilton et al., 2021; Wang et
550 al., 2018b, 2021b). Unlike the OSi tracers, total NOSi concentrations were on average higher during
551 the pre-monsoon ($32.6 \pm 19.9 \text{ } \text{ng m}^{-3}$) compared to the post-monsoon ($20.2 \pm 13.3 \text{ } \text{ng m}^{-3}$). This is
552 likely due to extremely high night-time NO concentrations during the post-monsoon quenching NO_3
553 radicals, limiting the isoprene + NO_3 pathway. The NOSi time series and diurnal shown in Figures 5
554 and 6 respectively highlight the strong nocturnal enhancements in concentrations during the pre-
555 monsoon, suggesting isoprene + NO_3 formation pathway is dominant. Due to the long sampling time,
556 it is likely that these species are forming in the early evening as NO_3 oxidation becomes more
557 competitive with OH, while isoprene concentrations are still relatively high. During the post-
558 monsoon, NOSi concentrations were highest at night and the early morning. The high morning
559 concentrations could be due to non-local sources mixing down as the shallow night-time boundary
560 layer breaks down. Ideally, future work in Delhi or India should focus on the measurements of
561 radicals and OH reactivity (k_{OH}), in order to improve our understanding of the chemistry occurring in
562 extremely polluted environments. A large spike in NOSi concentrations is observed at the start of the
563 post-monsoon campaign, which was not observed for the OSi tracers, this coincides with lower NO
564 concentrations than the rest of the post-monsoon campaign, reducing the NO_3 quenching by NO,

565 allowing for more isoprene + NO_3 oxidation. The NOSi species did not correlate towards particulate
 566 sulfate ($R^2 < 0.2$) across either campaign, suggesting that uptake onto sulfate is not the limiting step
 567 in NOSi formation (unlike for the OSi species).

568
 569
 570
 571

572
 573
 574

Figure 7. Partial diurnal variations from the binned concentrations of OSi, NOSi, OS_{MT} and NOS_{MT} concentrations at each filter collection time across the pre (left) and post-monsoon (right) campaigns. The lower and upper part of the box representing the 25th and 75th percentiles, with the upper and lower lines extending no further than 1.5 times the interquartile range of the highest and lowest values within the hinge respectively. Only species identified in more than 40 % of the samples for each campaign were included.

575
576
577
578
579
580
581
582
583
584

Figure 8. Quantified SOA (OS_i, NOS_i, OS_{MT}, NOS_{MT}) vs inorganic sulfate concentrations across the pre- (left) and post-monsoon (right) campaigns. The lower and upper part of the box representing the 25th and 75th percentiles, with the upper and lower lines extending no further than 1.5 times the interquartile range of the highest and lowest values within the hinge respectively. Only species identified in more than 40 % of the samples for each campaign were included.

585

586 **3.5.2 Monoterpene OS and NOS markers**

587 Monoterpene derived OS (OS_{MT}) and NOS (NOS_{MT}) markers have also been identified from the
588 oxidation by OH, NO_3 and O_3 in the presence of SO_2 or sulfate seed in simulation studies
589 (Brüggemann et al., 2020b; Iinuma et al., 2007; Kleindienst et al., 2006; Surratt et al., 2008a; Zhao et
590 al., 2018). Compared to isoprene, the ozonolysis of monoterpenes is a key degradation pathway,
591 with higher SOA yields from ozonolysis observed when compared to isoprene (Åsa M. Jonsson et al.,
592 2005; Atkinson and Arey, 2003; Eddingsaas et al., 2012a, 2012b; Kristensen et al., 2013; Mutzel et
593 al., 2016; Simon et al., 2020; Zhao et al., 2015). A recent study in the SE-US suggests that the
594 degradation of 80 % of monoterpenes at night is due to ozonolysis at that location (Zhang et al.,
595 2018). Monoterpene derived OS and NOS species have been extensively observed, with ON
596 contributing considerably to OA (Lee et al., 2016; Xu et al., 2015; Zhang et al., 2018). Recently NOS
597 hydrolysis has also been shown to be a potential formation route of OS particle phase species (Darer
598 et al., 2011; Passananti et al., 2016).

599 Twenty-three monoterpene-derived organosulfate (OS_{MT}) species, which have been seen previously
600 in chamber (Surratt et al., 2008b) and ambient studies (Brüggemann et al., 2019; Wang et al., 2018b,
601 2021b), were identified across the pre- and post-monsoon campaigns. It should be noted that
602 recently OS_{MT} artefacts has been shown to form when filters have been sampled without a denuder.
603 (Brüggemann et al., 2020b). However, the strong diurnal variations of the OS_{MT} species, and lack of
604 correlation with SO_2 suggest this process is unlikely to have contributed significantly to the OS_{MT}
605 measured in this study. Post-monsoon concentrations were similar (3.96 ± 1.6) $ng\ m^{-3}$ to the pre-
606 monsoon (3.05 ± 1.3) $ng\ m^{-3}$, with $C_9H_{16}O_6S$ the dominant species across both campaigns,
607 contributing on average ~ 29 % of the OS_{MT} mass. $C_9H_{16}O_6S$ has been observed in chamber studies
608 (Surratt et al., 2008a) as well as in ambient samples in Denmark, Shanghai and Guangzhou
609 previously(Bryant et al., 2021; Nguyen et al., 2014; Wang et al., 2017). It should be noted that the
610 majority of the OS_{MT} were not identified in every sample, and as such only tracers which were
611 identified in at least 40 % of the samples were examined further.

612 Total OS_{MT} showed a strong diurnal profile across both campaigns, peaking at night, with an
613 afternoon minimum (Figures 5 & 6). During the pre-monsoon campaign, the highest OS_{MT}
614 concentrations were observed during a day-time sample, coinciding with peak sulfate and NO
615 concentrations. Both limonene and α -pinene also show peaks during this filter sampling period of \sim
616 0.05 ppbv. Spikes in limonene and α -pinene concentrations were also observed on the 31st of May,
617 but OS_{MT} concentrations were much lower, likely due to the lower sulfate concentrations. During the
618 post-monsoon campaign, nocturnal enhancements are observed (Figure 7), suggesting $MT + NO_3$
619 chemistry is important. Like the NOS_i markers, higher OS_{MT} concentrations were observed during the
620 early morning sample, likely due to a lower PBLH concentrating the markers coupled to $MT+OH/O_3$
621 occurring after sunrise in the post-monsoon. The night-time formation of the OS_{MT} species is in line
622 with previous studies (Bryant et al., 2021), and with the diurnal variations of α -pinene and limonene,
623 which peak at night. Previous chamber studies investigating reactions of monoterpenes with NO_3
624 radicals have also shown formation of OS_{MT} with the same molecular formulae as measured here
625 (Surratt et al., 2008a).

626 OS_{MT} concentrations observed in Delhi are much lower than those of the OS_i , similar to other studies
627 (Hettiyadura et al., 2019; Wang et al., 2018b, 2021b). Considering the high concentrations of
628 extremely reactive α -pinene and limonene observed during the post-monsoon period, higher OS_{MT}
629 concentrations might be expected. One possible reason for the low OS_{MT} is the inability of OS_{MT}

630 precursor species to undergo reactive uptake into the aerosol phase under atmospherically relevant
631 acidic conditions, with chamber studies suggesting extremely acidic conditions are needed for
632 uptake to occur (Drozd et al., 2013). Delhi is characterised by large concentrations of free ammonia
633 and alkaline dust, and previous studies have highlighted that it has less acidic aerosol (pH 5.7 – 6.7,
634 Kumar et al., 2018) across the year than Beijing (pH 3.8 – 4.5, Ding et al., 2019) and the SE-US (pH 1.6
635 – 1.9, Rattanavaraha et al., 2016a).

636 Unlike the OS_{MT} species, the NOS_{MT} species (C₁₀H₁₇NO₇S, C₉H₁₅NO₈S, C₁₀H₁₇NO₉S, C₉H₁₅NO₉S,
637 C₁₀H₁₇NO₈S) showed strong seasonality, with pre- and post-monsoon concentrations of (7.6 ± 3.8) ng
638 m⁻³ and (17.6 ± 6.1) ng m⁻³ respectively. This is opposite to the quantified NOSi species, which
639 showed higher pre-monsoon concentrations. This is likely due to much higher post-monsoon
640 concentrations of monoterpenes. Of the NOS_{MT} species observed, C₁₀H₁₇NO₇S was the most
641 abundant, contributing on average 79 % and 76 % of the NOS_{MT} concentrations across the pre- and
642 post-monsoon respectively. Previous studies have also highlighted C₁₀H₁₇NO₇S to be the dominant
643 monoterpane derived sulfate containing tracer (Wang et al., 2018b). In the post-monsoon nine
644 C₁₀H₁₇NO₇S isomers were observed, and seven in the pre-monsoon. The summed C₁₀H₁₇NO₇S
645 concentrations during the pre- (5.96 ± 3.33) ng m⁻³ and post-monsoon (13.36 ± 4.98) ng m⁻³, are of a
646 similar magnitude to those observed in other locations as shown in Table 2. These concentrations
647 are also similar to those quantified by authentic standards across four Chinese megacities (Wang et
648 al., 2021a). Like the OS_{MT} species, some NOS_{MT} species were not identified in many of the filter
649 samples, and as such tracers which were observed in more than 40 % of the samples were summed
650 for further analysis. The NOS_{MT} pre-monsoon time series (Figure 6) shows a similar temporal profile
651 to the NOSi species, with lower concentrations during the enhancement in NO concentrations
652 (Figure S4) at the start of the campaign. NOS_{MT} showed strong diurnal variations across both
653 campaigns (Figure 7), peaking at night with lower concentrations during the afternoon, as seen
654 previously (Bryant et al., 2021; Wang et al., 2018b). Therefore, the formation of NOS_{MT} is likely
655 dominated by NO₃ radical chemistry. Both NOS_{MT} and OS_{MT} species showed limited correlation
656 towards SO₂ and particulate sulfate ($R^2 < 0.1$), indicating that although sulfate is essential to their
657 formation, sulfate availability does not control NOS_{MT} concentrations.

658

659 **3.5.3 Contributions of total Isoprene and monterpene OS and NOS (qSOA) to particulate mass**

660 Particulate concentrations in Delhi are among the highest across the world (WHO, 2018), with
661 concentrations over 600 $\mu\text{g m}^{-3}$ being observed during this study. qSOA, defined here as the sum of
662 all OSi, NOSi, OS_{MT}, and NOS_{MT} tracers quantified (including those not identified in more than 40 % of
663 the samples), was calculated to determine the total contribution these species make to particulate
664 mass in Delhi. Total oxidised organic aerosol (OOA), a proxy for SOA in PM₁, was derived from the
665 HR-AMS measurements during the pre- and post-monsoon campaigns, with averages of (19.8 ± 13.7)
666 $\mu\text{g m}^{-3}$ and (48.7 ± 35.4) $\mu\text{g m}^{-3}$ respectively. qSOA contributed on average (2.0 ± 0.9) % and (1.8 ±
667 1.4) % to the total OOA. Isoprene and monterpene derived species contributed on average 83.2 %
668 and 16.8 % of qSOA across the pre-monsoon respectively compared to 81.5 % and 18.5 % during the
669 post-monsoon respectively. During certain periods qSOA contributed a maximum of 4.2 % and 6.6 %
670 to OOA during the pre- and post-monsoon, respectively. This is under the assumption that when the
671 OS and NOS species fragment in the AMS ion source they lose their sulfate and nitrate groups. This is
672 similar to the contributions made by OSi markers in Beijing to total OOA (2.2 %) (Bryant et al., 2020).
673 Previous studies in the SE-US have reported much higher contributions of isoprene species to total
674 OA. As quantified by an aerosol chemical speciation monitor, summed iSOA tracers on average
675 accounted for 9.4 % of measured OA at Look Rock, downwind of Maryville and Knoxville, but up to a

676 maximum of 28.1 % (Budisulistiorini et al., 2015). This is lower than that measured at a rural site at
677 Yorkville, Georgia with just low-NO isoprene SOA tracers accounting for between 12-19 % of total OA
678 (Lin et al., 2013b).

679 Sulfate was also measured in the PM_1 size range by HR-AMS, with pre- and post-monsoon mean
680 concentrations of $(7.5 \pm 1.8) \mu\text{g m}^{-3}$ and $(5.5 \pm 2.7) \mu\text{g m}^{-3}$. The sulfate containing OS and NOS species
681 quantified in this study may fragment in the AMS to produce a sulfate signal which is not related to
682 inorganic sulfate. To estimate the contribution that sulfate contained within qSOA species could
683 make to total AMS sulfate, the quantified mass of sulfate contained within each marker was
684 calculated based on the fraction of sulfate to each marker molecular mass. For example, 2-MT-OS
685 has an accurate mass of *m/z* 216.21, meaning the percentage of 2-MT-OS mass associated with
686 sulfate is ~44 %. During the pre-monsoon campaign the qSOA sulfate accounted for on average 2.2
687 % to the total PM_1 sulfate, but up to 4.8 % on certain days. qSOA contributed considerably more to
688 the sulfate in the post-monsoon campaign, with an average of $(6.1 \pm 4.5) \%$ with a maximum of 18.7
689 %. This finding indicates the need to consider the sources of particulate sulfate measured by the
690 AMS when calculating aerosol pH. The sulfate contribution from the fragmentation of common small
691 OS compounds (hydroxymethylsulfonate, methylsulfonic acid) can be distinguished in the AMS using
692 the relative ratio of sulfur containing peaks.(Chen et al., 2019; Javed et al., 2021) However, more
693 work is needed to determine how larger OS and NOS fragment in the AMS such as those quantified
694 in this study. Overall, this highlights that isoprene and MT oxidation can make significant
695 contributions to organic and sulfate-containing aerosol, even in extremely polluted environments
696 such as Delhi. It should be noted that this is just a subset of potentially many more SOA from
697 isoprene and monoterpene markers and only focusses on sulfate containing species.

698

699 Conclusion

700 Isoprene- and monoterpene-derived organosulfate (OS) and nitrooxy organosulfate (NOS) species
701 were quantified during pre- and post-monsoon measurement periods in the Indian megacity of
702 Delhi. An extensive dataset of supplementary measurements was obtained alongside filter samples,
703 including isoprene and speciated monoterpenes. Isoprene and monoterpene emissions were found
704 to be highly influenced by anthropogenic sources, with strong correlations to anthropogenic tracers
705 at night across both campaigns. High nocturnal concentrations of pollutants were observed due to a
706 low boundary layer height and stagnant conditions, especially during the post-monsoon period.

707 Isoprene OS markers (OS_i) were observed in higher concentrations during the post-monsoon $(557 \pm$
708 $423) \text{ ng m}^{-3}$ compared to the pre-monsoon campaign $(238 \pm 118) \text{ ng m}^{-3}$. OS_i showed a moderate
709 correlation with inorganic sulfate across both campaigns. However, concentrations levelled off at
710 high sulfate concentrations during the post-monsoon which is consistent with organic coatings
711 limiting uptake of isoprene epoxides. Isoprene NOS species (NOS_i) showed nocturnal enhancements
712 across both campaigns, while the highest average concentrations were observed in the morning
713 samples of the post-monsoon campaign. The high morning concentrations are likely due to the
714 oxidation of VOCs by OH radicals from photolytic processes throughout the morning. Monoterpene
715 derived OS (OS_{MT}) and NOS (NOS_{MT}) markers were observed to have nocturnal enhancements in
716 concentrations, in-line with their precursors. NOS_{MT} markers were observed in similar concentrations
717 to those of other megacities. Total quantified SOA contributed on average $(2.0 \pm 0.9) \%$ and $(1.8 \pm$
718 $1.4) \%$ to the total OOA. Considering high OOA concentrations were observed across the two
719 campaigns, the total markers contributed up to a maximum of 4.2 % and 6.6 % across the pre- and
720 post-monsoon respectively. Overall, this work highlights that even small numbers of isoprene and

721 monoterpene derived SOA markers can make significant contributions to OA mass, even in highly
 722 polluted megacities.

723

724 Table 1. Molecular formulae, retention times and time weighted means (ng m⁻³) of
 725 organosulfates (OS) and nitrooxy organosulfates (NOS) from isoprene (i) and monoterpenes
 726 (MT) observed across pre- and post-monsoon campaigns in Delhi.

Class	Molecular formula	Pre-	SD	Post-	SD	RT's (min)
OS _i	C ₅ H ₁₂ O ₇ S	38.79	30.19	17.91	19.87	0.71
	C ₅ H ₁₀ O ₅ S	26.16	23.30	53.63	131.19	0.93
	C ₂ H ₄ O ₆ S	21.35	18.27	84.65	82.79	0.73
	C ₅ H ₁₀ O ₆ S	19.80	13.78	45.87	29.47	0.79
	C ₄ H ₈ O ₇ S	19.70	12.48	47.96	39.01	0.73
	C ₃ H ₆ O ₅ S	19.50	12.47	35.27	40.15	0.73
	C ₅ H ₈ O ₇ S	18.76	11.01	38.75	25.34	0.73
	C ₄ H ₈ O ₆ S	16.57	9.77	45.48	37.46	0.74
	C ₅ H ₁₀ O ₇ S	11.82	7.04	25.89	18.06	0.73
	C ₃ H ₆ O ₆ S	6.64	5.00	38.06	40.30	0.73
	C ₄ H ₈ O ₅ S	6.46	4.08	22.44	21.39	0.75
	C ₅ H ₁₀ O ₈ S	6.25	5.07	7.00	5.54	0.73
	C ₂ H ₄ O ₅ S	5.33	3.37	15.92	13.79	0.73
	C ₂ H ₆ O ₅ S	5.23	6.36	24.99	20.38	0.73
	C ₅ H ₈ O ₅ S	5.16	2.57	7.87	7.93	0.85
	C ₃ H ₆ O ₇ S	3.54	3.49	14.78	11.50	0.75
	C ₅ H ₁₂ O ₆ S	2.01	1.23	6.53	4.32	0.74
	C ₃ H ₈ O ₆ S	1.90	1.08	12.25	10.82	0.75
	C ₅ H ₈ O ₉ S	1.20	1.04	2.12	1.85	0.64
	C ₄ H ₆ O ₆ S	1.10	0.76	8.61	15.65	0.74
	C ₅ H ₁₂ O ₈ S	0.55	0.43	0.65	0.61	0.75
NOS _i	Total	237.83		556.64		
	C ₅ H ₁₀ O ₁₁ N ₂ S	18.65	8.77	11.63	8.09	1.39,1.92,2.85,3.4
	C ₅ H ₁₁ O ₉ NS	8.55	5.71	5.93	5.06	0.86
	C ₅ H ₉ O ₁₀ NS	3.91	3.46	1.42	1.31	0.94
	C ₅ H ₁₁ O ₈ NS	1.52	0.84	1.17	1.20	1.09
	C ₅ H ₉ O ₁₃ N ₃ S	0.002	0.001	0.011	0.009	6.67,7.89,8.06
OS _{MT}	Total	32.63		20.15		
	C ₉ H ₁₆ O ₆ S	1.10	0.61	1.67	0.88	6.67/7.14/7.5/8.3
	C ₁₀ H ₁₈ O ₅ S	0.56	0.63	0.10	0.12	3.39
	C ₁₀ H ₁₆ O ₅ S	0.28	0.13	0.77	0.06	4.91/7/9.08/10.9/11.33/11.97/13.26
	C ₁₀ H ₂₀ O ₇ S	0.25	0.21	0.27	0.21	4.19
	C ₁₀ H ₁₆ O ₇ S	0.23	0.15	0.21	0.13	3.61/11.68
	C ₉ H ₁₆ O ₇ S	0.16	0.17	0.22	0.19	4.39/6.77
	C ₁₀ H ₁₈ O ₆ S	0.15	0.10	NA	NA	10.27

	C ₉ H ₁₄ O ₆ S	0.15	1.10	0.25	0.14	3.5/5.81
	C ₁₀ H ₁₆ O ₆ S	0.10	0.06	0.06	0.03	9.33
	C ₁₀ H ₁₈ O ₈ S	0.02	0.01	0.04	0.24	7.24
	C ₈ H ₁₄ O ₇ S	0.04	0.03	0.10	0.15	4.46
	Total	3.05		3.68		
NOS _{WT}						9.1/10.16/10.67/10.92/11.07/11.36/11.57/12.01
	C ₁₀ H ₁₇ NO ₇ S	5.96	3.33	13.36	4.98	/13.28
	C ₉ H ₁₅ NO ₈ S	1.12	0.51	2.79	1.14	3.5/5.81
	C ₁₀ H ₁₇ NO ₉ S	0.47	0.19	1.15	0.29	3.93/5.34/6.39/7.89/9.26/10.11/17.94
	C ₉ H ₁₅ NO ₉ S	0.0216	0.0044	0.22	0.14	2.69/3.46
	C ₁₀ H ₁₇ NO ₈ S	0.01	0.01	0.07	0.04	5.77
	Total	7.59		17.59		

727

728

729

730

731

Table 2. Comparison of C₁₀H₁₇NO₇S concentrations across different locations.
Locations and concentrations in bold were quantified by authentic standards.

733

Location	C ₁₀ H ₁₇ NO ₇ S (ng m ⁻³)	Reference
Delhi Pre-monsoon	5.96	This study
Delhi Post-monsoon	13.36	This study
Guangzhou summer	7.15	Bryant et al., 2021
Guangzhou winter	11.11	Bryant et al., 2021
Shanghai 15/16	6.21	Wang et al., 2021b
Shanghai 16/17	5.55	Wang et al., 2021b
Beijing	12.00	Wang et al., 2018b
Atlanta	9.00	Hettiyadura et al., 2019
Hong Kong	5.61	Wang et al., 2021a
Guangzhou	12.32	Wang et al., 2021a
Shanghai	16.51	Wang et al., 2021a
Beijing	13.15	Wang et al., 2021a

734

735 Data availability

736 Data used in this study can be accessed from the CEDA
737 archive: <https://catalogue.ceda.ac.uk/uuid/ba27c1c6a03b450e9269f668566658ec> (Nemitz et al.,
738 2020).

739 Author contributions

740 DJB prepared the manuscript with contributions from all authors. DJB, BSN, SJS, SHB, WSD, ARV,
741 JMC, WJFA, BL, EN and JRH provided measurements and data processing of pollutants used in this

742 study. MJN and ARR contributed to scientific discussion. S, RG, BRG, TH and EN assisted with
743 logistics. CNH, JDL, ARR, JFH provided overall guidance to the experimental setup and design.

744 **Acknowledgements**

745 The authors acknowledge Tuhin Mandal at CSIR-National Physical Laboratory for his support in
746 facilitating the measurement sites used in this project and Gareth Stewart for the VOC
747 measurements. This work was supported by the Newton Bhabha fund administered by the UK
748 Natural Environment Research Council through the DelhiFlux and ASAP projects of the Atmospheric
749 Pollution and Human Health in an Indian Megacity (APHH-India) programme. The authors gratefully
750 acknowledge the financial support provided by the UK Natural Environment Research Council and
751 the Earth System Science Organization, Ministry of Earth Sciences, Government of India, under the
752 Indo-UK Joint Collaboration (DelhiFlux). Daniel J. Bryant and Beth S. Nelson acknowledge the NERC
753 SPHERES doctoral training programme for studentships. James M. Cash is supported by a NERC E3
754 DTP studentship.

755 **Financial support**

756 This research has been supported by the Natural Environment Research Council (grant nos.
757 NE/P016502/1 and NE/P01643X/1) and the Govt. of India, Ministry of Earth Sciences (grant no.
758 MoES/16/19/2017/APHH, DelhiFlux).

759 **Competing interests**

760 The authors declare that they have no conflict of interest.

761 **References**

762 Anand, V., Korhale, N., Rathod, A. and Beig, G.: On processes controlling fine particulate matters in
763 four Indian megacities, *Environ. Pollut.*, 254, doi:10.1016/j.envpol.2019.113026, 2019.

764 Anon: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD) •
765 worldmet, [online] Available from: <https://davidcarlaw.github.io/worldmet/index.html> (Accessed
766 24 October 2021), n.d.

767 Åsa M. Jonsson, *, Mattias Hallquist, and and Ljungström, E.: Impact of Humidity on the Ozone
768 Initiated Oxidation of Limonene, Δ^3 -Carene, and α -Pinene, *Environ. Sci. Technol.*, 40(1), 188–194,
769 doi:10.1021/ES051163W, 2005.

770 Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds:
771 A review, *Atmos. Environ.*, 37(SUPPL. 2), 197–219, doi:10.1016/S1352-2310(03)00391-1, 2003.

772 Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanaway, J. D., Beig, G.,
773 Joshi, T. K., Aggarwal, A. N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K.,
774 Kumar, G. A., Varghese, C. M., Muraleedharan, P., Agrawal, A., Anjana, R. M., Bhansali, A., Bhardwaj,
775 D., Burkart, K., Cercy, K., Chakma, J. K., Chowdhury, S., Christopher, D. J., Dutta, E., Furtado, M.,
776 Ghosh, S., Ghoshal, A. G., Glenn, S. D., Guleria, R., Gupta, R., Jeemon, P., Kant, R., Kant, S., Kaur, T.,
777 Koul, P. A., Krish, V., Krishna, B., Larson, S. L., Madhupatla, K., Mahesh, P. A., Mohan, V.,
778 Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Nguyen, G., Odell, C. M., Pandian, J. D.,
779 Prabhakaran, D., Prabhakaran, P., Roy, A., Salvi, S., Sambandam, S., Saraf, D., Sharma, M.,
780 Shrivastava, A., Singh, V., Tandon, N., Thomas, N. J., Torre, A., Xavier, D., Yadav, G., Singh, S.,
781 Shekhar, C., Vos, T., Dandona, R., Reddy, K. S., Lim, S. S., Murray, C. J. L., Venkatesh, S. and Dandona,
782 L.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of
783 India: the Global Burden of Disease Study 2017, *Lancet Planet. Heal.*, 3(1), e26–e39,
784 doi:10.1016/S2542-5196(18)30261-4, 2019.

785 Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S. and Hildebrandt
786 Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: Insights from
787 receptor modeling, *Atmos. Chem. Phys.*, 20(2), 735–752, doi:10.5194/acp-20-735-2020, 2020.

788 Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C. and Guillermo, R.: An investigation
789 into the traffic-related fraction of isoprene at an urban location, *Atmos. Environ.*, 35(22), 3749–3760,
790 doi:10.1016/S1352-2310(01)00170-4, 2001.

791 Brüggemann, M., van Pinxteren, D., Wang, Y., Yu, J. Z. and Herrmann, H.: Quantification of known
792 and unknown terpenoid organosulfates in PM10 using untargeted LC–HRMS/MS: contrasting
793 summertime rural Germany and the North China Plain, *Environ. Chem.*, 16(5), 333,
794 doi:10.1071/EN19089, 2019.

795 Brüggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y., Otto, T., Schaefer, T.,
796 Poulain, L., Chan, M. N. and Herrmann, H.: Organosulfates in Ambient Aerosol: State of Knowledge
797 and Future Research Directions on Formation, Abundance, Fate, and Importance, *Environ. Sci.
798 Technol.*, 54(7), 3767–3782, doi:10.1021/acs.est.9b06751, 2020a.

799 Brüggemann, M., Riva, M., Perrier, S., Poulain, L., George, C. and Herrmann, H.: Overestimation of
800 Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO₂,
801 *Environ. Sci. Technol. Lett.*, 8, 206–211, doi:10.1021/acs.estlett.0c00814, 2020b.

802 Bryant, D. J., Dixon, W. J., Hopkins, J. R., Dunmore, R. E., Pereira, K. L., Shaw, M., Squires, F. A.,
803 Bannan, T. J., Mehra, A., Worrall, S. D., Bacak, A., Coe, H., Percival, C. J., Whalley, L. K., Heard, D. E.,
804 Slater, E. J., Ouyang, B., Cui, T., Surratt, J. D., Liu, D., Shi, Z., Harrison, R., Sun, Y., Xu, W., Lewis, A. C.,
805 Lee, J. D., Rickard, A. R. and Hamilton, J. F.: Strong anthropogenic control of secondary organic
806 aerosol formation from isoprene in Beijing, *Atmos. Chem. Phys.*, 20(12), 7531–7552,
807 doi:10.5194/acp-20-7531-2020, 2020.

808 Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A., Deng, W., Song, W., Wang, S.,
809 Zhang, Y., Wang, X., Rickard, A. R. and Hamilton, J. F.: Importance of Oxidants and Temperature in
810 the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates, *ACS Earth Sp. Chem.*,
811 acsearthspacechem.1c00204, doi:10.1021/ACSEARTHSPACECHEM.1C00204, 2021.

812 Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K. A., Martin, S. T.,
813 McNeill, V. F., Pye, H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S., Knote, C., Shaw, S. L.,
814 Zhang, Z., Gold, A. and Surratt, J. D.: Examining the effects of anthropogenic emissions on isoprene-
815 derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study
816 (SOAS) at the Look Rock, Tennessee ground site, *Atmos. Chem. Phys.*, 15(15), 8871–8888,
817 doi:10.5194/acp-15-8871-2015, 2015.

818 Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M.,
819 R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Gadi, R., Gurjar, B. R. and
820 Nemitz, E.: Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass
821 spectrometry: chemical characterisation, source apportionment and new marker identification,
822 *Atmos. Chem. Phys.*, 21(13), 10133–10158, doi:10.5194/ACP-21-10133-2021, 2021a.

823 Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M.,
824 R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Shivani, Gadi, R., Gurjar, B.
825 R. and Nemitz, E.: Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol
826 mass spectrometry: Chemical characterisation, source apportionment and new marker
827 identification, *Atmos. Chem. Phys.*, 21(13), 10133–10158, doi:10.5194/ACP-21-10133-2021, 2021b.

828 Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H., Lewandowski, M., Edney, E.
829 O., Kleindienst, T. E., Jaoui, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M.
830 and Seinfeld, J. H.: Influence of aerosol acidity on the chemical composition of Secondary Organic

831 Aerosol from α -caryophyllene, *Atmos. Chem. Phys. Discuss.*, 10(11), 29249–29289,
832 doi:10.5194/acpd-10-29249-2010, 2010.

833 Chen, Y., Xu, L., Humphry, T., Hettiyadura, A. P. S., Ovadnevaite, J., Huang, S., Poulain, L., Schroder, J.
834 C., Campuzano-Jost, P., Jimenez, J. L., Herrmann, H., O'Dowd, C., Stone, E. A. and Ng, N. L.: Response
835 of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds:
836 Applications in Field and Laboratory Measurements, *Environ. Sci. Technol.*, 53(9), 5176–5186,
837 doi:10.1021/ACS.EST.9B00884/ASSET/IMAGES/MEDIUM/ES-2019-00884R_0003.GIF, 2019.

838 Chen, Y., Zhang, Y., T. Lambe, A., Xu, R., Lei, Z., E. Olson, N., Zhang, Z., Szalkowski, T., Cui, T., Vizuete,
839 W., Gold, A., J. Turpin, B., P Ault, A., Nin Chan, M. and D. Surratt, J.: Heterogeneous Hydroxyl Radical
840 Oxidation of Isoprene Epoxydiol-Derived Methyltetrool Sulfates: Plausible Formation Mechanisms of
841 Previously Unexplained Organosulfates in Ambient Fine Aerosols, *Environ. Sci. & Technol. Lett.*,
842 0(ja), doi:10.1021/acs.estlett.0c00276, 2020.

843 Cheng, X., Li, H., Zhang, Y., Li, Y., Zhang, W., Wang, X., Bi, F., Zhang, H., Gao, J., Chai, F., Lun, X., Chen,
844 Y. and Lv, J.: Atmospheric isoprene and monoterpenes in a typical urban area of Beijing: Pollution
845 characterization, chemical reactivity and source identification, *J. Environ. Sci.*, 71, 150–167,
846 doi:10.1016/J.JES.2017.12.017, 2018.

847 Chowdhury, Z., Zheng, M., Cass, G. R., Sheesley, R. J., Schauer, J. J., Salmon, L. G. and Russell, A. G.:
848 Source apportionment and characterization of ambient fine particles in Delhi, in *Symposium on Air*
849 *Quality Measurement Methods and Technology 2004*, pp. 13–24., 2004.

850 Coggona, M. M., Gkatzelis, G. I., McDonald, B. C., Gilman, J. B., Schwantes, R. H., Abuhassan, N.,
851 Aikin, K. C., Arendt, M. F., Berkoff, T. A., Brown, S. S., Campos, T. L., Dickerson, R. R., Gronoff, G.,
852 Hurley, J. F., Isaacman-Vanwertz, G., Koss, A. R., Li, M., McKeen, S. A., Moshary, F., Peischl, J.,
853 Pospisilova, V., Ren, X., Wilson, A., Wu, Y., Trainer, M. and Warneke, C.: Volatile chemical product
854 emissions enhance ozone and modulate urban chemistry, *Proc. Natl. Acad. Sci. U. S. A.*, 118(32),
855 e2026653118, doi:10.1073/PNAS.2026653118/SUPPL_FILE/PNAS.2026653118.SAPP.PDF, 2021.

856 Darer, A. I., Cole-Filipliak, N. C., O'Connor, A. E. and Elrod, M. J.: Formation and stability of
857 atmospherically relevant isoprene-derived organosulfates and organonitrates, *Environ. Sci. Technol.*,
858 45(5), 1895–1902, doi:10.1021/es103797z, 2011.

859 Ding, J., Zhao, P., Su, J., Dong, Q., Du, X. and Zhang, Y.: Aerosol pH and its driving factors in Beijing,
860 *Atmos. Chem. Phys.*, 19(12), 7939–7954, doi:10.5194/ACP-19-7939-2019, 2019.

861 Drozd, G. T., Woo, J. L. and McNeill, V. F.: Self-limited uptake of α -pinene oxide to acidic aerosol: The
862 effects of liquid-liquid phase separation and implications for the formation of secondary organic
863 aerosol and organosulfates from epoxides, *Atmos. Chem. Phys.*, 13(16), 8255–8263,
864 doi:10.5194/acp-13-8255-2013, 2013.

865 Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M. and Weber, R.: A yearlong study
866 of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature, *Atmos.*
867 *Environ.*, 92, 514–521, doi:10.1016/j.atmosenv.2014.04.060, 2014.

868 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Seinfeld, J. H. and Wennberg, P. O.: α -pinene photooxidation
869 under controlled chemical conditions-Part 1: Gas-phase composition in low-and high-NO
870 environments, *Atmos. Chem. Phys.*, 12(14), 6489–6504, doi:10.5194/acp-12-6489-2012, 2012a.

871 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld, J. H. and
872 Wennberg, P. O.: α -pinene photooxidation under controlled chemical conditions-Part 2: SOA yield
873 and composition in low-and high-NO x environments, *Atmos. Chem. Phys.*, 12(16), 7413–7427,
874 doi:10.5194/acp-12-7413-2012, 2012b.

875 Elser, M., Huang, R. J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I. and André, P.: New insights
877 into PM_{2.5} chemical composition and sources in two major cities in China during extreme haze
878 events using aerosol mass spectrometry, *Atmos. Chem. Phys.*, 16(5), 3207–3225, doi:10.5194/ACP-
879 16-3207-2016, 2016.

880 Elzein, A., Stewart, G. J., Swift, S. J., Nelson, B. S., Crilley, L. R., Alam, M. S., Reyes-Villegas, E., Gadi, R., Harrison, R. M., Hamilton, J. F. and Lewis, A. C.: A comparison of PM_{2.5}-bound polycyclic
881 aromatic hydrocarbons in summer Beijing (China) and Delhi (India), *Atmos. Chem. Phys.*, 20(22),
882 14303–14319, doi:10.5194/ACP-20-14303-2020, 2020.

884 Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H. and
885 Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and
886 reversibility of uptake under dark and irradiated conditions, *Atmos. Chem. Phys.*, 9(10), 3331–3345,
887 doi:10.5194/acp-9-3331-2009, 2009.

888 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L.
889 and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi
890 Aerosol Supersite study, *Atmos. Chem. Phys.*, 19(10), 6843–6859, doi:10.5194/acp-19-6843-2019,
891 2019.

892 Gaston, C. J., Riedel, T. P., Zhang, Z., Gold, A., Surratt, J. D. and Thornton, J. A.: Reactive Uptake of an
893 Isoprene-Derived Epoxydiol to Submicron Aerosol Particles, *Environ. Sci. Technol.*, 48(19), 11178–
894 11186, doi:10.1021/es5034266, 2014.

895 Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Gilman, J. B., Aikin, K. C., Robinson, M. A.,
896 Canonaco, F., Prevot, A. S. H., Trainer, M. and Warneke, C.: Observations Confirm that Volatile
897 Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities, *Environ. Sci.
898 Technol.*, 55(8), 4332–4343, doi:10.1021/ACS.EST.0C05471/SUPPL_FILE/ES0C05471_SI_001.PDF,
899 2021.

900 Glasius, M., Bering, M. S., Yee, L. D., de Sá, S. S., Isaacman-VanWertz, G., Wernis, R. A., Barbosa, H.
901 M. J., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Shrivastava,
902 M., Martin, S. T. and Goldstein, A. H.: Organosulfates in aerosols downwind of an urban region in
903 central Amazon, *Environ. Sci. Process. Impacts*, 20(11), 1546–1558, doi:10.1039/C8EM00413G, 2018.

904 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and Wang, X.:
905 The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended
906 and updated framework for modeling biogenic emissions, *Geosci. Model Dev.*, 5(6), 1471–1492,
907 doi:10.5194/gmd-5-1471-2012, 2012.

908 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J.,
909 Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y.,
910 Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F.,
911 Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R. and Wildt, J.: The formation,
912 properties and impact of secondary organic aerosol: current and emerging issues, *Atmos. Chem.
913 Phys.*, 9(14), 5155–5236, doi:10.5194/acp-9-5155-2009, 2009.

914 Hama, S. M. L., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., Namdeo, A., Sokhi, R.,
915 Goodman, P. and Sharma, C.: Four-year assessment of ambient particulate matter and trace gases in
916 the Delhi-NCR region of India, *Sustain. Cities Soc.*, 54, doi:10.1016/j.scs.2019.102003, 2020.

917 Hamilton, J. F., Bryant, D. J., Edwards, P. M., Ouyang, B., Bannan, T. J., Mehra, A., Mayhew, A. W.,
918 Hopkins, J. R., Dunmore, R. E., Squires, F. A., Lee, J. D., Newland, M. J., Worrall, S. D., Bacak, A., Coe,
919 H., Whalley, L. K., Heard, D. E., Slater, E. J., Jones, R. L., Cui, T., Surratt, J. D., Reeves, C. E., Mills, G. P.,
920 Grimmond, S., Sun, Y., Xu, W., Shi, Z. and Rickard, A. R.: Key Role of NO₃ Radicals in the Production

921 of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing, *Environ. Sci. Technol.*, 55(2), 842–853,
922 doi:10.1021/acs.est.0c05689, 2021.

923 Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., York, R. A., Foster,
924 D., Stephens, S. L., Goldstein, A. H. and Barsanti, K. C.: Highly Speciated Measurements of Terpenoids
925 Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires, *Environ. Sci. Technol.*, 53(16),
926 9418–9428, doi:10.1021/ACS.EST.9B02612, 2019.

927 Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T. and Stone, E. A.: Organosulfates in
928 Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation, *Atmos.*
929 *Chem. Phys.*, 19(5), 3191–3206, doi:10.5194/acp-19-3191-2019, 2019.

930 Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C. and Seinfeld, J. H.:
931 Formation of organic aerosols from the oxidation of biogenic hydrocarbons, *J. Atmos. Chem.*, 26(2),
932 189–222, doi:10.1023/A:1005734301837, 1997.

933 Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., Hallar, A. G., Huff Hartz, K.,
934 Petters, M. D., Petäjä, T., Rosenoern, T. and Sullivan, A. P.: A review of the anthropogenic influence
935 on biogenic secondary organic aerosol, *Atmos. Chem. Phys.*, 11(1), 321–343, doi:10.5194/acp-11-
936 321-2011, 2011.

937 Hsieh, H.-C., Ou-Yang, C.-F. and Wang, J.-L.: Revelation of Coupling Biogenic with Anthropogenic
938 Isoprene by Highly Time-Resolved Observations, *Aerosol Air Qual. Res.*, 17(3), 721–729,
939 doi:10.4209/AAQR.2016.04.0133, 2017.

940 Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng,
941 J., Zeng, L. and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in
942 Beijing: Contrast between summer and winter, *J. Geophys. Res. Atmos.*, 121(4), 1955–1977,
943 doi:10.1002/2015JD024020, 2016.

944 Huang, Z., Zhang, Y., Yan, Q., Zhang, Z. and Wang, X.: Real-time monitoring of respiratory absorption
945 factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass
946 spectrometry, *J. Hazard. Mater.*, 320, 547–555, doi:10.1016/J.JHAZMAT.2016.08.064, 2016.

947 Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M. and Herrmann, H.: Evidence for the existence
948 of organosulfates from β -pinene ozonolysis in ambient secondary organic aerosol, *Environ. Sci.*
949 *Technol.*, 41(19), 6678–6683, doi:10.1021/es070938t, 2007.

950 Jain, N., Bhatia, A. and Pathak, H.: Emission of Air Pollutants from Crop Residue Burning in India,
951 *Aerosol Air Qual. Res.*, 14(1), 422–430, doi:10.4209/aaqr.2013.01.0031, 2014.

952 Javed, M., Bashir, M. and Zaineb, S.: Analysis of daily and seasonal variation of fine particulate
953 matter (PM2.5) for five cities of China, *Environ. Dev. Sustain.*, 1–29, doi:10.1007/s10668-020-01159-
954 1, 2021.

955 Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V. K., Varaprasad, V. and
956 Sarangi, C.: What caused severe air pollution episode of November 2016 in New Delhi?, *Atmos.*
957 *Environ.*, 222, doi:10.1016/j.atmosenv.2019.117125, 2020.

958 Kashyap, P., Kumar, A., Kumar, R. P. and Kumar, K.: Biogenic and anthropogenic isoprene emissions
959 in the subtropical urban atmosphere of Delhi, *Atmos. Pollut. Res.*, 10(5), 1691–1698,
960 doi:10.1016/j.apr.2019.07.004, 2019.

961 Khan, M. A. H., Schlich, B.-L., Jenkin, M. E., Shallcross, B. M. A., Moseley, K., Walker, C., Morris, W. C.,
962 Derwent, R. G., Percival, C. J. and Shallcross, D. E.: A Two-Decade Anthropogenic and Biogenic
963 Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site, *Atmos.*
964 2018, Vol. 9, Page 387, 9(10), 387, doi:10.3390/ATMOS9100387, 2018a.

965 Khan, M. A. H., Schlich, B. L., Jenkin, M. E., Shallcross, B. M. A., Moseley, K., Walker, C., Morris, W. C.,
966 Derwent, R. G., Percival, C. J. and Shallcross, D. E.: A Two-Decade Anthropogenic and Biogenic
967 Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site, *Atmos.*
968 2018, Vol. 9, Page 387, 9(10), 387, doi:10.3390/ATMOS9100387, 2018b.

969 Kirillova, E. N., Sheesley, R. J., Andersson, A. and Gustafsson, Ö.: Natural abundance ^{13}C and ^{14}C
970 analysis of water-soluble organic carbon in atmospheric aerosols, *Anal. Chem.*, 82(19), 7973–7978,
971 doi:10.1021/ac1014436, 2010.

972 Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P. S., Budhavant, K., Safai, P. D.,
973 Rao, P. S. P. and Gustafsson, Ö.: ^{13}C - and ^{14}C -based study of sources and atmospheric processing of
974 water-soluble organic carbon (WSOC) in South Asian aerosols, *J. Geophys. Res. Atmos.*, 118(2), 614–
975 626, doi:10.1002/jgrd.50130, 2013.

976 Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S. and Gustafsson, Ö.: Water-
977 soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment
978 and optical properties, *J. Geophys. Res. Atmos.*, 119(6), 3476–3485, doi:10.1002/2013JD020041,
979 2014.

980 Klein, F., Farren, N. J., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J.
981 G., Tuthill, R. N., Hamilton, J. F., Baltensperger, U., Prévôt, A. S. H. and El Haddad, I.: Indoor terpene
982 emissions from cooking with herbs and pepper and their secondary organic aerosol production
983 potential, *Sci. Reports* 2016 61, 6(1), 1–7, doi:10.1038/srep36623, 2016.

984 Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H. and Jaoui, M.: Secondary Organic
985 Carbon and Aerosol Yields from the Irradiations of Isoprene and α -Pinene in the Presence of NO_x
986 and SO_2 , *Environ. Sci. Technol.*, 40(12), 3807–3812, doi:10.1021/es052446r, 2006.

987 Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi, A. F. L., Paralovo, S.
988 L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R., Sjostedt, S., Park, J. H., Guenther, A., Kim,
989 S., Smith, J., Martin, S. T. and Kalberer, M.: Molecular composition of organic aerosols in central
990 Amazonia: An ultra-high-resolution mass spectrometry study, *Atmos. Chem. Phys.*, 16(18), 11899–
991 11913, doi:10.5194/acp-16-11899-2016, 2016.

992 Kristensen, K., Enggrob, K. L., King, S. M., Worton, D. R., Platt, S. M., Mortensen, R., Rosenoern, T.,
993 Surratt, J. D., Bilde, M., Goldstein, A. H. and Glasius, M.: Formation and occurrence of dimer esters of
994 pinene oxidation products in atmospheric aerosols, *Atmos. Chem. Phys.*, 13(7), 3763–3776,
995 doi:10.5194/acp-13-3763-2013, 2013.

996 Kumar, P., Kumar, S. and Yadav, S.: Seasonal variations in size distribution, water-soluble ions, and
997 carbon content of size-segregated aerosols over New Delhi, *Environ. Sci. Pollut. Res.*, 25(6), 6061–
998 6078, doi:10.1007/S11356-017-0954-6, 2018.

999 Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini,
1000 R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M.
1001 L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A.,
1002 Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V., McTeer, M. A., Murray, C. J. L., Ndahimananjara,
1003 J. D., Perera, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L. D.,
1004 Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P.,
1005 Yadama, G. N., Yumkella, K. and Zhong, M.: The Lancet Commission on pollution and health, *Lancet*,
1006 391(10119), 462–512, doi:10.1016/S0140-6736(17)32345-0, 2018.

1007 Lanz, V. A., Prévôt, A. S. H., Alfara, M. R., Weimer, S., Mohr, C., Decarlo, P. F., Gianini, M. F. D.,
1008 Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C. and Baltensperger, U.: Characterization of
1009 aerosol chemical composition with aerosol mass spectrometry in Central Europe: An overview,
1010 *Atmos. Chem. Phys.*, 10(21), 10453–10471, doi:10.5194/ACP-10-10453-2010, 2010.

1011 Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., Iyer,
1012 S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber,
1013 R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein, A. H., Seco, R., Kim, S.,
1014 McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu, J., Shilling, J. E., Miller, D. O.,
1015 Brune, W., Schobesberger, S., D'Ambro, E. L. and Thornton, J. A.: Highly functionalized organic
1016 nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive
1017 nitrogen budgets., *Proc. Natl. Acad. Sci. U. S. A.*, 113(6), 1516–21, doi:10.1073/pnas.1508108113,
1018 2016.

1019 Lelieveld, J., Gromov, S., Pozzer, A. and Taraborrelli, D.: Global tropospheric hydroxyl distribution,
1020 budget and reactivity, *Atmos. Chem. Phys.*, 16(19), 12477–12493, doi:10.5194/ACP-16-12477-2016,
1021 2016.

1022 Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., St. Clair, J. M., Crounse,
1023 J. D., Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Ryerson, T. B.,
1024 Pollack, I. B., Peischl, J., Anderson, B. E., Ziemba, L. D., Blake, D. R., Meinardi, S. and Diskin, G.:
1025 Airborne measurements of organosulfates over the continental U.S., *J. Geophys. Res.*, 120(7), 2990–
1026 3005, doi:10.1002/2014JD022378, 2015.

1027 Lin, Y. H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschun, C. L., Shaw, S. L.,
1028 Knipping, E. M., Edgerton, E. S., Kleindienst, T. E., Gold, A. and Surratt, J. D.: Isoprene epoxydiols as
1029 precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with
1030 authentic compounds, *Environ. Sci. Technol.*, 46(1), 250–258, doi:10.1021/es202554c, 2012.

1031 Lin, Y. H., Zhang, H., Pye, H. O. T., Zhang, Z., Marth, W. J., Park, S., Arashiro, M., Cui, T.,
1032 Budisulistiorini, S. H., Sexton, K. G., Vizuete, W., Xie, Y., Luecken, D. J., Piletic, I. R., Edney, E. O.,
1033 Bartolotti, L. J., Gold, A. and Surratt, J. D.: Epoxide as a precursor to secondary organic aerosol
1034 formation from isoprene photooxidation in the presence of nitrogen oxides, *Proc. Natl. Acad. Sci. U.*
1035 *S. A.*, 110(17), 6718–6723, doi:10.1073/pnas.1221150110, 2013a.

1036 Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L. and Surratt, J. D.: Investigating the influences of
1037 SO₂ and NH₃ levels on isoprene-derived secondary organic aerosol formation using conditional
1038 sampling approaches, *Atmos. Chem. Phys.*, 13(16), 8457–8470, doi:10.5194/ACP-13-8457-2013,
1039 2013b.

1040 Lin, Y. H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang, H., Riva, M., Zhang, Z., Gold, A.,
1041 Kautzman, K. E. and Surratt, J. D.: Light-absorbing oligomer formation in secondary organic aerosol
1042 from reactive uptake of isoprene epoxydiols, *Environ. Sci. Technol.*, 48(20), 12012–12021,
1043 doi:10.1021/es503142b, 2014.

1044 Mishra, A. K. and Sinha, V.: Emission drivers and variability of ambient isoprene, formaldehyde and
1045 acetaldehyde in north-west India during monsoon season, *Environ. Pollut.*, 267, 115538,
1046 doi:10.1016/J.ENVPOL.2020.115538, 2020.

1047 Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K. and Kawamura, K.: Dicarboxylic acids and water-
1048 soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation
1049 processes, *J. Geophys. Res. Atmos.*, 114(19), doi:10.1029/2009JD011790, 2009.

1050 Morales, A. C., Jayarathne, T., Slade, J. H., Laskin, A. and Shepson, P. B.: The production and
1051 hydrolysis of organic nitrates from OH radical oxidation of β -ocimene, *Atmos. Chem. Phys.*, 21(1),
1052 129–145, doi:10.5194/ACP-21-129-2021, 2021.

1053 Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O. and Herrmann, H.: Monoterpene SOA - Contribution of
1054 first-generation oxidation products to formation and chemical composition, *Atmos. Environ.*, 130,
1055 136–144, doi:10.1016/j.atmosenv.2015.10.080, 2016.

1056 Nagar, P. K., Singh, D., Sharma, M., Kumar, A., Aneja, V. P., George, M. P., Agarwal, N. and Shukla, S.
1057 P.: Characterization of PM2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and
1058 municipal solid waste and crustal matter, *Environ. Sci. Pollut. Res.*, 24(32), 25179–25189,
1059 doi:10.1007/s11356-017-0171-3, 2017.

1060 Nelson, B., Stewart, G., Drysdale, W., Newland, M., Vaughan, A., Dunmore, R., Edwards, P., Lewis, A.,
1061 Hamilton, J., Acton, W. J. F., Hewitt, C. N., Crilley, L., Alam, M., Şahin, Ü., Beddows, D., Bloss, W.,
1062 Slater, E., Whalley, L., Heard, D., Cash, J., Langford, B., Nemitz, E., Sommariva, R., Cox, S., Gadi, R.,
1063 Gurjar, B., Hopkins, J., Rickard, A. and Lee, J.: In situ Ozone Production is highly sensitive to Volatile
1064 Organic Compounds in the Indian Megacity of Delhi, *Atmos. Chem. Phys. Discuss.*, 1–36,
1065 doi:10.5194/ACP-2021-278, 2021.

1066 Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E., Spólnik, G.,
1067 Danikiewicz, W. and Szmigielski, R.: Chemical composition of isoprene SOA under acidic and non-
1068 acidic conditions: effect of relative humidity, *Atmos. Chem. Phys.*, 18(24), 18101–18121,
1069 doi:10.5194/acp-18-18101-2018, 2018.

1070 Newland, M. J., Bryant, D. J., Dunmore, R. E., Bannan, T. J., Joe, W., Langford, B., Hopkins, J. R.,
1071 Squires, F. A., Dixon, W., Drysdale, W. S., Ivatt, P. D., Evans, M. J., Edwards, P. M., Whalley, L. K.,
1072 Heard, D. E., Slater, E. J., Woodward-Massey, R., Ye, C., Mehra, A., Worrall, S. D., Bacak, A., Coe, H.,
1073 Percival, C. J., Nicholas Hewitt, C., Lee, J. D., Cui, T., Surratt, J. D., Wang, X., Lewis, A. C., Rickard, A. R.
1074 and Hamilton, J. F.: Low-NO atmospheric oxidation pathways in a polluted megacity, *Atmos. Chem.
1075 Phys.*, 21(3), 1613–1625, doi:10.5194/acp-21-1613-2021, 2021.

1076 Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T.,
1077 Crounse, J. D., Wennberg, P. O., Flagan, R. C. and Seinfeld, J. H.: Secondary organic aerosol (SOA)
1078 formation from reaction of isoprene with nitrate radicals (NO₃), *Atmos. Chem. Phys.*, 8(14), 4117–
1079 4140, doi:10.5194/acp-8-4117-2008, 2008.

1080 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N.
1081 M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J.
1082 L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D.,
1083 Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M.,
1084 Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J. and Zaveri, R. A.: Nitrate radicals and biogenic
1085 volatile organic compounds: oxidation, mechanisms, and organic aerosol, *Atmos. Chem. Phys.*, 17(3),
1086 2103–2162, doi:10.5194/acp-17-2103-2017, 2017.

1087 Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen, K., Tulinius, T. E.,
1088 Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A., Nøjgaard, J. K. and Glasius, M.:
1089 Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in
1090 Denmark via analysis of organosulfates and related oxidation products, *Atmos. Chem. Phys.*, 14(17),
1091 8961–8981, doi:10.5194/acp-14-8961-2014, 2014.

1092 Nguyen, T. B., Bateman, A. P., Bones, D. L., Nizkorodov, S. A., Laskin, J. and Laskin, A.: High-resolution
1093 mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene,
1094 *Atmos. Environ.*, 44(8), 1032–1042, doi:10.1016/J.ATMOSENV.2009.12.019, 2010.

1095 Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X., Kjaergaard, H. G., Surratt, J. D.,
1096 Lin, P., Laskin, A., Seinfeld, J. H. and Wennberg, P. O.: Mechanism of the hydroxyl radical oxidation of
1097 methacryloyl peroxy nitrate (MPAN) and its pathway toward secondary organic aerosol formation in
1098 the atmosphere, *Phys. Chem. Chem. Phys.*, 17(27), 17914–17926, doi:10.1039/c5cp02001h, 2015.

1099 None, S., R, G., SK, S. and TK, M.: Seasonal variation, source apportionment and source attributed
1100 health risk of fine carbonaceous aerosols over National Capital Region, India, *Chemosphere*, 237,
1101 doi:10.1016/J.CHEMOSPHERE.2019.124500, 2019.

1102 Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Stavroulas, I., Bonsang, B.,
1103 Gerasopoulos, E. and Mihalopoulos, N.: Yearlong measurements of monoterpenes and isoprene in a
1104 Mediterranean city (Athens): Natural vs anthropogenic origin, *Atmos. Environ.*, 243, 117803,
1105 doi:10.1016/J.ATMOENV.2020.117803, 2020.

1106 Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Bonsang, B., Salameh, T.,
1107 Gerasopoulos, E. and Mihalopoulos, N.: Variability and sources of non-methane hydrocarbons at a
1108 Mediterranean urban atmosphere: The role of biomass burning and traffic emissions, *Sci. Total
1109 Environ.*, 800, 149389, doi:10.1016/J.SCITOTENV.2021.149389, 2021.

1110 Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J., Donaldson, D. J. and George, C.:
1111 Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated
1112 Fatty Acids and Long-Chain Alkenes, *Angew. Chemie - Int. Ed.*, 55(35), 10336–10339,
1113 doi:10.1002/anie.201605266, 2016.

1114 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St. Clair, J. M., Seinfeld, J. H. and Wennberg, P.
1115 O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, *Science* (80- .),
1116 325(5941), 730–733, doi:10.1126/science.1172910, 2009.

1117 Rattanavaraha, W., Chu, K., Budisulistiorini, S. H., Riva, M., Lin, Y.-H., Edgerton, E. S., Baumann, K.,
1118 Shaw, S. L., Guo, H., King, L., Weber, R. J., Neff, M. E., Stone, E. A., Offenberg, J. H., Zhang, Z., Gold, A.
1119 and Surratt, J. D.: Assessing the impact of anthropogenic pollution on isoprene-derived secondary
1120 organic aerosol formation in PM<sub>2.5</sub> collected from the
1121 Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study, *Atmos.
1122 Chem. Phys.*, 16(8), 4897–4914, doi:10.5194/acp-16-4897-2016, 2016a.

1123 Rattanavaraha, W., Chu, K., Budisulistiorini, S. H., Riva, M., Lin, Y. H., Edgerton, E. S., Baumann, K.,
1124 Shaw, S. L., Guo, H., King, L., Weber, R. J., Neff, M. E., Stone, E. A., Offenberg, J. H., Zhang, Z., Gold, A.
1125 and Surratt, J. D.: Assessing the impact of anthropogenic pollution on isoprene-derived secondary
1126 organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the
1127 2013 Southern Oxidant and Aerosol Study, *Atmos. Chem. Phys.*, 16(8), 4897–4914, doi:10.5194/acp-
1128 16-4897-2016, 2016b.

1129 Reyes-Villegas, E., Panda, U., Derbyshire, E., Cash, J. M., Joshi, R., Langford, B., Di Marco, C. F.,
1130 Mullinger, N. J., Alam, M. S., Crilley, L. R., Rooney, D. J., Acton, W. J. F., Drysdale, W., Nemitz, E.,
1131 Flynn, M., Voliotis, A., McFiggans, G., Coe, H., Lee, J., Hewitt, C. N., Heal, M. R., Gunthe, S. S., Mandal,
1132 T. K., Gurjar, B. R., Shivani, Gadi, R., Singh, S., Soni, V. and Allan, J. D.: PM1 composition and source
1133 apportionment at two sites in Delhi, India, across multiple seasons, *Atmos. Chem. Phys.*, 21(15),
1134 11655–11667, doi:10.5194/ACP-21-11655-2021, 2021.

1135 Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A. and Surratt, J. D.: Chemical
1136 characterization of organosulfates in secondary organic aerosol derived from the photooxidation of
1137 alkanes, *Atmos. Chem. Phys.*, 16(17), 11001–11018, doi:10.5194/acp-16-11001-2016, 2016a.

1138 Riva, M., Budisulistiorini, S. H., Zhang, Z. and Gold, A.: Chemical characterization of secondary
1139 organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol, *Atmos.
1140 Environ.*, 130, 5–13, doi:10.1016/J.ATMOENV.2015.06.027, 2016b.

1141 Riva, M., Bell, D. M., Hansen, A. M. K., Drozd, G. T., Zhang, Z., Gold, A., Imre, D., Surratt, J. D., Glasius,
1142 M. and Zelenyuk, A.: Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase
1143 Chemistry of Isoprene Epoxydiols, *Environ. Sci. Technol.*, 50(11), 5580–5588,
1144 doi:10.1021/acs.est.5b06050, 2016c.

1145 Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan, S., Yee, L. D., Green, H. S., Cui,
1146 T., Zhang, Z., Baumann, K., Fort, M., Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., e
1147 Oliveira, R. L., dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G., de Sá, S. S., Hu,

1148 W., Knipping, E. M., Shaw, S. L., Duvoisin Junior, S., de Souza, R. A. F., Palm, B. B., Jimenez, J.-L.,
1149 Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin, B. J., Vizuete, W., Martin, S. T., Thornton,
1150 J. A., Dutcher, C. S., Ault, A. P. and Surratt, J. D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate
1151 Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms:
1152 Implications for Aerosol Physicochemical Properties, *Environ. Sci. Technol.*, *acs.est.9b01019*,
1153 doi:10.1021/acs.est.9b01019, 2019.

1154 Saha, D., Soni, K., Mohanan, M. N. and Singh, M.: Long-term trend of ventilation coefficient over
1155 Delhi and its potential impacts on air quality, *Remote Sens. Appl. Soc. Environ.*, *15*, 100234,
1156 doi:10.1016/J.RSASE.2019.05.003, 2019.

1157 Sahu, L. K. and Saxena, P.: High time and mass resolved PTR-TOF-MS measurements of VOCs at an
1158 urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and
1159 photochemical sources, *Atmos. Res.*, *164–165*, 84–94, doi:10.1016/J.ATMOSRES.2015.04.021, 2015.

1160 Sahu, L. K., Tripathi, N. and Yadav, R.: Contribution of biogenic and photochemical sources to
1161 ambient VOCs during winter to summer transition at a semi-arid urban site in India, *Environ. Pollut.*,
1162 *229*, 595–606, doi:10.1016/J.ENVPOL.2017.06.091, 2017.

1163 Sawlani, R., Agnihotri, R., Sharma, C., Patra, P. K., Dimri, A. P., Ram, K. and Verma, R. L.: The severe
1164 Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, and
1165 atypical meteorology, *Atmos. Pollut. Res.*, *10*(3), 868–879, doi:10.1016/j.apr.2018.12.015, 2019.

1166 Schindelka, J., Iinuma, Y., Hoffmann, D. and Herrmann, H.: Sulfate radical-initiated formation of
1167 isoprene-derived organosulfates in atmospheric aerosols, *Faraday Discuss.*, *165*(0), 237–259,
1168 doi:10.1039/c3fd00042g, 2013.

1169 Schnell, J. L., Naik, V., Horowitz, L. W., Paulot, F., Mao, J., Ginoux, P., Zhao, M. and Ram, K.: Exploring
1170 the relationship between surface PM_{2.5} and meteorology in Northern India, *Atmos. Chem. Phys.*,
1171 *18*(14), 10157–10175, doi:10.5194/acp-18-10157-2018, 2018.

1172 Sharma, S. K. and Mandal, T. K.: Chemical composition of fine mode particulate matter (PM2.5) in an
1173 urban area of Delhi, India and its source apportionment, *Urban Clim.*, *21*, 106–122,
1174 doi:10.1016/j.uclim.2017.05.009, 2017.

1175 Sheesley, R. J., Kirillova, E., Andersson, A., Krusa, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao,
1176 P. S. P. and Gustafsson, O.: Year-round radiocarbon-based source apportionment of carbonaceous
1177 aerosols at two background sites in South Asia, *J. Geophys. Res. Atmos.*, *117*(10),
1178 doi:10.1029/2011JD017161, 2012.

1179 Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A., Kürten, A.,
1180 Rörup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P., Beck, L., Bergen, A., Bianchi, F.,
1181 Bräkling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D., Duplissy, J., El Haddad, I.,
1182 Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L., Gordon, H., Granzin, M., Hakala, J., Hofbauer, V.,
1183 Hoyle, C., Kim, C., Kong, W., Lamkaddam, H., Lee, C., Lehtipalo, K., Leiminger, M., Mai, H., Manninen,
1184 H., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A.,
1185 Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L., Ranjithkumar, A., Rissanen, M.,
1186 Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y.,
1187 Tauber, C., Tham, Y., Tomé, A., Vazquez-Pufleau, M., Vogel, A., Wagner, R., Wang, M., Wang, D.,
1188 Wang, Y., Weber, S., Wu, Y., Xiao, M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X.,
1189 Baltensperger, U., Dommen, J., Flagan, R., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P.,
1190 Worsnop, D., Donahue, N., Kirkby, J. and Curtius, J.: Molecular understanding of new-particle
1191 formation from alpha-pinene between −50 °C and
1192 25 °C, *Atmos. Chem. Phys.*, (January), 1–42, doi:10.5194/acp-2019-1058,
1193 2020.

1194 Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U.,
1195 Stefani, P. and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model
1196 over the last 30 years, *Atmos. Chem. Phys.*, 14(17), 9317–9341, doi:10.5194/ACP-14-9317-2014,
1197 2014.

1198 Singh, B. P., Kumar, K. and Jain, V. K.: Source identification and health risk assessment associated
1199 with particulate- and gaseous-phase PAHs at residential sites in Delhi, India, *Air Qual. Atmos. Heal.*,
1200 doi:10.1007/S11869-021-01035-5, 2021.

1201 Singh, D. P., Gadi, R. and Mandal, T. K.: Characterization of Gaseous and Particulate Polycyclic
1202 Aromatic Hydrocarbons in Ambient Air of Delhi, India, *Polycycl. Aromat. Compd.*, 32(4), 556–579,
1203 doi:10.1080/10406638.2012.683230, 2012.

1204 Sinha, V., Kumar, V. and Sarkar, C.: Chemical composition of pre-monsoon air in the Indo-Gangetic
1205 Plain measured using a new air quality facility and PTR-MS: High surface ozone and strong influence
1206 of biomass burning, *Atmos. Chem. Phys.*, 14(12), 5921–5941, doi:10.5194/acp-14-5921-2014, 2014.

1207 Spolnik, G., Wach, P., Rudzinski, K. J., Skotak, K., Danikiewicz, W. and Szmigielski, R.: Improved
1208 UHPLC-MS/MS Methods for Analysis of Isoprene-Derived Organosulfates, *Anal. Chem.*, 90(5), 3416–
1209 3423, doi:10.1021/acs.analchem.7b05060, 2018.

1210 Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Farren, N. J., Hopkins, J. R., Ward, M. W.,
1211 Swift, S. J., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Yunus, S. S. M.,
1212 Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D.,
1213 Mandal, T. K. and Hamilton, J. F.: Emissions of intermediate-volatility and semi-volatile organic
1214 compounds from domestic fuels used in Delhi, India, *Atmos. Chem. Phys.*, 21(4), 2407–2426,
1215 doi:10.5194/ACP-21-2407-2021, 2021a.

1216 Stewart, G. J., Acton, W. J. F., Nelson, B. S., Vaughan, A. R., Hopkins, J. R., Arya, R., Mondal, A.,
1217 Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Dunmore, R. E., Yunus, S. S. M., Nicholas Hewitt, C.,
1218 Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K. and
1219 Hamilton, J. F.: Emissions of non-methane volatile organic compounds from combustion of domestic
1220 fuels in Delhi, India, *Atmos. Chem. Phys.*, 21(4), 2383–2406, doi:10.5194/ACP-21-2383-2021, 2021b.

1221 Stewart, G. J., Nelson, B. S., Drysdale, W. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Dunmore,
1222 R. E., Hewitt, C. N., Nemitz, E., Mullinger, N., Langford, B., Shivani, Reyes-Villegas, E., Gadi, R.,
1223 Rickard, A. R., Lee, J. D. and Hamilton, J. F.: Sources of non-methane hydrocarbons in surface air in
1224 Delhi, India, *Faraday Discuss.*, 226(0), 409–431, doi:10.1039/D0FD00087F, 2021c.

1225 Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R.,
1226 Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C. and Seinfeld, J. H.: Chemical composition of
1227 secondary organic aerosol formed from the photooxidation of isoprene, *J. Phys. Chem. A*, 110(31),
1228 9665–9690, doi:10.1021/jp061734m, 2006.

1229 Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M., Sorooshian, A., Ng, N. L.,
1230 Offenberg, J. H., Lewandowski, M., Jaoui, M., Flagan, R. C. and Seinfeld, J. H.: Evidence for
1231 Organosulfates in Secondary Organic Aerosol, *Environ. Sci. Technol.*, 41(2), 517–527,
1232 doi:10.1021/es062081q, 2007.

1233 Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E.,
1234 Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C.
1235 and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, *J. Phys. Chem. A*,
1236 112(36), 8345–8378, doi:10.1021/jp802310p, 2008a.

1237 Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E.,
1238 Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C.

1239 and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, *J. Phys. Chem. A*,
1240 112(36), 8345–8378, doi:10.1021/jp802310p, 2008b.

1241 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan,
1242 R. C., Wennberg, P. O. and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic
1243 aerosol formation from isoprene, *Proc. Natl. Acad. Sci.*, 107(15), 6640–6645,
1244 doi:10.1073/pnas.0911114107, 2010.

1245 Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H. A., Fisseha, R., Baltensperger, U., Kalberer, M.,
1246 Samburova, V., Wacker, L., Saurer, M., Schwikowski, M. and Hajdas, I.: Source apportionment of
1247 aerosols by ¹⁴C measurements in different carbonaceous particle fractions, in *Radiocarbon*, vol. 46,
1248 pp. 475–484, University of Arizona., 2004.

1249 Takeuchi, M. and Ng, N. L.: Chemical composition and hydrolysis of organic nitrate aerosol formed
1250 from hydroxyl and nitrate radical oxidation of α -pinene and β -pinene, *Atmos. Chem. Phys.*, 19(19),
1251 12749–12766, doi:10.5194/ACP-19-12749-2019, 2019.

1252 Wagner, P. and Kuttler, W.: Biogenic and anthropogenic isoprene in the near-surface urban
1253 atmosphere — A case study in Essen, Germany, *Sci. Total Environ.*, 475, 104–115,
1254 doi:10.1016/J.SCITOTENV.2013.12.026, 2014.

1255 Wang, J. L., Chew, C., Chang, C. Y., Liao, W. C., Lung, S. C. C., Chen, W. N., Lee, P. J., Lin, P. H. and
1256 Chang, C. C.: Biogenic isoprene in subtropical urban settings and implications for air quality, *Atmos.*
1257 *Environ.*, 79, 369–379, doi:10.1016/J.ATMOSENV.2013.06.055, 2013.

1258 Wang, X., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C., Emmelin, C., Chen, J., George, C.
1259 and Wang, L.: Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh-
1260 Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry, *J. Geophys. Res.*
1261 *Atmos.*, 122(21), 11,703–11,722, doi:10.1002/2017JD026930, 2017.

1262 Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C. and Wang, L.:
1263 Molecular characterization of atmospheric particulate organosulfates in three megacities at the
1264 middle and lower reaches of the Yangtze River, *Atmos. Chem. Phys.*, 16(4), 2285–2298,
1265 doi:10.5194/acp-16-2285-2016, 2016.

1266 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M.,
1267 Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M. and Yu, J.: The secondary formation
1268 of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in
1269 summer in Beijing, *Atmos. Chem. Phys.*, 18(14), 10693–10713, doi:10.5194/acp-18-10693-2018,
1270 2018a.

1271 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M.,
1272 Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M. and Yu, J.: The secondary formation
1273 of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in
1274 summer in Beijing, *Atmos. Chem. Phys.*, 18(14), 10693–10713, doi:10.5194/acp-18-10693-2018,
1275 2018b.

1276 Wang, Y., Tong, R. and Yu, J. Z.: Chemical Synthesis of Multifunctional Air Pollutants: Terpene-
1277 Derived Nitrooxy Organosulfates, *Environ. Sci. Technol.*, acc.est.1c00348,
1278 doi:10.1021/acs.est.1c00348, 2021a.

1279 Wang, Y., Zhao, Y., Wang, Y., Yu, J. Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan, N. and Xiao, H.:
1280 Organosulfates in atmospheric aerosols in shanghai, china: Seasonal and interannual variability,
1281 origin, and formation mechanisms, *Atmos. Chem. Phys.*, 21(4), 2959–2980, doi:10.5194/acp-21-
1282 2959-2021, 2021b.

1283 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T.
1284 B., Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X. and Seinfeld, J. H.:
1285 Gas-Phase Reactions of Isoprene and Its Major Oxidation Products, *Chem. Rev.*, 118(7), 3337–3390,
1286 doi:10.1021/acs.chemrev.7b00439, 2018.

1287 WHO: WHO | Ambient air pollution, WHO, 2018.

1288 Wozniak, A. S., Bauer, J. E. and Dickhut, R. M.: Characteristics of water-soluble organic carbon
1289 associated with aerosol particles in the eastern United States, *Atmos. Environ.*, 46, 181–188,
1290 doi:10.1016/j.atmosenv.2011.10.001, 2012.

1291 Xu, J., Song, S., Harrison, R. M., Song, C., Wei, L., Zhang, Q., Sun, Y., Lei, L., Zhang, C., Yao, X., Chen,
1292 D., Li, W., Wu, M., Tian, H., Luo, L., Tong, S., Li, W., Wang, J., Shi, G., Huangfu, Y., Tian, Y., Ge, B., Su,
1293 S., Peng, C., Chen, Y., Yang, F., Mihajlidi-Zelić, A., Đorđević, D., Swift, S. J., Andrews, I., Hamilton, J. F.,
1294 Sun, Y., Kramawijaya, A., Han, J., Saksakulkrai, S., Baldo, C., Hou, S., Zheng, F., Daellenbach, K. R.,
1295 Yan, C., Liu, Y., Kulmala, M., Fu, P. and Shi, Z.: An interlaboratory comparison of aerosol inorganic ion
1296 measurements by ion chromatography: Implications for aerosol pH estimate, *Atmos. Meas. Tech.*,
1297 13(11), 6325–6341, doi:10.5194/AMT-13-6325-2020, 2020.

1298 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz,
1299 G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., Gouw, J. de,
1300 Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J. and Ng, N. L.: Effects of anthropogenic emissions on
1301 aerosol formation from isoprene and monoterpenes in the southeastern United States, *Proc. Natl.
1302 Acad. Sci.*, 112(1), 37–42, doi:10.1073/PNAS.1417609112, 2015.

1303 Yadav, A. K., Sarkar, S., Jyethi, D. S., Rawat, P., Aithani, D., Siddiqui, Z. and Khillare, P. S.: Fine
1304 Particulate Matter Bound Polycyclic Aromatic Hydrocarbons and Carbonaceous Species in Delhi's
1305 Atmosphere: Seasonal Variation, Sources, and Health Risk Assessment, *Aerosol Sci. Eng.* 2021 52,
1306 5(2), 193–213, doi:10.1007/S41810-021-00094-6, 2021.

1307 Yee, L. D., Isaacman-VanWertz, G., Wernis, R. A., Kreisberg, N. M., Glasius, M., Riva, M., Surratt, J. D.,
1308 de Sá, S. S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A.,
1309 Jimenez, J. L., Liu, Y., Misztal, P. K., Artaxo, P., Viegas, J., Manzi, A., de Souza, R. A. F., Edgerton, E. S.,
1310 Baumann, K. and Goldstein, A. H.: Natural and Anthropogenically Influenced Isoprene Oxidation in
1311 Southeastern United States and Central Amazon, *Environ. Sci. Technol.*,
1312 doi:10.1021/acs.est.0c00805, 2020.

1313 Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman-VanWertz, G., Offenberg, J. H.,
1314 Lewandowski, M., Kleindienst, T. E., Beaver, M. R., Holder, A. L., Lonneman, W. A., Docherty, K. S.,
1315 Jaoui, M., Pye, H. O. T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Weber, R. J.,
1316 De Gouw, J., Koss, A. R., Edgerton, E. S., Brune, W., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Kreisberg,
1317 N. M., Spielman, S. R., Hering, S. V., Wilson, K. R., Thornton, J. A. and Goldstein, A. H.: Monoterpenes
1318 are the largest source of summertime organic aerosol in the southeastern United States, *Proc. Natl.
1319 Acad. Sci. U. S. A.*, 115(9), 2038–2043, doi:10.1073/pnas.1717513115, 2018.

1320 Zhang, H., Zhang, Y., Huang, Z., Acton, W. J. F., Wang, Z., Nemitz, E., Langford, B., Mullinger, N.,
1321 Davison, B., Shi, Z., Liu, D., Song, W., Yang, W., Zeng, J., Wu, Z., Fu, P., Zhang, Q. and Wang, X.:
1322 Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing, *J.
1323 Environ. Sci.*, 95, 33–42, doi:10.1016/J.JES.2020.03.032, 2020.

1324 Zhao, D., Schmitt, S. H., Wang, M., Acir, I. H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I.,
1325 Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A. and Mentel, T. F.: Effects of NO_x
1326 and SO₂ on the secondary organic aerosol formation from photooxidation of α -pinene and
1327 limonene, *Atmos. Chem. Phys.*, 18(3), 1611–1628, doi:10.5194/acp-18-1611-2018, 2018.

1328 Zhao, D. F., Kaminski, M., Schlag, P., Fuchs, H., Acir, I. H., Bohn, B., Häseler, R., Kiendler-Scharr, A.,

1329 Rohrer, F., Tillmann, R., Wang, M. J., Wegener, R., Wildt, J., Wahner, A. and Mentel, T. F.: Secondary
1330 organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes, *Atmos.*
1331 *Chem. Phys.*, 15(2), 991–1012, doi:10.5194/ACP-15-991-2015, 2015.

1332 Zou, Y., Deng, X. J., Deng, T., Yin, C. Q. and Li, F.: One-year characterization and reactivity of isoprene
1333 and its impact on surface ozone formation at a suburban site in Guangzhou, China, *Atmosphere*
1334 (Basel)., 10(4), doi:10.3390/ATMOS10040201, 2019.

1335