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Abstract. In this study, we developed an approach that integrated multiple patterns 22 

of time scale for box modeling (MCMv3.3.1) to better understand the O3-precursor 23 

relationship through multiple sites and continuous observations. A five-month field 24 

campaign was conducted in the summer of 2019 to investigate the ozone formation 25 

chemistry at three sites in a major prefecture-level city (Zibo) in Shandong province of 26 

northern China. It was found that the relative incremental reactivity (RIR) of major 27 

precursor groups (e.g., anthropogenic volatile organic compound (AVOC), NOx) was 28 

overall consistent in the sign along with time scales changed from wider to narrower 29 

(four patterns: five-month, monthly, weekly, and daily) at each site, though the 30 

magnitudes of RIR varied at different sites. The time series of the photochemical regime 31 

(using RIRNOx/RIRAVOC as indicator) in weekly or daily patterns further showed a 32 

synchronous temporal trend among the three sites, while the magnitude of 33 

RIRNOx/RIRAVOC was site-to-site dependent. The derived RIR ranking (top 10) of 34 

individual AVOC species showed consistency at three patterns (i.e., five-month, 35 

monthly, and weekly). It was further found that the campaign-averaging photochemical 36 

regimes showed overall consistency in the sign but non-negligible variability among 37 
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the four patterns of time scale, which was mainly due to the embedded uncertainty in 38 

model input dataset when averaging individual daily pattern into different timescales. 39 

This implies that utilizing narrower time scale (i.e., daily pattern) is useful to derive 40 

reliable and robust O3-precursor relationship. Our results highlight the importance of 41 

quantifying the impact of different time scales to constrain the photochemical regime, 42 

which can formulate more accurate policy-relevant guidance for O3 pollution control. 43 

 44 

1 Introduction 45 

Since 2013, the ambient PM2.5 concentration in China has dramatically declined 46 

by implementing Clean Air Action (Lu et al., 2018; Wang et al., 2020b; Zhang et al., 47 

2019). However, national ground surface ozone concentrations increased over the same 48 

period (Xue et al., 2020) and became a major air quality problem that needed to be 49 

addressed in China (Li et al., 2019; Wang et al., 2019). It is well-known that ground 50 

surface ozone is formed mainly by complex nonlinear photochemical oxidation of 51 

volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx = NO + 52 

NO2) and sunlight (Blanchard, 2000; Hidy, 2000; Kleinman, 2000), which adversely 53 

influences human health, vegetation and corps (Brunekreef and Holgate, 2002; 54 

Vingarzan, 2004). 55 

Given the complex non-linear relationship between O3 formation and its 56 

precursors (VOCs and NOx), challenges in mitigating its severity lie primarily in 57 

comprehensively understanding of O3-precursor relationship (Su et al., 2018a; Tan et 58 

al., 2018a). It is commonly recognized that regional-scale air quality models and the 0-59 

D box model are two mainstream approaches to investigate the increasingly severe 60 

ozone problem (Blanchard, 2000; Cardelino and Chameides, 1995; Hidy, 2000; Liu et 61 

al., 2019). Unlike the complicated 3-D air quality models, the 0-D box model is an 62 

observation-based model that implemented with gas-phase chemical mechanism, and 63 

has been widely used to diagnose O3-precursor relationship in various locations (Liu et 64 

al., 2021a; Sun et al., 2016; Tan et al., 2019b; Xue et al., 2014a; Yu et al., 2020a). Some 65 

previous studies (Li et al., 2021; Lu et al., 2010a; Sicard et al., 2020; Yu et al., 2020b) 66 

have reported a large variability of O3-precursor relationship in spatiotemporal scales 67 

in many cities of China, which indicates great challenges in current O3 pollution control 68 

(Wang et al., 2017a; Xue et al., 2014b). 69 

Table 1 summarizes the published studies of O3-precursor relationship using the 70 

0-D box model (implemented with different gas-phase chemical mechanisms) at 71 

diversified patterns of time scale in many places of China. The observational period in 72 

most previous studies was short-term (i.e., less than one month), while medium-term 73 

(i.e., from one to several months), and long-term (i.e., multiple years) periods were 74 

limited. As shown in Table 1, we find that model input datasets with different 75 
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timescales have been employed in previous studies to identify the campaign-averaging 76 

O3 formation regime, but there is a lack of comparison among these different timescales. 77 

We also find that more than half of the studies using the averaged diurnal patterns as 78 

box model input, which is particularly common for those medium and long-term 79 

measurements. For example, a 10 years long-term observational study by Wang et al., 80 

(2017a) adopted monthly pattern of time scale for model simulation with the reason of 81 

saving computing resources, and it also revealed a substantial temporal variability of 82 

O3-precursor relationship. In addition, it is believed that long-term (measurements of at 83 

least several months) and multiple-site continuous online measurements can provide 84 

opportunity to develop O3 control strategy more comprehensively over a wider 85 

spatiotemporal scale (Li et al., 2021; Wang et al., 2017b; Wang et al., 2017b). However, 86 

such measurements have been quite rare in China, limiting the present understanding 87 

of O3-precursor relationship (Lu et al., 2019; Wang et al., 2017b).  88 

In this study, a five-month field campaign was conducted in the summer of 2019 89 

to investigate the ozone formation chemistry at 3 sites in Zibo, a major prefecture-level 90 

Chinese city in Shandong province. According to our measurements at the three sites in 91 

Zibo, the averaged O3 concentration during the whole observational period was around 92 

50 ppbv, while the daily maximum of O3 concentrations for some extremely polluted 93 

periods were nearly 120-150 ppbv (see details in Section 3.1). Here we developed an 94 

approach that integrated multiple patterns of time scale for box model simulation, which 95 

aimed at illustrating the non-linearity of O3-precursor relationship driven by its actual 96 

daily / weekly / monthly variability. Our results can be conducive to interpreting 97 

variations of O3-precursor relationship over a wider spatiotemporal scale, and they 98 

provide implications for developing more precise and constrained O3 control strategies 99 

in other regions. 100 

2 Methods 101 

2.1 Study sites and measurements 102 

Field measurements were conducted in a major prefecture-level city (Zibo), which 103 

is in the middle of Shandong Province, northern China, from 1 May to 30 September, 104 

2019. Figure S1 shows the surrounding environment and geographical locations at the 105 

three sampling sites; a detailed description of the Tianzhen (TZ), Beijiao (BJ) and 106 

Xindian (XD) sites can be found in our previous study (Li et al., 2021). Briefly, TZ 107 

contains a mixture of crude oil processing and operation stations and farming areas, and 108 

is classified as suburban area; XD contains a mixture of residential and heavy industrial 109 

zones, and is considered as a suburban area; BJ is in the urban area of Zibo. 110 

Typical inorganic gases of O3, NO, NO2, CO and SO2 were measured using online 111 

commercial gas analysers (Thermo Scientific 49i, 42i, 48i and 43i, USA) at the three 112 

sites. Following the Chinese meteorological monitoring regulation (GB/T 35221-2017), 113 
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we continuously monitored the meteorological parameters (i.e., temperature, relative 114 

humidity, UV-A solar radiation, precipitation, wind speed, and wind direction) at the 115 

three sites (Li et al., 2021). Two online GC systems (gas chromatography–flame 116 

ionisation detector, GC-FID, Thermo Scientific GC5900) were deployed at TZ and BJ 117 

respectively to measure VOC species. For C2-C5 VOCs, desorption and separation were 118 

performed using a GC with pre-concentration on a combination of two columns, 119 

followed by a FID detector. For C6-C12 VOCs, air sample was pre-concentrated on 120 

Tenax GR cartridges and subsequently separated by chromatographic column, then 121 

detected by another FID detector. Similarly, one online system (gas chromatography–122 

flame ionisation detector/photoionisation detector, GC-FID/PID, Syntech Spectras GC 123 

955-615/815) was deployed at XD site. For C2-C6 VOCs, the hydrocarbons were 124 

concentrated on a Tenax GR carrier, then thermally desorbed and separated on a DB-1 125 

column, and finally detected by FID and PID detectors. For C6-C12 VOCs, the air 126 

sample was concentrated on a Carbosieves SIII carrier at 5℃, then thermally desorbed 127 

and separated on a combination of two columns, and FID and PID detectors were 128 

employed for subsequent detection. These systems measured 55 VOC species at a 1-h 129 

resolution, and more detailed descriptions can be found elsewhere (Chien, 2007; Jiang 130 

et al., 2018; Xie et al., 2008).  131 

Table S1 summarized the limit of detection, accuracy, precision of the instruments 132 

at the three sites, and all the measurement instruments were regularly subjected to the 133 

service of checking and maintenance during the whole campaign. Unfortunately, we did 134 

not conduct the inter-comparison between the GC-FID and GC-FID/PID instruments at 135 

the same site due to practical reasons, as these VOC instruments were separately 136 

deployed at the three different sites for continuous routine operation. To ensure the 137 

quality assurance / quantity control (QA/QC) of online VOC measurement, two five-138 

point calibrations (i.e., 2, 4, 6, 8, 10 ppbv, dilution from one cylinder) for standard gases 139 

with 55 VOC species (Linde Co., Ltd, USA) were carried out in May and August of 140 

2019 at the three sites. Table S2 showed that the calibration linearity (R2) of all 141 

measured VOCs were nearly 0.9990. Additionally, a single-point calibration (i.e., 6 142 

ppbv) was regularly performed every month during the whole campaign. As shown in 143 

Figure S2 (a case from TZ), the retention time, peak fitting and baseline of the 144 

chromatogram were manually checked and adjusted on a daily basis. 145 

2.2 0-D box model and design of four patterns of time scale 146 

The 0-D box model integrated with the latest Master Chemical Mechanism of 147 

MCMv3.3.1 (http://mcm.york.ac.uk; last access: 27 January 2023) has been widely 148 

utilized in many regions (He et al., 2019; Jenkin et al., 2015; Liu et al., 2019; Whalley 149 

et al., 2021). Unlike the lumped chemical mechanisms such as CB05 (Wang et al., 150 

2017a; Yarwood et al., 2005), CB6 (Yarwood et al., 2010), RACM/RACM2 (Goliff et 151 

http://mcm.york.ac.uk/
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al., 2013; Stockwell et al., 1997, 2020) and SAPRC-07 (Carter, 2010), the MCMv3.3.1 152 

is a near-explicit chemical mechanism consisting of over 5,800 species and 17,000 153 

reactions (Jenkin et al., 2015; Saunders et al., 2003), which can be used to describe the 154 

gas-phase chemistry (i.e., in-situ photochemistry). In this study, the box model (based 155 

on the Framework for 0-D Atmospheric Modeling, F0AM) (Wolfe et al., 2016) was 156 

applied and constrained by the mean diurnal profiles of meteorological data (i.e., 157 

temperature, relative humidity, and photolysis rates), 4 inorganic gases (i.e., SO2, CO, 158 

NO, and NO2), and 45 speciated VOCs (in MCMv3.3.1 species list; see Table S3). 159 

Since measured photolysis rates (J values) were not available, the measured UV-A solar 160 

radiation was used to scale the photolysis rates calculated from the Tropospheric 161 

Ultraviolet and Visible Radiation model (TUVv5.2; 162 

https://www.acom.ucar.edu/Models/TUV/Interactive_TUV; last access: 27 January 163 

2023) following the approach of recent studies (Lyu et al., 2019; Lyu et al., 2016). 164 

Specifically, the geographical coordinates, date and time were initialized into the TUV 165 

model to derive photolysis rates and solar radiation. We obtained the scaling factor by 166 

comparing the observed with modeled solar radiation, and used this scaling factor to 167 

scale the TUV model derived photolysis rates. A dilution rate of 3/86400 s−1 was applied 168 

for all non-constraint species and simulation days through a stepwise sensitivity test by 169 

adjusting it from 1/86400 s–1 to 5/86400 s–1 (see details in Text S1) for the best 170 

reproduction of O3. For each model run (i.e., each daily model simulation), it was 171 

performed on a daily basis with intervals of 24 hours spanning from 0:00 to 23:00, and 172 

each individual model simulation was run to reach one-day diurnal steady state. The 173 

detailed descriptions of box model operation were provided in our previous study (Li 174 

et al., 2021).  175 

Since the box model simulations are conducted with intervals of 24 hours spanning 176 

from 0:00 to 23:00 local standard time (Wang et al., 2018), the entire campaign 177 

observations were taken into four patterns of time scale (i.e., five-month, monthly, 178 

weekly, and daily) as diurnal average format for model input (Figure 1). Note that some 179 

days or weeks were not modeled due to some missing data in the measurements. 180 

Nevertheless, the total simulation number at the daily (i.e., 100, 81, and 114 days for 181 

TZ, BJ and XD respectively) or weekly (i.e., 21, 20, and 19 weeks for TZ, BJ, and XD 182 

respectively) scale was representative of the five-month campaign. Specifically, the 183 

entire campaign data classified as four patterns of time scale were modeled as base runs. 184 

Then we performed the sensitivity modeling to calculate the relative incremental 185 

reactivity (RIR) of precursors by adjusting the input concentrations in the base runs (see 186 

next section) (Lu et al., 2010a). 187 

https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/
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2.3 Calculation of net Ox production rate P(Ox) and Relative incremental 188 

reactivity (RIR) 189 

Considering the rapid chemical titration of NO to NO2 in the presence of O3, the 190 

concept of ‘total oxidant’ (Ox = O3 + NO2) has been widely used to represent the actual 191 

photochemical production of O3 (Lu et al., 2010). Similar to those described in previous 192 

studies using the 0-D box model (He et al., 2019; Lyu et al., 2016), the net or in-situ Ox 193 

production rate (P(Ox)) is defined as the difference between the Ox gross production 194 

rate (G(Ox)) and the Ox destruction rate (D(Ox)), which is formulated in accordance 195 

with Eq. (1): 196 

𝑃(O𝑥) = 𝐺(O𝑥) − 𝐷(O𝑥)                                                               (1) 197 

The Ox gross production rate (G(Ox)), or the total chemical production of Ox, is 198 

calculated by summing the rates of oxidation of NO by HO2 and RO2 radicals in 199 

accordance with Eq. (2): 200 

𝐺(O𝑥) = 𝑘HO2+NO[HO2][NO] + ∑𝑘RO2,𝑖+NO [RO2,𝑖][NO]             (2) 201 

The Ox destruction rate (D(Ox)), or total chemical loss of Ox, is calculated by 202 

summing O3 photolysis, the reaction of O3 with OH, HO2 and alkenes, as well as the 203 

reaction between NO2 and OH, as described by Eq. (3): 204 

𝐷(O𝑥) = 𝑘O1D+H2O
[O1D][H2O] + 𝑘OH+O3[OH][O3] + 𝑘HO2+O3[HO2][O3] +205 

𝑘alkenes+O3[alkenes][O3] + 𝑘OH+NO2[OH][NO2]                                  (3) 206 

Concentrations of radicals and intermediates are obtained from the outputs of the 207 

0-D box model. The k values in Eq. (2) and (3) represent the rate constants of the 208 

corresponding reactions, respectively. The subscript ‘i’ in Eq. (2) represents the 209 

individual RO2 species. 210 

Additionally, relative incremental reactivity (RIR) has been widely used as a 211 

metric to quantify the O3-precursor relationship, and it can be derived from the 0-D box 212 

model (MCMv3.3.1) by changing the input mixing ratios of its precursors (Sillman, 213 

2010; Xue et al., 2014a). The RIR is defined as the ratio of percentage change in net Ox 214 

(Ox = O3 + NO2) production rate P(Ox) (Li et al., 2021) to percentage change of 215 

concentration of precursor X. The RIR of a specific precursor X is described in Eq. (4): 216 

RIR(X) =
[𝑃Ox(CX)−𝑃Ox(CX−ΔCX)]/𝑃Ox(CX)

ΔCX/CX
                                                                            (4) 217 

Here, X is a specific precursor (i.e., NOx, CO or grouped / individual VOC species), 218 

CX is the measured concentration of precursor X, and ΔCX is the hypothetical 219 

concentration change (ΔCX/CX = 10% in this study in accordance with the previous 220 

studies (Lyu et al., 2016; Wang et al., 2018)). POx(CX) represents the simulated Ox 221 

production rate in a base run, whereas POx(CX–ΔCX) is the simulated Ox production 222 

in a second run with a hypothetical concentration change of species X. Obviously, a 223 

higher positive value of RIR(X) suggests a more effective way of reducing the ambient 224 
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O3 production rate by reducing X (Ling et al., 2011; Zhang et al., 2008a).  225 

In this study, the O3 precursors were divided into four major categories, including 226 

anthropogenic VOC (AVOC), biogenic VOC (BVOC, only isoprene in this study), CO 227 

and NOx (Tan et al., 2019b). AVOC was further divided into three subcategories: alkanes, 228 

aromatics and alkenes* (the asterisk denotes anthropogenic alkenes, excluding isoprene 229 

in this study) (Yu et al., 2020a). As mentioned, RIR method was applied mainly to 230 

evaluate the O3-NOx-VOC sensitivity and determine the photochemical regimes among 231 

four patterns of time scale. Thus, we calculated the RIR values of major precursor 232 

groups (i.e., AVOC, BVOC, CO, NOx, alkanes, alkenes* and aromatics) to further 233 

quantify the O3-precursor relationship. 234 

In general, O3 formation chemistry is usually classified into three regimes (i.e., 235 

VOC-limited, transitional and NOx-limited) (He et al., 2019; Wang et al., 2018). In this 236 

study, RIRNOx/RIRAVOC (the ratio of two RIR values) was used as a metric to classify 237 

the photochemical regimes (Li et al., 2021). Specifically, RIRNOx/RIRAVOC value of less 238 

than 0.5 was defined as VOC-limited regime, greater than 2 as NOx-limited regime, and 239 

from 0.5 to 2 as transitional regime (see Text S2 and Table S4) (Li et al., 2021). 240 

3 Results and discussion 241 

3.1 Overview of the field campaign 242 

Figure 2 shows the time series of measured meteorological parameters and O3 as 243 

well as its precursors at the three sites during the whole campaign. In general, the 244 

temperature (T) and relative humidity (RH) were basically consistent at the three sites, 245 

while the wind speeds were different, which suggests that the three sites had an overall 246 

consistent meteorological condition. In addition, the time series of UV-A radiation was 247 

shown in Figure 2d, which was only available from one urban site of Zibo but expected 248 

to represent the whole Zibo city in this study. Following the protocol of the previous 249 

studies (Lyu et al., 2019; Wang et al., 2017b; Xue et al., 2014), the time series of 250 

photolysis rates (e.g., JNO2 (Figure 2e) and JO
1
D (Figure 2f)) were calculated from 251 

TUVv5.2 model and further scaled from UV-A radiation measurement. 252 

As shown in Figure 2g, we found that severe O3 pollution was observed at the 253 

three sites throughout the whole campaign. According to our measurements at the three 254 

sites in Zibo, the averaged O3 concentration during the whole observational period was 255 

around 50 ppbv, while the daily maximum of O3 concentrations for some extremely 256 

polluted periods were nearly 120-150 ppbv (Figure 2g). Interestingly, the O3 257 

concentrations at the three sites were generally consistent, while the levels of its 258 

precursors (e.g., VOC, NOx) were obviously different (Figure 2h-k), which implies the 259 

site-to-site variation of O3 formation chemistry for the whole Zibo city. 260 

Generally, OH reactivity (or OH loss rate, kOH) is widely applied to quantify the 261 

capacity of OH consumption by VOCs (Tan et al., 2019a). According to Table S3, the 262 
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BVOC reactivity (kBVOC, 3.5 ± 4.1 s-1) in TZ were highest among the three sites. As BJ 263 

was mainly influenced by the emission from urban region, it showed the highest AVOC 264 

reactivity (kAVOC, 6.8 ± 6.3 s-1) and NOx level (31.1 ± 28.6 ppbv). In addition, XD 265 

showed the highest level of alkenes* reactivity of 4.0 ± 3.2 s-1 within the three sites, 266 

and the local petrochemical industry nearby XD area may explain such characteristic 267 

(Li et al., 2021). 268 

3.2 Evaluation of box model performance 269 

The measured O3 concentrations were not constrained in our MCMv3.3.1 box 270 

model calculation, thus the model performance could be quantitatively assessed by 271 

comparing the modeled O3 (from base runs) with the measured O3. Figure S3-S8 show 272 

the time series of simulated and observed O3 concentrations at four patterns of time 273 

scale. In most cases, the box model simulation could accurately capture the level and 274 

variation trend of the observed O3. However, on some days the modeling results 275 

underestimated or overestimated the O3 concentrations, particularly the 276 

underestimation of nocturnal O3 concentrations. Such discrepancies between the 277 

simulated and observed O3 were likely due to limitations in explicit representations of 278 

atmospheric and transport processes (i.e., the horizontal and vertical transport process 279 

of ground ozone) by 0-D modeling approach (Lyu et al., 2019; Yu et al., 2020b). 280 

Specifically, ozone simulated by the 0-D box model is considered as in-situ 281 

photochemical processes from its precursors. Unlike the 3-D air quality model, 0-D box 282 

model usually simplifies the representation of the physical processes (i.e., deposition 283 

and advection) (Lu et al., 2010a; Sillman, 2010). Note that some adjustable parameters 284 

(e.g., radiation scheme, dilution rate) were remained consistent in all of our model 285 

calculations, which ensured the comparability of model results to the greatest extent. 286 

The index of agreement (IOA) (Li et al., 2021; Lyu et al., 2016), Pearson’s 287 

correlation coefficient (r) and root mean square error (RMSE) were jointly used as 288 

statistical metrics to quantify the goodness-of-fit between the simulated and observed 289 

O3 concentrations. Table S5 summarizes these statistical metrics for each site at various 290 

patterns of time scale. Because any single statistical metric has its own limitations, 291 

using these three indicators conjointly provided a more comprehensive evaluation of 292 

the model performance (Su et al., 2018b). Generally, higher IOA and r as well as lower 293 

RMSE indicate better agreement between the simulated and observed values (Wang et 294 

al., 2018; Willmott, 1982). As shown in Table S5, slightly reduced correlation was 295 

observed as the time scale changed from the wider (i.e., five-month scale) to the 296 

narrower (i.e., daily scale) pattern, which is understandable because of the enlarged 297 

statistical samples in the narrower pattern of time scale. 298 

In summary, TZ showed the best performance of the box model simulation, 299 

followed by XD and BJ, regardless of any statistical metrics or different patterns of time 300 



 

9 

 

scale, which may be associated with the optimized dilution rate for non-constraint 301 

species in model configuration. The overall model performance in this study (i.e., a day-302 

to-day IOA of approximately 0.90 for TZ) was close to or slightly better than those 303 

reported in previous studies, such as IOA = 0.74 in Hong Kong (Liu et al., 2019), IOA 304 

= 0.74 in Wuhan (Lyu et al., 2016) and IOA = 0.90 in Jiangmen (He et al., 2019). 305 

According to the above evaluation of base runs, our modeled results were acceptable 306 

for the subsequent O3-precursor relationship analysis described in the following 307 

sections. 308 

3.3 Month-to-month 309 

Figure 3a-b presents the monthly RIR values of the major precursor groups at 310 

each site, and the large variability of O3-precursor relationship at spatiotemporal scale 311 

(i.e., site-to-site and month-to-month) was observed. Specifically, in most months, XD 312 

generally showed the highest RIRAVOC among the three sites, followed by BJ and TZ. 313 

In addition, RIRBVOC showed similar level to RIRAVOC in TZ, but much less than 314 

RIRAVOC in BJ and XD, which can be explained by the observed higher BVOC 315 

reactivity in TZ than the other two sites (see Figure S9 and Table S3). Also, almost all 316 

the precursor groups showed positive RIR values, except negative RIRNOx appeared in 317 

BJ and XD in September. In addition, the RIRCO values at the three sites suggested its 318 

limited role in O3 formation at the three sites, compared with other major categories of 319 

O3 precursors. Among the three subcategories of AVOC, alkenes* always had the 320 

highest RIR values, followed by aromatics, while the contribution of alkanes to O3 321 

formation can be ignored due to their near-zero RIR values. That sequence of O3-AVOC 322 

sensitivity (alkenes* > aromatics > alkanes) indicated by the RIR analysis was 323 

consistent with previous studies in some other Chinese cities (Su et al., 2018b; Tan et 324 

al., 2019b). Significant monthly variations of O3, NOx, CO, VOC reactivity and 325 

TVOC/NOx ratios (in ppbC/ppbv, as a widely used simple metric to determine the 326 

photochemical regime) (National Research Council, 1991) were also observed from 327 

May to September (see Figure S9 and Table S3) at the three sites. For example, the 328 

BVOC reactivity in TZ showed highest level among the three sites during the whole 329 

campaign, and the AVOC reactivity in BJ showed more considerable variations in 330 

different months, which indicated spatial and temporal variations of local primary 331 

emission for O3 precursors in Zibo city. 332 

Figure 3c shows monthly RIRNOx/RIRAVOC at each site, which clearly reveals the 333 

spatial and temporal variations in photochemical regimes. For instance, the 334 

photochemical regime at the TZ site was considered to be transitional regime in May, 335 

NOx-limited regime in June and July, and VOC-limited regime in August and 336 

September; whereas for a specific month like June, NOx-limited, VOC-limited, and 337 

transitional regimes were generally identified for TZ, BJ, and XD respectively. Figure 338 
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5b shows good consistency between monthly TVOC/NOx and RIRNOx/RIRAVOC, 339 

suggesting that the changes of local emissions for O3 precursors may partially explain 340 

the considerable variation of O3 formation chemistry in different months. 341 

3.4 Week-to-week 342 

Figure 4 shows the time series of week-to-week RIR values of major precursor 343 

groups and RIRNOx/RIRAVOC at three sites in Zibo. Compared with month-to-month 344 

results, Figure 4 further reveals the O3-precursor relationship with more information in 345 

temporal trends. The temporal variations in weekly RIRAVOC at the three sites generally 346 

decreased and then increased, whereas weekly RIRNOx represented an opposite temporal 347 

variation during the entire campaign. Additionally, weekly RIRBVOC showed a trend of 348 

first decrease and then increase at TZ, while it did not show clear temporal variation at 349 

BJ and XD due to low values (Figure 4a-c). In general, RIRalkanes, RIRalkenes* and 350 

RIRaromatics showed a tendency consistent with that of the RIRAVOC at three sites (Figure 351 

4d-f). Overall, these phenomena were consistent among the three sites, though the 352 

magnitude of RIR values varied site-to-site. In parallel, the temporal changing of O3 353 

precursor (e.g., AVOC, NOx) was also observed at the three sites during the entire 354 

campaign (see Figure S10). For example, the weekly NOx concentration showed an 355 

overall trend of first decrease and then increase, while the AVOC reactivity showed a 356 

different temporal variation. Given the moderate correlation between weekly 357 

TVOC/NOx and RIRAVOC/RIRNOx (Figure 5c), the temporal variations of RIR values 358 

and O3 formation chemistry at the three sites may be partially elucidated by the emission 359 

changes of O3 precursors. 360 

As shown in Figure 4g-i, all the three sites showed similar temporal trends of 361 

RIRNOx/RIRAVOC, as it increased first and then decreased, though the magnitude of 362 

RIRNOx/RIRAVOC varied largely at each site. Such site-to-site variability of 363 

RIRNOx/RIRAVOC suggests that the photochemical regime in a local scale was mainly 364 

influenced by local emissions. By contrast, the site-to-site synchronization in temporal 365 

trend of RIRNOx/RIRAVOC suggests that the photochemical regime in a local scale may 366 

also be influenced by the emissions in a regional area. Therefore, the long-term, week-367 

to-week RIRNOx/RIRAVOC of multiple sites can further reflect the variability of ozone 368 

formation regime at a large geographic scale. 369 

3.5 Day-to-day 370 

In this section, O3-precursor relationship at the narrowest pattern of time scale was 371 

identified in detail. Figure S11-S12 shows the time series of daily RIR values at three 372 

sites in Zibo, where the temporal trend of RIR values was consistent with that at weekly 373 

scale (Figure 4). Additionally, the time series of daily RIRNOx/RIRAVOC (Figure S13) 374 

showed more irregular variations in temporal trends during the entire campaign, though 375 
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such temporal trends were overall consistent with that of weekly scale in Figure 4 g-i. 376 

In summary, the time series of RIR values from the daily scale can provide more 377 

informative variations and characteristics of O3-precursor relationship in temporal 378 

trends. 379 

Table 2 summarizes the number of days and proportions that were classified into 380 

the three photochemical regimes across each site and each pattern of time scale. Near-381 

consistent proportions of O3 formation regimes (using RIRNOx/RIRAVOC as a metric) 382 

were shown among multiple patterns of time scale, whereas a variability of proportion 383 

occurred among the three sites. The proportions of photochemical regimes changed 384 

accordingly along with the time scale varied from wider to narrower pattern. Taking TZ 385 

as an example, 20% (monthly) and 26% (daily) of the time was considered as VOC-386 

limited regime. The number of days and proportions for photochemical regimes 387 

summarized at four patterns of time scales can reveal a more plausible and 388 

comprehensive variation in ozone formation chemistry. Compared with patterns of 389 

monthly and weekly scales, the results derived at a daily scale can reveal the temporal 390 

variability of photochemical regimes more comprehensively. Note that the 391 

photochemical regime proportion obtained from the day-to-day scale has an advantage 392 

due to the large number of statistical samples. 393 

3.6 Comparison among different patterns of time scale 394 

This section gives a more comprehensive understanding of the campaign-395 

averaging O3-precursor relationship by comparing the similarities and differences of 396 

the results from various patterns of time scale. The overall O3-precursor relationship for 397 

the entire campaign can be quantified by averaging the RIR values from the individual 398 

simulation runs depending on the chosen time scale (e.g., five simulation runs for 399 

monthly scale in this study). Therefore, four sets of logical and comparable results can 400 

be derived to represent the campaign-averaging O3-precursor relationship, as four 401 

patterns of time scale (i.e., five-month, monthly, weekly, and daily) were treated in this 402 

study. 403 

Figure 6 shows the averaged RIR values of the major precursor groups at different 404 

patterns of time scale. As the time scale changed from wider (i.e., five-month scale) to 405 

narrower (i.e., daily scale) pattern, all three sites showed increases in the means of 406 

RIRAVOC and RIRalkenes* as well as decreases in averaged RIRNOx, whereas the averaged 407 

RIR of other precursors (i.e., BVOC, CO, alkanes and aromatics) did not vary obviously 408 

(see Table S6). Comparing with the O3-VOC-NOx sensitivity at the daily scale, the 409 

results obtained at the five-month scale underestimated O3-AVOC sensitivity (indicated 410 

by averaged RIR values) by 48% (TZ), 66% (BJ), and 49% (XD), and overestimated 411 

O3-NOx sensitivity by 37% (TZ), 142% (BJ), and 144% (XD). We performed 412 

comprehensive uncertainty analysis for model input and output results, which was 413 
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assessed through statistical methods (see details in Section 3.7). We found that the 414 

model-derived RIR values may become more uncertain when the input dataset was 415 

averaged into a wider diurnal pattern (i.e., five-month scale), which may explain the 416 

discrepancy of RIR values between five-month scale and daily scale. We expect that 417 

such discrepancies derived from different patterns of time scale could widely exist in 418 

many other world areas. Note that the mean RIR values were generally consistent 419 

among the four patterns of time scale within a reasonable range (within 25-75th quantile 420 

and standard deviation, see Figure 6 and Table S4), suggesting that any selected pattern 421 

of time scale could reasonably derive the campaign-averaging O3-precursor relationship. 422 

Figure 7 further shows the variations in photochemical regimes (defined by 423 

RIRNOx/RIRAVOC; see Text S2 and Table S4 for details) for each pattern of time scale. 424 

Specifically, TZ was mainly considered as transitional regime for the entire campaign 425 

period, whereas its variations covered three photochemical regimes, which was 426 

consistent with the results from Table S6. BJ was generally identified as VOC-limited 427 

regime, whereas some days were also grouped into transitional regime. XD was 428 

considered as primarily between VOC-limited and transitional regime, and its 429 

variations also spanned three photochemical regimes. Compared with the five-month 430 

pattern, it was further found that the averaged RIRNOx/RIRAVOC from other time scale 431 

patterns (i.e., monthly, weekly, and daily) were higher (12% to 20% for TZ; 38% to 432 

153% for XD) or lower (21% to 65% for BJ) than that from five-month scale. Note that 433 

the above discrepancies in photochemical regime derived from multiple patterns of time 434 

scale may influence the development of targeted O3 control strategies. In summary, the 435 

photochemical regime derived by averaging RIRNOx/RIRAVOC from the daily scale (see 436 

Table S6) suggests that the three sites mainly followed the sequence of TZ (1.34 ± 437 

1.39) > XD (0.67 ± 1.49) > BJ (0.16 ± 0.65). 438 

In addition, the temporal variations of TVOC/NOx in different timescales were 439 

identified during the whole campaign, and good correlations between observed 440 

TVOC/NOx and model derived RIRNOx/RIRAVOC at four patterns of time scale were also 441 

found (see Figure 5). Such consistency suggests that both metrics can reasonably 442 

reflect the variation of photochemical regimes, which can also improve the reliability 443 

of our box model simulation. 444 

The consistency and difference of model output (summarized in Table S7) are 445 

quantified by the statistical methods of Pearson’s correlation coefficient (Hu et al., 2018) 446 

and paired-samples t-test analysis (Wang et al., 2016). In particular, we assess and 447 

compare the degree of significance of differences among multiple patterns of time scale 448 

by the p values (a statistical significance assuming at p < 0.05) through paired-samples 449 

t-test and Wilcoxon matched-paired signed-rank test (non-parametric statistics) 450 

(Chiclana et al., 2013). Figure 8a shows high Pearson’s correlation coefficients (with 451 

values all above 0.85, p < 0.01) were found among four patterns of time scale, and the 452 
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higher correlation coefficient was identified between the two closer patterns. Figure 453 

8b-c shows that the differences among multiple patterns of time scale were non-454 

significant using Paired-samples t-test analysis and Wilcoxon matched-pair signed-rank 455 

test respectively. Furthermore, their results indicate that more significant difference was 456 

recognized between the two distant patterns (e.g., daily and five-month), which is 457 

consistent with the results of Pearson’s correlation analysis. Noted that the discrepancy 458 

between the two distant patterns was not significant but non-negligible (e.g., p = 0.092 459 

of Wilcoxon matched-paired signed-rank test between five-month and daily patterns). 460 

The influence of different patterns of time scale on deriving RIR values from 461 

individual AVOC species was further investigated. Briefly, quantifying the relative 462 

contribution of individual AVOC on O3 formation based on RIR calculation is beneficial 463 

to the development of cost-effective AVOC control strategies (Zhang et al., 2021). 464 

Figure 9 shows the averaged RIR values of individual AVOC species (i.e., top 10) at 465 

different patterns of time scale (i.e., five-month, month-to-month, week-to-week) at 466 

three sites in Zibo. As shown in Figure 9, the 10 individual AVOC species at the three 467 

sites were selected according to the top 10 highest RIR from five-month pattern. All 468 

three sites showed that the RIR of individual AVOC species increased gradually as the 469 

time scale changed from the wider (i.e., five-month) to narrower (i.e., weekly) pattern, 470 

which was consistent with the earlier discussion (see Figure 6 and Table S6) of O3-471 

AVOC sensitivity derived from four patterns of time scale. The results also indicate that 472 

the choice of time scale pattern has a limited effect on deriving high-ranking AVOC 473 

species (i.e., top 10) based on RIR calculations. 474 

3.7 Uncertainty analysis 475 

The uncertainty of model input was quantified in this section, which is embedded 476 

in pre-processed dataset with multiple patterns of time scale. As showed in Figure 1, 477 

the daily simulation used the individual daily pattern to constrain model, while the input 478 

dataset of averaged diurnal patterns (i.e., weekly, monthly, and five-month) is treated 479 

by averaging individual daily pattern into different timescales. This averaging approach 480 

will conceal the temporal variations of O3 precursors and meteorological factors, 481 

particularly for a long-term observational campaign. Figure S14 shows the 482 

distributions of the standard deviations for OH reactivity (kOH) or concentration of O3 483 

precursor groups at three averaged patterns of time scale at the three sites. As the time 484 

scale changed from wider (i.e., five-month scale) to narrower (i.e., weekly scale) pattern, 485 

the uncertainty (indicated by the average, median and 25%-75% quantile) decreased 486 

accordingly. In addition, meteorological factors such as temperature and irradiation also 487 

play an important role on O3 formation, especially these meteorological parameters can 488 

vary greatly over a long observational period (Boleti et al., 2020; Liu et al., 2019b; 489 

Weng et al., 2022). Therefore, the masked temporal variation of these meteorological 490 
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factors behind the averaged input dataset would also result in model uncertainty. 491 

Moreover, it has been widely recognized that the uncertainty for 0-D box model 492 

simulation mainly arises from the constraint of observation dataset and the 493 

configuration of model scheme. Note that constraints with more species from 494 

measurements (or including as many species as possible) would lower its uncertainty 495 

from the chemical box model simulation (Wolfe et al., 2011, 2016). Nevertheless, due 496 

to the measurement limitation in our field campaign, we are unable to measure some 497 

important atmospheric species (i.e., HONO and oxygenated VOC (OVOC)), and these 498 

may arise uncertainty in box model simulation. For instance, Xue et al., (2021) 499 

performed a sensitivity test for HONO constraint in their box model simulation, and 500 

they showed that without HONO constraint would lead to O3 photochemical production 501 

rate decreasing by 42%. More recently, Wang et al., (2022) obtained a comprehensive 502 

VOC dataset at Guangzhou, and their results showed that box model simulation without 503 

OVOCs constraints would underestimate the productions of ROx and O3. Besides, both 504 

gaseous HNO3 and organic nitrates can result in interferences on NOx measurement by 505 

chemiluminescence technique, which may arise uncertainty in our box modelling (Ge 506 

et al., 2022; Uno et al., 2017; Xu et al., 2013). Since the accurate NOx measurement is 507 

essential in determining the photochemical regime, more in-depth studies on NOx 508 

measurement uncertainty in box model simulation are required in the future. In addition, 509 

the parameter configuration of model scheme is essential to derive a reliable and valid 510 

model output, such as dilution rate as an important model technical parameter. We 511 

performed a stepwise sensitivity test for this parameter to obtain an optimized dilution 512 

rate, and assigned it to all non-constraint species, which can reduce uncertainty in box 513 

model simulation (see details in Text S1). Also, the dry and/or wet deposition of 514 

pollutants is an important atmospheric physical process, which has been mostly 515 

parameterized in emission-based chemical transport modeling but very limited in box 516 

model, as most of the primarily emitted species are already constrained from 517 

measurements. Xue et al., (2014) considered O3 deposition into box model simulation, 518 

and their result showed negligible contribution of O3 deposition to total O3 destruction 519 

rates. As for this work, we are unable to consider the deposition due to the difficulty in 520 

representing and parameterizing this term in the 0-D box model. Nevertheless, 521 

deposition of O3 and other species may be one of the uncertainties during box model 522 

simulation, which is worth further study in the future. 523 

4 Summary and implications 524 

Our present results suggest that comprehensively understanding of multiple 525 

patterns of time scale is conductive to formulating a more accurate and robust O3 control 526 

strategy. Specifically, as identified from the narrower patterns of time scale (i.e., weekly 527 

and daily), the site-to-site photochemical regime indicated by RIRNOx/RIRAVOC showed 528 
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various magnitudes but a synchronous temporal trend. This indicates that the O3 529 

formation regime in a city area can be influenced by local and regional emissions jointly. 530 

The reason behind this phenomenon is not clear at present, and we believe that further 531 

investigation on the synergetic effect of local and regional emission reduction for O3 532 

control would help elucidating this observation. It was also found that the campaign-533 

averaging photochemical regimes showed overall consistency but non-negligible 534 

variability among the four patterns of time scale, which was mainly due to the 535 

embedded uncertainty in model input dataset with averaged diurnal patterns. This 536 

implies that comparison among multiple patterns of time scale based on RIR analysis 537 

is useful to derive the O3-precursor relationship more accurately and reliably. 538 

Moreover, the high-ranking AVOC species (i.e., top 10) based on RIR calculations 539 

were overall consistent from the narrow to wide patterns of time scale. Table S8 540 

summarizes the total run number of box model for different patterns of time scale. It is 541 

known that large-scale computing capacity and computational efficiency were required 542 

in the narrower pattern of time scale (e.g., 2760 simulation runs in weekly scale in this 543 

study). Considering the difficulties of performing long-term and continuous online 544 

measurements in some environments, it is also advisable to identify the high-ranking 545 

VOC species from the campaign-averaging diurnal pattern in box model simulation. 546 

In this study, we explored the non-linearity of O3-precursor relationship in a way 547 

driven by the actual daily / weekly / monthly variability around the distribution. Our 548 

results highlight the importance to quantitatively test the impact of different timescales 549 

on photochemical regime determination, as there is uncertainty embedded in model 550 

input dataset when averaging individual daily pattern into different timescales. Such 551 

understanding would be complementary in developing more accurate O3 pollution 552 

control strategy, particularly as the long-term O3-precursor observations (e.g., from 553 

several months to years) are becoming more available than before in many places of 554 

China. In addition, site-to-site differences of model-derived photochemical regimes 555 

also underlines the importance of developing target O3 control strategy for different 556 

areas in a city scale. Specifically, according to the averaged RIRNOx/RIRAVOC at daily 557 

pattern, the derived photochemical regime was transitional for TZ (suburban) and XD 558 

(suburban), while VOC-limited for BJ (urban). This implies that for mitigating ozone 559 

pollution in Zibo city, more endeavors should be devoted to the anthropogenic VOC 560 

reduction in urban areas, while strengthening the synergetic mitigation of VOC and 561 

NOx emissions at the same time in other suburban areas. Although the above 562 

implications for O3 control were derived from a case study in a major prefecture-level 563 

city (Zibo) of northern China, the developed approach by integrating multiple patterns 564 

of time scale in the present work can be used to other regions, particularly the on-going 565 

“One City One Policy” campaign (2021-2023) for O3 control in many cities in China.  566 
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Table 2. Summary of the number of days (for model calculation) and proportions that 911 

were classified into the three photochemical regimes across each site and multiple 912 

patterns of time scale. 913 

Patterns of Time scale Site 

Photochemical regime: RIRNOx/RIRAVOC 

NOx-limited: >2 Transition: 0.5~2 VOC-limited: <0.5 

No. of 

days 
Proportion 

No.  of 

days 
Proportion 

No. of 

days 
Proportion 

Month-to-month 

TZ 2 40% 2 40% 1 20% 

BJ 0 0% 3 60% 2 40% 

XD 0 0% 2 40% 3 60% 

Week-to-week 

TZ 7 33% 8 38% 6 29% 

BJ 0 0% 10 50% 10 50% 

XD 3 16% 6 32% 10 53% 

Day-to-day  

TZ 29 29% 45 45% 26 26% 

BJ 0 0% 21 26% 60 74% 

XD 20 18% 23 20% 71 62% 

914 
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 915 

Figure 1. Schematic diagram of the dataset treatment to derive four patterns of time scale for 0-D box 916 

model input. Note that the four patterns (i.e., five-month, monthly, weekly, and daily) were the diurnal 917 

average of the initial dataset. This diagram takes one site and several input measurements (temperature, 918 

toluene, and NO2) as examples.919 
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 920 
Figure 2. Time series of meteorological parameters, O3 and its precursors (i.e., CO, NOx, VOCs) 921 

throughout the whole campaign at the three sites in Zibo.922 
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 923 

 924 

Figure 3. Time series of month-to-month RIR values of major precursor groups and RIRNOx/RIRAVOC at 925 

three sites (TZ, BJ and XD) in Zibo. The green dash line indicates to RIRNOx/RIRAVOC = 0.5 and 2.926 
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 927 

 928 
Figure 4. Time series of week-to-week RIR values of major precursor groups and RIRNOx/RIRAVOC at 929 

three sites (TZ, BJ, and XD) in Zibo. The blue lines in (g)-(i) are the three points moving average of 930 

RIRNOx/RIRAVOC value.   931 
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 932 
Figure 5. The correlations of TVOC/NOx with RIRNOx/RIRAVOC at multiple patterns of time scale at the 933 

three sites in Zibo.934 
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 935 

 936 
Figure 6. Distribution of RIR values of major precursor groups in multiple patterns of time scale at three 937 

sites (TZ, BJ, and XD) in Zibo.   938 
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 939 

Figure 7. Distribution of RIRNOx/RIRAVOC (indicator of photochemical regime) in multiple patterns of 940 

time scale at three sites (TZ, BJ, and XD) in Zibo.   941 
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 942 
Figure 8. The statistical analysis results of RIR values (from Table S6) at multiple patterns of time scale: 943 

(a) Pearson’s r correlation analysis (all the results have passed statistical significance assumed at p < 944 

0.01), (b) Paired-samples t-test analysis (*p values refer to differences with a statistical significance 945 

assumes at p <0.05), (c) Wilcoxon matched-pair signed-rank test (*p values refer to differences with a 946 

statistical significance assumes at p <0.05). 947 

1.000 0.530 0.304 0.092

1.000 0.103 0.170

1.000 0.116

1.000

Daily Weekly
Monthly

Five-month

D
a
ily

W
e
e
k
ly

M
o
n
th

lyF
iv

e
-m

o
n
th

0.0

0.3

0.5

0.8

1.0

p
 v

a
lu

e
 o

f 
W

ilc
o

x
o

n
 m

a
tc

h
e

d
-p

a
ir

 s
ig

n
e

d
-r

a
n

k
 t
e

s
t

1.000 0.700 0.546 0.291

1.000 0.277 0.182

1.000 0.207

1.000

Daily Weekly
Monthly

Five-month

D
a
ily

W
e
e
k
ly

M
o
n
th

lyF
iv

e
-m

o
n
th

0.1

0.3

0.6

0.8

1.0

p
 v

a
lu

e
 o

f 
p

a
ir
e

d
-s

a
m

p
le

s
 t

-t
e

s
t 

a
n

a
ly

s
is

1.000 0.972 0.950 0.879

1.000 0.971 0.915

1.000 0.973

1.000

Daily Weekly
Monthly

Five-month

D
a
ily

W
e
e
k
ly

M
o
n
th

lyF
iv

e
-m

o
n
th

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

P
e

a
rs

o
n

’s
 c

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t 

fo
r 

m
u

lt
ip

le
 p

a
tt
e

rn
s
 o

f 
ti
m

e
s
c
a

le

(a) (b) (c)



 

36 

 

 948 

Figure 9. Averaged RIR values of individual AVOC species (top 10) at different patterns of time scale at 949 

three sites (TZ, BJ, and XD) in Zibo. The error bars represent the standard deviations of the mean. 950 
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