
Author’s responses to reviewer’s comments follow. A copy of the reviewer 

comment is given (with comment ‘number’) followed by a response (blue font). 

Response to referee 2 

1. General comment 

The clear explanation of the set-up of the measurements at the 3 stations, scale 

propagation and uncertainty would be valuable to others developing and refining 

greenhouse gas measurement systems. The publication of the high-quality data from 

the stations, and discussion of the regional context is good. I think further work 

should be done on the source identification (section 3.5). This may change the 

overall conclusion of the work – i.e. whether the changes in the region are a relative 

increase in biogenic sources or not. Before publication some edits are required. 

Thank you for your comments on the paper’s value. We also appreciate your helpful 

comments to improve our manuscript. According to your specific comments, we revised 

our manuscript, especially isotope analysis results. Also, we tried to explain PSS 

analysis more detailed.  

 

2. Isotopic signatures of source regions  

The section on the isotopic signatures for identifying the predominant sources is 

interesting but needs some more work: The Keeling plot technique (δ 13C against 

1/CH4) is only appropriate for a constant background. Some detail is required about 

how these Keeling plots were constructed. Is a constant background appropriate or 

are you plotting data over a period when there will be seasonal variability or 

interannual differences in the background? If you are plotting data over several years 

and the global background methane mole fraction and δ 13C are changing, then 

Keeling plots should not be used. If the constant background assumption cannot be 

made then Miller-Tans plots could be used instead to identify the source isotopic 



composition, e.g. Miller and Tans, 2003 https://doi.org/10.1034/j.1600- 

0889.2003.00020.x; Al-Shalan et al., 2022 

https://doi.org/10.1016/j.atmosenv.2021.118763; Varga et al., 2021. Figure 9 In (c) 

and (d) we see that source signatures for CS and KL increased in 2016-2020 

compared with 2006-2010. This seems to contrast with line 13 on page 21 which 

talks of a decreasing trend in δ 13C What are the uncertainties in the trends in (e) 

and (f). Can you really say there is a trend? 

 

Agree. According to your comments, we analysed the Miller-Tans plot and could get 

more clear results for source changes. So we use PSS analysis as a tool to show the 

representative area where affected atmospheric CH4 at AMY. Through the HYSPLIT 

cluster analysis based on TAP flask sampling dates, we selected the samples from 

the source regions where PSS analysis indicated. Miller-Tans plots were analysed 

every five years to see its changes.  

Finally, we revised whole description in section 3.5. like below and we also added 

new graph in the manuscript and supplementary: 

 

Section 3.5 from P21 L26: To understand the source regions affected AMY CH4 level, we 

analysed PSS with hourly CH4xs from 2006 to 2020. CH4xs did not vary much and was 49±74 

ppb during 2006–2010 and 50±70 ppb during 2016–2020. According to the PSS analysis, 

affecting major source regions were CN, CS and KL sectors (Fig. 9 (a)). Sources affecting CS 

and KL are paddy and livestock fields and that for CN was reported to be fossil fuel emissions 

mainly (Zhang et al., 2011, Ito et al., 2022, Chen et al., 2022). 

Through the HYSPLIT cluster analysis from 2006 to 2020, we categorized the TAP δ13C(CH4) 

data and select the samples only affected by each source regions, CN, CS, and KL, respectively 



(section 2.6). Using TAP δ13C(CH4) long-term data from 2006 to 2020 affected by CN, CS and 

KL, Miller-Tans plots indicated that emissions from CN were mainly related to fossil fuel or 

biomass burning (–44.3±1.8‰), while CS (–56.1±1.5‰) and KL (– 54.6±1.2‰) were affected 

more by biogenic sources during 2006–2020 (Fig.9 (b)). Sherwood et al. (2017) reported 

unweighted global mean δ13C of –44.8±10.7‰ from fossil fuel use, –26.2±4‰ from biomass 

burning, and –61.7±6.2‰ from microbial sources. Even though the uncertainty of isotopic 

source signature is quite large, CH4 formed at high temperature such as combustion is enriched 

in the heavier isotope while CH4 from wetland, rice paddies and livestock is depleted. Therefore, 

our isotope analysis was well matched to reported source regions. 

On the other hand, isotope signatures were shifted slightly in China (CN and CS) while for 

Korea (KL) it was steady in the uncertainty range from 2006 to 2020. When we analyze the 

Miller-Tans plots in every 5 years (Fig. S7), for CN the slope was -38±3‰ in 2006/10 but it 

became depleted -45±2.4‰ in 2016/20 while those value was enriched from -59.8±1.5‰ to -

51.9±2.5‰ in CS. KL showed the quite constant values from -55 to -54‰ in the same period. 

This suggested that CH4 growth rate in East Asia was affected not only biogenic but also 

pyrogenic sources, unlike global. The recent global accelerated increase in atmospheric CH4 was 

more related to biogenic sources such as agriculture and wetland (Jackson et al., 2020, Lan et al., 

2021).  

Since the CH4 emissions from agriculture and livestock accounted for 30% and 36% in China 

and Korea respectively in 2020 (Crippa et al., 2022), CH4 might be increased by temperature 

impacts on biogenic CH4 source. However, the fast urbanization and energy consumption 

strategy also can affect these regions. Especially the coal emissions decreased from 2010 in 

China (Liu et al., 2021) but the coal to gas policy lead natural gas consumptions increase again 

in China (Wang et al., 2022).  

Overall, AMY and global growth rates were renewed in 2006 and during 2006–2020; the 

increasing trend could be linked to mixed biogenic and fossil fuel sources in East Asia while 



global to more biogenic sources.  

 

Regarding this, we revised the abstract and section 4. Summary and conclusion as well. 

 

P1 L2: From the long-term records at AMY, we confirmed that growth rate increased 3.3 ppb·yr-

1 during 2006/2010 and by 8.3 ppb·yr-1 from 2016 to 2020, which is similar trend to global. It is 

reported that the recent global accelerated CH4 growth rate was related to biogenic sources. 

However, isotopic signature using δ13CH4  explained that CH4 sources are becoming mixture of 

not only biogenic but also fossil fuel sources in East Asia from 2006 to 2020. We confirmed that 

long-term high-quality data can help understand changes in CH4 emissions in East Asia.  

 

P24 L10: From the long-term analysis of CH4 data at AMY, average CH4 growth rate was 3.3 

ppb·yr-1 during 2006–2010, but increased to 8.3 ppb·yr-1 in 2016–2020 as similar to the global 

trend. Through the source distributions with our PSS analysis using CH4xs data, CN, CS and KL 

sectors were main regions to affect atmospheric CH4 observed at AMY. Isotope signature based 

on Miller-Tans plots at CN represents fossil fuel or burning activities while CS and KL biogenic 

sources during 2006-2020. However, we infer atmospheric CH4 drivers changes in air masses 

arriving from China sector, CN and CS. For East Asia the increasing trend could be linked to 

mixed biogenic and fossil fuel sources while global to more biogenic sources (e.g. agriculture 

and wetland). Through this study, we confirmed that long-term high-quality data can help 

understand changes in CH4 emissions in East Asia. Also, further studies are necessary based on 

observations to understand sources changes in East Asia since there is a discrepancy between 

reported inventory and observations (Wang et al., 2022). 

 

3. References  



The reference lists need editing. Some of the references were missing from the 

reference list: Watanabe et al., 2000; Remann et al., 2004; Remann et al., 2008; Li et 

al., 2017; Turnbull et al., 2015. The reference Shuang-Xi Fang et al. (2013) should 

be deleted as this is already listed as Fang et al., 2013. Kim et al., 2014 on page 2 

should be Kim et al., 2015 to match the reference list. 

Corrected 

 

4. Other questions:  

4.1 As AMD is affected by local sources it would be helpful to use an inventory to 

suggest quantitatively what the anthropogenic emissions sources are (e.g. 

EDGAR, or UNFCCC) in the introduction.  

 

We added the information of anthropogenic source in Korea in the introductions with 

the reference of EDGAR. 

 

P 2, L10: China has also the largest anthropogenic CH4 emissions in the world mainly from 

solid fuel (34%), rice cultivations (20%) and enteric fermentation (10%), respectively 

(Janssens-Maenhout et al., 2019; Crippa et al., 2022). 

P 2, L14: South Korea major CH4 emissions are derived from wastewater treatment (40%), 

enteric fermentation (22%) and then rice cultivations (14%) respectively (Crippa et al., 2022). 

 

4.2 Figure 1 – add a scale bar to this map.  

Corrected 

 

 

4.3 What was the reason for drying the air rather than using the water correction built 

into Picarro software (see Rella et al., 2013)?  



We do not use the water correction function provided by CRDS since we believe that 

H2O value also should be calibrated when we apply the correction algorism to our 

data and general water correction cannot be applied to each instrument in different 

environment. In this context, many networks and stations don’t use dry mole fraction 

reported by Picarro and apply post-processing water correction (Hazan et al., 2016, 

Zellweger et al., 2016). 

In our case, we don’t use post-processing since we dry our samples through 

cryogenic method (detailed in section 2.2). Also, even when we compress air into 

cylinder for working standards, we dry them. However, it should be considered the 

bias resulted from the differences of H2O values between samples and standards or 

working and laboratory standards. To avoid the confusion, we added the sentence.  

 

P 4, L20: Despite the Picarro provides built-in dry correction algorism, this is not applied to 

our data since generic water correction cannot be applied to each instrument in different 

environment. Though we dry our samples with this system, the biases resulted from the 

different H2O values between samples and standards or working and laboratory standards are 

considered here. This is described in section 2.3 and 3.1. 

 

[Reference] 

Hazan, L., J. Tarniewicz, M. Ramonet, O. Laurent, and A. Abbaris.: Automatic 

processing of atmospheric CO2 and CH4 mole frations at the ICOS Atmosphere 

Thematic Centre, Atmos. Meas.Tech., 9, 4719-4736, 2016 

Zellweger, C., L. Emmenegger, M. Firdaus, J. Hatakka, M. Hemann, E. Kozlova, T. G. 

Spain, M. Steinbacher, M. V. van der Schoot, B. Buchmann.: Assessment of recent 

advances in measurement techniques for atmospheric carbon dioxide and methane 

observations, Atmos. Meas.Tech., 9, 4737-4757, 2016 

 



4.4 Page 2, line 31. A large ratio, CH4/C2H6 – explain what that means. Is high 

methane but low ethane indicative of a biogenic source? 

We explicitly explained what it means.  

 

P2 L32: The ratio, CH4/C2H6, was observed 53 ppb·ppb-1 during KORUS-AQ campaign from 

May to June 2016 which seems to be associated fossil fuel in Seoul and Busan while it was 

150 to 250 ppb·ppb-1 related to biogenic emissions such as rice paddies in southern western 

part of South Korea (Li et al., 2022). 

 

4.5 Page 3 – lines 29/30. Were there 2 garbage incinerators or one? This part needs 

clarifying.  

Thank you for the correction. We revised the sentence. 

 

P3 L31:  In the southwestern area, there is a small brickyard 200 m from the station and a 

garbage incinerator within 100 m. The garbage incineration facility was moved to the north 

side of island in December 2016. 

 

 

4.6 Page 7 – it’s not clear how the filtering was applied to the data using HS, CD and 

MS. Are data outside of 1 s.d. of the mean filtered out?  

 

Since this method was published in Seo et al.(2021), we did not handle this process 

precisely. However, we tried to explain our method with more clear ways here to 

avoid the confusions. 

 

P7 L14 There are three steps to select the background levels (L3 hourly data) from valid L2 

hourly data:  

Step 1) HS(t)  A  



Step 2) | HA(t) − HA(t − 1)|  B or |HA(t) − HA(t + 1) |  B  

Step 3) | HA(t) − 30 days moving median of of HA |  C.  

 

Where HS represents CH4 hourly standard deviation, HA is CH4 hourly means and t 

represents time in hours. In step 3), t is the middle of the time window. A, B and C are criteria 

determined empirically for each step, as given in Table 2. C is the standard deviation of 30 

days moving average multiplied by α and here 1.8σ30d is applied to all three stations as C. 

Even though the data were selected by step 1) and 2), high CH4 levels remained because of 

long-lasting stagnant conditions (e.g. over 6 days). Therefore, we also apply step 3). This 

process retained 21–52% of the data at each station, which were defined as L3 hourly on 

observations (Fig. S2). To get L3 daily/monthly data, the method developed by Thoning et al. 

(1989) was used to fit smooth curves to the daily averages computed by L3 hourly data. The 

methods reduce noise induced by synoptic-scale atmospheric variability, fill measurement 

gaps, and are used to represent the regional baseline. The details were described in Appendix 

B the supplementary. Finally, we can get the L3 daily data, L3 monthly data, long-term trend 

and seasonal amplitude after applying Thoning et al. (1989). The detailed definitions are in 

Appendix C, supplementary.  

 

We also revised the table 2 and added the supplementary figure (Figure S2) to show 

our method. 

 

Table 2. Criteria and percentage of selected background levels from observed data at each 

station.  

Station ID AMY JGS ULD 

Data period 1999 to 2020 2012 to 2020 2012 to 2020 

A [ppb] 2.1 2.1 2.8 

B [ppb] 4.9 5.2 3.6 



C [ppb] 1.8σ30d (for all three stations) 

Spring, MAM [%] 29.1 46.6 57.9 

Summer, JJA [%] 11.0 33.5 37.6 

Autumn, SON [%] 16.9 30.9 53.2 

Winter, DJF [%] 28.4 49.1 58.9 

Total [%] 21.3 40.64 52.2 

 

(a) 

 

(b) 

 

(c) 

 

Figure S2. The time series of hourly CH4 data through our selection method from step 1 to 3 at (a) 

AMY (b) JGS and (c)ULD in 2020. 



4.7 Page 8 – line 15 – typo in HYSPLIT  

 

Corrected  

 

4.8 Figure 7 – The growth rates for AMY, JGS and ULD aren’t shown for 2018. I 

think this is because they are negative (-1 ppb) but this is still a result so they 

should be shown.  

Corrected 

 

4.9 Why are some of the numbers in Table 4 written in bold?  

 

Corrected 

 

 

4.10 Figure 8 – 2009 was unusual because there was no seasonal cycle – can 

you comment on why this was?  

When we reviewed the raw, L1 and L2 data, other period captured the summer 

drop but 2009 had an instrumental issue in summer. We commented in the 

manuscript. 

 

P21 L20:   In 2009 there is no clear seasonal cycle. There was an instrumental issue in 

summer while other period captured summer drop by observations.   

 

 

4.11 I didn’t fully understand the PSS analysis – I think that needs some more 

detail 

To explain PSS analysis in detailed we revised the section 2.7. 

 



Section 2.7: To identify and illustrate the potential source distributions for regional 

pollutions, we calculated the PSS using the trajectory statistics approach, which has often 

been applied to estimate the potential source areas of greenhouse gases (Reimann et al., 2004, 

2008; Li et al., 2017). The trajectory statistics approach was introduced first by Seibert et al. 

(1994). The underlying assumption of the method is that elevated concentrations at an 

observations site are proportionally related to the air mass residence time on a specific grid 

cell over which observed air mass has been passing. Thus, this method simply calculates the 

airmass residence time weighted mean concentrations for target compounds (CH4 in this 

study) for the domain with 0.5 × 0.5 grids using the following formula (Eq. 2): 

 

𝐶(𝑖,𝑗) =  
∑ 𝑇(𝑖,𝑗,𝑎)𝐶𝑎

𝑀
𝑎=1

∑ 𝑇(𝑖,𝑗,𝑎)
𝑀
𝑎=1

    (Eq. 2) 

 

where C(i, j) represents the potential source strength of the grid cell i, j as a potential source 

region of the target compound (CH4); a is the index of the trajectory; M is the total number of 

trajectories that passed through cell i, j; Ca is the enhanced mole fraction (difference from 

background mole fractions mentioned in section 3.2 below) measured during the arrival of 

trajectory a; and T(i,j,a) is the residence time of trajectory a spent over grid cell i, j and which  

were calculated using the method described by Poirot and Wishinski (1986) as following 

formula (Eq.3) 

 

𝑇(𝑖,𝑗,𝑎) =  ∑
𝑆(𝑖,𝑗,𝑛,𝑎)

𝑉(𝑛,𝑎)

𝑁
𝑛=1                         (Eq. 3) 

 

where S(i,j,n,a) is the length of that portion of the nth segment of the a back-trajectory which 

falls over grid cell i,j. V(n,a) is the average speed of the air parcel as it travels along the nth 

segment of the a back-trajectory. Backward trajectories were calculated using the HYSPLIT 



model of the NOAA Air Resources Laboratory (ARL) using meteorological information 

from the Global Data Assimilation System (GDAS) model. For the trajectory reliability, we 

used only the 4-days (96h) backward trajectories at an altitude of 500 m above the mean sea 

level. To consider the influence of air masses on emissions at ground level, the air masses 

passing above the boundary layer height (BLH) were excluded. The BLH can was obtained 

from the HYSPLIT model. To exclude the influences of emission sources surrounding AMY 

stations, enhanced CH4 data with wind speeds lower than 2 m·s-1 were excluded from the 

PSS analysis. When we compare PSS analysis among AMY, JGS, and ULD using CH4xs 

data from 2016 to 2020, they showed the similar source regions while the coverage and 

CH4xs are different (Fig. S5.).  


