1	The Positive Effect of Formaldehyde on the Photocatalytic
2	Renoxification of Nitrate on TiO₂ Particles
3	
4	Yuhan Liu, Xuejiao Wang, Jing Shang*, Weiwei Xu, Mengshuang Sheng, Chunxiang
5	Ye
6	State Key Joint Laboratory of Environmental Simulation and Pollution Control,
7	College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan
8	Road, Beijing 100871, P. R. China
9	
10	Corresponding author: Jing Shang
11	Email: shangjing@pku.edu.cn
12	
13	Abstract
14	Renoxification is the process of recycling of NO_3^-/HNO_3 into NO_x under
15	illumination, which is mostly ascribed to the photolysis of nitrate. TiO ₂ , a typical
16	mineral dust component, can play its photocatalytic role in "renoxification" process
17	due to NO3 radical formed, and we define this process as "photocatalytic
18	renoxification". Formaldehyde (HCHO), the most abundant carbonyl compound in
19	the atmosphere, may participate in the renoxification of nitrate-doped TiO ₂ particles.
20	In this study, we established a 400 L environmental chamber reaction system capable
21	of controlling 0.8-70% relative humidity at 293K, with the presence of 1 or 9 ppm

22 HCHO and 4 wt.% nitrate-doped TiO₂. The direct photolyses of both nitrate and NO₃

23	radical were excluded by adjusting the illumination wavelength, so as to explore the						
24	effect of HCHO on the "photocatalytic renoxification". It is found that NO_x						
25	concentration can reach up to more than 100 ppb for nitrate-doped TiO ₂ particles,						
26	while almost no NO _x was generated in the absence of HCHO. Nitrate type, relative						
27	humidity and HCHO concentration were found to influence NOx release. It was						
28	suggested that substantial amounts of NO_x were produced via the						
29	$NO_3^{-}-NO_3^{-}-HNO_3^{-}-NO_x$ pathway, where TiO_2 worked for converting " NO_3^{-} " to						
30	"NO3.", HCHO participated in transformation of "NO3." to "HNO3" through						
31	hydrogen abstraction, and "HNO3" photolysis answered for mass NOx release. So,						
32	HCHO played a significant role in this "photocatalytic renoxification" process. These						
33	results were found based on simplified mimics for atmospheric mineral dust under						
34	specific experimental conditions, which might deviate from the real situation, but						
35	illustrated a possible way of HCHO in influencing nitrate renoxification in the						
36	atmosphere. Our proposed reaction mechanism by which HCHO promotes						
37	photocatalytic renoxification is helpful for deeply understanding the atmospheric						
38	photochemical processes and nitrogen cycling, and could be considered for better						
39	fitting of atmospheric model simulations with field observations in some specific						
40	scenarios.						

41 **1 Introduction**

42 The levels of ozone (O₃) and hydroxyl radicals (\cdot OH) in the troposphere can be 43 promoted by nitrogen oxides (NO_x = NO + NO₂), such that NO_x plays an important 44 role in the formation of secondary aerosols and atmospheric oxidants (Platt et al.,

45	1980; Stemmler et al., 2006; Harris et al., 1982; Finlayson-Pitts and Pitts, 1999). NO _x						
46	can be converted into nitric acid (HNO ₃) and nitrate (NO ₃ ⁻) through a series of						
47	oxidation and hydrolysis reactions and is eventually removed from the atmosphere						
48	through subsequent wet or dry deposition (Dentener and Crutzen, 1993; Goodman et						
49	al., 2001; Monge et al., 2010; Bedjanian and El Zein, 2012). However, comparisons						
50	of observations and modeling results for the marine boundary layer, land, and free						
51	troposphere (Read et al., 2008; Lee et al., 2009; Seltzer et al., 2015) have shown						
52	underestimation of HNO ₃ or NO ₃ ⁻ content, NO _x abundance, and NO _x /HNO ₃ ratios,						
53	indicating the presence of a new, rapid NO_x circulation pathway (Ye et al., 2016b;						
54	Reed et al., 2017). Some researchers have suggested that deposited NO_3^- and HNO_3						
55	can be recycled back to gas phase NO_x under illumination, via the renoxification						
56	process (Schuttlefield et al., 2008; Romer et al., 2018; Bao et al., 2020; Shi et al.,						
57	2021b). Photolytic renoxification occurs under light with a wavelength of < 350 nm,						
58	through the photolysis of NO_3^-/HNO_3 adsorbed on the solid surface to generate NO_x .						
59	Notably, the photolysis of NO_3^-/HNO_3 is reported to occur at least 2 orders of						
60	magnitude faster on different solid surfaces (natural or artificial) or aerosols than in						
61	the gas phase (Ye et al., 2016a; Zhou et al., 2003; Baergen and Donaldson, 2013).						
62	Several recent studies have shown that renoxification has important atmospheric						
63	significance (Deng et al., 2010; Kasibhatla et al., 2018; Romer et al., 2018; Alexander						
64	et al., 2020), providing the atmosphere with a new source of photochemically reactive						
65	nitrogen species, i.e., HONO or NOx, resulting in the production of more						
66	photooxidants such as O3 or ·OH (Ye et al., 2017), which further oxidize volatile						

organic compounds (VOCs), leading to the formation of more chromophores, thereby
affecting the photochemical process (Bao et al., 2020).

Renoxification processes have recently been observed on different types of 69 atmospheric particles, such as urban grime and mineral dust (Ninneman et al., 2020; 70 71 Bao et al., 2018; Baergen and Donaldson, 2013; Ndour et al., 2009). Atmospheric titanium dioxide (TiO₂) is mainly derived from windblown mineral dust, with mass 72 mixing ratios ranging from 0.1 to 10% (Chen et al., 2012). TiO₂ is widely used in 73 industrial processes and building exteriors for its favorable physical and chemical 74 75 properties. Titanium and nitrate ions have been found to coexist in atmospheric particulates in different regions worldwide (Sun et al., 2005; Liu et al., 2005; Yang et 76 al., 2011; Kim et al., 2012), and the NO₃^{-/}(NO₃⁻+TiO₂) mass percentage of total 77 78 suspended particulate matter (TSP) during dust storms can be lower than 20% (Sun et al., 2005). In this case, nitrate-coated TiO₂ (NO₃⁻-TiO₂) aerosols containing TiO₂ as 79 the main body can in some extent be used to represent the real situation under 80 sandstorm. TiO₂ is a semiconductor metal oxide that can facilitate the photolysis of 81 nitrate and the release of NO_x due to its photocatalytic activity (Ndour et al., 2009; 82 83 Chen et al., 2012; Verbruggen, 2015; Schwartz-Narbonne et al., 2019). Under ultraviolet (UV) light, TiO₂ generates electron-hole pairs in the conduction and 84 valence bands, respectively (Linsebigler et al., 1995). Nitrate ions adsorbed at the 85 oxide surface react with the photogenerated holes (h^+) to form nitrate radicals (NO₃·), 86 which are subsequently photolyzed to NO_x , mainly under visible light illumination 87 (Schuttlefield et al., 2008; George et al., 2015; Schwartz-Narbonne et al., 2019). Thus, 88

the renoxification of NO_3^- is faster on TiO₂ than on other oxides in mineral dust aerosols such as SiO₂ or Al₂O₃ (Lesko et al., 2015; Ma et al., 2021). In this study, we refer to renoxification involving h⁺ and NO_3^- in the reaction as photocatalytic renoxification based on the photocatalytic properties of TiO₂.

Many previous studies have focused mainly on particulate nitrate-NO_x 93 photochemical cycling reactions, despite the potential impact of other reactant gases 94 in the atmosphere. Formaldehyde (HCHO), the most abundant carbonyl compound in 95 the atmosphere, can reach as high as 0.4 ppm in some specific situations (particularly 96 in some indoor air or cities with high traffic density) (International Agency for 97 Research on Cancer, 1995; Salthammer, 2019). HCHO can react at night with 98 NO3. via hydrogen abstraction reactions to form HNO3 (Atkinson, 1991). Our 99 previous study showed that the degradation rate of HCHO was faster on NO₃⁻-TiO₂ 100 aerosols than on TiO₂ particles, perhaps as a result of HCHO oxidation by 101 NO₃. (Shang et al., 2017). To date, no studies have reported the effect of HCHO on 102 photocatalytic renoxification. Adsorbed HCHO would react with NO3. generated on 103 the NO₃⁻-TiO₂ aerosol surface, thus alter the surface nitrogenous species and 104 renoxification process. The present study is the first to explore the combined effect of 105 HCHO and photocatalytic TiO₂ particles on the renoxification of nitrate. The 106 wavelengths of the light sources were adjusted to exclude photolytic renoxification 107 while making photocatalytic renoxification available for better elucidate the reaction 108 mechanism. We investigated the effects of various influential factors including nitrate 109 type, nitrate content, RH, and initial HCHO concentration, to understand the 110

111 atmospheric renoxification of nitrate in greater detail.

112 2 Methods

113 **2.1 Environmental chamber setup**

Details of the experimental apparatus and protocol used in the current study have 114 been previously described (Shang et al., 2017). Briefly, the main body of the 115 environmental chamber is a 400 L polyvinyl fluoride (PVF) bag filled with synthetic 116 air (high purity N₂ (99.999%) mixed with high purity O₂ (99.999%) in the ratio of 117 79:21 by volume, Beijing Huatong Jingke Gas Chemical Co.). The chamber is 118 capable of temperature (~293 K) and relative humidity (0.8-70%) control using a 119 water bubbler and air conditioners, respectively. The chamber is equipped with two 120 light sources both with the central wavelength of 365 nm. One is a set of 36 W tube 121 122 lamps with a main spectrum of 320-400 nm and a small amount of 480-600 nm visible light (Figure S1a). The other is a set of 12 W Light-emitting diode (LED) 123 lamps with a narrow main spectrum of 350-390 nm (Figure S1b). The light intensities 124 for the tube and LED lamp at 365 nm were 300 µW·cm⁻² and 200 µW·cm⁻², 125 respectively, measured in the middle of the chamber. NO_x concentrations at the outlet 126 of the chamber were monitored by a chemiluminescence NO_x analyzer (ECOTECH, 127 EC9841B). HCHO was generated by thermolysis of paraformaldehyde at 70 °C and 128 detected via acetyl acetone spectrophotometric method using a UV-Vis 129 spectrophotometer (PERSEE, T6) or a fluorescence spectrophotometer (THERMO, 130 Lumina), depending on different initial HCHO concentrations. The particle size 131 distribution was measured by a Scanning Nano Particle Spectrometer (HCT, 132

SNPS-20). Electron Spin Resonance (Nuohai Life Science, MiniScope MS 5000) was 133 used to measure 'OH on the surface of particles. 5,5-dimethl-1-pyrroline-N-oxide 134 (DPMO, Enzo) was used as the capture agent. 50 µL particle-containing suspension 135 mixed with 50 µL DMPO (concentration of 200 µM) was loaded in a 1 mm capillary. 136 Four 365 nm LED lamps were placed side by side vertically at a distance of about 1 137 cm from the capillary, and the measurement was carried out after 1 min of irradiation. 138 The modulation frequency was 100 kHz, the modulation amplitude was 0.2 mT, the 139 microwave power was 10 mW and the sweep time was 60 s. 140

141

2.2 Nitrate-TiO₂ composite samples

In our experiments, two nitrate salts, potassium nitrate (AR, Beijing Chemical 142 Works Co., Ltd) or ammonium nitrate (AR, Beijing Chemical Works Co., Ltd), were 143 144 composited with pure TiO₂ (\geq 99.5%, Degussa AG) powder or TiO₂ (1 wt.%)/SiO₂ mixed powder to prepare NO₃⁻-TiO₂ or NO₃⁻-TiO₂ (1 wt.%)/SiO₂ samples. 250 mg 145 TiO₂ was simply mixed in nitrate solutions at the desired mass mixing ratio (with 146 nitrate content of 4 wt.%) to obtain a mash. The mash was dried at 90 °C and then 147 ground carefully for 30 min. A series of samples with different amount of nitrate were 148 149 prepared and diffuse reflectance fourier transform infrared spectroscopy (DRIFTS) measurements were made to test their homogeneity. Figure S2 shows DRIFTS spectra 150 of these KNO₃-TiO₂ composites, of which 1760 cm⁻¹ peak is one of the typical 151 vibrating peaks of nitrate (Aghazadeh, 2016; Maeda et al., 2011). Ratio value of peak 152 area from 1730-1790 cm⁻¹ for 1, 4, 32, 80 wt.% composited samples is 1: 4.1: 29.8: 153 81.6, which is very close to that of theoretical value, proving that the samples were 154

uniformly mixed. SiO₂ (AR, Xilong Scientific Co., Ltd.) with no optical activity was 155 also chosen for comparison, and samples of KNO3-SiO2 and KNO3-TiO2(1 156 wt.%)/SiO₂ samples with a potassium nitrate content of 4 wt.% were prepared. The 157 blank 250 mg TiO₂ sample was solved in pure water with the same procedure as 158 mentioned above. 4 wt.% HNO₃-TiO₂ composite particles were prepared for 159 comparison. Concentrated nitric acid (AR, Beijing Chemical Works Co., Ltd) was 160 diluted to 1 M and 250 mg TiO₂ was added to the nitric acid solution and stirred 161 evenly. A layer of aluminum foil was covered on the surface of the HNO₃-TiO₂ 162 163 homogenate and dried naturally in the room and then ground for use. We also selected Arizona Test Dust (ATD, Powder Technology Inc.), whose chemical composition and 164 weight percentage were shown in Table S1, as a substitute of NO₃⁻/TiO₂ to investigate 165 the "photocatalytic renoxification" process of nitrate and the positive effect of HCHO. 166

167

2.3 Environmental chamber experiments

For the chamber operation, we completely evacuated the chamber after every 168 experiment, then cleaned the chamber walls with deionized water and then dried by 169 flushing the chamber with ultra-zero air to remove any particles or gases collected on 170 171 the chamber walls. The experiments carried out in the environmental chamber can be divided into two categories according to whether HCHO was involved or not. (1) No 172 HCHO involvement in the reaction. The PVF bag was inflated by 260 L synthetic air, 173 and then 75 mg particles were instantly sprayed into the chamber by a transient 174 high-pressure airflow. As shown in Figure S3, the particle number concentration of 175 KNO₃-TiO₂ or TiO₂ sample decreased rapidly owing to wall effect including the 176

possible electrostatic adsorption of the particles by the environmental chamber. The 177 size distributions of KNO₃-TiO₂ and TiO₂ samples were similar, with both reached 178 stable after about 60 min. The peak number concentration was averaged of 3991 and 179 3886 particle/cm⁻³ during illumination period for KNO₃-TiO₂ and TiO₂ sample, 180 respectively, indicating that the repeatability of the introduction of particles into the 181 182 chamber is good. This can be attributed to the strict cleaning of the chamber and the same operation of each batch experiment. (2) With the participation of HCHO. The 183 PVF bag was inflated by 125 L synthetic air, followed by the introduction of HCHO, 184 185 and then the chamber was filled up with zero air to about 250 L. In order to know the HCHO adsorption before and after the particles' introduction, we conducted a 186 conditional experiment in the dark. It can be seen from Figure S4 that it took about 90 187 188 min for the concentration of HCHO to reach stable, and can be sustained. Then, 75 mg TiO₂ or NO_3^{-}/TiO_2 powders were introduced instantly and the concentration of 189 HCHO decreased upon the introduction. It took about 60 min for HCHO to reach its 190 second adsorption equilibrium, and the concentration of HCHO can be stable for 191 several hours in the dark. Therefore, for the irradiation experiments, the particles were 192 injected at 90 min after HCHO's introduction, and the lamps were turned on at 60 min 193 after the particle's introduction. 194

To determine the background value of NO_x in the reaction system, four blank experiments were carried out under illumination without nitrate: "synthetic air", "synthetic air + TiO₂", "synthetic air + HCHO" and "synthetic air + HCHO + TiO₂". In the blank experiments of "synthetic air" and "synthetic air + TiO₂", the NO_x

concentration remained stable during 180 min illumination, and the concentration 199 change was no more than 0.5 ppb (Figure S5a). Therefore, the environmental chamber, 200 201 synthetic air and the surface of TiO₂ particles were thought to be relatively clean, and there was no generation and accumulation of NO_x under illumination. When HCHO 202 203 was introduced into the environmental chamber, NO_x accumulated \sim 2 ppb in 120 min with or without TiO₂ particles (Figure S5b). Compared with the blank experiment 204 results when there was no HCHO, NO_x might come from the generation process of 205 (impurities in paraformaldehyde). However, considering the 206 HCHO high 207 concentration level of NO_x produced in the NO₃⁻-TiO₂ system containing HCHO under the same conditions in this study (see later in Figure 2), the NO_x generated in 208 this blank experiment can be negligible. 209

210

211 **3 Results and discussion**

212 **3.1** The positive effect of TiO₂ on the renoxification process

We investigated the photocatalytic role of TiO₂ on renoxification. The light 213 source was two 365 nm tube lamps containing small amounts of 400-600 nm visible 214 light; this setup was suitable for exciting TiO₂ and the photolysis of available nitrate 215 radicals. Raw NO_x data measured in the chamber under dark and illuminated 216 conditions for 4 wt.% KNO₃-SiO₂ and 4 wt.% KNO₃-TiO₂ (1 wt.%)/SiO₂ are shown 217 in Figure 1. The ratio of 1 wt. % TiO₂ to SiO₂ corresponds to their ratio in sand and 218 dust particles. We observed no NO_x in the KNO_3 -SiO₂ sample under dark or 219 illumination, indicating very weak direct photolysis of nitrate under our 365 nm 220

tube-lamp illumination conditions. However, when the sample containing TiO_2/SiO_2 was illuminated, NO_x continually accumulated in the chamber. This finding confirms that NO_x production arising from photodissociation of NO_3^- on TiO_2/SiO_2 was caused by the photocatalytic property of TiO_2 (i.e., photocatalytic renoxification) and was not due to the direct photolysis of NO_3^- (photolytic renoxification).

Figure 1. Effect of illumination on the release of NO_x from 4 wt.% KNO_3 -SiO₂ and 4 wt.% KNO_3 -TiO₂(1 wt.%)/SiO₂ at 293 K and 0.8% of relative humidity. 365 nm tube lamps were used during the illumination experiments.

226

TiO₂ can be excited by UV illumination to generate electron-hole pairs, and the h⁺ can react with adsorbed NO₃⁻ to produce NO₃· (Ndour et al., 2009). Thus, in the present study, NO₃· mainly absorbed visible light emitted from the tube lamps, which was subsequently photolyzed to NO_x through Eqs. (3) and (4) (Wayne et al., 1991), which explains why NO_x was observed in this study. Thus, we demonstrated that TiO₂ can be excited at illumination wavelengths of ~365 nm, even when then content was very low, and that NO_x accumulated due to the production and further photolysis of ²³⁷ NO₃·. However, the production rate of NO_x was very slow, reaching only 1.3 ppb ²³⁸ during 90 min of illumination. This result may have been caused by the blocking ²³⁹ effect of K⁺ on NO₃⁻. K⁺ forms ion pairs with NO₃⁻, and electrostatic repulsion ²⁴⁰ between K⁺ and h⁺ prevents NO₃⁻ from combining with h⁺ to generate NO₃· to a ²⁴¹ certain extent, thereby weakening the positive effect of TiO₂ on the renoxification of ²⁴² KNO₃ (Rosseler et al., 2013).

$$TiO_2 + h\upsilon (\lambda < 390 \text{ nm}) \rightarrow e^- + h^+$$
(1)

$$NO_3^- + h^+ \to NO_3^- \tag{2}$$

$$NO_3$$
· + hu ($\lambda < 640 \text{ nm}$) $\rightarrow NO_2 + 0$ · (3)

$$NO_3$$
 + hv (585 nm < λ < 640 nm) \rightarrow NO + O_2 (4)

243

244

3.2 The synergistic positive effect of TiO₂ and HCHO on the renoxification process

LED lamps with a wavelength range of 350-390 nm and no visible light were 247 used to irradiate 4 wt.% KNO_3 -TiO₂ without generating NO_x (NO₂ and NO 248 concentrations fluctuate within the error range of the instrument) (Figure S5). TiO₂ 249 can be excited under this range of irradiation, producing NO₃ radicals as discussed 250 above. The lack of NO_x generation indicates that neither nitrate photolysis nor 251 NO3. photolysis occurred under 365 nm LED lamp illumination conditions. In 252 addition, it has been shown that NO₃ · photolysis only occurs in visible light (Aldener 253 et al., 2006). Therefore, the LED lamp setup was used in subsequent experiments to 254

exclude the direct photolysis of both KNO₃ and NO₃ \cdot , but allow the excitation of TiO₂. This approach allowed us to investigate the process of photocatalytic renoxification caused by HCHO in the presence of photogenerated NO₃ \cdot .

Atmospheric trace gases can undergo photocatalytic reactions on the surface of 258 TiO₂ (Chen et al., 2012). As the illumination time increased, the concentration of 259 HCHO showed a linear downward trend, which was found to fit zero-order reaction 260 kinetics (Figure S7). The zero-order reaction rate constants of HCHO on TiO₂ and 4 261 wt.% KNO₃-TiO₂ particles were 9.1×10^{-3} and 1.4×10^{-2} ppm min⁻¹, respectively, 262 which were much higher than that for gaseous HCHO photolysis (Shang et al., 2017). 263 We suggested that the produced NO_3 contributed to the enhanced uptake of HCHO. 264 In the following study, the effect of HCHO on the photocatalytic renoxification of 265 266 NO₃⁻-TiO₂ was explored.

Variation in NO_x concentration within the chamber containing nitrate-TiO₂ 267 particles with or without HCHO is shown in Figure 2. For 4 wt.% KNO₃-TiO₂ 268 particles, the NO_x concentration began to increase upon irradiation in the presence of 269 HCHO, reaching ~3861 mmol-normalized ppb (equivalent to 110 ppb) within 120 270 271 min. This result indicates that HCHO greatly promoted photocatalytic renoxification of KNO₃ on the surfaces of TiO₂ particles. This reaction process can be divided into 272 two stages: a rapid increase within the first 60 min and a slower increase within the 273 following 60 min, each consistent with zero-order reaction kinetics. The slow stage is 274 due to the photodegradation of HCHO on KNO3-TiO2 aerosols, which led to a 275 decrease in its concentration, gradually weakening the positive effect. NO_x is the sum 276

of NO₂ and NO, both of which showed a two-stage concentration increase (Figure S8). 277 The NO₂ generation rate was nearly 6 times that of NO, as compared to using the 278 zero-order rate constant within 60 min (1.18 ppb min⁻¹ NO₂, $R^2 = 0.96$; 0.19 ppb 279 min^{-1} NO, $R^2 = 0.91$). This burst-like generation of NO_x can be ascribed to the 280 reaction between generated NO3· and HCHO via hydrogen abstraction to form 281 adsorbed nitric acid (HNO₃(ads)) on TiO₂ particles. We measured the pH of water 282 extracts in NO₃⁻-TiO₂ systems with and without HCHO. It was found that the pH 283 decreased by 1.7% for KNO₃-TiO₂, suggesting the formation of acidic species such as 284 285 HNO₃(ads) in this study. Based on the analysis of the absorption cross section of HNO₃ adsorbed on fused silica surface, the HNO₃(ads) absorption spectrum has been 286 reported to be red-shifted compared to HNO₃(g), extending from 350 to 365 nm, with 287 288 a simultaneous cross-sectional increase (Du and Zhu, 2011). Therefore, HNO₃(ads) was subjected to photolysis to produce NO₂ and HONO (Eqs. (6)-(8)) under the LED 289 lamp used in this study. A previous study of HNO₃ photolysis on the surface of Pyrex 290 glass showed that the ratio of the formation rates of photolysis products 291 $(J_{NOx}/J_{(NOx+HONO)})$ was > 97% at RH = 0% (Zhou et al., 2003), suggesting that NO_x is 292 the main gaseous product under dry conditions. Thus, the effect of HONO on product 293 distribution and NO_x concentration was negligible in this study. Together, these results 294 suggest that NO3. and HCHO generate HNO3(ads) on particle surfaces through 295 hydrogen abstraction, which contributes to the substantial release of NO_x via 296 photolysis. This photocatalytic renoxification via the $NO_3^--NO_3^--HNO_3-NO_x$ pathway 297 is important considering the high abundance of hydrogen donor organics in the 298

$$NO_3 + HCHO \rightarrow CHO + HNO_3(ads)$$
 (5)

$$HNO_3(ads) + h\upsilon \rightarrow [HNO_3]^*(ads)$$
(6)

$$[HNO_3]^*(ads) \rightarrow HNO_2(ads) + O(^{3}P)(ads)$$
(7)

$$[HNO_3]^*(ads) \rightarrow NO_2(ads) + \cdot OH(ads)$$
(8)

300

Figure 2. Effect of formaldehyde on the renoxification processes of different nitrate doped particles at 293 K and 0.8% of relative humidity. 365 nm LED lamps were used
 during the illumination experiment. The initial concentration of HCHO was about 9
 ppm.

To demonstrate the proposed HCHO mechanism and the photolysis contribution of HNO₃ to NO_x, we prepared an HNO₃-TiO₂ sample by directly dissolving TiO₂ into dilute nitric acid. The formation of NO_x on HNO₃-TiO₂ without HCHO under illumination was obvious and at a rate comparable with,that on KNO₃-TiO₂ with HCHO (Figure 2). The renoxification of HNO₃-TiO₂ particles was further enhanced 310 following the introduction of HCHO. This is because that HNO₃ dissociates on particle surfaces to generate NO₃⁻, such that HNO₃ exists on TiO₂ as both HNO₃(ads) 311 312 and NO₃⁻(ads). Similarly, NO₃⁻(ads) completed the NO₃⁻-NO₃·-HNO₃-NO_x pathway as described above through the reaction process shown in Eqs. (2) to (8). The rates of 313 314 NO_x production from HNO₃-TiO₂ particles with and without HCHO were similar for the first 60 min (Figure 2), mainly due to the direct photolysis of partial HNO₃(ads). 315 However, after 60 min, NO_x was generated rapidly in the presence of HCHO, perhaps 316 due to the dominant photocatalytic renoxification of NO₃-(ads). These findings 317 318 indicate that HCHO converts NO₃⁻ on particle surfaces into HNO₃(ads) by reacting with NO_3 , and then HNO₃(ads) photolyzes at a faster rate to generate NO_x , allowing 319 HCHO to enhance the formation of NO_x . Overall, the photocatalytic renoxification of 320 321 NO₃⁻-TiO₂ particles affects atmospheric oxidation and the nitrogen cycle, and the presence of HCHO further enhances this impact. 322

Photocatalytic renoxification reaction occurs on the surfaces of mineral dust due 323 324 to the presence of semiconductor oxides with photocatalytic activity such as TiO₂ (Ndour et al., 2009). In order to confirm this, we synthesized nitrate with inert SiO₂ as 325 a comparison. It can be seen from Figure S9 that no NO₂ formation was observed 326 whether HCHO was present or not, indicating that photocatalytically active particle 327 TiO₂ is critical to the photocatalytic renoxification process. Furthermore, a kind of 328 commercial mineral dust ATD was selected to study the effects of HCHO on this 329 process. We detected ·OH in irradiated pure TiO₂ and ATD samples using electron 330 spin resonance (ESR) technique, and found that for ATD samples, the peak intensity 331

of OH generation was 40% that of TiO₂ samples (Figure S10). OH originates in the 332 reaction of h⁺ with surface adsorbed water (Ahmed et al., 2014). ATD contains 333 semiconductor oxides such as TiO₂ and Fe₂O₃, and is thought to exhibit photocatalytic 334 properties affecting the renoxification of nitrate. The NO₃⁻ content of ATD is 4×10^{17} 335 molecules m^{-2} , which is ~0.25 wt.% of the total mass (Huang et al., 2015; Jiyeon et 336 al., 2017). The NO_x concentration changes observed in the environmental chamber 337 demonstrated that HCHO promoted the renoxification of ATD particles (Figure S11). 338 339 This result suggests that mineral dust containing photocatalytic semiconductor oxides 340 such as TiO₂, Fe₂O₃, and ZnO can greatly promote the conversion of granular nitrate to NO_x in the presence of HCHO. 341

342 **3.3 Influential factors on the photocatalytic renoxification process**

343

3.3.1 The influence of nitrate type

As discussed above, HNO₃ and KNO₃ undergo different renoxification processes 344 on the surface of TiO₂ under the same illumination conditions, suggesting that cations 345 bound to NO_3^- significantly affect NO_x production. Different types of cations coexist 346 with nitrate ions in atmospheric particulate matter, among which ammonium ions 347 (NH4⁺) are important water-soluble ions that can be higher in content than K⁺ in urban 348 fine particulate matter (Zhou et al., 2016; Tang et al., 2021; Wang et al., 2021), 349 especially in heavily polluted cities.(Tian et al., 2020) Equal amounts of 4 wt.% 350 NH4NO3-TiO2 particles were introduced into the chamber and illuminated under the 351 same conditions. Similar as Figure 2, millimole normalized ppb was used in order to 352 compare the amount of NO_x release for different kinds of nitrate with same percentage 353

weight. It can be seen that HCHO had a much stronger positive effect on the release 354 of NO_x over NH₄NO₃-TiO₂ particles (Figure 3), which may be ascribed to NH₄⁺. 355 356 Combined with the results of NH₄NO₃-TiO₂ and KNO₃-TiO₂ particles, it seems that the affinity rather than electrostatic repulsion should be the primary effect of cations 357 358 on the production of NO_x . On substrates without photocatalytic activity such as SiO_2 and Al_2O_3 , NH_4NO_3 cannot generate NO_x , such that NO_x production depends on the 359 effect of TiO₂ (Ma et al., 2021). The h⁺ generated by TiO₂ excitation reacts with 360 adsorbed H₂O to produce \cdot OH (Eq. (9)), which gradually oxidizes NH₄⁺ to NO₃⁻ (Eq. 361 (10)). In our previous study, we demonstrated that irradiated (NH₄)₂SO₄-TiO₂ samples 362 had lower NH_4^+ and NO_3^- peaks (Shang et al., 2017). Therefore, more NO_3^- 363 photocatalytic renoxification participated in the process via 364 the 365 NO_3 - NO_3 - HNO_3 - NO_x pathway to generate NO_x . Moreover, the results without HCHO are shown in Figure S12, both NH4NO3-TiO2 particles and KNO3-TiO2 366 particles produced almost no NO_x, indicating the importance of HCHO for 367 renoxification to occur. Due to the high content of NH₄NO₃ in atmospheric particulate 368 matter, the positive effect of HCHO on the photocatalytic renoxification process may 369 have some impact on the concentrations of NO_x and other atmospheric oxidants. 370

$$h^+ + H_2 0 \rightarrow 0 H \tag{9}$$

$$: OH + NH_4^+ / NH_3 \rightarrow NO_2^- \rightarrow NO_3^-$$
(10)

~ = 1

Figure 3. Effect of formaldehyde on the renoxification processes of 4 wt.%
NH₄NO₃-TiO₂ and 4 wt.% KNO₃-TiO₂ particles at 293 K and 0.8% of relative
humidity. 365 nm LED lamps were used during the irradiation experiment. The initial
concentration of HCHO was about 9 ppm.

377

372

378 **3.3.2** The influence of relative humidity

379 Water on particle surfaces can participate directly in the heterogeneous reaction process. As shown in Eq. (9), H_2O can be captured by h^+ to generate $\cdot OH$ with strong 380 oxidizability in photocatalytic reactions. The first-order photolysis rate constant of 381 NO₃⁻ on TiO₂ particles decreases by an order of magnitude, from $(5.7 \pm 0.1) \times 10^{-4} \text{ s}^{-1}$ 382 on dry surfaces to $(7.1 \pm 0.8) \times 10^{-5}$ s⁻¹ when nitrate is coadsorbed with water above 383 monolayer coverage (Ostaszewski et al., 2018). We explored the positive effect of 384 HCHO on the NO₃⁻-TiO₂ particle photocatalytic renoxification at different RH levels; 385 the results are shown in Figure 4a. For KNO_3 -TiO₂ particles, the rate of NO_x 386

387	production decreased as the RH of the environmental chamber increased, indicating					
388	that increased water content in the gas phase hindered photocatalytic renoxification					
389	for two reasons: $\rm H_2O$ competes with $\rm NO_3^-$ for h^+ on the surface of $\rm TiO_2$ to					
390	generate \cdot OH, reducing the generation of NO ₃ \cdot , and competitive adsorption between					
391	$\rm H_2O$ and HCHO causes the generated $^{\rm \cdot OH}$ to compete with NO3 $^{\rm \cdot}$ for HCHO,					
392	hindering the formation of HNO3(ads) on particle surfaces. Moreover, it is also					
393	possible that the loss of NO_x on the wall increases under high humidity conditions,					
394	resulting in a decrease in its concentration. This competitive process also occurs on					
395	the surface of NH ₄ NO ₃ -TiO ₂ particles, but at RH = 70%, the NO _x generation rate					
396	constant is slightly higher. The deliquescent humidity of NH_4NO_3 at 298 K is ~62%,					
397	such that NH_4NO_3 had already deliquesced at $RH = 70\%$, forming an $NH_4^+/NH_3-NO_3^-$					
398	liquid system on the particle surfaces. This quasi-liquid phase improved the dispersion					
399	of TiO ₂ in NH ₄ NO ₃ , resulting in greater NO _x release. The deliquescent humidity of					
400	KNO ₃ -TiO ₂ was > 90%,(2009) such that no phase change occurred at RH = 70%, and					
401	the renoxification reaction rate retained a downward trend. In the presence of H ₂ O, in					
402	addition to the NO3 ⁻ -NO3 ⁻ HNO3 pathway observed in this study, there are a variety					
403	of HNO ₃ generation paths, such as the hydrolysis of N_2O_5 via the NO ₂ -N ₂ O ₅ -HNO ₃					
404	pathway (Brown et al., 2005), the oxidation of NO ₂ by \cdot OH (Burkholder et al., 1993),					
405	and the reaction of $NO_3\cdot$ with H_2O (Schutze and Herrmann, 2005), all of which					
406	require further consideration and study.					

407 The formation rates of NO and NO₂ are shown in Figure 4b and c, respectively.
408 NO₂ was the main product of surface HNO₃ photolysis. Under humid conditions,

409	generated NO ₂ (ads) continued to react with H ₂ O adsorbed on the surface to form
410	HONO(ads). HONO was desorbed from the surface and released into the gas phase
411	(Zhou et al., 2003; Bao et al., 2018; Pandit et al., 2021), providing gaseous HONO to
412	the reaction system. Because the NO_x concentration remained high, the effect of
413	HONO on NO _x analyzer results was negligible (Shi et al., 2021a). As NO ₂ can form
414	NO_2^- with $\mathrm{e}^-\!\!,$ a reverse reaction also occurred between NO_2^- and HONO in the
415	presence of H ₂ O (Ma et al., 2021; Garcia et al., 2021). Therefore, the increase in H ₂ O
416	increased the proportion of HONO in the nitrogen-containing products, such that the
417	NO _x generation rate decreased as RH increased. Comparing Figure 4b and c shows
418	that, as RH increased, the NO production rate constant decreased more than that of
419	NO2. HONO and NO2 generated by the photolysis of HNO3(ads) decreased
420	accordingly, i.e., the NO source decreased. However, generated NO_2 and NO
421	underwent photocatalytic oxidation on the surface of TiO2, and NO photodegradation
422	was more significant under the same conditions (Hot et al., 2017). Generally, a certain
423	amount of HONO will be generated during the reaction between HCHO and
424	NO3-TiO2 particles when RH is high, which affects the concentrations of
425	atmospheric \cdot OH, NO _x , and O ₃ . This process is more likely to occur in summer due to
426	high RH and light intensity affecting atmospheric oxidation. In drier winters or dusty
427	weather, when TiO_2 content is high, HCHO greatly promotes the photocatalytic
428	renoxification of NO_3 -TiO ₂ particles, thereby releasing more NO_x into the atmosphere,
429	affecting the global atmospheric nitrogen budget. Thus, regardless of the seasonal and
430	regional changes, renoxification has significant practical importance.

Figure 4. Effect of relative humidity on the release of NO_x (a), NO₂ (b), NO (c) over 4
wt.% NH₄NO₃-TiO₂ and 4 wt.% KNO₃-TiO₂ particles at 293 K. 365 nm LED lamps
were used during the illumination experiment. The initial concentration of HCHO was
about 9 ppm.

436

437 **3.3.3 The influence of initial HCHO concentration**

To explore whether HCHO promotes nitrate renoxification at natural concentration levels, we reduced the initial concentration of HCHO in the environmental chamber by a factor of 10, to \sim 1.0 ppm. The positive effect of HCHO on the photocatalytic renoxification of KNO₃-TiO₂ particles was clearly weakened, with NO₂ concentration first increasing and then decreasing, and NO concentration

remaining stable (Figure S13). The HCHO concentration decreased due to its consumption during the reaction, making its positive effect decline quickly. The photocatalytic oxidation reaction between NO_x and photogenerated reactive oxygen species (ROS) on the TiO₂ surface further decreased the NO_x concentration. Photocatalytic oxidation of NO_x by ROS on TiO₂ particles occurred at an HCHO concentration of 9 ppm, but the positive effect of HCHO remained dominant. Thus, no decrease in NO_x concentration was observed within 120 min in our experiments.

450 The concentration of HCHO in the atmosphere is relatively low, with a balance 451 between the photocatalytic oxidation decay of NO_x and the release of NO_x via photocatalytic renoxification. The mutual transformation between particulate NO₃⁻ 452 and gaseous NO_x is more complex. The effect of low-concentration HCHO on the 453 454 renoxification of NO₃⁻-TiO₂ particles requires further investigation. However, many types of organics provide hydrogen atoms in the atmosphere, including alkanes (e.g., 455 methane and n-hexane), aldehydes (e.g., acetaldehyde), alcohols (e.g., methanol and 456 ethanol), and aromatic compounds (e.g., phenol) that react with NO₃· to produce nitric 457 acid (Atkinson, 1991). These organics, together with HCHO, play similar positive 458 roles in photocatalytic renoxification and, therefore, influence NO_x concentrations. 459

460

461 **4 Atmospheric implications**

462 Nitric acid and nitrate are not only the final sink of NO_x in the atmosphere but 463 are also among its important sources. NO_x from nitrate through renoxification is easily 464 overlooked. The renoxification of nitrate on the surface of TiO₂ particles can be

divided into photolytic renoxification and photocatalytic renoxification. The 465 photocatalytic performance of TiO₂ promotes the renoxification process, which 466 467 explains the influence of semiconducting metal oxide components on atmospheric mineral particles during the renoxification of nitrate. Although most previous studies 468 have focused on solid-phase nitrate renoxification, our exploration of the roles of 469 HCHO in this study will allow us to examine complex real-world pollution scenarios, 470 in which multiple atmospheric pollutants coexist, as well as the effects of organic 471 pollutants on the renoxification process. Atmospheric HCHO is taken up at the 472 surface of particulate matter, accounting for up to $\sim 50\%$ of its absorption (Li et al., 473 2014), such that the heterogeneous participation of HCHO during renoxification is 474 important. This study is the first to report that HCHO has a positive effect on the 475 TiO₂ 476 photocatalytic renoxification of nitrate on particles, via the $NO_3^{-}-NO_3^{-}-HNO_3-NO_x$ pathway (Figure 5), further increasing the release of NO_x and 477 other nitrogen-containing active species, which in turn affects the photochemical 478 cycle of HO_x radicals in the atmosphere and the formation of important atmospheric 479 oxidants such as O₃. Although in the case of high concentrations of HCHO in our 480 experiment, the response to the real situation will be biased, the results of this study 481 illustrate a possible way of HCHO in influencing nitrate renoxification in the 482 atmosphere. Factors such as particulate matter composition, RH, and initial HCHO 483 concentration all influence the positive effect of HCHO; notably, H₂O competes with 484 NO₃⁻ for photogenerated holes. Based on these findings, two balance systems should 485 be explored in depth: the influence of RH on the generation rates of HONO and NO_x, 486

487 as water increases the proportion of HONO in nitrogen-containing products; and the

- 488 balance between the photocatalytic degradation of generated NO_x on TiO₂ particles
- 489 and the positive effect of HCHO on NO_x generation at low HCHO concentrations.

490

491 **Figure 5.** Positive role of HCHO on the photocatalytic renoxification of nitrate-TiO₂ 492 composite particles via the $NO_3^--NO_3 - HNO_3 - NO_x$ pathway.

493 Based on our results, we conclude that in photochemical processes on the surfaces of particles containing semiconductor oxides, with the participation of 494 hydrogen donor organics, a significant synergistic photocatalytic renoxification 495 496 enhancement effect could alter the composition of surface nitrogenous species via the $NO_3^{-}-NO_3^{-}-HNO_3-NO_x$ pathway, thereby affecting atmospheric oxidation and 497 nitrogen cycling. The positive effect of HCHO can be extended from TiO₂ in this 498 study to other components of mineral dust such as Fe₂O₃ and ZnO with photocatalytic 499 activity, which may have practical applications. Our proposed reaction mechanism by 500 which HCHO promotes photocatalytic renoxification could improve existing 501 atmospheric chemistry models and reduce discrepancies between model simulations 502 and field observations. 503

505 All data are available upon request from the corresponding authors: 506 shangjing@pku.edu.cn.

507

508 Supplement.

Detailed information of Figures S1-13 (which include the spectra of the lamps, size distribution of 4 wt.% KNO₃-TiO₂ and TiO₂ particles and changes of HCHO concentration in environmental chamber, changes of NO_x concentration under different reaction conditions, photodegradation curve of HCHO, ESR spectra of TiO₂ and ATD particles), and Table S1 (which demonstrate ATD chemical composition).

514

515 Author contribution.

516 YL and JS prepared the paper with contributions from other co-authors. JS and 517 XW designed the experiments and carried them out. YL, WX and XW provided 518 supplementary measurement data. YL, JS, MS and CY discussed the results. JS and 519 YL revised the paper.

520

521 *Competing interests.*

522 The authors declare that they have no conflict of interest.

523

524 Acknowledgments.

525 The authors are grateful to the financial support provided by National Natural

526	Science Foundation of China (Nos. 21876003, 41961134034 and 21277004), the
527	Second Tibetan Plateau Scientific Expedition and Research (No. 2019QZKK0607).
528	

529 References

Aghazadeh, M.: Preparation of Gd₂O₃ Ultrafine Nanoparticles by Pulse
Electrodeposition Followed by Heat-treatment Method, Journal of Ultrafine Grained
and Nanostructured Materials, 49, 80-86, 10.7508/jufgnsm.2016.02.04, 2016.

533 Ahmed, A. Y., Kandiel, T. A., Ivanova, I., and Bahnemann, D.: Photocatalytic and

534 photoelectrochemical oxidation mechanisms of methanol on TiO₂ in aqueous solution,

- 535 Applied Surface Science, 319, 44-49, 10.1016/j.apsusc.2014.07.134, 2014.
- 536 Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C.,

537 Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.:

538 Reactivity and loss mechanisms of NO₃ and N₂O₅ in a polluted marine environment:

539 Results from in situ measurements during New England Air Quality Study 2002,

Journal of Geophysical Research-Atmospheres, 111, D23S73, 10.1029/2006jd007252,
2006.

Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and
Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a
global model with nitrate isotope observations, Atmospheric Chemistry and Physics,

545 20, 3859-3877, 10.5194/acp-20-3859-2020, 2020.

Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO₃ radical
with organic-comounds, Journal of Physical and Chemical Reference Data, 20,
459-507, 10.1063/1.555887, 1991.

- 549 Baergen, A. M. and Donaldson, D. J.: Photochemical Renoxification of Nitric Acid on
- 550 Real Urban Grime, Environmental Science & Technology, 47, 815-820,
- 551 10.1021/es3037862, 2013.

27

- Bao, F., Li, M., Zhang, Y., Chen, C., and Zhao, J.: Photochemical Aging of Beijing
- 553 Urban PM_{2.5}: HONO Production, Environmental Science & Technology, 52,
 554 6309-6316, 10.1021/acs.est.8b00538, 2018.
- Bao, F., Jiang, H., Zhang, Y., Li, M., Ye, C., Wang, W., Ge, M., Chen, C., and Zhao, J.:
- The Key Role of Sulfate in the Photochemical Renoxification on Real PM_{2.5},
 Environmental Science & Technology, 54, 3121-3128, 10.1021/acs.est.9b06764,
 2020.
- Bedjanian, Y. and El Zein, A.: Interaction of NO₂ with TiO₂ Surface Under UV
 Irradiation: Products Study, Journal of Physical Chemistry A, 116, 1758-1764,
 10.1021/jp210078b, 2012.
- 562 Brown, S. S., Osthoff, H. D., Stark, H., Dube, W. P., Ryerson, T. B., Warneke, C., de
- Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F. C., and Ravishankara, A. R.:
 Aircraft observations of daytime NO₃ and N₂O₅ and their implications for
 tropospheric chemistry, Journal of Photochemistry and Photobiology a-Chemistry,
 176, 270-278, 10.1016/j.jphotochem.2005.10.004, 2005.
- 567 Burkholder, J. B., Talukdar, R. K., Ravishankara, A. R., and Solomon, S.: 568 Temperature-dependence of the HNO₃ UV absorption cross-sections, Journal of 569 Geophysical Research-Atmospheres, 98, 22937-22948, 10.1029/93jd02178, 1993.
- 570 Chen, H., Nanayakkara, C. E., and Grassian, V. H.: Titanium Dioxide Photocatalysis
- in Atmospheric Chemistry, Chemical Reviews, 112, 5919-5948, 10.1021/cr3002092,
 2012.
- Deng, J. J., Wang, T. J., Liu, L., and Jiang, F.: Modeling heterogeneous chemical
 processes on aerosol surface, Particuology, 8, 308-318, 10.1016/j.partic.2009.12.003,
 2010.
- 576 Dentener, F. J. and Crutzen, P. J.: Reaction of N_2O_5 on tropospheric aerosols-impact 577 on the global distributions od NO_x , O_3 , and OH, Journal of Geophysical 578 Research-Atmospheres, 98, 7149-7163, 10.1029/92jd02979, 1993.
- 579 Du, J. and Zhu, L.: Quantification of the absorption cross sections of surface-adsorbed
- nitric acid in the 335-365 nm region by Brewster angle cavity ring-down spectroscopy,
- 581 Chemical Physics Letters, 511, 213-218, 10.1016/j.cplett.2011.06.062, 2011.

- Finlayson-Pitts, B. J. and Pitts, J. J. N.: Chemistry of the Upper and Lower
 Atmosphere: Theory, Experiments and Applications, 10.1023/A:1024719803484,
 Academic Press1999.
- 585 Garcia, S. L. M., Pandit, S., Navea, J. G., and Grassian, V. H.: Nitrous Acid (HONO)
- 586 Formation from the Irradiation of Aqueous Nitrate Solutions in the Presence of 587 Marine Chromophoric Dissolved Organic Matter: Comparison to Other Organic 588 Photosensitizers, Acs Earth and Space Chemistry, 5, 3056-3064, 589 10.1021/acsearthspacechem.1c00292, 2021.
- George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.:
 Heterogeneous Photochemistry in the Atmosphere, Chemical Reviews, 115,
 4218-4258, 10.1021/cr500648z, 2015.
- Goodman, A. L., Bernard, E. T., and Grassian, V. H.: Spectroscopic study of nitric
 acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in
 the presence of adsorbed water, Journal of Physical Chemistry A, 105, 6443-6457,
 10.1021/jp0037221, 2001.
- Harris, G. W., Carter, W. P. L., Winer, A. M., Pitts, J. N., Platt, U., and Perner, D.:
 Observations of nitrous-acid in the los-angeles atmosphere and implications for
 predictions of ozone precursor relationships, Environmental Science & Technology,
 16, 414-419, 10.1021/es00101a009, 1982.
- Hot, J., Martinez, T., Wayser, B., Ringot, E., and Bertron, A.: Photocatalytic
 degradation of NO/NO₂ gas injected into a 10 m³ experimental chamber,
 Environmental Science and Pollution Research, 24, 12562-12570,
 10.1007/s11356-016-7701-2, 2017.
- Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of Heterogeneous Reaction of
- 606 Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and
- 607 Hydrogen Peroxide, Environmental Science & Technology, 49, 10797-10805,
- 608 10.1021/acs.est.5b03930, 2015.
- 609 International Agency for Research on Cancer: Wood Dust and formaldehyde, IARC
- 610 Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 62
- 611 10.1007/BF00054167, 1995.

- 512 Jiyeon, Park, Myoseon, Jang, Zechen, and Yu: Heterogeneous Photo-oxidation of SO₂
- in the Presence of Two Different Mineral Dust Particles: Gobi and Arizona Dust,
 Environmental Science & Technology, 51, 9605-9613, 10.1021/acs.est.7b00588,
 2017.
- 616 Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B.,

617 Chen, Q., Sulprizio, M. P., Lee, J. D., Read, K. A., Bloss, W., Crilley, L. R., Keene, W.

- 618 C., Pszenny, A. A. P., and Hodzic, A.: Global impact of nitrate photolysis in sea-salt
- aerosol on NOx, OH, and O3 in the marine boundary layer, Atmospheric Chemistry

and Physics, 18, 11185-11203, 10.5194/acp-18-11185-2018, 2018.

- Kim, W.-H., Song, J.-M., Ko, H.-J., Kim, J. S., Lee, J. H., and Kang, C.-H.: 621 Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols 622 between Asian Dust and Non-Asian Dust Periods at Background Area of Korea, 623 Bulletin of Chemical Society, 624 the Korean 33, 3651-3656, 10.5012/bkcs.2012.33.11.3651, 2012. 625
- Lee, J. D., Moller, S. J., Read, K. A., Lewis, A. C., Mendes, L., and Carpenter, L. J.:
 Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic
 marine boundary layer, Journal of Geophysical Research-Atmospheres, 114, D21302,
- 629 10.1029/2009jd011878, 2009.
- 630 Lesko, D. M. B., Coddens, E. M., Swomley, H. D., Welch, R. M., Borgatta, J., and
- 631 Navea, J. G.: Photochemistry of nitrate chemisorbed on various metal oxide surfaces,
- 632 Physical Chemistry Chemical Physics, 17, 20775-20785, 10.1039/c5cp02903a, 2015.
- Li, X., Rohrer, F., Brauers, T., Hofzumahaus, A., Lu, K., Shao, M., Zhang, Y. H., and
- 634 Wahner, A.: Modeling of HCHO and CHOCHO at a semi-rural site in southern China
- during the PRIDE-PRD2006 campaign, Atmospheric Chemistry and Physics, 14,
- 636 12291-12305, 10.5194/acp-14-12291-2014, 2014.
- Linsebigler, A. L., Lu, G. Q., and Yates, J. T.: Photocatalysis on TiO₂
 surfaces-principles, mechanisms, and selected results, Chemical Reviews, 95,
 735-758, 10.1021/cr00035a013, 1995.
- Liu, W., Wang, Y. H., Russell, A., and Edgerton, E. S.: Atmospheric aerosol over two
- 641 urban-rural pairs in the southeastern United States: Chemical composition and

- 642
 possible
 sources,
 Atmospheric
 Environment,
 39,
 4453-4470,

 643
 10.1016/j.atmosenv.2005.03.048, 2005.
 643
 10.1016/j.atmosenv.2005.03.048, 2005.
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
 643
- Ma, Q., Zhong, C., Ma, J., Ye, C., Zhao, Y., Liu, Y., Zhang, P., Chen, T., Liu, C., Chu,
 B., and He, H.: Comprehensive Study about the Photolysis of Nitrates on Mineral
 Oxides, Environmental Science & Technology, 55, 8604-8612,
 10.1021/acs.est.1c02182, 2021.
- 648 Maeda, N., Urakawa, A., Sharma, R., and Baiker, A.: Influence of Ba precursor on
- 649 structural and catalytic properties of Pt-Ba/alumina NOx storage-reduction catalyst,
- Applied Catalysis B-Environmental, 103, 154-162, 10.1016/j.apcatb.2011.01.022,
 2011.
- Monge, M. E., D"Anna, B., and George, C.: Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces--an air quality remediation process?,
- 654 Physical Chemistry Chemical Physics, 12, 8991-8998, 10.1039/b925785c, 2010.
- Ndour, M., Conchon, P., D'Anna, B., Ka, O., and George, C.: Photochemistry of
 mineral dust surface as a potential atmospheric renoxification process, Geophysical
 Research Letters, 36, 4, 10.1029/2008gl036662, 2009.
- Ninneman, M., Lu, S., Zhou, X. L., and Schwab, J.: On the Importance of
 Surface-Enhanced Renoxification as an Oxides of Nitrogen Source in Rural and
 Urban New York State, Acs Earth and Space Chemistry, 4, 1985-1992,
 10.1021/acsearthspacechem.0c00185, 2020.
- 662 Ostaszewski, C. J., Stuart, N. M., Lesko, D. M. B., Kim, D., Lueckheide, M. J., and
- Navea, J. G.: Effects of Coadsorbed Water on the Heterogeneous Photochemistry of
- Nitrates Adsorbed on TiO₂, Journal of Physical Chemistry A, 122, 6360-6371,
 10.1021/acs.jpca.8b04979, 2018.
- 666 Pandit, S., Garcia, S. L. M., and Grassian, V. H.: HONO Production from Gypsum
- 667 Surfaces Following Exposure to NO₂ and HNO₃: Roles of Relative Humidity and
- 668 Light Source, Environmental Science & Technology, 55, 9761-9772,
- 669 10.1021/acs.est.1c01359, 2021.

31

- Platt, U., Perner, D., Harris, G. W., Winer, A. M., and Pitts, J. N.: Observations of
 nitrous-acid in an urban atmosphere by differential optical-absorption, Nature, 285,
 312-314, 10.1038/285312a0, 1980.
- 673 Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D.
- 674 E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B.,
- 675 Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive
- halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453,
- 677 1232-1235, 10.1038/nature07035, 2008.
- 678 Reed, C., Evans, M. J., Crilley, L. R., Bloss, W. J., Sherwen, T., Read, K. A., Lee, J.
- D., and Carpenter, L. J.: Evidence for renoxification in the tropical marine boundary
 layer, Atmospheric Chemistry and Physics, 17, 4081-4092,
- 681 10.5194/acp-17-4081-2017, 2017.
- Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P. O., Dibb, J.
- E., Scheuer, E., Blake, D. R., Meinardi, S., Brosius, A. L., Thames, A. B., Miller, D.
- O., Brune, W. H., Hall, S. R., Ryerson, T. B., and Cohen, R. C.: Constraints on
 Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environmental
 Science & Technology, 52, 13738-13746, 10.1021/acs.est.8b03861, 2018.
- 687 Rosseler, O., Sleiman, M., Nahuel Montesinos, V., Shavorskiy, A., Keller, V., Keller,
- N., Litter, M. I., Bluhm, H., Salmeron, M., and Destaillats, H.: Chemistry of NOx on
- 689 TiO₂ Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation,
- Water, and Coadsorbed K⁺, Journal of Physical Chemistry Letters, 4, 536-541,
 10.1021/jz302119g, 2013.
- Salthammer, T.: Formaldehyde sources, formaldehyde concentrations and air
 exchange rates in European housings, Building and Environment, 150, 219-232,
 10.1016/j.buildenv.2018.12.042, 2019.
- 695 Schuttlefield, J., Rubasinghege, G., El-Maazawi, M., Bone, J., and Grassian, V. H.:
- 696 Photochemistry of adsorbed nitrate, Journal of the American Chemical Society, 130,
- 697 12210-12211, 10.1021/ja802342m, 2008.
- 698 Schutze, M. and Herrmann, H.: Uptake of the NO₃ radical on aqueous surfaces,
- ⁶⁹⁹ Journal of Atmospheric Chemistry, 52, 1-18, 10.1007/s10874-005-6153-8, 2005.

- 700 Schwartz-Narbonne, H., Jones, S. H., and Donaldson, D. J.: Indoor Lighting Releases
- 701 Gas Phase Nitrogen Oxides from Indoor Painted Surfaces, Environmental Science &
- 702 Technology Letters, 6, 92-97, 10.1021/acs.estlett.8b00685, 2019.
- Seltzer, K. M., Vizuete, W., and Henderson, B. H.: Evaluation of updated nitric acid
 chemistry on ozone precursors and radiative effects, Atmospheric Chemistry and
 Physics, 15, 5973-5986, 10.5194/acp-15-5973-2015, 2015.
- 706 Shang, J., Xu, W. W., Ye, C. X., George, C., and Zhu, T.: Synergistic effect of
- nitrate-doped TiO₂ aerosols on the fast photochemical oxidation of formaldehyde,
 Scientific Reports, 7, 1161, 10.1038/s41598-017-01396-x, 2017.
- 709 Shi, Q., Tao, Y., Krechmer, J. E., Heald, C. L., Murphy, J. G., Kroll, J. H., and Ye, Q.:
- Laboratory Investigation of Renoxification from the Photolysis of Inorganic
 Particulate Nitrate, Environmental science & technology, 55, 854-861,
 10.1021/acs.est.0c06049, 2021.
- Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.:
 Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous
 acid, Nature, 440, 195-198, 10.1038/nature04603, 2006.
- 716 Sun, Y. L., Zhuang, G. S., Wang, Y., Zhao, X. J., Li, J., Wang, Z. F., and An, Z. S.:
- Chemical composition of dust storms in Beijing and implications for the mixing of
 mineral aerosol with pollution aerosol on the pathway, Journal of Geophysical
 Research-Atmospheres, 110, D24209, 10.1029/2005jd006054, 2005.
- Tang, M., Liu, Y., He, J., Wang, Z., Wu, Z., and Ji, D.: In situ continuous hourly
 observations of wintertime nitrate, sulfate and ammonium in a megacity in the North
 China plain from 2014 to 2019: Temporal variation, chemical formation and regional
- transport, Chemosphere, 262, 10.1016/j.chemosphere.2020.127745, 2021.
- 724 Tian, S. S., Liu, Y. Y., Wang, J., Wang, J., Hou, L. J., Lv, B., Wang, X. H., Zhao, X. Y.,
- 725 Yang, W., Geng, C. M., Han, B., and Bai, Z. P.: Chemical Compositions and Source
- Analysis of PM_{2.5} during Autumn and Winter in a Heavily Polluted City in China,
- 727 Atmosphere, 11, 19, 10.3390/atmos11040336, 2020.
- 728 Verbruggen, S. W.: TiO₂ photocatalysis for the degradation of pollutants in gas phase:
- 729 From morphological design to plasmonic enhancement, Journal of Photochemistry

- 730
 and
 Photobiology
 C-Photochemistry
 Reviews,
 24,
 64-82,

 731
 10.1016/j.jphotochemrev.2015.07.001, 2015.
- 732 Wang, H., Miao, Q., Shen, L., Yang, Q., Wu, Y., Wei, H., Yin, Y., Zhao, T., Zhu, B.,
- 733 and Lu, W.: Characterization of the aerosol chemical composition during the
- 734 COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China, Journal of
- ras environmental sciences (China), 102, 110-122, 10.1016/j.jes.2020.09.019, 2021.
- 736 Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras,
- 737 G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The
- nitrate radical-physics, chemistry, and the atmosphere, Atmospheric Environment Part
 a-General Topics, 25, 1-203, 10.1016/0960-1686(91)90192-a, 1991.
- 740 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., and Zhao, Q.:
- 741 Characteristics of PM2.5 speciation in representative megacities and across China,
- 742 Atmospheric Chemistry and Physics, 11, 5207-5219, 10.5194/acp-11-5207-2011,
 743 2011.
- 2011.
- Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and Nitrate on
 Natural and Artificial Surfaces, Environmental Science & Technology, 50, 3530-3536,
- 746 10.1021/acs.est.5b05032, 2016a.
- 747 Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate as a Source
- of HONO and NOx, Environmental Science & Technology, 51, 6849-6856,
- 749 10.1021/acs.est.7b00387, 2017.
- 750 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C.,
- 751 Mauldin, R. L., III, Campos, T., Weinheimer, A., Hornbrook, R. S., Apel, E. C.,
- 752 Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S., Ullmann, K., Smith,
- J. N., Ortega, J., and Knote, C.: Rapid cycling of reactive nitrogen in the marine
- boundary layer, Nature, 532, 489-491, 10.1038/nature17195, 2016b.
- 755 Zhou, J. B., Xing, Z. Y., Deng, J. J., and Du, K.: Characterizing and sourcing ambient
- 756 PM_{2.5} over key emission regions in China I: Water-soluble ions and carbonaceous
- 757 fractions, Atmospheric Environment, 135, 20-30, 10.1016/j.atmosenv.2016.03.054,
- 758 2016.

759	Zhou, X. L., Gao, H. L.	, He, Y., I	Huang, G.,	Ber	tman, S. B.	, Civerolo, K.,	and Sc	hwab,
760	J.: Nitric acid photo	lysis on	surfaces	in	low-NOx	environments:	Signi	ficant
761	atmospheric implica	tions,	Geophysic	al	Research	Letters,	30,	2217,
762	10.1029/2003g1018620, 2003.							
763								