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Abstract. In this study, we developed an approach that integrated multiple patterns 22 

of time scale for box modeling (MCMv3.3.1) to better understand the O3-precursor 23 

relationship through multiple sites and continuous observations. A five-month field 24 

campaign was conducted in the summer of 2019 to investigate the ozone formation 25 

chemistry at three sites in a major prefecture-level city (Zibo) in Shandong province of 26 

northern China. It was found that the relative incremental reactivity (RIR) of major 27 

precursor groups (e.g., anthropogenic volatile organic compound (AVOC), NOx) was 28 

overall consistent in the sign along with time scales changed from wider to narrower 29 

(four patterns: five-month, monthly, weekly, and daily) at each site, though the 30 

magnitudes of RIR varied at different sites. The time series of the photochemical regime 31 

(using RIRNOx/RIRAVOC as indicator) in weekly or daily patterns further showed a 32 

synchronous temporal trend among the three sites, while the magnitude of 33 

RIRNOx/RIRAVOC was site-to-site dependent. The derived RIR ranking (top 10) of 34 

individual AVOC species showed consistency at three patterns (i.e., five-month, 35 

monthly, and weekly). It was further found that the campaign-averaging photochemical 36 

regimes showed overall consistency in the sign but non-negligible variability among 37 
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the four patterns of time scale, which was mainly due to the embedded uncertainty in 38 

model input dataset when averaging individual daily pattern into different timescales. 39 

This implies that utilizing narrower time scale (i.e., daily pattern) is useful to derive 40 

reliable and robust O3-precursor relationship. Our results highlight the importance of 41 

quantifying the impact of different time scales to constrain the photochemical regime, 42 

which can formulate more accurate policy-relevant guidance for O3 pollution control. 43 

 44 

1 Introduction 45 

Since 2013, the ambient PM2.5 concentration in China has dramatically declined 46 

by implementing Clean Air Action (Lu et al., 2018; Wang et al., 2020b; Zhang et al., 47 

2019). However, national ground surface ozone concentrations increased over the same 48 

period (Xue et al., 2020) and became a major air quality problem that needed to be 49 

addressed in China (Li et al., 2019; Wang et al., 2019). It is well-known that ground 50 

surface ozone is formed mainly by complex nonlinear photochemical oxidation of 51 

volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx = NO + 52 

NO2) and sunlight (Blanchard, 2000; Hidy, 2000; Kleinman, 2000), which adversely 53 

influences human health, vegetation and corps (Brunekreef and Holgate, 2002; 54 

Vingarzan, 2004). 55 

Given the complex non-linear relationship between O3 formation and its 56 

precursors (VOCs and NOx), challenges in mitigating its severity lie primarily in 57 

comprehensively understanding of O3-precursor relationship (Su et al., 2018a; Tan et 58 

al., 2018a). It is commonly recognized that regional-scale air quality models and the 0-59 

D box model are two mainstream approaches to investigate the increasingly severe 60 

ozone problem (Blanchard, 2000; Cardelino and Chameides, 1995; Hidy, 2000; Liu et 61 

al., 2019). Unlike the complicated 3-D air quality models, the 0-D box model is an 62 

observation-based model that implemented with gas-phase chemical mechanism, and 63 

has been widely used to diagnose O3-precursor relationship in various locations (Liu et 64 

al., 2021a; Sun et al., 2016; Tan et al., 2019b; Xue et al., 2014a; Yu et al., 2020a). Some 65 

previous studies (Li et al., 2021; Lu et al., 2010a; Sicard et al., 2020; Yu et al., 2020b) 66 

have reported a large variability of O3-precursor relationship in spatiotemporal scales 67 

in many cities of China, which indicates great challenges in current O3 pollution control 68 

(Wang et al., 2017a; Xue et al., 2014b). 69 

Table 1 summarizes the published studies of O3-precursor relationship using the 70 

0-D box model (implemented with different gas-phase chemical mechanisms) at 71 

diversified patterns of time scale in many places of China. The observational period in 72 

most previous studies was short-term (i.e., less than one month), while medium-term 73 

(i.e., from one to several months), and long-term (i.e., multiple years) periods were 74 

limited. As shown in Table 1, we find that model input datasets with different 75 



 

3 

 

timescales have been employed in previous studies to identify the campaign-averaging 76 

O3 formation regime, but there is a lack of comparison among these different timescales. 77 

We also find that more than half of the studies using the averaged diurnal patterns as 78 

box model input, which is particularly common for those medium and long-term 79 

measurements. For example, a 10 years long-term observational study by Wang et al., 80 

(2017a) adopted monthly pattern of time scale for model simulation with the reason of 81 

saving computing resources, and it also revealed a substantial temporal variability of 82 

O3-precursor relationship. In addition, it is believed that long-term (measurements of at 83 

least several months) and multiple-site continuous online measurements can provide 84 

opportunity to develop O3 control strategy more comprehensively over a wider 85 

spatiotemporal scale (Li et al., 2021; Wang et al., 2017b; Wang et al., 2017b). However, 86 

such measurements have been quite rare in China, limiting the present understanding 87 

of O3-precursor relationship (Lu et al., 2019; Wang et al., 2017b).  88 

In this study, a five-month field campaign was conducted in the summer of 2019 89 

to investigate the ozone formation chemistry at 3 sites in Zibo, a major prefecture-level 90 

Chinese city in Shandong province. According to our measurements at the three sites in 91 

Zibo, the averaged O3 concentration during the whole observational period was around 92 

50 ppbv, while the daily maximum of O3 concentrations for some extremely polluted 93 

periods were nearly 120-150 ppbv (see details in Section 3.1). Here we developed an 94 

approach that integrated multiple patterns of time scale for box model simulation, which 95 

aimed at illustrating the non-linearity of O3-precursor relationship driven by its actual 96 

daily / weekly / monthly variability. Our results can be conducive to interpreting 97 

variations of O3-precursor relationship over a wider spatiotemporal scale, and they 98 

provide implications for developing more precise and constrained O3 control strategies 99 

in other regions. 100 

2 Methods 101 

2.1 Study sites and measurements 102 

Field measurements were conducted in a major prefecture-level city (Zibo), which 103 

is in the middle of Shandong Province, northern China, from 1 May to 30 September, 104 

2019. Figure S1 shows the surrounding environment and geographical locations at the 105 

three sampling sites; a detailed description of the Tianzhen (TZ), Beijiao (BJ) and 106 

Xindian (XD) sites can be found in our previous study (Li et al., 2021). Briefly, TZ 107 

contains a mixture of crude oil processing and operation stations and farming areas, and 108 

is classified as suburban area; XD contains a mixture of residential and heavy industrial 109 

zones, and is considered as a suburban area; BJ is in the urban area of Zibo. 110 

Typical inorganic gases of O3, NO, NO2, CO and SO2 were measured using online 111 

commercial gas analysers (Thermo Scientific 49i, 42i, 48i and 43i, USA) at the three 112 

sites. Following the Chinese meteorological monitoring regulation (GB/T 35221-2017), 113 
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we continuously monitored the meteorological parameters (i.e., temperature, relative 114 

humidity, UV-A solar radiation, precipitation, wind speed, and wind direction) at the 115 

three sites (Li et al., 2021). Two online GC systems (gas chromatography–flame 116 

ionisation detector, GC-FID, Thermo Scientific GC5900) were deployed at TZ and BJ 117 

respectively to measure VOC species. For C2-C5 VOCs, desorption and separation were 118 

performed using a GC with pre-concentration on a combination of two columns, 119 

followed by a FID detector. For C6-C12 VOCs, air sample was pre-concentrated on 120 

Tenax GR cartridges and subsequently separated by chromatographic column, then 121 

detected by another FID detector. Similarly, one online system (gas chromatography–122 

flame ionisation detector/photoionisation detector, GC-FID/PID, Syntech Spectras GC 123 

955-615/815) was deployed at XD site. For C2-C6 VOCs, the hydrocarbons were 124 

concentrated on a Tenax GR carrier, then thermally desorbed and separated on a DB-1 125 

column, and finally detected by FID and PID detectors. For C6-C12 VOCs, the air 126 

sample was concentrated on a Carbosieves SIII carrier at 5℃, then thermally desorbed 127 

and separated on a combination of two columns, and FID and PID detectors were 128 

employed for subsequent detection. These systems measured 55 VOC species at a 1-h 129 

resolution, and more detailed descriptions can be found elsewhere (Chien, 2007; Jiang 130 

et al., 2018; Xie et al., 2008).  131 

Table S1 summarized the limit of detection, accuracy, precision of the instruments 132 

at the three sites, and all the measurement instruments were regularly subjected to the 133 

service of checking and maintenance during the whole campaign. Unfortunately, we did 134 

not conduct the inter-comparison between the GC-FID and GC-FID/PID instruments at 135 

the same site due to practical reasons, as these VOC instruments were separately 136 

deployed at the three different sites for continuous routine operation. To ensure the 137 

quality assurance / quantity control (QA/QC) of online VOC measurement, two five-138 

point calibrations (i.e., 2, 4, 6, 8, 10 ppbv, dilution from one cylinder) for standard gases 139 

with 55 VOC species (Linde Co., Ltd, USA) were carried out in May and August of 140 

2019 at the three sites. Table S2 showed that the calibration linearity (R2) of all 141 

measured VOCs were nearly 0.9990. Additionally, a single-point calibration (i.e., 6 142 

ppbv) was regularly performed every month during the whole campaign. As shown in 143 

Figure S2 (a case from TZ), the retention time, peak fitting and baseline of the 144 

chromatogram were manually checked and adjusted on a daily basis. 145 

2.2 0-D box model and design of four patterns of time scale 146 

The 0-D box model integrated with the latest Master Chemical Mechanism of 147 

MCMv3.3.1 (http://mcm.york.ac.uk/) has been widely utilized in many regions (He et 148 

al., 2019; Jenkin et al., 2015; Liu et al., 2019; Whalley et al., 2021). Unlike the lumped 149 

chemical mechanisms such as CB05 (Wang et al., 2017a; Yarwood et al., 2005), CB6 150 

(Yarwood et al., 2010), RACM/RACM2 (Goliff et al., 2013; Stockwell et al., 1997, 151 

http://mcm.york.ac.uk/
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2020) and SAPRC-07 (Carter, 2010), the MCMv3.3.1 is a near-explicit chemical 152 

mechanism consisting of over 5,800 species and 17,000 reactions (Jenkin et al., 2015; 153 

Saunders et al., 2003), which can be used to describe the gas-phase chemistry (i.e., in-154 

situ photochemistry). In this study, the box model (based on the Framework for 0-D 155 

Atmospheric Modeling, F0AM) (Wolfe et al., 2016) was applied and constrained by the 156 

mean diurnal profiles of meteorological data (i.e., temperature, relative humidity, and 157 

photolysis rates), 4 inorganic gases (i.e., SO2, CO, NO, and NO2), and 45 speciated 158 

VOCs (in MCMv3.3.1 species list; see Table S3). Since measured photolysis rates (J 159 

values) were not available, the measured UV-A solar radiation was used to scale the 160 

photolysis rates calculated from the Tropospheric Ultraviolet and Visible Radiation 161 

model (TUVv5.2; https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/) 162 

following the approach of recent studies (Lyu et al., 2019; Lyu et al., 2016). Specifically, 163 

the geographical coordinates, date and time were initialized into the TUV model to 164 

derive photolysis rates and solar radiation. We obtained the scaling factor by comparing 165 

the observed with modeled solar radiation, and used this scaling factor to scale the TUV 166 

model derived photolysis rates. A dilution rate of 3/86400 s−1 was applied for all non-167 

constraint species and simulation days through a stepwise sensitivity test by adjusting 168 

it from 1/86400 s–1 to 5/86400 s–1 (see details in Text S1) for the best reproduction of 169 

O3. For each model run (i.e., each daily model simulation), it was performed on a daily 170 

basis with intervals of 24 hours spanning from 0:00 to 23:00, and each individual model 171 

simulation was run to reach one-day diurnal steady state. The detailed descriptions of 172 

box model operation were provided in our previous study (Li et al., 2021).  173 

Since the box model simulations are conducted with intervals of 24 hours spanning 174 

from 0:00 to 23:00 local standard time (Wang et al., 2018), the entire campaign 175 

observations were taken into four patterns of time scale (i.e., five-month, monthly, 176 

weekly, and daily) as diurnal average format for model input (Figure 1). Note that some 177 

days or weeks were not modeled due to some missing data in the measurements. 178 

Nevertheless, the total simulation number at the daily (i.e., 100, 81, and 114 days for 179 

TZ, BJ and XD respectively) or weekly (i.e., 21, 20, and 19 weeks for TZ, BJ, and XD 180 

respectively) scale was representative of the five-month campaign. Specifically, the 181 

entire campaign data classified as four patterns of time scale were modeled as base runs. 182 

Then we performed the sensitivity modeling to calculate the relative incremental 183 

reactivity (RIR) of precursors by adjusting the input concentrations in the base runs (see 184 

next section) (Lu et al., 2010a). 185 

2.3 Calculation of net Ox production rate P(Ox) and Relative incremental 186 

reactivity (RIR) 187 

Considering the rapid chemical titration of NO to NO2 in the presence of O3, the 188 

concept of ‘total oxidant’ (Ox = O3 + NO2) has been widely used to represent the actual 189 

https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/
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photochemical production of O3 (Lu et al., 2010). Similar to those described in previous 190 

studies using the 0-D box model (He et al., 2019; Lyu et al., 2016), the net or in-situ Ox 191 

production rate (P(Ox)) is defined as the difference between the Ox gross production 192 

rate (G(Ox)) and the Ox destruction rate (D(Ox)), which is formulated in accordance 193 

with Eq. (1): 194 

𝑃(O𝑥) = 𝐺(O𝑥) − 𝐷(O𝑥)                                                               (1) 195 

The Ox gross production rate (G(Ox)), or the total chemical production of Ox, is 196 

calculated by summing the rates of oxidation of NO by HO2 and RO2 radicals in 197 

accordance with Eq. (2): 198 

𝐺(O𝑥) = 𝑘HO2+NO[HO2][NO] + ∑𝑘RO2,𝑖+NO [RO2,𝑖][NO]             (2) 199 

The Ox destruction rate (D(Ox)), or total chemical loss of Ox, is calculated by 200 

summing O3 photolysis, the reaction of O3 with OH, HO2 and alkenes, as well as the 201 

reaction between NO2 and OH, as described by Eq. (3): 202 

𝐷(O𝑥) = 𝑘O1D+H2O
[O1D][H2O] + 𝑘OH+O3[OH][O3] + 𝑘HO2+O3[HO2][O3] +203 

𝑘alkenes+O3[alkenes][O3] + 𝑘OH+NO2[OH][NO2]                                  (3) 204 

Concentrations of radicals and intermediates are obtained from the outputs of the 205 

0-D box model. The k values in Eq. (2) and (3) represent the rate constants of the 206 

corresponding reactions, respectively. The subscript ‘i’ in Eq. (2) represents the 207 

individual RO2 species. 208 

Additionally, relative incremental reactivity (RIR) has been widely used as a 209 

metric to quantify the O3-precursor relationship, and it can be derived from the 0-D box 210 

model (MCMv3.3.1) by changing the input mixing ratios of its precursors (Sillman, 211 

2010; Xue et al., 2014a). The RIR is defined as the ratio of percentage change in net Ox 212 

(Ox = O3 + NO2) production rate P(Ox) (Li et al., 2021) to percentage change of 213 

concentration of precursor X. The RIR of a specific precursor X is described in Eq. (4): 214 

RIR(X) =
[𝑃Ox(CX)−𝑃Ox(CX−ΔCX)]/𝑃Ox(CX)

ΔCX/CX
                                                                            (4) 215 

Here, X is a specific precursor (i.e., NOx, CO or grouped / individual VOC species), 216 

CX is the measured concentration of precursor X, and ΔCX is the hypothetical 217 

concentration change (ΔCX/CX = 10% in this study in accordance with the previous 218 

studies (Lyu et al., 2016; Wang et al., 2018)). POx(CX) represents the simulated Ox 219 

production rate in a base run, whereas POx(CX–ΔCX) is the simulated Ox production 220 

in a second run with a hypothetical concentration change of species X. Obviously, a 221 

higher positive value of RIR(X) suggests a more effective way of reducing the ambient 222 

O3 production rate by reducing X (Ling et al., 2011; Zhang et al., 2008a).  223 

In this study, the O3 precursors were divided into four major categories, including 224 

anthropogenic VOC (AVOC), biogenic VOC (BVOC, only isoprene in this study), CO 225 

and NOx (Tan et al., 2019b). AVOC was further divided into three subcategories: alkanes, 226 
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aromatics and alkenes* (the asterisk denotes anthropogenic alkenes, excluding isoprene 227 

in this study) (Yu et al., 2020a). As mentioned, RIR method was applied mainly to 228 

evaluate the O3-NOx-VOC sensitivity and determine the photochemical regimes among 229 

four patterns of time scale. Thus, we calculated the RIR values of major precursor 230 

groups (i.e., AVOC, BVOC, CO, NOx, alkanes, alkenes* and aromatics) to further 231 

quantify the O3-precursor relationship. 232 

In general, O3 formation chemistry is usually classified into three regimes (i.e., 233 

VOC-limited, transitional and NOx-limited) (He et al., 2019; Wang et al., 2018). In this 234 

study, RIRNOx/RIRAVOC (the ratio of two RIR values) was used as a metric to classify 235 

the photochemical regimes (Li et al., 2021). Specifically, RIRNOx/RIRAVOC value of less 236 

than 0.5 was defined as VOC-limited regime, greater than 2 as NOx-limited regime, and 237 

from 0.5 to 2 as transitional regime (see Text S2 and Table S4) (Li et al., 2021). 238 

3 Results and discussion 239 

3.1 Overview of the field campaign 240 

Figure 2 shows the time series of measured meteorological parameters and O3 as 241 

well as its precursors at the three sites during the whole campaign. In general, the 242 

temperature (T) and relative humidity (RH) were basically consistent at the three sites, 243 

while the wind speeds were different, which suggests that the three sites had an overall 244 

consistent meteorological condition. In addition, the time series of UV-A radiation was 245 

shown in Figure 2d, which was only available from one urban site of Zibo but expected 246 

to represent the whole Zibo city in this study. Following the protocol of the previous 247 

studies (Lyu et al., 2019; Wang et al., 2017b; Xue et al., 2014), the time series of 248 

photolysis rates (e.g., JNO2 (Figure 2e) and JO
1
D (Figure 2f)) were calculated from 249 

TUVv5.2 model and further scaled from UV-A radiation measurement. 250 

As shown in Figure 2g, we found that severe O3 pollution was observed at the 251 

three sites throughout the whole campaign. According to our measurements at the three 252 

sites in Zibo, the averaged O3 concentration during the whole observational period was 253 

around 50 ppbv, while the daily maximum of O3 concentrations for some extremely 254 

polluted periods were nearly 120-150 ppbv (Figure 2g). Interestingly, the O3 255 

concentrations at the three sites were generally consistent, while the levels of its 256 

precursors (e.g., VOC, NOx) were obviously different (Figure 2h-k), which implies the 257 

site-to-site variation of O3 formation chemistry for the whole Zibo city. 258 

Generally, OH reactivity (or OH loss rate, kOH) is widely applied to quantify the 259 

capacity of OH consumption by VOCs (Tan et al., 2019a). According to Table S3, the 260 

BVOC reactivity (kBVOC, 3.5 ± 4.1 s-1) in TZ were highest among the three sites. As BJ 261 

was mainly influenced by the emission from urban region, it showed the highest AVOC 262 

reactivity (kAVOC, 6.8 ± 6.3 s-1) and NOx level (31.1 ± 28.6 ppbv). In addition, XD 263 

showed the highest level of alkenes* reactivity of 4.0 ± 3.2 s-1 within the three sites, 264 
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and the local petrochemical industry nearby XD area may explain such characteristic 265 

(Li et al., 2021). 266 

3.2 Evaluation of box model performance 267 

The measured O3 concentrations were not constrained in our MCMv3.3.1 box 268 

model calculation, thus the model performance could be quantitatively assessed by 269 

comparing the modeled O3 (from base runs) with the measured O3. Figure S3-S8 show 270 

the time series of simulated and observed O3 concentrations at four patterns of time 271 

scale. In most cases, the box model simulation could accurately capture the level and 272 

variation trend of the observed O3. However, on some days the modeling results 273 

underestimated or overestimated the O3 concentrations, particularly the 274 

underestimation of nocturnal O3 concentrations. Such discrepancies between the 275 

simulated and observed O3 were likely due to limitations in explicit representations of 276 

atmospheric and transport processes (i.e., the horizontal and vertical transport process 277 

of ground ozone) by 0-D modeling approach (Lyu et al., 2019; Yu et al., 2020b). 278 

Specifically, ozone simulated by the 0-D box model is considered as in-situ 279 

photochemical processes from its precursors. Unlike the 3-D air quality model, 0-D box 280 

model usually simplifies the representation of the physical processes (i.e., deposition 281 

and advection) (Lu et al., 2010a; Sillman, 2010). Note that some adjustable parameters 282 

(e.g., radiation scheme, dilution rate) were remained consistent in all of our model 283 

calculations, which ensured the comparability of model results to the greatest extent. 284 

The index of agreement (IOA) (Li et al., 2021; Lyu et al., 2016), Pearson’s 285 

correlation coefficient (r) and root mean square error (RMSE) were jointly used as 286 

statistical metrics to quantify the goodness-of-fit between the simulated and observed 287 

O3 concentrations. Table S5 summarizes these statistical metrics for each site at various 288 

patterns of time scale. Because any single statistical metric has its own limitations, 289 

using these three indicators conjointly provided a more comprehensive evaluation of 290 

the model performance (Su et al., 2018b). Generally, higher IOA and r as well as lower 291 

RMSE indicate better agreement between the simulated and observed values (Wang et 292 

al., 2018; Willmott, 1982). As shown in Table S5, slightly reduced correlation was 293 

observed as the time scale changed from the wider (i.e., five-month scale) to the 294 

narrower (i.e., daily scale) pattern, which is understandable because of the enlarged 295 

statistical samples in the narrower pattern of time scale. 296 

In summary, TZ showed the best performance of the box model simulation, 297 

followed by XD and BJ, regardless of any statistical metrics or different patterns of time 298 

scale, which may be associated with the optimized dilution rate for non-constraint 299 

species in model configuration. The overall model performance in this study (i.e., a day-300 

to-day IOA of approximately 0.90 for TZ) was close to or slightly better than those 301 

reported in previous studies, such as IOA = 0.74 in Hong Kong (Liu et al., 2019), IOA 302 
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= 0.74 in Wuhan (Lyu et al., 2016) and IOA = 0.90 in Jiangmen (He et al., 2019). 303 

According to the above evaluation of base runs, our modeled results were acceptable 304 

for the subsequent O3-precursor relationship analysis described in the following 305 

sections. 306 

3.3 Month-to-month 307 

Figure 3a-b presents the monthly RIR values of the major precursor groups at 308 

each site, and the large variability of O3-precursor relationship at spatiotemporal scale 309 

(i.e., site-to-site and month-to-month) was observed. Specifically, in most months, XD 310 

generally showed the highest RIRAVOC among the three sites, followed by BJ and TZ. 311 

In addition, RIRBVOC showed similar level to RIRAVOC in TZ, but much less than 312 

RIRAVOC in BJ and XD, which can be explained by the observed higher BVOC 313 

reactivity in TZ than the other two sites (see Figure S9 and Table S3). Also, almost all 314 

the precursor groups showed positive RIR values, except negative RIRNOx appeared in 315 

BJ and XD in September. In addition, the RIRCO values at the three sites suggested its 316 

limited role in O3 formation at the three sites, compared with other major categories of 317 

O3 precursors. Among the three subcategories of AVOC, alkenes* always had the 318 

highest RIR values, followed by aromatics, while the contribution of alkanes to O3 319 

formation can be ignored due to their near-zero RIR values. That sequence of O3-AVOC 320 

sensitivity (alkenes* > aromatics > alkanes) indicated by the RIR analysis was 321 

consistent with previous studies in some other Chinese cities (Su et al., 2018b; Tan et 322 

al., 2019b). Significant monthly variations of O3, NOx, CO, VOC reactivity and 323 

TVOC/NOx ratios (in ppbC/ppbv, as a widely used simple metric to determine the 324 

photochemical regime) (National Research Council, 1991) were also observed from 325 

May to September (see Figure S9 and Table S3) at the three sites. For example, the 326 

BVOC reactivity in TZ showed highest level among the three sites during the whole 327 

campaign, and the AVOC reactivity in BJ showed more considerable variations in 328 

different months, which indicated spatial and temporal variations of local primary 329 

emission for O3 precursors in Zibo city. 330 

Figure 3c shows monthly RIRNOx/RIRAVOC at each site, which clearly reveals the 331 

spatial and temporal variations in photochemical regimes. For instance, the 332 

photochemical regime at the TZ site was considered to be transitional regime in May, 333 

NOx-limited regime in June and July, and VOC-limited regime in August and 334 

September; whereas for a specific month like June, NOx-limited, VOC-limited, and 335 

transitional regimes were generally identified for TZ, BJ, and XD respectively. Figure 336 

5b shows good consistency between monthly TVOC/NOx and RIRNOx/RIRAVOC, 337 

suggesting that the changes of local emissions for O3 precursors may partially explain 338 

the considerable variation of O3 formation chemistry in different months. 339 
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3.4 Week-to-week 340 

Figure 4 shows the time series of week-to-week RIR values of major precursor 341 

groups and RIRNOx/RIRAVOC at three sites in Zibo. Compared with month-to-month 342 

results, Figure 4 further reveals the O3-precursor relationship with more information in 343 

temporal trends. The temporal variations in weekly RIRAVOC at the three sites generally 344 

decreased and then increased, whereas weekly RIRNOx represented an opposite temporal 345 

variation during the entire campaign. Additionally, weekly RIRBVOC showed a trend of 346 

first decrease and then increase at TZ, while it did not show clear temporal variation at 347 

BJ and XD due to low values (Figure 4a-c). In general, RIRalkanes, RIRalkenes* and 348 

RIRaromatics showed a tendency consistent with that of the RIRAVOC at three sites (Figure 349 

4d-f). Overall, these phenomena were consistent among the three sites, though the 350 

magnitude of RIR values varied site-to-site. In parallel, the temporal changing of O3 351 

precursor (e.g., AVOC, NOx) was also observed at the three sites during the entire 352 

campaign (see Figure S10). For example, the weekly NOx concentration showed an 353 

overall trend of first decrease and then increase, while the AVOC reactivity showed a 354 

different temporal variation. Given the moderate correlation between weekly 355 

TVOC/NOx and RIRAVOC/RIRNOx (Figure 5c), the temporal variations of RIR values 356 

and O3 formation chemistry at the three sites may be partially elucidated by the emission 357 

changes of O3 precursors. 358 

As shown in Figure 4g-i, all the three sites showed similar temporal trends of 359 

RIRNOx/RIRAVOC, as it increased first and then decreased, though the magnitude of 360 

RIRNOx/RIRAVOC varied largely at each site. Such site-to-site variability of 361 

RIRNOx/RIRAVOC suggests that the photochemical regime in a local scale was mainly 362 

influenced by local emissions. By contrast, the site-to-site synchronization in temporal 363 

trend of RIRNOx/RIRAVOC suggests that the photochemical regime in a local scale may 364 

also be influenced by the emissions in a regional area. Therefore, the long-term, week-365 

to-week RIRNOx/RIRAVOC of multiple sites can further reflect the variability of ozone 366 

formation regime at a large geographic scale. 367 

3.5 Day-to-day 368 

In this section, O3-precursor relationship at the narrowest pattern of time scale was 369 

identified in detail. Figure S11-S12 shows the time series of daily RIR values at three 370 

sites in Zibo, where the temporal trend of RIR values was consistent with that at weekly 371 

scale (Figure 4). Additionally, the time series of daily RIRNOx/RIRAVOC (Figure S13) 372 

showed more irregular variations in temporal trends during the entire campaign, though 373 

such temporal trends were overall consistent with that of weekly scale in Figure 4 g-i. 374 

In summary, the time series of RIR values from the daily scale can provide more 375 

informative variations and characteristics of O3-precursor relationship in temporal 376 

trends. 377 
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Table 2 summarizes the number of days and proportions that were classified into 378 

the three photochemical regimes across each site and each pattern of time scale. Near-379 

consistent proportions of O3 formation regimes (using RIRNOx/RIRAVOC as a metric) 380 

were shown among multiple patterns of time scale, whereas a variability of proportion 381 

occurred among the three sites. The proportions of photochemical regimes changed 382 

accordingly along with the time scale varied from wider to narrower pattern. Taking TZ 383 

as an example, 20% (monthly) and 26% (daily) of the time was considered as VOC-384 

limited regime. The number of days and proportions for photochemical regimes 385 

summarized at four patterns of time scales can reveal a more plausible and 386 

comprehensive variation in ozone formation chemistry. Compared with patterns of 387 

monthly and weekly scales, the results derived at a daily scale can reveal the temporal 388 

variability of photochemical regimes more comprehensively. Note that the 389 

photochemical regime proportion obtained from the day-to-day scale has an advantage 390 

due to the large number of statistical samples. 391 

3.6 Comparison among different patterns of time scale 392 

This section gives a more comprehensive understanding of the campaign-393 

averaging O3-precursor relationship by comparing the similarities and differences of 394 

the results from various patterns of time scale. The overall O3-precursor relationship for 395 

the entire campaign can be quantified by averaging the RIR values from the individual 396 

simulation runs depending on the chosen time scale (e.g., five simulation runs for 397 

monthly scale in this study). Therefore, four sets of logical and comparable results can 398 

be derived to represent the campaign-averaging O3-precursor relationship, as four 399 

patterns of time scale (i.e., five-month, monthly, weekly, and daily) were treated in this 400 

study. 401 

Figure 6 shows the averaged RIR values of the major precursor groups at different 402 

patterns of time scale. As the time scale changed from wider (i.e., five-month scale) to 403 

narrower (i.e., daily scale) pattern, all three sites showed increases in the means of 404 

RIRAVOC and RIRalkenes* as well as decreases in averaged RIRNOx, whereas the averaged 405 

RIR of other precursors (i.e., BVOC, CO, alkanes and aromatics) did not vary obviously 406 

(see Table S6). Comparing with the O3-VOC-NOx sensitivity at the daily scale, the 407 

results obtained at the five-month scale underestimated O3-AVOC sensitivity (indicated 408 

by averaged RIR values) by 48% (TZ), 66% (BJ), and 49% (XD), and overestimated 409 

O3-NOx sensitivity by 37% (TZ), 142% (BJ), and 144% (XD). We performed 410 

comprehensive uncertainty analysis for model input and output results, which was 411 

assessed through statistical methods (see details in Section 3.7). We found that the 412 

model-derived RIR values may become more uncertain when the input dataset was 413 

averaged into a wider diurnal pattern (i.e., five-month scale), which may explain the 414 

discrepancy of RIR values between five-month scale and daily scale. We expect that 415 
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such discrepancies derived from different patterns of time scale could widely exist in 416 

many other world areas. Note that the mean RIR values were generally consistent 417 

among the four patterns of time scale within a reasonable range (within 25-75th quantile 418 

and standard deviation, see Figure 6 and Table S4), suggesting that any selected pattern 419 

of time scale could reasonably derive the campaign-averaging O3-precursor relationship. 420 

Figure 7 further shows the variations in photochemical regimes (defined by 421 

RIRNOx/RIRAVOC; see Text S2 and Table S4 for details) for each pattern of time scale. 422 

Specifically, TZ was mainly considered as transitional regime for the entire campaign 423 

period, whereas its variations covered three photochemical regimes, which was 424 

consistent with the results from Table S6. BJ was generally identified as VOC-limited 425 

regime, whereas some days were also grouped into transitional regime. XD was 426 

considered as primarily between VOC-limited and transitional regime, and its 427 

variations also spanned three photochemical regimes. Compared with the five-month 428 

pattern, it was further found that the averaged RIRNOx/RIRAVOC from other time scale 429 

patterns (i.e., monthly, weekly, and daily) were higher (12% to 20% for TZ; 38% to 430 

153% for XD) or lower (21% to 65% for BJ) than that from five-month scale. Note that 431 

the above discrepancies in photochemical regime derived from multiple patterns of time 432 

scale may influence the development of targeted O3 control strategies. In summary, the 433 

photochemical regime derived by averaging RIRNOx/RIRAVOC from the daily scale (see 434 

Table S6) suggests that the three sites mainly followed the sequence of TZ (1.34 ± 435 

1.39) > XD (0.67 ± 1.49) > BJ (0.16 ± 0.65). 436 

In addition, the temporal variations of TVOC/NOx in different timescales were 437 

identified during the whole campaign, and good correlations between observed 438 

TVOC/NOx and model derived RIRNOx/RIRAVOC at four patterns of time scale were also 439 

found (see Figure 5). Such consistency suggests that both metrics can reasonably 440 

reflect the variation of photochemical regimes, which can also improve the reliability 441 

of our box model simulation. 442 

The consistency and difference of model output (summarized in Table S7) are 443 

quantified by the statistical methods of Pearson’s correlation coefficient (Hu et al., 2018) 444 

and paired-samples t-test analysis (Wang et al., 2016). In particular, we assess and 445 

compare the degree of significance of differences among multiple patterns of time scale 446 

by the p values (a statistical significance assuming at p < 0.05) through paired-samples 447 

t-test and Wilcoxon matched-paired signed-rank test (non-parametric statistics) 448 

(Chiclana et al., 2013). Figure 8a shows high Pearson’s correlation coefficients (with 449 

values all above 0.85, p < 0.01) were found among four patterns of time scale, and the 450 

higher correlation coefficient was identified between the two closer patterns. Figure 451 

8b-c shows that the differences among multiple patterns of time scale were non-452 

significant using Paired-samples t-test analysis and Wilcoxon matched-pair signed-rank 453 

test respectively. Furthermore, their results indicate that more significant difference was 454 
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recognized between the two distant patterns (e.g., daily and five-month), which is 455 

consistent with the results of Pearson’s correlation analysis. Noted that the discrepancy 456 

between the two distant patterns was not significant but non-negligible (e.g., p = 0.092 457 

of Wilcoxon matched-paired signed-rank test between five-month and daily patterns). 458 

The influence of different patterns of time scale on deriving RIR values from 459 

individual AVOC species was further investigated. Briefly, quantifying the relative 460 

contribution of individual AVOC on O3 formation based on RIR calculation is beneficial 461 

to the development of cost-effective AVOC control strategies (Zhang et al., 2021). 462 

Figure 9 shows the averaged RIR values of individual AVOC species (i.e., top 10) at 463 

different patterns of time scale (i.e., five-month, month-to-month, week-to-week) at 464 

three sites in Zibo. As shown in Figure 9, the 10 individual AVOC species at the three 465 

sites were selected according to the top 10 highest RIR from five-month pattern. All 466 

three sites showed that the RIR of individual AVOC species increased gradually as the 467 

time scale changed from the wider (i.e., five-month) to narrower (i.e., weekly) pattern, 468 

which was consistent with the earlier discussion (see Figure 6 and Table S6) of O3-469 

AVOC sensitivity derived from four patterns of time scale. The results also indicate that 470 

the choice of time scale pattern has a limited effect on deriving high-ranking AVOC 471 

species (i.e., top 10) based on RIR calculations. 472 

3.7 Uncertainty analysis 473 

The uncertainty of model input was quantified in this section, which is embedded 474 

in pre-processed dataset with multiple patterns of time scale. As showed in Figure 1, 475 

the daily simulation used the individual daily pattern to constrain model, while the input 476 

dataset of averaged diurnal patterns (i.e., weekly, monthly, and five-month) is treated 477 

by averaging individual daily pattern into different timescales. This averaging approach 478 

will conceal the temporal variations of O3 precursors and meteorological factors, 479 

particularly for a long-term observational campaign. Figure S14 shows the 480 

distributions of the standard deviations for OH reactivity (kOH) or concentration of O3 481 

precursor groups at three averaged patterns of time scale at the three sites. As the time 482 

scale changed from wider (i.e., five-month scale) to narrower (i.e., weekly scale) pattern, 483 

the uncertainty (indicated by the average, median and 25%-75% quantile) decreased 484 

accordingly. In addition, meteorological factors such as temperature and irradiation also 485 

play an important role on O3 formation, especially these meteorological parameters can 486 

vary greatly over a long observational period (Boleti et al., 2020; Liu et al., 2019b; 487 

Weng et al., 2022). Therefore, the masked temporal variation of these meteorological 488 

factors behind the averaged input dataset would also result in model uncertainty. 489 

Moreover, it has been widely recognized that the uncertainty for 0-D box model 490 

simulation mainly arises from the constraint of observation dataset and the 491 

configuration of model scheme. Note that constraints with more species from 492 
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measurements (or including as many species as possible) would lower its uncertainty 493 

from the chemical box model simulation (Wolfe et al., 2011, 2016). Nevertheless, due 494 

to the measurement limitation in our field campaign, we are unable to measure some 495 

important atmospheric species (i.e., HONO and oxygenated VOC (OVOC)), and these 496 

may arise uncertainty in box model simulation. For instance, Xue et al., (2021) 497 

performed a sensitivity test for HONO constraint in their box model simulation, and 498 

they showed that without HONO constraint would lead to O3 photochemical production 499 

rate decreasing by 42%. More recently, Wang et al., (2022) obtained a comprehensive 500 

VOC dataset at Guangzhou, and their results showed that box model simulation without 501 

OVOCs constraints would underestimate the productions of ROx and O3. Besides, both 502 

gaseous HNO3 and organic nitrates can result in interferences on NOx measurement by 503 

chemiluminescence technique, which may arise uncertainty in our box modelling (Ge 504 

et al., 2022; Uno et al., 2017; Xu et al., 2013). Since the accurate NOx measurement is 505 

essential in determining the photochemical regime, more in-depth studies on NOx 506 

measurement uncertainty in box model simulation are required in the future. In addition, 507 

the parameter configuration of model scheme is essential to derive a reliable and valid 508 

model output, such as dilution rate as an important model technical parameter. We 509 

performed a stepwise sensitivity test for this parameter to obtain an optimized dilution 510 

rate, and assigned it to all non-constraint species, which can reduce uncertainty in box 511 

model simulation (see details in Text S1). Also, the dry and/or wet deposition of 512 

pollutants is an important atmospheric physical process, which has been mostly 513 

parameterized in emission-based chemical transport modeling but very limited in box 514 

model, as most of the primarily emitted species are already constrained from 515 

measurements. Xue et al., (2014) considered O3 deposition into box model simulation, 516 

and their result showed negligible contribution of O3 deposition to total O3 destruction 517 

rates. As for this work, we are unable to consider the deposition due to the difficulty in 518 

representing and parameterizing this term in the 0-D box model. Nevertheless, 519 

deposition of O3 and other species may be one of the uncertainties during box model 520 

simulation, which is worth further study in the future. 521 

4 Summary and implications 522 

Our present results suggest that comprehensively understanding of multiple 523 

patterns of time scale is conductive to formulating a more accurate and robust O3 control 524 

strategy. Specifically, as identified from the narrower patterns of time scale (i.e., weekly 525 

and daily), the site-to-site photochemical regime indicated by RIRNOx/RIRAVOC showed 526 

various magnitudes but a synchronous temporal trend. This indicates that the O3 527 

formation regime in a city area can be influenced by local and regional emissions jointly. 528 

The reason behind this phenomenon is not clear at present, and we believe that further 529 

investigation on the synergetic effect of local and regional emission reduction for O3 530 
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control would help elucidating this observation. It was also found that the campaign-531 

averaging photochemical regimes showed overall consistency but non-negligible 532 

variability among the four patterns of time scale, which was mainly due to the 533 

embedded uncertainty in model input dataset with averaged diurnal patterns. This 534 

implies that comparison among multiple patterns of time scale based on RIR analysis 535 

is useful to derive the O3-precursor relationship more accurately and reliably. 536 

Moreover, the high-ranking AVOC species (i.e., top 10) based on RIR calculations 537 

were overall consistent from the narrow to wide patterns of time scale. Table S8 538 

summarizes the total run number of box model for different patterns of time scale. It is 539 

known that large-scale computing capacity and computational efficiency were required 540 

in the narrower pattern of time scale (e.g., 2760 simulation runs in weekly scale in this 541 

study). Considering the difficulties of performing long-term and continuous online 542 

measurements in some environments, it is also advisable to identify the high-ranking 543 

VOC species from the campaign-averaging diurnal pattern in box model simulation. 544 

In this study, we explored the non-linearity of O3-precursor relationship in a way 545 

driven by the actual daily / weekly / monthly variability around the distribution. Our 546 

results highlight the importance to quantitatively test the impact of different timescales 547 

on photochemical regime determination, as there is uncertainty embedded in model 548 

input dataset when averaging individual daily pattern into different timescales. Such 549 

understanding would be complementary in developing more accurate O3 pollution 550 

control strategy, particularly as the long-term O3-precursor observations (e.g., from 551 

several months to years) are becoming more available than before in many places of 552 

China. In addition, site-to-site differences of model-derived photochemical regimes 553 

also underlines the importance of developing target O3 control strategy for different 554 

areas in a city scale. Specifically, according to the averaged RIRNOx/RIRAVOC at daily 555 

pattern, the derived photochemical regime was transitional for TZ (suburban) and XD 556 

(suburban), while VOC-limited for BJ (urban). This implies that for mitigating ozone 557 

pollution in Zibo city, more endeavors should be devoted to the anthropogenic VOC 558 

reduction in urban areas, while strengthening the synergetic mitigation of VOC and 559 

NOx emissions at the same time in other suburban areas. Although the above 560 

implications for O3 control were derived from a case study in a major prefecture-level 561 

city (Zibo) of northern China, the developed approach by integrating multiple patterns 562 

of time scale in the present work can be used to other regions, particularly the on-going 563 

“One City One Policy” campaign (2021-2023) for O3 control in many cities in China.  564 



 

16 

 

Acknowledgement 565 

This work was supported by National Center for Air Pollution Prevention and Control 566 

(No. DQGG202119) and Ministry of Science and Technology PRC (No. 567 

G20200160001, No. G2021060002L). We also thank Prof. William Bloss for helpful 568 

comments. 569 

Data and code availability 570 

The code for the Master Chemical Mechanism (MCMv3.3.1) can be achieved from 571 

http://mcm.york.ac.uk/. The datasets generated during and/or analysed during the 572 

current study are available from the corresponding author on reasonable request. 573 

Author contribution 574 

KL conceived the study; ZZ performed the modeling; ZZ, KL, and ZB analyzed the 575 

data; BX, JD, LL, SL, CG, and WY conducted the field measurement; ZZ and KL wrote 576 

the paper with assistance of interpretation and revision from all authors. All authors 577 

contributed to the manuscript preparation and discussions. 578 

Conflicts of interest 579 

The authors declare that they have no conflicts of interest. 580 

Supplement 581 

The supplementary discussion of RIR calculation of different hypothetical changes, 582 

determining the photochemical regime, sensitivity test of different dilution rates, and 583 

detailed box modeling results are provided in Text S1-S2, Table S1-S8 and Figure S1-584 

S18. 585 

http://mcm.york.ac.uk/


 

17 

 

References 586 

Blanchard, C. L.: Ozone process insights from field experiments – Part III: extent of 587 

reaction and ozone formation, Atmos. Environ., 34(12), 2035–2043, 588 

doi:https://doi.org/10.1016/S1352-2310(99)00458-6, 2000. 589 

Boleti, E., Hueglin, C., Grange, S. K., Prévôt, A. S. H. and Takahama, S.: Temporal 590 

and spatial analysis of ozone concentrations in Europe based on timescale 591 

decomposition and a multi-clustering approach, Atmos. Chem. Phys., 20(14), 592 

9051–9066, doi:10.5194/acp-20-9051-2020, 2020. 593 

Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet, 360(9341), 1233–594 

1242, doi:10.1016/S0140-6736(02)11274-8, 2002. 595 

Cardelino, C. A. and Chameides, W. L.: An observation-based model for analyzing 596 

ozone precursor relationships in the urban atmosphere, J. Air Waste Manag. Assoc., 597 

45(3), 161–180, doi:10.1080/10473289.1995.10467356, 1995. 598 

Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. 599 

Environ., 44(40), 5324–5335, doi:https://doi.org/10.1016/j.atmosenv.2010.01.026, 600 

2010. 601 

Cheng, H., Guo, H., Wang, X., Saunders, S. M., Lam, S. H. M., Jiang, F., Wang, T., 602 

Ding, A., Lee, S. and Ho, K. F.: On the relationship between ozone and its 603 

precursors in the Pearl River Delta: Application of an observation-based model 604 

(OBM), Environ. Sci. Pollut. Res., 17(3), 547–560, doi:10.1007/s11356-009-0247-605 

9, 2010. 606 

Chiclana, F., García, J. M. T., del Moral, M. J. and Herrera-Viedma, E.: A statistical 607 

comparative study of different similarity measures of consensus in group decision 608 

making, Inf. Sci. (Ny)., 221, 110–123, 2013. 609 

Chien, Y.-C.: Variations in amounts and potential sources of volatile organic chemicals 610 

in new cars, Sci. Total Environ., 382(2), 228–239, 611 

doi:https://doi.org/10.1016/j.scitotenv.2007.04.022, 2007. 612 

Council, N. R.: Rethinking the Ozone Problem in Urban and Regional Air Pollution, 613 

The National Academies Press, Washington, DC., 1991. 614 

Fan, M. Y., Zhang, Y. L., Lin, Y. C., Li, L., Xie, F., Hu, J., Mozaffar, A. and Cao, F.: 615 

Source apportionments of atmospheric volatile organic compounds in Nanjing, 616 

China during high ozone pollution season, Chemosphere, 263, 128025, 617 

doi:10.1016/j.chemosphere.2020.128025, 2021. 618 

Ge, D., Nie, W., Sun, P., Liu, Y., Wang, T., Wang, J., Wang, J., Wang, L., Zhu, C. and 619 

Wang, R.: Characterization of particulate organic nitrates in the Yangtze River 620 

Delta, East China, using the time-of-flight aerosol chemical speciation monitor, 621 

Atmos. Environ., 272, 118927, 2022. 622 

Goliff, W. S., Stockwell, W. R. and Lawson, C. V: The regional atmospheric chemistry 623 

mechanism, version 2, Atmos. Environ., 68, 174–185, 624 

doi:https://doi.org/10.1016/j.atmosenv.2012.11.038, 2013. 625 

He, Z., Wang, X., Ling, Z., Zhao, J., Guo, H., Shao, M. and Wang, Z.: Contributions of 626 



 

18 

 

different anthropogenic volatile organic compound sources to ozone formation at a 627 

receptor site in the Pearl River Delta region and its policy implications, Atmos. 628 

Chem. Phys., 19(13), 8801–8816, doi:10.5194/acp-19-8801-2019, 2019a. 629 

He, Z., Wang, X., Ling, Z., Zhao, J., Guo, H., Shao, M. and Wang, Z.: Contributions of 630 

different anthropogenic volatile organic compound sources to ozone formation at a 631 

receptor site in the Pearl River Delta region and its policy implications, Atmos. 632 

Chem. Phys., 19(13), 8801–8816, doi:10.5194/acp-19-8801-2019, 2019b. 633 

Hidy, G. M.: Ozone process insights from field experiments - part I: Overview, Atmos. 634 

Environ., 34(12–14), 2001–2022, doi:10.1016/S1352-2310(99)00456-2, 2000. 635 

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A. 636 

and Hasekamp, O.: Toward global mapping of methane with TROPOMI: First 637 

results and intersatellite comparison to GOSAT, Geophys. Res. Lett., 45(8), 3682–638 

3689, 2018. 639 

Jenkin, M. E., Young, J. C. and Rickard, A. R.: The MCM v3.3.1 degradation scheme 640 

for isoprene, Atmos. Chem. Phys., 15(20), 11433–11459, doi:10.5194/acp-15-641 

11433-2015, 2015. 642 

Jiang, M., Lu, K., Su, R., Tan, Z., Wang, H., Li, L., Fu, Q., Zhai, C., Tan, Q. and Yue, 643 

D.: Ozone formation and key VOCs in typical Chinese city clusters, Chinese Sci. 644 

Bull., 63(12), 1130–1141, 2018. 645 

Kleinman, L. I.: Ozone process insights from field experiments – part II: Observation-646 

based analysis for ozone production, Atmos. Environ., 34(12), 2023–2033, 647 

doi:https://doi.org/10.1016/S1352-2310(99)00457-4, 2000. 648 

Li, J., Zhai, C., Yu, J., Liu, R., Li, Y., Zeng, L. and Xie, S.: Spatiotemporal variations 649 

of ambient volatile organic compounds and their sources in Chongqing, a 650 

mountainous megacity in China, Sci. Total Environ., 627, 1442–1452, 2018. 651 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q. and Bates, K. H.: Anthropogenic 652 

drivers of 2013–2017 trends in summer surface ozone in China, Proc. Natl. Acad. 653 

Sci., 116(2), 422 LP – 427, doi:10.1073/pnas.1812168116, 2019. 654 

Li, K., Wang, X., Li, L., Wang, J., Liu, Y., Cheng, X., Xu, B., Wang, X., Yan, P., Li, 655 

S., Geng, C., Yang, W., Azzi, M. and Bai, Z.: Large variability of O3-precursor 656 

relationship during severe ozone polluted period in an industry-driven cluster city 657 

(Zibo) of North China Plain, J. Clean. Prod., 316, 128252, 658 

doi:https://doi.org/10.1016/j.jclepro.2021.128252, 2021. 659 

Lin, H., Wang, M., Duan, Y., Fu, Q., Ji, W., Cui, H., Jin, D., Lin, Y. and Hu, K.: O3 660 

sensitivity and contributions of different nmhc sources in O3 formation at urban and 661 

suburban sites in Shanghai, Atmosphere (Basel)., 11(3), 295, 2020. 662 

Ling, Z. H., Guo, H., Cheng, H. R. and Yu, Y. F.: Sources of ambient volatile organic 663 

compounds and their contributions to photochemical ozone formation at a site in 664 

the Pearl River Delta, southern China, Environ. Pollut., 159(10), 2310–2319, 665 

doi:10.1016/j.envpol.2011.05.001, 2011. 666 

Liu, X., Lyu, X., Wang, Y., Jiang, F. and Guo, H.: Intercomparison of O3 formation 667 

and radical chemistry in the past decade at a suburban site in Hong Kong, Atmos. 668 



 

19 

 

Chem. Phys., 19(7), 5127–5145, doi:10.5194/acp-19-5127-2019, 2019a. 669 

Liu, X., Lyu, X., Wang, Y., Jiang, F. and Guo, H.: Intercomparison of O3 formation 670 

and radical chemistry in the past decade at a suburban site in Hong Kong, Atmos. 671 

Chem. Phys., 19(7), 5127–5145, doi:10.5194/acp-19-5127-2019, 2019b. 672 

Liu, X., Wang, N., Lyu, X., Zeren, Y., Jiang, F., Wang, X., Zou, S., Ling, Z. and Guo, 673 

H.: Photochemistry of ozone pollution in autumn in Pearl River Estuary, South 674 

China, Sci. Total Environ., 754, 141812, 675 

doi:https://doi.org/10.1016/j.scitotenv.2020.141812, 2021a. 676 

Liu, X., Wang, N., Lyu, X., Zeren, Y., Jiang, F., Wang, X., Zou, S., Ling, Z. and Guo, 677 

H.: Photochemistry of ozone pollution in autumn in Pearl River Estuary, South 678 

China, Sci. Total Environ., 754, doi:10.1016/j.scitotenv.2020.141812, 2021b. 679 

Lu, H., Lyu, X., Cheng, H., Ling, Z., Guo, H. and Lu, H.: Overview on the spatial–680 

temporal characteristics of the ozone formation regime in China, Environ. Sci., v. 681 

21(6), 916-929–2019 v.21 no.6, doi:10.1039/c9em00098d, 2019. 682 

Lu, K., Zhang, Y., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A., Liu, S. C., Kita, 683 

K., Kondo, Y., Shao, M., Wahner, A., Wang, J., Wang, X. and Zhu, T.: Oxidant 684 

(O3 + NO2) production processes and formation regimes in Beijing, J. Geophys. 685 

Res. Atmos., 115(7), 1–18, doi:10.1029/2009JD012714, 2010a. 686 

Lu, K., Zhang, Y., Su, H., Shao, M., Zeng, L., Zhong, L., Xiang, Y., Chang, C., Chou, 687 

C. K. C. and Wahner, A.: Regional ozone pollution and key controlling factors of 688 

photochemical ozone production in Pearl River Delta during summer time, Sci. 689 

China Chem., 53(3), 651–663, doi:10.1007/s11426-010-0055-6, 2010b. 690 

Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M., 691 

Zhao, Y. and Zhang, Y.: Severe Surface Ozone Pollution in China: A Global 692 

Perspective, Environ. Sci. Technol. Lett., 5(8), 487–494, 693 

doi:10.1021/acs.estlett.8b00366, 2018. 694 

Lyu, X., Wang, N., Guo, H., Xue, L., Jiang, F., Zeren, Y., Cheng, H., Cai, Z., Han, L. 695 

and Zhou, Y.: Causes of a continuous summertime O3 pollution event  in Jinan, a 696 

central city in the North China Plain, Atmos. Chem. Phys., 19(5), 3025–3042, 697 

doi:10.5194/acp-19-3025-2019, 2019a. 698 

Lyu, X., Wang, N., Guo, H., Xue, L., Jiang, F., Zeren, Y., Cheng, H., Cai, Z., Han, L. 699 

and Zhou, Y.: Causes of a continuous summertime O3 pollution event in Jinan, a 700 

central city in the North China Plain, Atmos. Chem. Phys., 19(5), 3025–3042, 701 

doi:10.5194/acp-19-3025-2019, 2019b. 702 

Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y. and Liu, M.: Ambient 703 

volatile organic compounds and their effect on ozone production in Wuhan, central 704 

China, Sci. Total Environ., 541, 200–209, 705 

doi:https://doi.org/10.1016/j.scitotenv.2015.09.093, 2016a. 706 

Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y. and Liu, M.: Ambient 707 

volatile organic compounds and their effect on ozone production in Wuhan, central 708 

China, Sci. Total Environ., 541, 200–209, doi:10.1016/j.scitotenv.2015.09.093, 709 

2016b. 710 



 

20 

 

Qin, M., Chen, Z., Shen, H., Li, H., Wu, H. and Wang, Y.: Impacts of heterogeneous 711 

reactions to atmospheric peroxides: Observations and budget analysis study, Atmos. 712 

Environ., 183(April), 144–153, doi:10.1016/j.atmosenv.2018.04.005, 2018. 713 

Saunders, S. M., Jenkin, M. E., Derwent, R. G. and Pilling, M. J.: Protocol for the 714 

development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric 715 

degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3(1), 716 

161–180, doi:10.5194/acp-3-161-2003, 2003. 717 

Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, 718 

J. J. D. and Calatayud, V.: Amplified ozone pollution in cities during the COVID-719 

19 lockdown, Sci. Total Environ., 735, doi:10.1016/j.scitotenv.2020.139542, 2020. 720 

Sillman, S.: Observation-Based Methods (OBMS) For Analyzing Urban/Regional 721 

Ozone Production And Ozone-NOx-VOC Sensitivity, , (x), 1–44 [online] Available 722 

from: http://www-personal.engin.umich.edu/~sillman, 2010. 723 

Stockwell, W. R., Kirchner, F., Kuhn, M. and Seefeld, S.: A new mechanism for 724 

regional atmospheric chemistry modeling, J. Geophys. Res. Atmos., 102(22), 725 

doi:10.1029/97jd00849, 1997. 726 

Stockwell, W. R., Saunders, E., Goliff, W. S. and Fitzgerald, R. M.: A perspective on 727 

the development of gas-phase chemical mechanisms for Eulerian air quality models, 728 

J. Air Waste Manage. Assoc., 70(1), 44–70, 2020. 729 

Su, R., Lu, K., Yu, J., Tan, Z., Jiang, M., Li, J., Xie, S., Wu, Y., Zeng, L. and Zhai, C.: 730 

Exploration of the formation mechanism and source attribution of ambient ozone in 731 

Chongqing with an observation-based model, Sci. China Earth Sci., 61(1), 23–32, 732 

2018a. 733 

Su, R., Lu, K. D., Yu, J. Y., Tan, Z. F., Jiang, M. Q., Li, J., Xie, S. D., Wu, Y. S., Zeng, 734 

L. M., Zhai, C. Z. and Zhang, Y. H.: Exploration of the formation mechanism and 735 

source attribution of ambient ozone in Chongqing with an observation-based model, 736 

Sci. China Earth Sci., 61(1), 23–32, doi:10.1007/s11430-017-9104-9, 2018b. 737 

Sun, L., Xue, L., Wang, T., Gao, J., Ding, A., Cooper, O. R., Lin, M., Xu, P., Wang, Z., 738 

Wang, X., Wen, L., Zhu, Y., Chen, T., Yang, L., Wang, Y., Chen, J. and Wang, W.: 739 

Significant increase of summertime ozone at Mount Tai in Central Eastern China, 740 

Atmos. Chem. Phys., 16(16), 10637–10650, doi:10.5194/acp-16-10637-2016, 2016. 741 

Tan, Z., Lu, K., Dong, H., Hu, M., Li, X., Liu, Y., Lu, S., Shao, M., Su, R. and Wang, 742 

H.: Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC 743 

sensitivities, Sci. Bull., 63(16), 1067–1076, 2018a. 744 

Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q. and Zhang, Y.: 745 

Exploring ozone pollution in Chengdu, southwestern China: A case study from 746 

radical chemistry to O3-VOC-NOx sensitivity, Sci. Total Environ., 636, 775–786, 747 

2018b. 748 

Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q. and Yue, 749 

D.: Daytime atmospheric oxidation capacity in four Chinese megacities during the 750 

photochemically polluted season: a case study based on box model simulation, 751 

Atmos. Chem. Phys., 19(6), 3493–3513, 2019a. 752 



 

21 

 

Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., 753 

Chen, D., Wang, Z., Xie, S., Zeng, L. and Zhang, Y.: Daytime atmospheric 754 

oxidation capacity in four Chinese megacities during the photochemically polluted 755 

season: A case study based on box model simulation, Atmos. Chem. Phys., 19(6), 756 

3493–3513, doi:10.5194/acp-19-3493-2019, 2019b. 757 

Uno, I., Osada, K., Yumimoto, K., Wang, Z., Itahashi, S., Pan, X., Hara, Y., Kanaya, 758 

Y., Yamamoto, S. and Fairlie, T. D.: Seasonal variation of fine-and coarse-mode 759 

nitrates and related aerosols over East Asia: synergetic observations and chemical 760 

transport model analysis, Atmos. Chem. Phys., 17(23), 14181–14197, 2017. 761 

Vingarzan, R.: A review of surface ozone background levels and trends, Atmos. 762 

Environ., 38(21), 3431–3442, 2004. 763 

Wang, H., Hu, X. and Sterba-Boatwright, B.: A new statistical approach for interpreting 764 

oceanic fCO2 data, Mar. Chem., 183, 41–49, 2016. 765 

Wang, M., Hu, K., Chen, W., Shen, X., Li, W. and Lu, X.: Ambient Non-Methane 766 

Hydrocarbons (NMHCs) Measurements in Baoding, China: Sources and Roles in 767 

Ozone Formation, Atmosphere (Basel)., 11(11), 1205, 2020a. 768 

Wang, P., Chen, Y., Hu, J., Zhang, H. and Ying, Q.: Attribution of Tropospheric Ozone 769 

to NO x and VOC Emissions: Considering Ozone Formation in the Transition 770 

Regime, Environ. Sci. Technol., 53(3), 1404–1412, doi:10.1021/acs.est.8b05981, 771 

2019. 772 

Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L. and Zhang, L.: Ozone pollution 773 

in China: A review of concentrations, meteorological influences, chemical 774 

precursors, and effects, Sci. Total Environ., 575, 1582–1596, 775 

doi:10.1016/j.scitotenv.2016.10.081, 2017a. 776 

Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L. and Zhang, L.: Ozone pollution 777 

in China: A review of concentrations, meteorological influences, chemical 778 

precursors, and effects, Sci. Total Environ., 575, 1582–1596, 2017b. 779 

Wang, W., Yuan, B., Peng, Y., Su, H., Cheng, Y., Yang, S., Wu, C., Qi, J., Bao, F. and 780 

Huangfu, Y.: Direct observations indicate photodegradable oxygenated volatile 781 

organic compounds (OVOCs) as larger contributors to radicals and ozone 782 

production in the atmosphere, Atmos. Chem. Phys., 22(6), 4117–4128, 2022. 783 

Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P. K. K., Simpson, 784 

I. J., Meinardi, S. and Blake, D. R.: Long-term O 3–precursor relationships in Hong 785 

Kong: field observation and model simulation, Atmos. Chem. Phys., 17(18), 786 

10919–10935, 2017c. 787 

Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P. K. K., Simpson, 788 

I. J., Meinardi, S. and Blake, D. R.: Long-term O3-precursor relationships in Hong 789 

Kong: Field observation and model simulation, Atmos. Chem. Phys., 17(18), 790 

10919–10935, doi:10.5194/acp-17-10919-2017, 2017d. 791 

Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H. and Zeren, Y.: Surface O3 792 

photochemistry over the South China Sea: Application of a near-explicit chemical 793 

mechanism box model, Environ. Pollut., 234, 155–166, 794 



 

22 

 

doi:10.1016/j.envpol.2017.11.001, 2018. 795 

Wang, Y., Gao, W., Wang, S., Song, T., Gong, Z., Ji, D., Wang, L., Liu, Z., Tang, G., 796 

Huo, Y., Tian, S., Li, J., Li, M., Yang, Y., Chu, B., Petäjä, T., Kerminen, V. M., He, 797 

H., Hao, J., Kulmala, M., Wang, Y. and Zhang, Y.: Contrasting trends of PM2.5and 798 

surface-ozone concentrations in China from 2013 to 2017, Natl. Sci. Rev., 7(8), 799 

1331–1339, doi:10.1093/nsr/nwaa032, 2020b. 800 

Weng, X., Forster, G. L. and Nowack, P.: A machine learning approach to quantify 801 

meteorological drivers of ozone pollution in China from 2015 to 2019, Atmos. 802 

Chem. Phys., 22(12), 8385–8402, doi:10.5194/acp-22-8385-2022, 2022. 803 

Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., 804 

Hopkins, J. R., Dunmore, R. E., Shaw, M. and Hamilton, J. F.: Evaluating the 805 

sensitivity of radical chemistry and ozone formation to ambient VOCs and NO x in 806 

Beijing, Atmos. Chem. Phys., 21(3), 2125–2147, 2021a. 807 

Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., 808 

Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, 809 

A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H., Percival, C. J., Ouyang, B., 810 

Jones, R. L., Crilley, L. R., Kramer, L. J., Bloss, W. J., Vu, T., Kotthaus, S., 811 

Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Joe, W., Nicholas Hewitt, C., 812 

Wang, X., Fu, P. and Heard, D. E.: Evaluating the sensitivity of radical chemistry 813 

and ozone formation to ambient VOCs and NOx in Beijing, Atmos. Chem. Phys., 814 

21(3), 2125–2147, doi:10.5194/acp-21-2125-2021, 2021b. 815 

Willmott, C. J.: Some comments on the evaluation of model performance., Bull. - Am. 816 

Meteorol. Soc., 63(11), 1309–1313, doi:10.1175/1520-817 

0477(1982)063<1309:SCOTEO>2.0.CO;2, 1982. 818 

Wolfe, G. M., Thornton, J. A., Bouvier-Brown, N. C., Goldstein, A. H., Park, J.-H., 819 

McKay, M., Matross, D. M., Mao, J., Brune, W. H. and LaFranchi, B. W.: The 820 

Chemistry of Atmosphere-Forest Exchange (CAFE) model–part 2: application to 821 

BEARPEX-2007 observations, Atmos. Chem. Phys., 11(3), 1269–1294, 2011. 822 

Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R. and Liao, J.: The framework 823 

for 0-D atmospheric modeling (F0AM) v3. 1, Geosci. Model Dev., 9(9), 3309–3319, 824 

2016. 825 

Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C.-C. and Chen, Z.-M.: Estimate of initial 826 

isoprene contribution to ozone formation potential in Beijing, China, Atmos. 827 

Environ., 42(24), 6000–6010, 2008. 828 

Xu, Z., Wang, T., Xue, L. K., Louie, P. K. K., Luk, C. W. Y., Gao, J., Wang, S. L., 829 

Chai, F. H. and Wang, W. X.: Evaluating the uncertainties of thermal catalytic 830 

conversion in measuring atmospheric nitrogen dioxide at four differently polluted 831 

sites in China, Atmos. Environ., 76, 221–226, 2013. 832 

Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P. and Ding, A.: Influence 833 

of synoptic condition and holiday effects on VOCs and ozone production in the 834 

Yangtze River Delta region, China, Atmos. Environ., 168, 112–124, 2017. 835 

Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R. and Xu, Z.: Increasing 836 



 

23 

 

external effects negate local efforts to control ozone air pollution: a case study of 837 

Hong Kong and implications for other Chinese cities, Environ. Sci. Technol., 838 

48(18), 10769–10775, 2014a. 839 

Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R. and Xu, Z.: Increasing 840 

external effects negate local efforts to control ozone air pollution: A case study of 841 

Hong Kong and implications for other chinese cities, Environ. Sci. Technol., 48(18), 842 

10769–10775, doi:10.1021/es503278g, 2014b. 843 

Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., 844 

Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z. and Wang, W. X.: Ground-845 

level ozone in four Chinese cities: Precursors, regional transport and heterogeneous 846 

processes, Atmos. Chem. Phys., 14(23), 13175–13188, doi:10.5194/acp-14-13175-847 

2014, 2014c. 848 

Xue, M., Ma, J., Tang, G., Tong, S., Hu, B., Zhang, X., Li, X. and Wang, Y.: ROx 849 

Budgets and O3 Formation during Summertime at Xianghe Suburban Site in the 850 

North China Plain, Adv. Atmos. Sci., 38(7), 1209–1222, 2021. 851 

Xue, T., Zheng, Y., Geng, G., Xiao, Q., Meng, X., Wang, M., Li, X., Wu, N., Zhang, 852 

Q. and Zhu, T.: Estimating Spatiotemporal Variation in Ambient Ozone Exposure 853 

during 2013–2017 Using a Data-Fusion Model, Environ. Sci. Technol., 54(23), 854 

14877–14888, 2020. 855 

Yarwood, G., Rao, S., Yocke, M. and Whitten, G. Z.: Updates to the carbon bond 856 

chemical mechanism: CB05, Final Rep. to US EPA, RT-0400675, 8, 13, 2005. 857 

Yarwood, G., Jung, J., Whitten, G. Z., Heo, G., Mellberg, J. and Estes, M.: Updates to 858 

the Carbon Bond mechanism for version 6 (CB6), in 9th Annual CMAS Conference, 859 

Chapel Hill, NC, pp. 11–13., 2010. 860 

Yin, M., Zhang, X., Li, Y., Fan, K., Li, H., Gao, R. and Li, J.: Ambient ozone pollution 861 

at a coal chemical industry city in the border of Loess Plateau and Mu Us Desert: 862 

characteristics, sensitivity analysis and control strategies, PeerJ, 9, e11322, 2021. 863 

Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P., Yang, 864 

X., Liu, Y., Wang, H., He, L., Huang, X. and Zhang, Y.: An explicit study of local 865 

ozone budget and NOx-VOCs sensitivity in Shenzhen China, Atmos. Environ., 224, 866 

117304, doi:https://doi.org/10.1016/j.atmosenv.2020.117304, 2020a. 867 

Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P., Yang, 868 

X., Liu, Y., Wang, H., He, L., Huang, X. and Zhang, Y.: An explicit study of local 869 

ozone budget and NOx-VOCs sensitivity in Shenzhen China, Atmos. Environ., 870 

224(November 2019), 117304, doi:10.1016/j.atmosenv.2020.117304, 2020b. 871 

Zeng, L., Lyu, X., Guo, H., Zou, S. and Ling, Z.: Photochemical Formation of C1-C5 872 

Alkyl Nitrates in Suburban Hong Kong and over the South China Sea, Environ. Sci. 873 

Technol., 52(10), 5581–5589, doi:10.1021/acs.est.8b00256, 2018. 874 

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, 875 

H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., 876 

Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., 877 

Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K. and Hao, J.: 878 



 

24 

 

Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proc. Natl. 879 

Acad. Sci., 116(49), 24463 LP – 24469, doi:10.1073/pnas.1907956116, 2019. 880 

Zhang, Y., Xue, L., Carter, W. P. L., Pei, C., Chen, T., Mu, J., Wang, Y., Zhang, Q. and 881 

Wang, W.: Development of ozone reactivity scales for volatile  organic compounds 882 

in a Chinese megacity, Atmos. Chem. Phys., 21(14), 11053–11068, 883 

doi:10.5194/acp-21-11053-2021, 2021. 884 

Zhang, Y. H., Hu, M., Zhong, L. J., Wiedensohler, A., Liu, S. C., Andreae, M. O., Wang, 885 

W. and Fan, S. J.: Regional Integrated Experiments on Air Quality over Pearl River 886 

Delta 2004 (PRIDE-PRD2004): Overview, Atmos. Environ., 42(25), 6157–6173, 887 

doi:10.1016/j.atmosenv.2008.03.025, 2008a. 888 

Zhang, Y. H., Su, H., Zhong, L. J., Cheng, Y. F., Zeng, L. M., Wang, X. S., Xiang, Y. 889 

R., Wang, J. L., Gao, D. F., Shao, M., Fan, S. J. and Liu, S. C.: Regional ozone 890 

pollution and observation-based approach for analyzing ozone–precursor 891 

relationship during the PRIDE-PRD2004 campaign, Atmos. Environ., 42(25), 892 

6203–6218, doi:https://doi.org/10.1016/j.atmosenv.2008.05.002, 2008b. 893 

Zhao, Y., Chen, L., Li, K., Han, L., Zhang, X., Wu, X., Gao, X., Azzi, M. and Cen, K.: 894 

Atmospheric ozone chemistry and control strategies in Hangzhou, China: 895 

Application of a 0-D box model, Atmos. Res., 246, 105109, 2020. 896 

Zong, R., Yang, X., Wen, L., Xu, C., Zhu, Y., Chen, T., Yao, L., Wang, L., Zhang, J., 897 

Yang, L., Wang, X., Shao, M., Zhu, T., Xue, L. and Wang, W.: Strong ozone 898 

production at a rural site in theNorth China Plain: Mixed effects of urban plumesand 899 

biogenic emissions, J. Environ. Sci. (China), 71, 261–270, 900 

doi:10.1016/j.jes.2018.05.003, 2018. 901 

902 



 

2
5
 

 

T
a
b

le 1
. S

u
m

m
ary

 o
f relev

an
t p

u
b
lish

ed
 0

-D
 b

o
x

 m
o
d
el stu

d
ies in

 C
h
in

a. 
9
0
3
 

C
ity

 
S

ite/T
y
p

e 
P

erio
d
 

P
attern

s o
f T

im
e scale

a 
M

ech
an

ism
 

R
eferen

ce 

B
eijin

g
 

P
K

U
b 

U
rb

an
 

1
0
 A

u
g
–

1
0
 S

ep
 2

0
0
6
 

D
ay

-to
-d

ay
 (2

5
 d

) 
C

B
-IV

 
( L

u
 et al., 2

0
1

0
) 

Y
U

F
A

 
S

u
b

u
rb

an
 

P
K

U
 

U
rb

an
 

1
3

–
2
9
 A

p
r 2

0
1
5
, 1

1
–

2
9
 A

u
g
 

2
0
1
5
, 2

2
 F

eb
–
1
2
 M

ar 2
0
1
6
 

E
n
tire p

erio
d
 

R
A

C
M

2
 

(Q
in

 et al., 2
0
1

8
) 

B
eijin

g
 

U
rb

an
 

2
–
1
9
 Ju

l 2
0
1
4
 

E
n
tire p

erio
d
 

R
A

C
M

2
 

(T
an

 et al., 2
0
1

9
b

) 

D
ezh

o
u

 
Y

u
ch

en
g
 

R
u

ral 
1
 Ju

n
–
6
 Ju

l 2
0
1
3
 

D
ay

-to
-d

ay
 (2

 d
) 

M
C

M
v
3

.3
.1

 
(Z

o
n

g
 et al., 2

0
1

8
) 

S
h
en

zh
en

 
S

Y
Y

c 
U

rb
an

 
2
8
 S

ep
–
3
1
 O

ct 2
0
1
8
 

E
n
tire p

erio
d
 

R
A

C
M

2
 

(Y
u

 et al., 2
0

2
0

b
) 

F
u

ch
en

g
 

U
rb

an
 

H
o
n
g
 K

o
n

g
 

T
C

 
S

u
b

u
rb

an
 

1
0
 A

u
g
–

2
1
 O

ct 2
0
1
3
 

E
n
tire p

erio
d
 

M
C

M
v
3

.2
 

(Z
en

g
 et al., 2

0
1

8
) 

W
an

 S
h

an
 

Islan
d

 

T
u
n

g
 C

h
u

n
g

 
U

rb
an

 
S

ep
-N

o
v
 2

0
0
2
, 2

0
0
7
, 2

0
1
2
 

Y
ear-to

-y
ear (3

 y
rs) 

M
C

M
v
3

.2
 

(X
u
e et al., 2

0
1

4
b

) 

Q
in

g
 S

h
a 

U
rb

an
 

2
3
 O

ct–
1
 N

o
v
 2

0
0
7
 

D
ay

-to
-d

ay
 (1

0
 d

) 
C

B
-IV

 
(C

h
en

g
 et al., 2

0
1

0
) 

T
ai O

 

T
u
n

g
 C

h
u

n
g

 
U

rb
an

 
Jan

 2
0
0
5

-D
ec 2

0
1
4

 
M

o
n
th

-to
-m

o
n

th
 (5

 m
o

n
th

s) 
C

B
0

5
 

(W
h

alley
 et al., 2

0
2

1
b

)  

C
h
en

g
d
u
 

P
en

g
zh

o
u

 
S

u
b

u
rb

an
 

3
 S

ep
–
2
 O

ct 2
0
1
6
 

E
n
tire p

erio
d
 

R
A

C
M

2
 

(T
an

 et al., 2
0
1

8
b

) 
P

ix
ian

 
S

u
b

u
rb

an
 

S
h

u
an

g
liu

 
S

u
b

u
rb

an
 

C
h

en
g
zh

o
n

g
 

U
rb

an
 

Z
h
u
h
ai 

Q
i’ao

 
M

o
u

n
tain

 
2
5
 S

ep
–
2
8
 O

ct 2
0
1
6
 

E
n
tire p

erio
d
 

M
C

M
v
3

.2
 

(L
iu

 et al., 2
0

2
1

b
) 

W
u
h
an

 
H

P
E

M
C

d 
U

rb
an

 
F

eb
 2

0
1
3

-O
ct 2

0
1
4
 

M
o
n
th

-to
-m

o
n

th
 (2

1
 m

o
n

th
s) 

M
C

M
v
3

.2
 

(L
y
u

 et al., 2
0

1
6

) 

G
u
an

g
zh

o
u

 

G
Z

 
U

rb
an

 
5

–
1
7
 Ju

l 2
0
0
6
 

D
ay

-to
-d

ay
 (1

6
 d

) 
C

B
-IV

 
(L

u
 et al., 2

0
1

0
) 

B
Z

 
S

u
b

u
rb

an
 

G
u

an
g
zh

o
u

 
U

rb
an

 
4
 O

ct–
5
 N

o
v
 2

0
0
4
 

E
n
tire p

erio
d
 

S
A

P
R

C
 

(Z
h

an
g
 et al., 2

0
0

8
b
) 

X
in

k
en

 
N

o
n
u
rb

an
 

H
an

g
zh

o
u

 
Z

h
ao

h
u

i 
U

rb
an

 
1
7
 M

ay, 2
6
 Ju

n
 2

0
, Ju

l 2
4
, A

u
g
 

an
d
 2

6
 S

ep
 

E
n
tire p

erio
d
 (5

 d
) 

 
(Z

h
ao

 et al., 2
0

2
0

) 
X

iash
a 

S
u

b
u

rb
an

 
M

C
M

v
3

.3
.1

 



 

2
6
 

 

H
u

ap
u
 

U
rb

an
 

 

N
an

jin
g
 

N
U

IS
T

e 
S

u
b

u
rb

an
 

3
 Ju

l–
1
 A

u
g
 2

0
1
8
 

E
n
tire p

erio
d
 

C
B

-IV
 

(F
an

 et al., 2
0
2

1
) 

S
O

R
P

E
S

 
S

u
b

u
rb

an
 

2
2
 S

ep
–
7
 O

ct 2
0
1
4
 

D
ay

-to
-d

ay
 (8

 d
) 

M
C

M
v
3

.3
.1

 
(X

u
 et al., 2

0
1

7
) 

Y
u
lin

 
E

M
B

f 
U

rb
an

 
7
 Ju

l–
1
0
 A

u
g
 2

0
1
9
 

D
ay

-to
-d

ay
 (1

3
 d

) 
M

C
M

v
3

.3
.1

 
(Y

in
 et al., 2

0
2

1
) 

L
an

zh
o
u
 

R
en

sh
o

u
sh

an
 

P
ark

 
U

rb
an

 
1
9
 Ju

n
–

1
6
 Ju

l 2
0
0
6
 

D
ay

-to
-d

ay
 (3

 d
) 

M
C

M
v
3

.2
 

(X
u
e et al., 2

0
1

4
) 

B
ao

d
in

g
 

E
P

B
g 

U
rb

an
 

1
0

–
3
0
 S

ep
 2

0
1
5
 

D
ay

-to
-d

ay
 (5

 d
) 

M
C

M
v
3

.3
.1

 
(W

an
g
 et al., 2

0
2

0
a) 

C
h
o
n
g
q
in

g
 

N
an

 Q
u

an
 

S
u

b
u

rb
an

 

2
4
 A

u
g
–

2
2
 S

ep
 2

0
1
5
 

D
ay

-to
-d

ay
 (7

 d
) 

M
C

M
v
3

.2
 

(L
i et al., 2

0
1

8
) 

C
h

ao
 Z

h
an

 
U

rb
an

 

Jin
 Y

u
n

 S
h

an
 

U
rb

an
 

S
h
an

g
h
ai 

P
u

d
o

n
g
 

U
rb

an
 

1
–
3
1
 Ju

l 2
0
1
7
 

D
ay

-to
-d

ay
 (1

6
 d

) 
C

B
-IV

 
(L

in
 et al., 2

0
2

0
) 

D
ian

sh
an

h
u
 

S
u

b
u

rb
an

 

S
o
u
th

 C
h
in

a S
ea 

W
an

sh
an

 
Islan

d
 

1
1
 S

ep
–
2
1
 N

o
v
 2

0
1
3
 

E
n
tire p

erio
d
 

M
C

M
v
3

.2
 

(W
an

g
 et al., 2

0
1

8
) 

aN
u
m

b
er o

f d
ay

s fo
r m

o
d

elin
g
 th

e p
attern

s o
f tim

e scale d
en

o
tes th

at w
h
ich

 
w

as sim
u
lated

 b
y
 th

e b
o

x
 m

o
d

el. 
bP

ek
in

g
 U

n
iv

ersity
 

cS
h
en

zh
en

 Y
an

jiu
sh

en
g
 Y

u
an

 

dH
u
b
ei P

ro
v
in

cial E
n

v
iro

n
m

en
tal M

o
n
ito

rin
g
 C

en
ter 

eN
an

jin
g
 U

n
iv

ersity
 o

f In
fo

rm
atio

n
 S

cien
ce &

 T
ech

n
o

lo
g

y
 

fE
n

v
iro

n
m

en
tal M

o
n
ito

rin
g
 B

u
ild

in
g
 

gE
n

v
iro

n
m

en
tal P

ro
tectio

n
 B

u
reau

 

9
0
4
 



 

27 

 

Table 2. Summary of the number of days (for model calculation) and proportions that 905 

were classified into the three photochemical regimes across each site and multiple 906 

patterns of time scale. 907 

Patterns of Time scale Site 

Photochemical regime: RIRNOx/RIRAVOC 

NOx-limited: >2 Transition: 0.5~2 VOC-limited: <0.5 

No. of 

days 
Proportion 

No.  of 

days 
Proportion 

No. of 

days 
Proportion 

Month-to-month 

TZ 2 40% 2 40% 1 20% 

BJ 0 0% 3 60% 2 40% 

XD 0 0% 2 40% 3 60% 

Week-to-week 

TZ 7 33% 8 38% 6 29% 

BJ 0 0% 10 50% 10 50% 

XD 3 16% 6 32% 10 53% 

Day-to-day  

TZ 29 29% 45 45% 26 26% 

BJ 0 0% 21 26% 60 74% 

XD 20 18% 23 20% 71 62% 

908 
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 909 

Figure 1. Schematic diagram of the dataset treatment to derive four patterns of time scale for 0-D box 910 

model input. Note that the four patterns (i.e., five-month, monthly, weekly, and daily) were the diurnal 911 

average of the initial dataset. This diagram takes one site and several input measurements (temperature, 912 

toluene, and NO2) as examples.913 
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 914 
Figure 2. Time series of meteorological parameters, O3 and its precursors (i.e., CO, NOx, VOCs) 915 

throughout the whole campaign at the three sites in Zibo.916 
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 917 

 918 

Figure 3. Time series of month-to-month RIR values of major precursor groups and RIRNOx/RIRAVOC at 919 

three sites (TZ, BJ and XD) in Zibo. The green dash line indicates to RIRNOx/RIRAVOC = 0.5 and 2.920 
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 921 

 922 
Figure 4. Time series of week-to-week RIR values of major precursor groups and RIRNOx/RIRAVOC at 923 

three sites (TZ, BJ, and XD) in Zibo. The blue lines in (g)-(i) are the three points moving average of 924 

RIRNOx/RIRAVOC value.   925 
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 926 
Figure 5. The correlations of TVOC/NOx with RIRNOx/RIRAVOC at multiple patterns of time scale at the 927 

three sites in Zibo.928 
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 929 

 930 
Figure 6. Distribution of RIR values of major precursor groups in multiple patterns of time scale at three 931 

sites (TZ, BJ, and XD) in Zibo.   932 
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 933 

Figure 7. Distribution of RIRNOx/RIRAVOC (indicator of photochemical regime) in multiple patterns of 934 

time scale at three sites (TZ, BJ, and XD) in Zibo.   935 
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 936 
Figure 8. The statistical analysis results of RIR values (from Table S6) at multiple patterns of time scale: 937 

(a) Pearson’s r correlation analysis (all the results have passed statistical significance assumed at p < 938 

0.01), (b) Paired-samples t-test analysis (*p values refer to differences with a statistical significance 939 

assumes at p <0.05), (c) Wilcoxon matched-pair signed-rank test (*p values refer to differences with a 940 

statistical significance assumes at p <0.05). 941 
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 942 

Figure 9. Averaged RIR values of individual AVOC species (top 10) at different patterns of time scale at 943 

three sites (TZ, BJ, and XD) in Zibo. The error bars represent the standard deviations of the mean. 944 

phenylethylene

2-m
ethyl-1

,3-butadiene

cis-2-butene

propene

ethene

1-ethyl 3
-m

ethyl b
enzene

1-butene

toluene

1,3,5-tri
methyl b

enzene

2-m
ethyl-p

ropane

0.0

0.1

0.2

0.3

0.4

0.5

 Five-month pattern [n=1]

 Month-to-month pattern [n=5]

 Week-to-week pattern [n=19]

R
IR

 (
%

/%
)

tra
ns-2-butene

2-m
ethyl-1

,3-butadiene

tra
ns-2-pentene

cis-2-butene

1,3-dim
ethyl b

enzene

ethene

propene

cis-2-pentene

toluene

1-hexene

0.0

0.1

0.2

0.3

0.4

0.5

 Five-month pattern [n=1]

 Month-to-month pattern [n=5]

 Week-to-week pattern [n=20]

R
IR

 (
%

/%
)

2-m
ethyl-1

,3-butadiene

cis-2-butene

propene

1,3-dim
ethyl b

enzene

tra
ns-2-butene

ethene

cis-2-pentene

1,2,4-tri
methyl b

enzene

toluene

tra
ns-2-pentene

0.0

0.1

0.2

0.3

0.4

 Five-month pattern [n=1]

 Month-to-month pattern [n=5]

 Week-to-week pattern [n=21]

R
IR

 (
%

/%
)

(TZ) (BJ) (XD)


