
Author’s responses to reviewer’s comments follow. A copy of the reviewer 

comment is given (with comment ‘number’) followed by a response (blue font). 

Response to referee 1 

1. General comment 

The authors of this study present high-quality record of the atmospheric CH4 mole 

fractions measured at three WMO/GAW stations in Korea: Anmyeondo (AMY), Jeju 

Gosan Suwolbong (JGS), and Ulleungdo (ULD). To confirm the data quality in detail, the 

authors evaluate the total measurement uncertainties at the three sites, which are less 

than GAW’s compatibility goal for atmospheric CH4 measurement (±2 ppb). Then, they 

investigate the characteristic features of the CH4 variations by precisely analyzing the 

excess CH4 mole fractions from the background variations, the diurnal cycles, the 

seasonal cycles, and the growth rates. From PSS analysis and the 13 CH4 isotopic data 

obtained at nearby site (TAP), they also discuss the temporal changes in the source 

region and the dominant source categories from a 5-year period of 2000-2006 to that of 

2016-2020. Although I think the discussion based on the PSS and isotopic analyses have 

some problems, I believe that the data presented in this report are quite reliable and 

contribute to the global modeling studies especially for the CH4 emission analysis from 

the east Asia. 

I found that the paper contains material that should be published in Atmospheric Physics 

and Chemistry. However, I think that the authors should make more efforts to improve 

the manuscript as is suggested in followings before publication. 

 

Thank you for your comments on the paper’s value. We also appreciate your helpful 

comments to improve our manuscript. According to your specific comments and 

considerations, we revised our manuscript.  

 



2. I’m not sure why the authors discuss in depth the influence of water vapor on the 

CRDS analyzer in Section 2.3 and 3.1. The CRDS analyzer provides dry CH4 mole 

fraction by measuring the water vapor simultaneously. The study of Rella et al. 

(2013) revealed that the preliminary reduction of water vapor of sample air less 

than 1% allow CRDS analyzer to measure the CH4 mole fraction within the level of 

GAW’s compatibility goal (±2 ppb). The authors describe that the air samples are 

dried to −50C. I believe that the laboratory standard gases and working standard 

gases uses in this study are sufficiently dried (I think that the absolute dew points 

should be clarified in the text). In addition, if the air samples are dried by a cold trap 

of −50 C, the dilution effect is comparable to the reproducibility of the CRDS 

analyzer. Therefore, I think it would be better to simplify the description about H2O 

influence on the CRDS measurement. 

Agree. But we do not use the water correction function provided by CRDS since we 

believe that H2O value also should be calibrated when we apply the correction algorism 

to our data and general water correction cannot be applied to each instrument in different 

environment. So we clarify this in the manuscript. Please see the answer of # 11. 

Since WMO GAW community emphasize the importance of drying air and its bias, we 

would like to explain relevant information detailed to prove the quality of our data. 

Especially readers and data users can have questions about our working standards and 

its bias through propagating against laboratory standards. To remove this reservation, 

we dealt with our working standards very deeply in section 2.3.  

On the other hand, though the measurement uncertainty from drying system is also 

negligible (0.006 to 0.008 ppb in Table 3), this value can be important. It is because that 

the standard gas is injected not through the drying system and separately from samples. 

However, the reviewer also mentioned the air dried at −50 C and the biases are very 

small. Therefore, it can be less valuable to deal with this deeply as one of uncertainty 



factors. We would like to keep the explanations about working standards while simplifying 

about the measurement uncertainty.  

 

P4 L20: Despite the Picarro provides built-in dry correction algorism, this is not applied to our 

data since generic water correction cannot be applied to each instrument in different environment. 

Though we dry our samples with this system, the biases resulted from the different H2O values 

between samples and standards or working and laboratory standards are considered here. This is 

described in section 2.3 and 3.1. 

 

P10 L25: Uh2o was computed from the differences in H2O (%) between the ambient airstream 

through the drying system and standard gases injected directly, bypassing the drying system. An 

ideal measurement would be through the analysis of the standard gases and air samples after they 

pass through the same drying system (WMO, 2016). However, our drying efficiency was not 

constant, so we injected standard gases directly as a reference value of H2O. Therefore we 

considered the CH4 dilution offsets between working standards and sample air while estimating 

the uncertainty with a similar method using Eq.(1) in section 2.3. Hourly CH4 dilution maximum 

offsets are up to 0.009 ppb at AMY, 0.006 ppb at JGS and 0.009 ppb at ULD from 2016 to 2020. 

This uncertainty term was smallest (0.006 to 0.008 ppb) among all uncertainty factors in the KMA 

network as indicating the sampled air has negligible biases through our drying system 

 

3. I’m very curious about the diurnal cycles of the L3 hourly data. If the data selection 

method described in Section 2.4.2 effectively remove the local effect, there is no 

statistically significant diurnal cycles in the L3 data. Such information would be 

useful to make the L3 data more reliable 

We attached L3 hourly data through step 1 to 3 in 2020 for three stations here. The scale 

is different according to stations, but it can be confirmed that our selection method is 

reasonable. We also add these graphs in the supplementary as Figure S2 to demonstrate 



our method is reasonable.  

(a) 

 

(b) 

 

(c) 

 

 

Figure A. The time series of hourly CH4 data through our selection method from step 1 to 

3 at (a) AMY (b) JGS and (c)ULD in 2020.   

 

On the other hand, we also showed the L3 diurnal cycle at each station in 2020 here. As 

reviewer mentioned the diurnal cycle is almost flat within ±2 ppb variations regardless of 



stations. This variation might be resulted from the local meteorological effect by the 

radiation such as high boundary layer height in the daytime and stable in the night at 

least. Therefore, we have confidence that our L3 method remove local sink and source 

of CH4.  

(a) 

 

(b) 

 

(c) 

 

Figure B. Mean diurnal variations of CH4. Values show the average departure from the 

daily mean in each month at (a) AMY and (b) JGS from 2016 to 2020 and (c) at ULD in 

2020. 



4. I don’t agree with the discussion based on the PSS and the δ13CH4 analyses in 

Section 3.5. As for the PSS analysis, I’m not sure how to interpret the plots shown 

in Figs 9a and 9b. Although the authors seem to consider that the plots reflect the 

CH4 flux distributions, the flux distribution is considerably different from the 

previously reported flux distributions (e.g., Ito et al., 2019). Additionally, I cannot 

believe that such large temporal change in the flux distribution occurred between 

the two periods. So, I think that the authors should clarify what the plots based on 

the PSS analysis mean. The authors only show the plots based on the observation 

at AMY. But I’m curious about the similar plots based on the data at JGS and ULD. 

If the distributions based on JGS and ULD are similar to Fig. 9b, such result would 

convince us to some extent that the PSS analysis is reliable. I’m not sure what the 

isotopic analysis means. The authors would like to suggest that influences of the 

biogenic sources increased from 2006-2010 to 2016-2020 because the 

δ13C(CH4) values for the latter period shows faster decreasing rates than those for the 

former period. However, the background δ13C(CH4) data also show the secularly 

decreasing trend (for example, you can see the recent δ13C(CH4) change in NIWA’s 

home page: https://niwa.co.nz/atmosphere/our-data/trace-gas-plots/methane). So, 

how do the authors distinguish the regional influence on the δ13C(CH4) values from 

the background change? Additonally, why don’t the authors use Miller-Tans plot to 

evaluate of the δ13C values for the CH4 regional sources? On the other hand, the 

values of the intercept of the Keeling plot for CS and KL increased from 2006-2010 

to 2016-2020, suggesting the influence of the biogenic sources relatively 

decreased. This result is inconsistent with the above result. I’m also curious about 

the δ13C(CH4) data during the period from 2010 to 2016. Why don’t the authors 

discuss the period from 2010 to 2016? 

Thank you for the comment and we understand your considerations.  



1) PSS analysis 

For the PSS analysis, we described the detailed information in #20 and revised the 

section 2.7 with detailed descriptions. 

When we analyze that ULD and JGS as well, the covered regions and CH4xs scale 

were different due to observatory location (Please see Supplementary Figure S4). 

However, we confirmed that they indicated reasonably same areas as major source 

regions such as southern China and western Korea from 2016 to 2020. Therefore, 

we have a high confidence about PSS analysis. We also reviewed the Ito et al.(2019). 

Bottom-up approach cannot be exactly matched to PSS analysis since PSS analysis 

calculate the air-mass residence time-weighted mean concentrations not the CH4 flux 

as we mentioned in revised section 2.7. This is the same reason that each stations 

showed slightly different coverage for the source regions in PSS analysis. PSS 

analysis only can give information which area potentially affect the atmospheric 

CH4xs observed at each station. 

On the other hand, what we would like to emphasize is CH4 growth rate was driven 

by mixed source in East Asia while global by biogenic sources mainly. Therefore, we 

used PSS analysis as a tool to figure out representative source regions in East Asia 

and implicated the CH4xs data from 2006 to 2020 (15 years). According to reviewer’s 

suggestion, we analyzed Miller-Tans plots using the samples from source regions 

thorough PSS analysis every 5 years period to see the source changes. 

2) Isotope analysis 

The reasons why we compare only between 2006/10 and 2016/2020, we would like 

to show the certain changes from end to end in a decade. According to your 

comments, we analyze the Miller-Tans plots every five years (2006/2010, 2011/2015, 

and 2016/2020) and could find out clear changing in CN and CS region. We showed 

all graph in Supplementary Figure S7. According to the reanalysis, we revised all 

manuscripts in section 3.5. 

 



Section 3.5 from P21 L26: To understand the source regions affected AMY CH4 level, we 

analysed PSS with hourly CH4xs from 2006 to 2020. CH4xs did not vary much and was 49±74 

ppb during 2006–2010 and 50±70 ppb during 2016–2020. According to the PSS analysis, 

affecting major source regions were CN, CS and KL sectors (Fig. 9 (a)). Sources affecting CS and 

KL are paddy and livestock fields and that for CN was reported to be fossil fuel emissions mainly 

(Zhang et al., 2011, Ito et al., 2022, Chen et al., 2022). 

Through the HYSPLIT cluster analysis from 2006 to 2020, we categorized the TAP δ13C(CH4) data 

and select the samples only affected by each source regions, CN, CS, and KL, respectively (section 

2.6). Using TAP δ13C(CH4) long-term data from 2006 to 2020 affected by CN, CS and KL, Miller-

Tans plots indicated that emissions from CN were mainly related to fossil fuel or biomass burning 

(–44.3±1.8‰), while CS (–56.1±1.5‰) and KL (– 54.6±1.2‰) were affected more by biogenic 

sources during 2006–2020 (Fig.9 (b)). Sherwood et al. (2017) reported unweighted global mean 

δ13C of –44.8±10.7‰ from fossil fuel use, –26.2±4‰ from biomass burning, and –61.7±6.2‰ 

from microbial sources. Even though the uncertainty of isotopic source signature is quite large, 

CH4 formed at high temperature such as combustion is enriched in the heavier isotope while CH4 

from wetland, rice paddies and livestock is depleted. Therefore, our isotope analysis was well 

matched to reported source regions. 

On the other hand, isotope signatures were shifted slightly in China (CN and CS) while for Korea 

(KL) it was steady in the uncertainty range from 2006 to 2020. When we analyze the Miller-Tans 

plots in every 5 years (Fig. S7), for CN the slope was -38±3‰ in 2006/10 but it became depleted 

-45±2.4‰ in 2016/20 while those value was enriched from -59.8±1.5‰ to -51.9±2.5‰ in CS. 

KL showed the quite constant values from -55 to -54‰ in the same period. This suggested that 

CH4 growth rate in East Asia was affected not only biogenic but also pyrogenic sources, unlike 

global. The recent global accelerated increase in atmospheric CH4 was more related to biogenic 

sources such as agriculture and wetland (Jackson et al., 2020, Lan et al., 2021).  



Since the CH4 emissions from agriculture and livestock accounted for 30% and 36% in China and 

Korea respectively in 2020 (Crippa et al., 2022), CH4 might be increased by temperature impacts 

on biogenic CH4 source. However, the fast urbanization and energy consumption strategy also can 

affect these regions. Especially the coal emissions decreased from 2010 in China (Liu et al., 2021) 

but the coal to gas policy lead natural gas consumptions increase again in China (Wang et al., 

2022).  

Overall, AMY and global growth rates were renewed in 2006 and during 2006–2020; the 

increasing trend could be linked to mixed biogenic and fossil fuel sources in East Asia while global 

to more biogenic sources.  

 

Regarding this, we revised the abstract and section 4. Summary and conclusion as well. 

 

P1 L2: From the long-term records at AMY, we confirmed that growth rate increased 3.3 ppb·yr-

1 during 2006/2010 and by 8.3 ppb·yr-1 from 2016 to 2020, which is similar trend to global. It is 

reported that the recent global accelerated CH4 growth rate was related to biogenic sources. 

However, isotopic signature using δ13CH4  explained that CH4 sources are becoming mixture of 

not only biogenic but also fossil fuel sources in East Asia from 2006 to 2020. We confirmed that 

long-term high-quality data can help understand changes in CH4 emissions in East Asia.  

 

P24 L10: From the long-term analysis of CH4 data at AMY, average CH4 growth rate was 3.3 

ppb·yr-1 during 2006–2010, but increased to 8.3 ppb·yr-1 in 2016–2020 as similar to the global 

trend. Through the source distributions with our PSS analysis using CH4xs data, CN, CS and KL 

sectors were main regions to affect atmospheric CH4 observed at AMY. Isotope signature based 

on Miller-Tans plots at CN represents fossil fuel or burning activities while CS and KL biogenic 

sources during 2006-2020. However, we infer atmospheric CH4 drivers changes in air masses 

arriving from China sector, CN and CS. For East Asia the increasing trend could be linked to 



mixed biogenic and fossil fuel sources while global to more biogenic sources (e.g. agriculture and 

wetland). Through this study, we confirmed that long-term high-quality data can help understand 

changes in CH4 emissions in East Asia. Also, further studies are necessary based on observations 

to understand sources changes in East Asia since there is a discrepancy between reported inventory 

and observations (Wang et al., 2022). 

 

Specific comments: 

5. Page 2, line 28: “Kim et al., 2014” should be “Kim et al., 2015”. 

Corrected 

 

6. Page 2, line 30-32: “Li et al., 2020” and “Li et al., 2022” are not listed in References. 

Corrected 

 

7. Page 2, line 36: “Turnbull et al., 2015” is not listed in References. 

Corrected 

 

8. Page 3, line3: “Watanabe et al. 2000” is not listed in References. 

Corrected 

 

9. Page 4, line 17: What’s the “−90°C” mean? If it’s not the trap temperature, it should 

be removed to avoid confusion. 

Corrected 

 



10. Page 5, line 6: I believe that the four laboratory standards are kept in high-pressure 

cylinders. I think that it would be better to clarify what kind of cylinders are used for 

the laboratory standards (volume and material). 

We added the information here.  

 

P5, L11 : They are provided with 29.5 L aluminum cylinder (Luxfer, UK) by CCL and filled with 

130 bar (https://gml.noaa.gov/ccl/service.html, last access: 5 Jan.,2023). Their recalibration in 

every 3 years is highly recommended for CO2, CH4 and CO. Our laboratory standards have been 

recalibrated every 3 years or replaced to new sets since the first using in 2012 according to the 

recommendation but remaining pressure in each cylinder is still high around 100 bar. 

 

11. Page 5, line 13-20: I’m a little bit confused by this part. I think that the CRDS 

analyzer (Picarro) give dry mol fractions of the atmospheric CH4. So, why does the 

authors discuss the dilution effect of water vapor? 

We do not use the water correction function provided by CRDS since we believe that H2O 

value also should be calibrated when we apply the correction algorism to our data and 

general water correction cannot be applied to each instrument in different environment. 

In this context, many networks and stations don’t use dry mole fraction reported by 

Picarro and apply post-processing water correction (Hazan et al., 2016, Zellweger et al., 

2016).  

In our case, we don’t use post-processing since we dry our samples through cryogenic 

method (detailed in section 2.2). Also, even when we compress air into cylinder for 

working standards, we dry them. However, it should be considered the bias resulted from 

the differences of H2O values between samples and standards or working and laboratory 

standards. To avoid the confusion, we added the sentence.  

 

https://gml.noaa.gov/ccl/service.html


P 4, L20: Despite the Picarro provides built-in dry correction algorism, this is not applied to our 

data since generic water correction cannot be applied to each instrument in different environment. 

Though we dry our samples with this system, the biases resulted from the different H2O values 

between samples and standards or working and laboratory standards are considered here. This is 

described in section 2.3 and 3.1. 

 

[Reference] 

Hazan, L., J. Tarniewicz, M. Ramonet, O. Laurent, and A. Abbaris.: Automatic processing 

of atmospheric CO2 and CH4 mole frations at the ICOS Atmosphere Thematic Centre, 

Atmos. Meas.Tech., 9, 4719-4736, 2016 

Zellweger, C., L. Emmenegger, M. Firdaus, J. Hatakka, M. Hemann, E. Kozlova, T. G. 

Spain, M. Steinbacher, M. V. van der Schoot, B. Buchmann.: Assessment of recent 

advances in measurement techniques for atmospheric carbon dioxide and methane 

observations, Atmos. Meas.Tech., 9, 4737-4757, 2016 

 

12. Page 5, line 17 (Eq. 1): It should be better to clarify what the Cdilution and Cdry mean. 

And the definition of Hact, “H2O difference between standard gases and samples”, 

is rather confusing. Is it “H2O difference between laboratory standard gases and 

working standard gases”? 

 

Agree. We corrected the sentence and added the definition. 

 

P6, L7 where C is the CH4 mole fraction and Hact is the actual water mole fraction (in %). Here 

Hact is the H2O difference between laboratory and working standards. Cdry is the CH4 mole fraction 

of laboratory standard while Cdilution is the expected CH4 mole fraction when Hact existed. We 

calculated the bias from the difference Cdry and Cdilution. 



 

13. Page 7, line 10-11: It should be better to clarify the detail of the fitting function 

(order of polynomial and order of harmonics) and the cut-off frequency for the 

digital filtering based on Thoning et al. (1989). 

To clarify the method, we add the explanation in Appendix B, Supplementary (and like 

below).  

 

P7, L28: The details were described in Appendix B the supplementary. 

 

APPENDIX B in Supplementary  

After the baseline selection through the 3 steps (section 2.4.2), selected data are computed by 

curve-fitting methods. The basic components of the curve are a second-order polynomial 

representing the long-term trend, and a series of harmonics representing the average seasonal 

cycles (Eq.S1).  

                  Equation S1. Function fit 

Where t is the time in days and T is 365.25 days.  

And then calculate and filter the residuals of the selected daily data about the fit function. The 

method used is to transform the residuals into the frequency domain using a Fast Fourier 

Transform (FFT), apply a low pass filter function (Eq. 2) to the frequency data, and then transform 

the filtered data to the real domain using an inverse FFT.  



              Equation S2. Low pass filter function 

Where f is frequency and fc is cut-off frequency. Here fc is cut-off values of 80 days for the short-

term filter and 667 days for the long-term filter. 

Finally determine the smoothed curve of interest by combining the function with the filtered data.  

 

14. Page 7, line 12: It should be better to clarify how to compute the monthly data, 

long-term trend, and seasonal amplitude in detail. 

The definitions are derived from Global Monitoring Laboratory - Carbon Cycle 

Greenhouse Gases (noaa.gov) (https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html, last 

access, 16, 2023). These explanations are also included in Appendix C, the 

supplementary (like below).  

P7, L29: Finally, we can get the L3 monthly data, long-term trend and seasonal amplitude after 

applying Thoning et al. (1989). The detailed definitions are in Appendix C, supplementary. 

APPENDIX C in Supplementary 

The definitions are derived from Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases 

(noaa.gov) (https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html, last access, 16, 2023).  

Simply L3 monthly mean are calculated by average of daily smoothed data from Eq. S1 and Eq. S2. 

Daily smoothed data is the function fit plus the filtered residuals using the short term cut off (80 

day/cycle)-1. 

https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html


Long-term trend is upward growth in the data with the seasonal cycle removed. This is the 

polynomial part of the function fit plus the filtered residuals using the long-term cut-off value with 

(667 day/cycle)-1. 

Seasonal amplitude is magnitude of the peak to trough of the detrended seasonal cycle. 

Detrended seasonal cycle can be obtained by subtracting the trend curve from the smooth curve. 

 

 

15. Page 7, Table 2: There are no values of MS for AMY and ULD. Does it mean that 

MS criteria were not applied to the data for AMY and ULD? 

Sorry for the confusion. The same value of MS is applied to AMY and ULD as well. We put 

the explanation like: 

Table 2: 1.8σ30d (for all three stations) 

P7, L21: C is the standard deviation of 30 days moving average multiplied by α and here 1.8σ30d is 

applied to all three stations as C. 

 

16. Page 7, line 25-26: The geological locations of WLG and RYO are already given in 

page 3, line 1-3. 

 

We deleted the explanation and used only abbreviation. 

 

17. Page 8, line 6-8: It should be better to add the reference for the CH4 isotopic 

measurement at INSTAAR. 



We added the reference in the manuscript on page 8 line 19. 

[Refence] 

Miller, J. B., K. A. Mack, R. Dissly, J. W. C. White, E. J. Dlugokecky, P. P. Tans.: 

Development of analytical methods and measurements of 13C/12C in atmospheric 

CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling 

Network, J. Geophys. Res. Atmos. 107,  https://doi.org/10.1029/2001JD000630, 2002 

 

18. Page 8, line 5 and 9: It says here that the distance between TAP and AMY is 24 

km. But other parts in this manuscript, the distance is 28 km. Which value is 

correct? 

Thank you for the correction. We revised distance between TAP and AMY to 28 km 

through all manuscript.  

 

19. Page 8, line 9-10: It should be better to add a figure showing synoptic scale 

variations of CH4 observed at AMY and TAP. 

We added the relevant figures in supplementary as Figure S3 and the reference in the 

manuscript on page 8 line 21. 

P8, L21: Since TAP and AMY are only 28 km apart, their data are representative of the same 

region under large synoptic conditions (Fig. S3), especially for well mixed air. These data were thus 

used to trace the changes in the surrounding environment in East Asia (section 3.5). 

 



20. Page 8, line 35-page 9, line 4 (2.7 PSS analysis): Since I’m not sure PSS analysis, 

I tried to read the cited papers, Remann et al., 2004, 2008; Li et al., 2017. But these 

papers are not listed in References. If the single line for each backward trajectory 

is used for the calculation of C(i,j), the sensitivity of the potential source strength 

increase with the distance from the start point in comparison with the reality. This 

effect would result in the overestimation of the potential source strength with 

increasing the distance from the station, wouldn’t it? 

 

I agree. As you mentioned, the potential source strength can be overestimated around the 

receptor site because the more trajectories pass through the grid cell i,j, as it more close 

to receptor site. In order to correct the overestimations, we adapted the geometric 

adjustment factors (Fi,j) as described by Poirot and Wishinski (1986). Calculation of 

adjusted residence time over each grid cell of i,j was accomplished using the following two 

equations:  

 

        𝑇(𝑖,𝑗,𝑎) =  ∑
𝑆(𝑖,𝑗,𝑛,𝑎)

𝑉(𝑛,𝑎)
∗ 𝐹(𝑖,𝑗)

𝑁
𝑛=1                   Eq (1) 

         𝐹(𝑖,𝑗) =  
𝜋[(𝐷(𝑖,𝑗) + 

𝑑𝑔

2
)

2

−(𝐷(𝑖,𝑗) − 
𝑑𝑔

2
)

2

]

𝑑𝑔 × 𝑑𝑔
            Eq   (2) 

 

As shown in below Illustrations of residence time calculation for a single randomly selected 

back-trajectory (Figure A), S(i,j,n,a) is the length of that portion of the nth segment of the 

a back-trajectory which falls over grid cell i,j. V(n,a) is the average speed of the air parcel 

as it travels along the nth segment of the a back-trajectory. The geometric adjustment 

factor (Fi,j) were calculated using Equation (2). Where dg is the length of the grid cell of i,j; 

D(i,j) is the distance from receptor site to the grid cell of i,j.  



 

Figure A. Illustration of residence time calculation on a grid cell (i,j) of a HYSPLIT back-trajectory 

arrived at Jeju Gosan station.  

 

Additionally we added missing reference and revised the manuscript like below: 

Section 2.7 Potential Source Strength (PSS) analysis 

To identify and illustrate the potential source distributions for regional pollutions, we calculated the 

PSS using the trajectory statistics approach, which has often been applied to estimate the potential 

source areas of greenhouse gases (Reimann et al., 2004, 2008; Li et al., 2017). The trajectory 

statistics approach was introduced first by Seibert et al. (1994). The underlying assumption of the 

method is that elevated atmospheric levels at an observation site are proportionally related to the 

air mass residence time on a specific grid cell over which observed air mass has been passing. Thus, 

this method simply calculates the airmass residence time weighted mean concentrations (here mole 

fractions) for target compounds (CH4 in this study) in the domain with 0.5 × 0.5 grids using the 

following formula (Eq. 2): 

 

𝐶(𝑖,𝑗) =  
∑ 𝑇(𝑖,𝑗,𝑎)𝐶𝑎

𝑀
𝑎=1

∑ 𝑇(𝑖,𝑗,𝑎)
𝑀
𝑎=1

    (Eq. 2) 

 



where C(i, j) represents the potential source strength of the grid cell i, j as a potential source region 

of the target compound (CH4); a is the index of the trajectory; M is the total number of trajectories 

that passed through cell i, j; Ca is the enhanced mole fraction (difference from background mole 

fractions mentioned in section 3.2 below) measured during the arrival of trajectory a; and T(i,j,a) is 

the residence time of trajectory a spent over grid cell i, j and which were calculated using the method 

described by Poirot and Wishinski (1986) as following formula (Eq.3) 

 

𝑇(𝑖,𝑗,𝑎) =  ∑
𝑆(𝑖,𝑗,𝑛,𝑎)

𝑉(𝑛,𝑎)

𝑁
𝑛=1                         (Eq. 3) 

 

where S(i,j,n,a) is the length of that portion of the nth segment of the a back-trajectory which falls over 

grid cell i,j. V(n,a) is the average speed of the air parcel as it travels along the nth segment of the a 

back-trajectory. Backward trajectories were calculated using the HYSPLIT model of the NOAA 

Air Resources Laboratory (ARL) using meteorological information from the Global Data 

Assimilation System (GDAS) model. For the trajectory reliability, we used only the 4-days (96h) 

backward trajectories at an altitude of 500 m above the mean sea level. To consider the influence 

of air masses on emissions at ground level, the air masses passing above the boundary layer height 

(BLH) were excluded. The BLH can was obtained from the HYSPLIT model. To exclude the 

influences of emission sources surrounding AMY stations, enhanced CH4 data with wind speeds 

lower than 2 m·s-1 were ruled out for the PSS analysis. When we compare PSS analysis among 

AMY, JGS, and ULD using CH4xs data from 2016 to 2020, they showed the similar source regions 

while the coverage and CH4xs are slightly different (Fig. S4.).  

 

[Reference] 

Poirot, R L, and Wishinski, P R. Visibility, sulfate and air mass history associated with the 

summertime aerosol in northern Vermont. Atmos. Environ., 20, 1457-1469, 1986 



 

21. Page 12, line 8-9: Are the characteristics of the bivariate polar plots for the three 

stations (Figs. 3-5) same with those for the other years? 

Yes. The reason why we showed the bivariate plots in 2018 is there was only weak 

typhoon, so the year of 2018 is very reasonable. We showed the example in 2019 here 

with sever typhoon but basically all plots show the similar characteristics which we 

described in the manuscript. We also revised sentence like below: 

P13, L8: To understand the influence of local surface wind on observed CH4, bivariate polar plots 

were used for 2018, the year less affected by typhoons compared to other years 

 

Figure A. Bivariate polar plots for observed CH4 (L2 hourly) in spring (a), summer (b), 

autumn (c), and winter (d) at AMY in 2019. 



 

Figure B. Bivariate polar plots for observed CH4 (L2 hourly) in spring (a), summer (b), 

autumn (c), and winter (d) at JGS in 2019. 

 

 

Figure C. Bivariate polar plots for observed CH4 (L2 hourly) in spring (a), summer (b), 

autumn (c), and winter (d) at ULD in 2019. 



22. Page 18, line 10-11: The seasonal cycle of the atmospheric CH4 is also influenced 

by the atmospheric transport. 

 

Agree. We revised the sentence here. 

P19, L10: The seasonal amplitude is related to the seasonal atmospheric transport, the combination 

of CH4 surface flux distribution and chemical loss by reactions with OH and by soil loss. 

 

23. Page 18, line 19: The distance between TAP and AMY is repeatedly described in 

this manuscript. 

Corrected. 

 

24. Page 18, line 20: “during” what? 

Corrected 

 

25. Page 19, Figure 7b: Why don’t the authors plot the negative growth rate in the 

figure? 

We revised to a new graph. 

 

26. Page 19, line 12: Was the annual growth rate calculated from the annual means 

based on the monthly means, listed in Table 4? If so, it would be helpful for the 

readers to describe that in the manuscript. 



It was described in Table 4 caption, but we also explain this in section 2.4.2. 

P8 L13: Annual means are averaged by monthly means while annual growth are derived from the 

difference of consecutive annual means. 

 

27. Page 19, line 15: CH4 at AMY, JGS, JLD, and RYO showed significant increases 

from 2016 to 2017, but small (or negative) increases from 2017 to 2018. 

 Corrected 

P 21 L1: Especially from 2016 to 2017, WLG showed no increase in CH4, while CH4 at other 

stations showed small or negative increases from 2017 to 2018.  

 

28. Page 20, line 1: There is relatively large differences in the CH4 growth rate between 

WLG and the WMO global mean in 2017 and 2020. 

Even though they showed the value difference, the increase/decrease trend is similar. 

According to regions, the value of station’s growth rate can be different, but the trend can 

be similar when they capture the baseline conditions. The growth rate value can be differed 

from the regions since their source and sink distributions are different at each region.  

We revised the sentence to avoid confusion. 

P 21 L2: Normally the growth rate in CH4 at WLG matches well with the WMO global 

increase/decrease trend (Fig. 7. (b)). 

 



29. Page 20, line 5-6: There is no description about the δ13CH4 data at AMY. Please 

add the explanations for the data. In addition, since the plot shown in Fig. S3 is not 

Keeling plot but Miller-Tans plot, the slopes of the plots represent the δ13C of the 

CH4 sources. 

Agree. We added AMY flask explanations. 

 

P8 L22: AMY started flask sampling for CH4 and δ13C(CH4) in December 2013 with same method 

like TAP and these data were used only for characterization of CH4 at AMY in section 3.5.   

 

It is typo so that we corrected it in the manuscript and the Fig. S3 (now it is Fig.S6) as well. 

 

P21 L6: Miller-Tans plots shows the signature of CH4 increments into background air of Mauna 

Loa (Fig. S6). And the slope was –52.3±2.2‰ in winter and –53.7±0.7‰ in summer at AMY during 

2016 to 2020.. 

 

30. Page 21, line 1: “Sources affecting CS and KL were paddy fields and …” ? 

We wrote below: 

 

P21 L28: Sources affecting CS and KL are paddy and livestock fields and that for CN was reported 

to be fossil fuel emissions mainly (Zhang et al., 2011, Ito et al., 2022, Chen et al., 2022). 

 

31. Page 21, line 13: I’m not sure what “this assumption” means. 



We revised whole descriptions in section 3.5. as we described in #4 above. 

 

32. Page 21 line 3-14: Are all the flask data collected at TAP plotted in Figs 9? Are the 

source regions of all the flask data classified into three sectors, CS, CN, and KL? 

How are they classified? 

To avoid the confusion, we added detailed information. 

 

P22 L1: Through the HYSPLIT cluster analysis from 2006 to 2020, we categorized the TAP δ

13C(CH4) data and selected the samples only affected by each source regions, CN, CS, and KL, 

respectively (section 2.6). 

 

33. Page 26, line 21-23: “Shuang-Xi et al., 2013” is not cited in the text. 

corrected 

 

 

34. Page 27, line 3-5: “Winderlich et al., 2010” is not cited in the text. 

It was cited in p 12 line 10 

 


