

1 **The shifting of secondary inorganic aerosols formation mechanism
2 during haze aggravation: The decisive role of aerosol liquid water**

3
4 **Fei Xie^{1,2}, Yue Su^{1,3}, Yongli Tian², Yanju Shi², Xingjun Zhou², Peng Wang², Ruihong Yu¹,
5 Wei Wang¹, Jiang He^{1,3}, Jinyuan Xin^{4,*}, Changwei Lü^{1,3,*}**

6
7 ¹ School of Ecology and Environment, Inner Mongolia University, 010021, Hohhot, China

8 ² Inner Mongolia Environmental Monitoring Center, 010011, Hohhot, China

9 ³ Institute of Environmental Geology, Inner Mongolia University, 010021, Hohhot, China

10 ⁴State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric
11 Physics, Chinese Academy of Sciences, Beijing 100029, China

13 **Abstract**

14 Although many considerable efforts have been done to reveal the driving factors on haze aggravation,
15 however, the roles of aerosol liquid water (ALW) in SIAs formation were mainly focused on the condition
16 of aerosol liquid water content (ALWC)<100 $\mu\text{g}/\text{m}^3$. Based on the in-situ high-resolution field observation,
17 this work studied the decisive roles and the shifting of secondary inorganic aerosols formation mechanism
18 during haze aggravation, revealing the different roles of ALWC in a broader scale ($\sim 500 \mu\text{g}/\text{m}^3$) in nitrate
19 and sulfate formation induced by aqueous chemistry in ammonia-rich atmosphere. The results showed that
20 chemical domains of perturbation gas limiting the generation of secondary particulate matters presented
21 obvious shifts from HNO_3 sensitive to HNO_3 and NH_3 co-sensitive regime with the haze aggravation,
22 indicating the powerful driving effects of ammonia in ammonia-rich atmosphere. When ALWC<75 $\mu\text{g}/\text{m}^3$,
23 the sulfate generation was preferentially triggered by the high ammonia utilization, then accelerated by
24 nitrogen oxide oxidation from Clean to Moderate pollution stages, characterizing as nitrogen oxidation ratio
25 (NOR)<0.3, sulfur oxidation ratio (SOR)<0.4, ammonia transition ratio (NTR)<0.7 and the moral ratio of
26 $\text{NO}_3^-/\text{SO}_4^{2-}=2:1$. While ALWC>75 $\mu\text{g}/\text{m}^3$, aqueous-phase chemistry reaction of SO_2 and NH_3 in ALW
27 became the prerequisite for SIAs formation driven by Henry's law in the ammonia-rich atmosphere during
28 Heavy and Serious stages, characterizing as high SOR (0.5-0.9), NOR (0.3-0.5), NTR (>0.7) and the moral
29 ratio of $\text{NO}_3^-/\text{SO}_4^{2-}=1:1$. A positive feedback of sulfate on nitrate production was also observed in this work
30 due to the shift of ammonia partition induced by the ALWC variation during haze aggravation. It implies the
31 target controlling of haze should not simply focus on SO_2 and NO_2 , more attention should be paid on gaseous
32 precursors (e.g., SO_2 , NO_2 , NH_3) and aerosol chemical constitution during different haze stages.

33 **Keywords:** Mechanism shifting, Aerosol liquid water, Secondary inorganic aerosols, Haze
34 aggravation, In-situ observation

* Corresponding author, Email: xjy@mail.iap.ac.cn; lcw2008@imu.edu.cn

35 **1 Introduction**

36 Fine particulate matter (PM_{2.5}) presented close link with several environmental issues, such as
37 visibility reduction and climate change (Zhang et al., 2015; Shang et al., 2020; Wang et al.,
38 2020; Wang et al., 2016; Nozière et al., 2010). Epidemiological studies have stated the
39 association of PMs with various public health, even adverse birth outcomes (Gwynn et al.,
40 2000; Lavigne et al., 2016; Zhao et al., 2020). As the most abundant secondary inorganic
41 aerosols (SIAs) in PM_{2.5} during Chinese winter haze episodes (Fu and Chen, 2017; Liu et al.,
42 2019), the formations of sulfate and nitrate play the key roles during haze aggravation, as well
43 as the impacting factors of the oxidants in gas and aqueous phases, the characteristics of pre-
44 existing aerosols/fog/cloud, and meteorological conditions. Recently, aerosol liquid water
45 content (ALWC) was reported associating with the SIAs formation, especially sulfates and
46 nitrates, during the haze periods (Wu et al., 2018; Zheng et al., 2015a; Wang et al., 2016; Cheng
47 et al., 2016; Carlton and Turpin, 2013; Nguyen et al., 2014; Xue et al., 2014; Tan et al., 2017;
48 Liu et al., 2017b). Atmospheric aerosol liquid water (ALW), which determined by ambient
49 relative humidity (RH), has been proposed as a container since it could provide the reaction
50 medium for the multiphase chemistry during the haze process (Ansari and Pandis, 2000;
51 Shiraiwa et al., 2012; Davies and Wilson, 2015). The roles of ALWC on the generations of
52 particulate sulfate generations (Wang et al., 2016; Cheng et al., 2016) and global secondary
53 organic aerosols (Hodas et al., 2014; Mcneill, 2015; Wong et al., 2015) were reported. Thus,
54 fully understanding ALW and its roles during haze aggravation is fundamentally important on
55 atmospheric physicochemical processes, especially the liquid chemical transformation of SO₂
56 and NO_x in ALW.

57 Ammonia is the most important alkaline gas, neutralizing with acidic species to form
58 ammonium salts. Due to little attention has been paid to NH₃ emissions by Chinese government,
59 atmospheric NH₃ experienced a significant increasing trend (Ge et al., 2019; Tan et al., 2017).
60 Although the increase in atmospheric NH₃ is beneficial to reduce atmospheric acidity (Liu et
61 al., 2019), its chemical behavior on regional haze formation is still debating. Cheng et al. (2016)
62 indicated that the fast transform of gaseous SO₂ to particle sulfate under polluted conditions is
63 attributed to the neutralization of NH₃, which raises particle pH and thereby facilitated the
64 aqueous oxidation of S (VI) by NO₂. Fang et al. (2017) stated that NH₃ partition significantly
65 modified aerosol pH and thereby adjusting the partition of SO₂ and NO₂. Although the role of
66 NH₃ has been identified from a theoretical perspective, the lack of NH₃ emission control sets
67 barriers for more effective reduction of PM_{2.5}. Therefore, it is urgent to fully understand the
68 reactive gases behavior and the chemical mechanism of SIAs formation during different

69 pollution stages, which will be helpful to propose reasonable strategies for each stage.

70 So far, the SIAs formation has been extensively studied during short-term, continuous, or
71 persistent haze episodes, proposing several heterogeneous and homogeneous oxidation
72 pathways on sulfate and nitrate formation (Guo et al., 2014; Guo et al., 2017; Zheng et al.,
73 2015b; Huang et al., 2014; Liu et al., 2021; Yao et al., 2020; Zhou et al., 2018; Liu et al., 2019).
74 In ammonia-rich atmosphere, NH₃ partition significantly modified aerosol pH, adjusted the
75 partition of SO₂ and NO₂ (Fang et al., 2017) and promotes the aqueous oxidation of S (VI) by
76 NO₂ (Wang et al., 2016; Cheng et al., 2016). Although many considerable efforts have been
77 done to reveal the driving factors on haze aggravation, however, the roles of ALW in SIAs
78 formation were mainly focused on the condition of ALWC<100 $\mu\text{g}/\text{m}^3$ (Nenes et al., 2020; Wu
79 et al., 2018; Bian et al., 2014; Jin et al., 2020). Therefore, the roles of ALWC in a broader scale
80 and the mechanism shifting of secondary inorganic aerosols formation during haze aggravation
81 in ammonia-rich atmosphere need to be understood in depth. Based on a continuous
82 observation with 1-hour resolution from December 2019 to January 2020, this work discussed
83 the shift of dominant mechanism with ALWC variation during the time window of haze
84 aggravation processes, which will be helpful to propose more effective PM_{2.5} control strategies
85 for each pollution stage.

86

87 **2 Sampling and Experiment Methods**

88 **2.1 Description of Sampling Site**

89 Hohhot, the capital city of Inner Mongolia Autonomous Region, is the central city of Hohhot-
90 Baotou-Ordos group, as well as an important northern China city with a population of more
91 than 3.126 million and an area of 17224 km² (Fig. 1). This region is featured as continental
92 climate with marked seasonality changes, which characterized as long-lasting cold humid
93 winter and short-time other seasons. Thereby, to survive the cold season, approximately half
94 year of coal-fired heating events (Oct. 15-the following Apr. 15) were introduced, which
95 emitting gaseous pollutants as well as PMs around-the-clock. The main industries include
96 thermal power plants, coal-energy based biochemical industry, dairy industry and
97 petrochemical industry, etc., which also emit atmospheric pollutants ceaselessly. Thus, high
98 concentrations of PMs pollution cases dominated the major contamination cases during winter
99 season (data obtained from Department of Ecology and Environment of Inner Mongolia
100 Autonomous Region, <http://sthjt.nmg.gov.cn/>) and gradually emerging as the limiting factor on
101 regional ambient air quality and human health.

102 In this study, the observation was conducted at the Inner Mongolia Environmental

103 Monitoring Center ($40^{\circ}49'22''N$, $111^{\circ}45'2''E$) on a top of a sixteen-story building (~40m above
104 the ground level) located at the eastern part of the downtown near the People's Government of
105 Inner Mongolia Autonomous Region near the 2nd ring road from December 1, 2019 to January
106 31, 2020. Residential and administrative regions were characterized as the major functional
107 domain near the sampling site, with no direct industrial regions nearby.

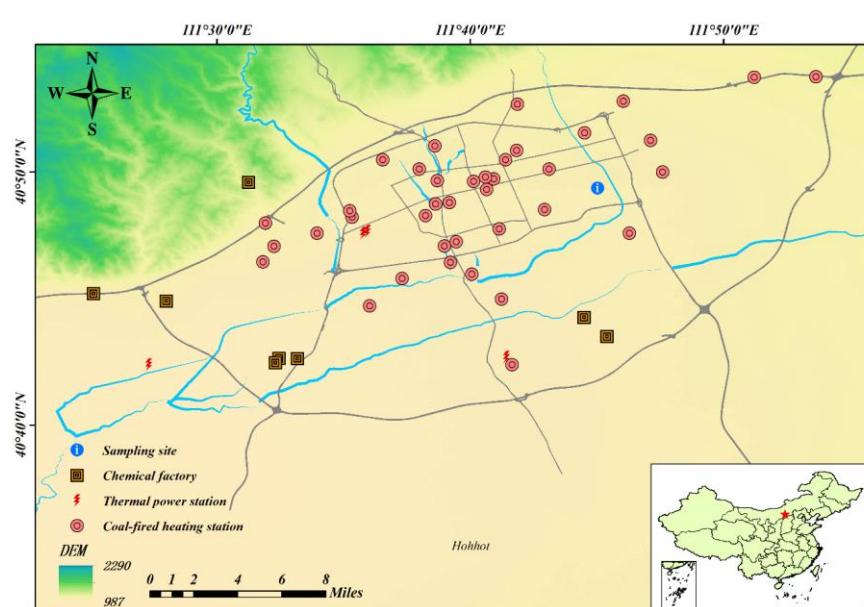


Fig. 1 Map of sampling sites and coal-fired enterprises

108
109 **2.2 Data acquisition and analysis methods**
110 **2.2.1 Data acquisition**
111 On-line ion-chromatograph instrument (MARGA ADI 2080, Metrohm Applikon, Switzerland)
112 was employed to simultaneously determine the water-soluble inorganic ions (Na^+ , NH_4^+ , Mg^{2+} ,
113 Ca^{2+} , K^+ , Cl^- , F^- , SO_4^{2-} , NO_3^-) in $PM_{2.5}$ and corresponding trace gases (SO_2 , HNO_2 , HNO_3 , HCl ,
114 NH_3). This instrument has been widely used in previous work (Rumsey et al., 2014; Nie et al.,
115 2015; Huang et al., 2020) and the details were listed in Supplement (S1.1). Correspondingly,
116 gaseous pollutants (e.g., NO_x , CO , PM_1 , $PM_{2.5}$, PM_{10}) and meteorological datasets (e.g., wind
117 speed, wind direction, RH, temperature, etc.), as well as the adopted models could be found in
118 our previous work (Xie et al., 2021). In addition, peroxyacetyl nitrates (PANs), nitrous oxide
119 (N_2O) and solar spectrophotometry were measured by PANs-100 (Focused Photonics Inc.),

120 N₂O Monitor (LSE, Monitors) and CE-318T (CIMEL), respectively.

121

122 **2.2.2 Analysis methods**

123 Generally, sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were calculated as
124 follows, which were used to indicate the contribution of secondary transformation during the
125 haze events (Song et al., 2007; Zhou et al., 2018).

126
$$SOR = \frac{n(SO_4^{2-})}{n(SO_2) + n(SO_4^{2-})}$$

127
$$NOR = \frac{n(HNO_3) + n(NO_3^-)}{n(NO_2) + n(HNO_3) + n(NO_3^-)}$$

128 Meanwhile, as an indicator of ammonia conversion efficient, ammonia transition ratio
129 (NTR), was calculated as the following equation (All units were $\mu\text{g}/\text{m}^3$).

130
$$NTR = \frac{NH_4^+/18}{NH_4^+/18 + NH_3/22.4}$$

131 In addition, as the fractions of ammonia, nitrate and sulfate in deliquesced aerosol, ε
132 (NO_3^-), $\varepsilon(\text{NH}_4^+)$ and $\varepsilon(\text{SO}_4^{2-})$ were expressed as follows.

133
$$\varepsilon(\text{NO}_3^-) = \frac{n(\text{NO}_3^-)}{n(HNO_3) + n(\text{NO}_3^-)}$$

134
$$\varepsilon(\text{NH}_4^+) = \frac{n(\text{NH}_4^+)}{n(\text{NH}_3) + n(\text{NH}_4^+)}$$

135
$$\varepsilon(\text{SO}_4^{2-}) = \frac{n(\text{SO}_4^{2-})}{n(\text{SO}_2) + n(\text{SO}_4^{2-})}$$

136 **2.2.3 Aerosol pH**

137 In this work, a widely used thermodynamic model, ISORROPIA-II (Song et al., 2018; Gao et
138 al., 2020), was employed to establish aerosol acidity. Including the concentrations of WSIs in
139 PM_{2.5} and gaseous pollutions (e.g., NH₃, HCl), the simultaneously measured temperature and
140 RH data were imported into its Na⁺-K⁺-Ca²⁺-Mg²⁺-NH₄⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosol system.
141 According to previous study (Song et al., 2018) and our data profiles, “Forward Mode” and
142 “Metastable State” were selected in the model of ISORROPIA-II to calculate aerosol acidity
143 (H_{air}^+ , H⁺ loading per volume air ($\mu\text{g}/\text{m}^3$)) and aerosol liquid water content (ALWC). Then the
144 aerosol pH was calculated by the following equation.

145
$$pH = -\log_{10} \frac{1000\text{H}_{\text{air}}^+}{ALWC}$$

146 The concentrations of NH₃, NH₄⁺, NO₃⁻ and SO₄²⁻ modeled by this model significantly

147 correlated with their measured values with correlation coefficients of 0.971-0.999, indicating
148 the accuracy and acceptability of the model in this work (Fig. S1).

149 **2.2.4 Heterogeneous sulfate production**

150 Due to the necessity of precise SO_4^{2-} generation, heterogeneous sulfate production (P_{het}) was
151 parameterized and calculated according to the following equation(Jacob, 2000; Zheng et al.,
152 2015a),

$$153 \quad P_{\text{het}} = \frac{3600sh^{-1} \times 96\text{g/mol}^{-1} \times P}{R \times T} \left(\frac{R_p}{D_g} + \frac{4}{v\gamma} \right)^{-1} S_p[\text{SO}_2(\text{g})]$$

154 Where P_{het} was presented in $\mu\text{g}\cdot\text{m}^{-3}\cdot\text{h}^{-1}$, 3600sh^{-1} is time conversion factor, 96 g/mol is the
155 molar mass of SO_4^{2-} , P is atmospheric pressure in kPa, R is the gas constant with the value of
156 $8.31 \text{ Pa}\cdot\text{m}^3\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$, T is the temperature with the unit of K, R_p represented the radius of
157 aerosol particles (m), D_g is the SO_2 molecular diffusion coefficient and v is the mean molecular
158 speed of SO_2 with the typical tropospheric value of $2 \times 10^{-5}\text{m}^2\cdot\text{s}^{-1}$ and $300 \text{ m}\cdot\text{s}^{-1}$, respectively. γ
159 is the uptake coefficient of SO_2 on aerosols, S_p is the aerosol surface area per unit volume of
160 air ($\text{m}^2\cdot\text{m}^{-3}$) (Jacob, 2000). PM_{2.5} mass concentrations ($\mu\text{g}\cdot\text{m}^{-3}$) and mean radius (m) during
161 campaign were roughly calculated utilizing the following empirical formula published by Guo
162 et al. (2014):

$$163 \quad R_p = (0.254 \times C_{(\text{PM}_{2.5})} + 10.259) \times 10^{-9}$$

164 mean density of particles ρ was calculated and showed as $1.5 \times 10^6 \text{ g}\cdot\text{m}^{-3}$ using the volume
165 and surface area formulas of a sphere (Guo et al., 2014). S_p was estimated from the following
166 formula:

$$167 \quad S_p = \frac{C_{(\text{PM}_{2.5})} \times 10^{-6} \text{ g}\cdot\mu\text{g}^{-1}}{4/3 \cdot \pi R_p^3 \cdot \rho} \cdot 4\pi R_p^2$$

168 relative humidity-dependent γ were derived according to Zheng et al. (2015a) during the
169 campaign in this work and showed as the following formular:

$$170 \quad \gamma = \begin{cases} 2 \times 10^{-5}, & \Psi \leq 50\%, \\ 2 \times 10^{-5} + \frac{5 \times 10^{-5} - 2 \times 10^{-5}}{100 - 50\%} \times (\Psi - 50\%), & 50\% \leq \Psi \leq 100\% \end{cases}$$

171 where Ψ referred to RH with the unit of %.

172 **3 Results and Discussion**

173 Based on National Ambient Air Quality Standards of China (HJ633-2012)
174 (https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120302_224166.shtml), air
175 quality index (AQI) was introduced in this work to classify pollution levels (Wang et al., 2015;

176 Kanchan et al., 2015; Xu et al., 2017) and discuss the characteristics of atmospheric pollutants.
177 Briefly, daily concentrations of PM_{2.5} ranged from 0-75, 75-115, 115-150, 150-250 and >250
178 $\mu\text{g}/\text{m}^3$ were classified as clean (C), light polluted (L), moderate polluted (M), heavy polluted
179 (H) and serious polluted (S) periods, respectively.

180 **3.1 The observed evidence for ammonia-rich atmosphere**

181 The characteristics of atmospheric pollutants and meteorological parameters during the studied
182 period were summarized in Supplement (S2.1). In this work, molar ratios of NH₄⁺ vs. anions
183 was used to identify the chemical species of ammonium salts (Zhou et al., 2018; Wang et al.,
184 2021; Liu et al., 2017b; Shi et al., 2019). The calculated results (Supplement, S2.2) showed the
185 predominant chemical species of ammonium gradually varied from the coexistence of
186 ammonium sulfate ((NH₄)₂SO₄) and ammonium nitrate (NH₄NO₃) to the coexistence of
187 ((NH₄)₂SO₄), NH₄NO₃ and ammonium chloride (NH₄Cl) with haze aggravation (Fig. S5).
188 Further, the slope of fitted equation between excess-NH₄⁺ and anions were still lower than 1:1
189 line after neutralized all the measured anions, indicating the ammonia-rich atmosphere (Fig.
190 S5c). To meet the national demand of ultra-low emissions activities (nearly two times lower
191 than former national standard) on gaseous pollutants, heavy usage of ammonia-containing
192 compounds in the process of desulfurization and denitrification (Solera García et al., 2017; Tan
193 et al., 2017) at broadly distributed thermal power plants (>300,000kWh) and the close-set coal-
194 fired heating stations (Fig. 1) resulted ammonia fugitive provided a reasonable explanation on
195 this ammonia-rich atmosphere. Although the retrofit of national demand of ultra-low emissions
196 activities on gaseous pollutants (nearly two times lower than former national standard) has
197 been completed, distributed coal-based enterprises could also emit substantial SO₂ and NO₂
198 and subjecting to heterogeneous reactions to further generate sulfate and nitrate and aggravated
199 the haze events (Fig. S7a, S7b).

200 To show the reaction between ammonia and nitric acid and the other formation processes
201 of nitrate in different (relative) concentrations of sulfate, the data of previous studies and
202 different pollution levels (C, L, M, H, S) in this work were plotted in Fig. 2. When
203 $[\text{NH}_4^+]/[\text{SO}_4^{2-}] \leq 1.5$, the nitrate formation associated with crustal elements rather than
204 ammonium; while $[\text{NH}_4^+]/[\text{SO}_4^{2-}] > 1.5$, the homogeneous gas-phase reactions between NH₃
205 and HNO₃ became the major pathway for atmospheric ammonia to form NH₄NO₃ (Pathak et
206 al., 2009; Liu et al., 2019). The results illustrated that the ammonia-rich regimes were not only
207 found in Hohhot, but also observed in Guangzhou (Huang et al., 2011), Chengdu (Huang et al.,
208 2018), Lanzhou USA West and East, India, Ireland, Europe, Qingdao, Italy, Lin'an (Pathak et
209 al., 2009) in recent decades (Fig. 2). It suggested that atmospheric oxidative modifications in

210 ammonia-rich atmosphere should be a widespread atmospheric issue with significant
 211 contributions on SIA generation. It was worth noting that the slopes of our data were becoming
 212 steeper, coupling with the $\text{NO}_3^-/\text{SO}_4^{2-}$ ratios change from ~4 to about 1, as the increasing
 213 pollution levels. The high PM_{2.5} nitrate concentration during Heavy and Serious stages cannot
 214 be explained by the homogeneous gas-phase reaction involving ammonia and nitric acid, which
 215 may be associating with the heterogeneous reaction in ALW on the surface of the preexisting
 216 aerosols.

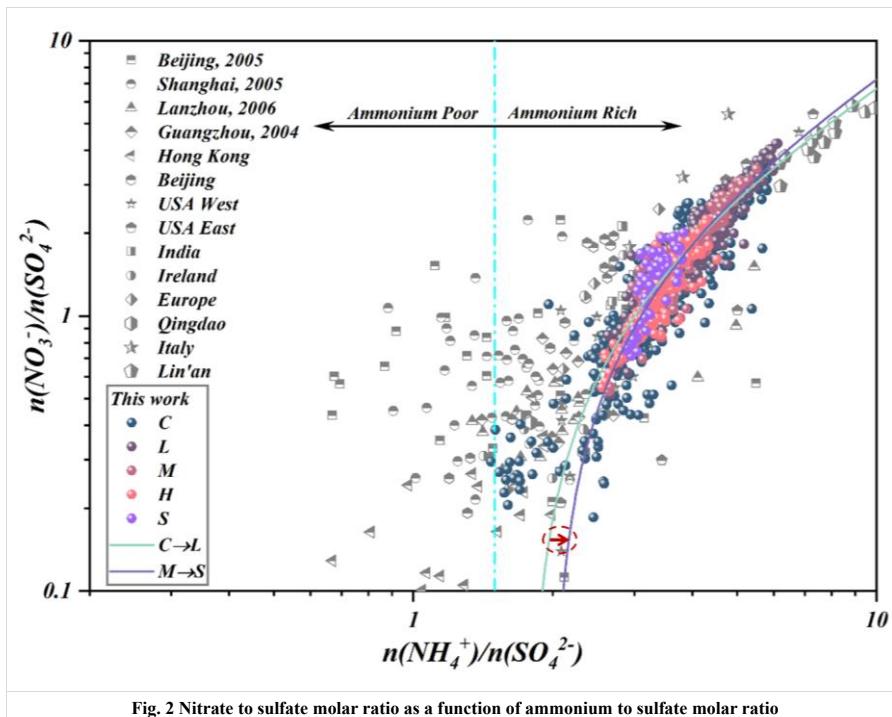


Fig. 2 Nitrate to sulfate molar ratio as a function of ammonium to sulfate molar ratio

217

218 3.2 Driving mechanism of SIAs formation

219 3.2.1 Aerosol liquid water

220 Our results showed that SOR, NOR and SIAs in PM_{2.5} presented increasing trends with the
 221 increasing ALWC during the five pollution levels. The variation of predominant chemical
 222 species of ammonium (Fig. 2) indicated more SIAs will be generated on particles with the
 223 simultaneous increase of ALWC and PM_{2.5} (Fig. 3b). Theoretically, the inorganic compounds
 224 conversion was enhanced via aqueous phase chemistry on moist particles owing to the
 225 continuous partition of gaseous pollutants (e.g., SO₂, NO₂, N₂O₅) in ALW, then disrupted the
 226 equilibrium between the gaseous and condensed phases, resulting in the aggravation of haze

227 events (Xue et al., 2014; Wu et al., 2018; Zheng et al., 2015b; Wang et al., 2016). Considering
228 seasonal heating characteristics, the shift of the equilibrium between gaseous and condensed
229 phases was enhanced with the increasing atmospheric pollutants concentrations due to the coal-
230 fired combustion events in winter. Detailly, owing to hygroscopic nature, the particles must
231 increase their water contents via ALW along with RH (Fig. S8a) to maintain thermodynamic
232 equilibrium and water vapor and simultaneously enhance the oxidation and dissolution of
233 precursors in the micro-solution (ALW) of the particulates. This process elevated the inorganic
234 mass fraction as well as particulate mass concentrations during different pollution stages (Fig.
235 S8b) (Bertram et al., 2009; Wang et al., 2016; Zheng et al., 2015a; Cheng et al., 2016). Due to
236 the larger affinity of H_2SO_4 for NH_3 (aq), sulfate was preferentially and fully neutralized by
237 ammonium in the ammonia-rich atmosphere to generate non-volatile nature of $(\text{NH}_4)_2\text{SO}_4$ (Liu
238 et al., 2017b; Zhou et al., 2018; Wang et al., 2021). Thus, SOR presented higher exponential
239 growth with the elevated AWLC coupling with more sulfate production (Fig. 3b).
240 Concomitantly, the preferentially generated $(\text{NH}_4)_2\text{SO}_4$ further enhanced the hygroscopicity of
241 particulate matter, in turn, helped more ammonia partitioning into moist particulate matter and
242 generating ammonium salts accelerating haze aggravation (Supplement, Fig. S6, Fig. S8c).
243 Thus, most important of all, the sharp increase of inorganic compounds associating with the
244 elevated ALWC significantly modified the specific surface area of particulates and further
245 accelerated the hygroscopic aerosol growth, which simultaneously provided a substrate for the
246 ensuing heterogenous reaction and accelerated the evolution of haze events. Previous work
247 reported that particles of different modes made different contributions to ALWC with the
248 contributions of nuclear, Aitken, accumulation and coarse modes assessed at <1%, 3%, 85%
249 and 12%, respectively, indicating that the contribution of accumulation mode particles to
250 ALWC dominated among all the aerosol particle modes (Tan et al., 2017). It indicated that
251 secondary aerosol formation mainly happens on these fine particles as the surface area and
252 volume of the fine particles are much larger than those of the coarse particles. Thus, the
253 observed significant correlations of ALWC with the ratios ($\text{PM}_{1.0}/\text{PM}_{2.5}$ and $\text{PM}_{2.5}/\text{PM}_{10}$) in
254 this work also indicated that the hygroscopic growth of fine particulate matter ($D_p \leq 2.5\text{um}$)
255 strongly associated with ALWC (Fig. 3a). Both the previous work and our monitoring results
256 suggested that the ratios of $\text{PM}_{1.0}/\text{PM}_{2.5}$ and $\text{PM}_{2.5}/\text{PM}_{10}$ presented the potential possibility to
257 index the hygroscopic growth of particulate matter.

258

Deleted: Meanwhile

Deleted: Accordingly, b

Deleted: could be used as the proxy of

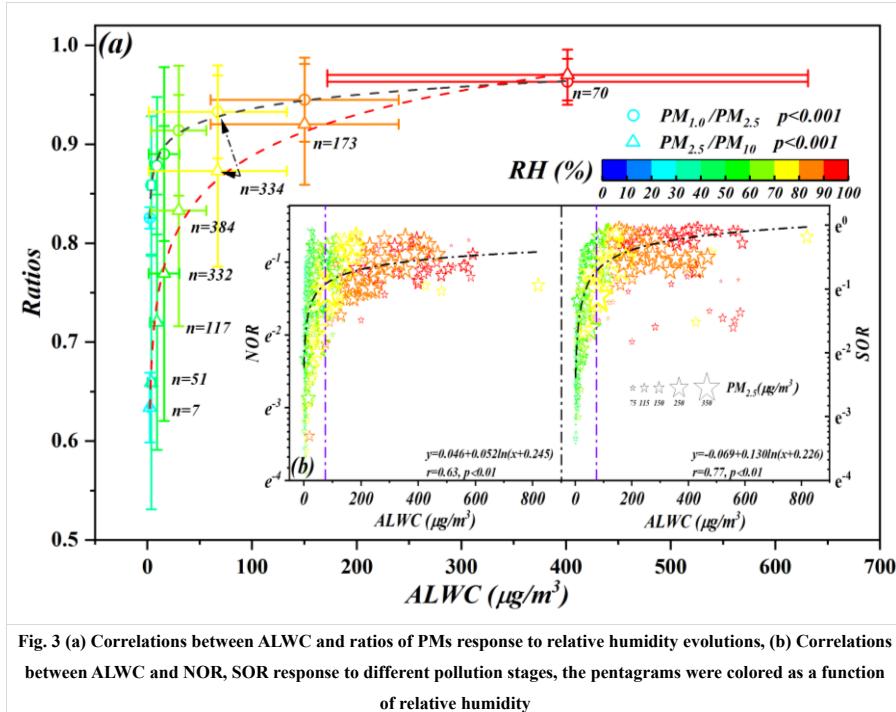


Fig. 3 (a) Correlations between ALWC and ratios of PMs response to relative humidity evolutions, (b) Correlations between ALWC and NOR, SOR response to different pollution stages, the pentagrams were colored as a function of relative humidity

262 3.2.2 Perturbation gases

263 Due to the strict control of SO_2 , atmospheric concentrations of NO_2 and NH_3 gradually became
 264 as the decisive reactive precursors on regional atmospheric secondary particulate matter
 265 generation. Thus, the state-of-the-art framework proposed by Nenes et al. (2020) was carried
 266 out to exam the chemical domain classifications and the decisive precursor based on the data
 267 sets of previous studies (Nenes et al., 2020) and this work (Fig. 4). Due to the
 268 thermodynamically stable property of the preferentially generated $(\text{NH}_4)_2\text{SO}_4$, the semi-
 269 volatile NH_4NO_3 dominate the partitioning of NH_3^{T} (sum of NH_3 and NH_4^+ , same to NO_3^{T})
 270 and NO_3^{T} . Although aqueous NO_3^- concentrations varied with haze processes, the calculated ϵ
 271 (NO_3^{T}) (detailed calculated method could be found in S1.2), which was an equilibrium
 272 parameter between gaseous HNO_3 and particle-phase NO_3^- (Guo et al., 2016; Fang et al., 2017),
 273 presented consistently full loadings of nitrate on the existing particulates during the studied
 274 period (Fig. S9a, Fig. S9b). This could provide clear evidence for the initial HNO_3 sensitive
 275 area and continuous control of HNO_3 during the studied periods. However, with haze
 276 aggravation, significant elevated ALWC resulted in more precursors partitioned in micro-
 277 droplets to maintain water vapor. This process induced a positive shift of HNO_3 dissolution

278 equilibrium and leading more HNO_3 partitioned on particles driven by the Henry's law (e.g.,
279 $\text{HNO}_{3(\text{g})} \leftrightarrow \text{HNO}_{3(\text{aq})}$, $K_H = 2.07 \text{ mol/(L}\cdot\text{Pa)}$). Meanwhile, HNO_3 and HONO could also produce
280 through the reactions of $\text{NO}_2 + \text{H}_2\text{O} \xrightarrow{\text{Het}} \text{HNO}_3 + \text{HONO}$ (Huang et al., 2018). Accordingly,
281 the OH radicals generated by HONO photolysis also contributed to this oxidation processes
282 (Yue et al., 2020; Zhu et al., 2020). These aqueous oxidations processes were evidenced by the
283 observation of significantly elevated HONO and PANs during the haze aggravation
284 (Supplement, Fig. S7c, Fig. S7d). Accordingly, the equations of $\text{NH}_4^+ + \text{NO}_3^- + \text{H}^+ + \text{OH}^- \rightleftharpoons$
285 $\text{NH}_4\text{NO}_3 + \text{H}_2\text{O}$ and $\text{NH}_4^+ + \text{SO}_4^{2-} + \text{H}^+ + \text{OH}^- \rightarrow (\text{NH}_4)_2\text{SO}_4 + \text{H}_2\text{O}$ were shifted to
286 generate more NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ (Nenes et al., 2020; Xie et al., 2020) due to the driving
287 force of more ammonia partitioned in elevated ALWC ($\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 \cdot \text{H}_2\text{O}$, $\text{NH}_3 \cdot \text{H}_2\text{O} \rightleftharpoons$
288 $\text{NH}_4^+ + \text{OH}^-$). Therefore, NH_3 and NO_x became as the decisive factors on regional atmospheric
289 oxidability in the ammonia-rich regime (Zhai et al., 2021; Tan et al., 2017; Liu et al., 2019; Li
290 et al., 2019).

291 Generally, both NH_3 and HNO_3 were the limiting factors governing the aerosol generations
292 for cities of North China due to high loadings of atmospheric ammonia, while NH_3 governed
293 PM formation for the southeast US (SAS) (Zhao et al., 2020). Thanks to the raw data of
294 Shenzhen (SZ) (Wang et al., 2022), we also calculated the ALWC and aerosol pH using
295 ISORROPIA-II and the scatters of SZ suggested obvious chemical transition from $\text{HNO}_3\text{-NH}_3$
296 regime to NH_3 sensitive regime due to the differently originated air masses. Although both
297 cities located in US, the findings in California (CNX) were quite interesting and distributed in
298 the insensitive region and the combined $\text{NH}_3\text{-HNO}_3$ sensitive region due to the moderate NH_3
299 levels and the complicated atmospheric conditions during the observation (Nenes et al., 2020).
300 In our work, the data points (541/744) in summer ($\text{pH}=3.47 \pm 1.29$) mostly lied in HNO_3
301 sensitive region, while chemical domains of perturbation gas limiting the generation of
302 secondary particulate matters presented obvious shifts from HNO_3 sensitive to HNO_3 and NH_3
303 co-sensitive regime with the haze aggravation in winter. Some data points of this work lied in
304 the combined $\text{NH}_3\text{-HNO}_3$ region in winter owing to the more acidic condition. Under the stable
305 pH of aerosols in winter at Hohhot ($\text{pH}=4\text{-}5$), the more important is that a fraction of points
306 will distribute in the combined $\text{NH}_3\text{-HNO}_3$ region when $\text{ALWC} > 75 \mu\text{g/m}^3$, which may be
307 attributed to the aqueous chemical transformation driven by Henry's law mentioned above due
308 to the elevating ALWC. Comparatively, the aerosols pH in summer was significantly lower
309 than those in winter in Hohhot. Compared to TJ and SZ, the aerosols pH of Hohhot in winter
310 was also significantly higher (Fig. 4) due to the acidity of atmospheric PM is largely depended
311 on the alkaline material in surface soils in arid and semi-arid region and the elevated

312 atmospheric ammonia. In terms of seasonal characteristics, the higher temperature in summer
 313 elevates the volatility of NH_4NO_3 and dominates the partitioning of NH_3^{T} in atmospheric phase
 314 to decrease the pH of aerosols. Therefore, as can be seen from Fig. 4, the data points measured
 315 in winter Hohhot characterized as higher pH and low ALWC than those in summer (Hohhot,
 316 SAS, CNX, SZ). According to the framework of Nenes et al. (2020), the transition points of
 317 Hohhot (whether winter or summer) between NH_3 -dominated and HNO_3 -dominated sensitivity
 318 also occurs at a pH around 2 but at lower levels of ALWC. Theoretically, it should be associated
 319 with the more aridity of Hohhot locating in the arid and semi-arid region of China. Our results
 320 provided the evidence for “the additional insight” proposed by Nenes et al. (2020) that the
 321 transition ALWC varies with season change and the aridity of sites, in response to seasonal
 322 variability and climate change. Although this effort could provide sound explanation for
 323 limiting gaseous pollutants on PM formation, mechanisms on their chemical domains,
 324 especially the roles of ALW in different locations with various conditions need further study in
 325 the future.

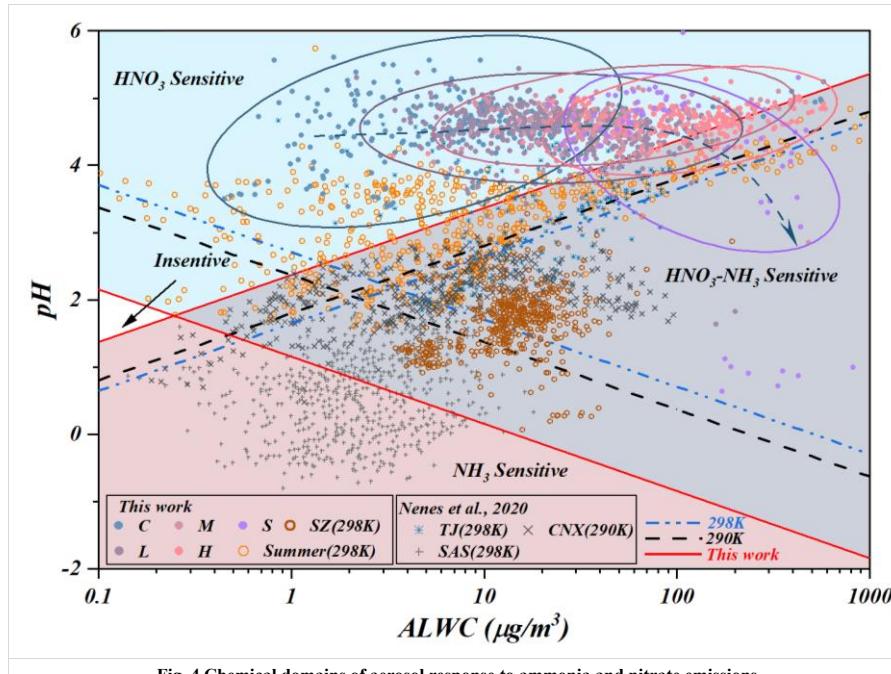
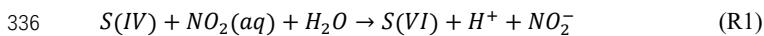
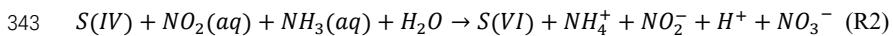



Fig. 4 Chemical domains of aerosol response to ammonia and nitrate emissions

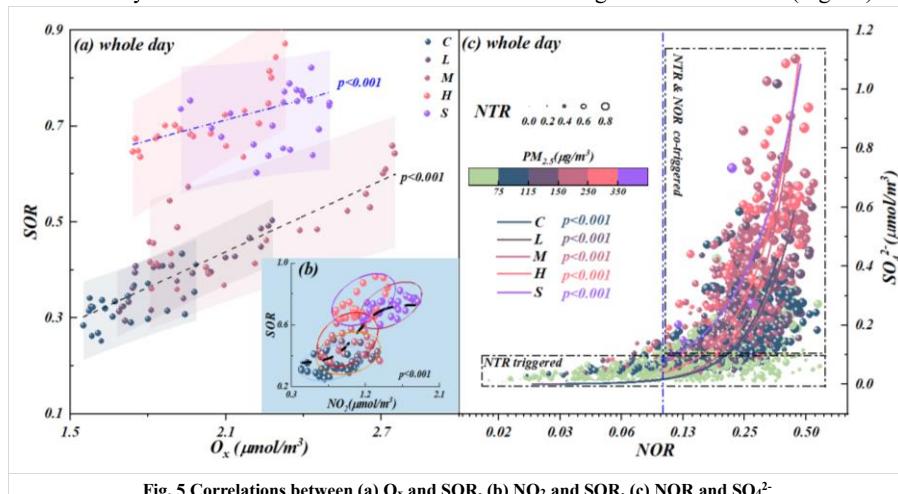

326 3.2.3 The shifting of SIA formation mechanism driven by ALW

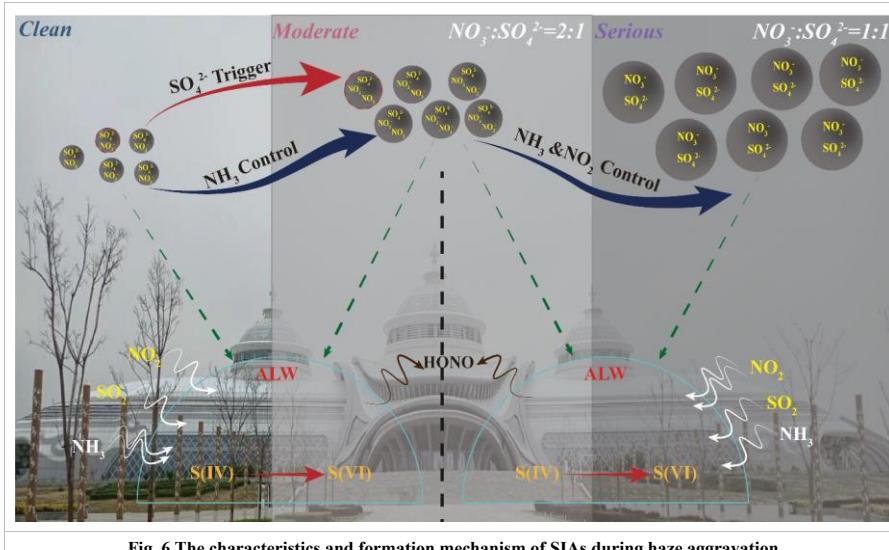
327 It's worth noting that two independent correlations were found between SOR and odd oxygen
 328 (O_x , $\text{O}_x = \text{NO}_2 + \text{O}_3$) during the aggravating processes of haze events, indicating the differential

329 mechanisms of atmospheric oxidability on sulfate generations at different stages (Fig. 5a).
 330 Different to inefficient homogeneous sulfate oxidation efficiency (Supplement, Fig. S10),
 331 significant correlations pairs of NO_2 with SOR (Fig. 5b) and NOR with SO_4^{2-} (Fig. 5c) suggested
 332 the haze aggravation was largely related to the regional NO_2 levels due to the regulating effects
 333 on atmospheric oxidizability. Thus, the aqueous-phase oxidation of S(IV) by NO_2 (aq) was
 334 triggered and accelerated by the increasing ALWC and the following equation (Yao et al., 2020;
 335 Wang et al., 2016) (Supplement, Fig. S11a):

337 Meanwhile, sharp logarithmic increase between SOR and NH_4^+ were also observed from Clean
 338 to Moderate pollution stages (Supplement, Fig. S12). Due to the joint effects of ammonia-rich
 339 atmosphere and ammonia's extremely water-soluble property, sufficient hydroxide generated
 340 by ammonia dissolution forced the NO_2 partitioned in ALW to maintain pH through
 341 neutralization and producing sulfate via R1. Thus, the following equation (R2) was derived
 342 with considering the processes of ammonia hydrolysis, which was evidenced by Fig. S11b.

344 Generally, NOR<0.1 means insignificant nitrogen oxide oxidation, therefore the observed
 345 regime shift of nitrate and ammonia chemical behavior on sulfate generation suggested the
 346 sulfate generation was preferentially triggered by the high ammonia utilization, then
 347 accelerated by the co-effects of ammonia utilization and nitrogen oxide oxidation (Fig. 5c).




Fig. 5 Correlations between (a) O_x and SOR, (b) NO_2 and SOR, (c) NOR and SO_4^{2-}

348 Accordingly, the reaction R2 was activated due to the increased ALWC forced more
 349 ammonia to partition into moist particulate matter driven by the Henry's law in the ammonia-
 350 rich atmosphere ($\text{NH}_3(\text{g}) \rightarrow \text{NH}_3(\text{aq})$) (Supplement, Fig. S9c) (Clegg et al., 1998; Wu et al., 2018;

351 Xie et al., 2020). Meanwhile, our calculated aqueous generated NO_3^- nicely matched theoretical
352 nitrate aqueous generation curve (the solid blue line in Fig. S9b) proposed by Guo et al. (2017),
353 suggesting the pathway of fast sulfate formation from oxidation of S(IV) by NO_2 to generate
354 HONO (Wang et al., 2020) (Supplement, Fig. S11) via the reaction R2. As a result, the
355 thermodynamically stable $(\text{NH}_4)_2\text{SO}_4$ would be preferentially formed to maintain its water
356 vapor pressure and thermodynamic equilibrium, then triggered the haze formation. Thus, the
357 mentioned effects resulted in a pronounced increase of NH_3 partitioning with the haze
358 aggravation, suggesting the importance of ammonia partition on sulfate generations, namely,
359 NTR-controlled regime with $\text{ALWC} < 75 \mu\text{g/m}^3$. In summary, when $\text{ALWC} < 75 \mu\text{g/m}^3$, the
360 sulfate generation was preferentially triggered by high ammonia utilization, then accelerated
361 by nitrogen oxide oxidation from Clean to Light pollution stages (Fig. 5c) with $\text{NOR} < 0.3$,
362 $\text{SOR} < 0.4$ and $\text{NTR} < 0.7$. In this period, the chemical composition of SIAs characterized as the
363 moral ratio of $\text{NO}_3^-:\text{SO}_4^{2-} = 2:1$ (Fig. 6).

364 When $\text{ALWC} > 75 \mu\text{g/m}^3$, the haze was aggravated from Moderate to Serious stages along
365 with the increasing ALWC. As a result of increase in ALW, large amount of H^+ was dissociated
366 during the generation of ammonium sulfate (Supplement, Fig. S13a). From Light to Moderate
367 pollution stages, the solubility SO_2 driven by Henry's law was self-limiting due to the acidity
368 effect in low ALWC (with $\text{ALWC} < 75 \mu\text{g/m}^3$). Therefore, low sulfate concentrations coupled
369 with low ALWC at the beginning of haze event (Supplement, Fig. S13a). However, due to the
370 co-effects of elevated ALWC and hygroscopic nature of pre-generated ammonia sulfate, H^+
371 concentrations were diluted and nearly constant in-situ pH with the increase of ALWC during
372 Heavy and Serious pollution stages (Supplement, Fig. S14) (Wang et al., 2016; Clifton et al.,
373 1988; Huie and Neta, 1986; Lee and Schwartz, 1982). Hence, the significantly elevated ALWC
374 provided more chance for the partition of SO_2 , NO_2 and NH_3 in ALW from Moderate to Serious
375 pollution stages. Theoretically, Henry's constants of NO_2 ($9.74 \times 10^{-8} \text{ mol} \cdot (\text{L} \cdot \text{Pa})^{-1}$) is 3-4 orders
376 of magnitude lower than those of SO_2 ($1.22 \times 10^{-5} \text{ mol} \cdot (\text{L} \cdot \text{Pa})^{-1}$) and NH_3 (6.12×10^{-4}
377 $\text{mol} \cdot (\text{L} \cdot \text{Pa})^{-1}$), however, it is worth noting that the aqueous generated NO_3^- from Moderate to
378 Serious stages rapidly increased 2-5 times higher than Clean and Light stages (Supplement,
379 Fig. S9b). Meanwhile, according to our monitoring results, the solar spectrophotometry at
380 380nm during Moderate to Serious stages was significantly lower than that in Clean stage
381 (Supplement, Fig. S15), suggesting the aqueous oxidation of NO_2 was the predominant
382 compared to chain photolysis (Huang et al., 2018). Accordingly, it could be deduced that
383 aqueous-phase chemistry reaction of SO_2 and NH_3 in ALW, driven by Henry law, became the
384 dominant mechanism for sulfate formation due to more NO_2 was required to take part in the

385 fast sulfate formation with the increase of ALWC in the ammonia-rich atmosphere by the
 386 reaction R2. Thus, with the increasing of ALWC, high concentrations of sulfate and nitrate with
 387 high SOR (0.5-0.9), NOR (0.3-0.5) and NTR (>0.7) induced the haze events becoming Heavy
 388 and Serious levels (Fig. 5c). Simultaneously, the calculated heterogeneous sulfate production
 389 rate (Jacob, 2000; Mcneill, 2015) (Supplement, Fig. S16) presented similar trends with the
 390 impacts of ammonia on sulfate production during different pollution stages (Xue et al., 2016;
 391 Cheng et al., 2016; Liu et al., 2020). It further stated the environmental significance of the
 392 partitioning of SO_2 and NH_3 between gas and aqueous (ALW) phases for SIAs formation and
 393 haze aggravation. Our results provided the evidence of significant negative correlations
 394 between HONO and N_2O (Supplement, Fig. S17) from Moderate to Serious stages and positive
 395 correlations between HONO and SOR (Supplement, Fig. S11a), highlighting the recent reported
 396 secondary aqueous-phase oxidation pathway of SO_2 by HONO from moderate pollution period
 397 ($2\text{N(III)} + 2\text{S(IV)} \rightarrow \text{N}_2\text{O} \uparrow + 2\text{S(VI)} + \text{other products}$) (Wang et al., 2020). In summary,
 398 when $\text{ALWC} > 75 \mu\text{g/m}^3$, aqueous-phase chemistry reaction of SO_2 and NH_3 in ALW became
 399 the prerequisite for SIAs formation driven by Henry's law in the ammonia-rich atmosphere
 400 during Heavy and Serious stages with high SOR (0.5-0.9), NOR (0.3-0.5), NTR (>0.7). In this
 401 period, the chemical composition of SIAs characterized as the molar ratio of $\text{NO}_3^-:\text{SO}_4^{2-}=1:1$
 402 (Fig. 6).

403

404 **3.2.4 The positive feedback of sulfate on nitrate production**

405 Previous works suggested that the homogeneous reaction of NO_2 with OH radicals during
 406 daylight and heterogeneous hydrolysis of N_2O_5 at night were the main routes on nitrate
 407 formation during haze episodes (He et al., 2018; Liu et al., 2020; Liu et al., 2019). Unsurprisingly,
 408 higher nitrate production rates (ΔNO_3^- , the difference of hour concentrations and matrixing
 409 afterwards) were frequently observed in ammonia-rich conditions due to that ammonia-rich
 410 regime was more conducive on nitrate generation. However, the high level of nitrate production
 411 rates (ΔNO_3^-) were found in the area characterizing as high ammonium and low sulfate levels,
 412 suggesting that highly utilizing ammonium and pre-generated sulfate promoting particle-phase
 413 nitrate generations (Fig. 7).

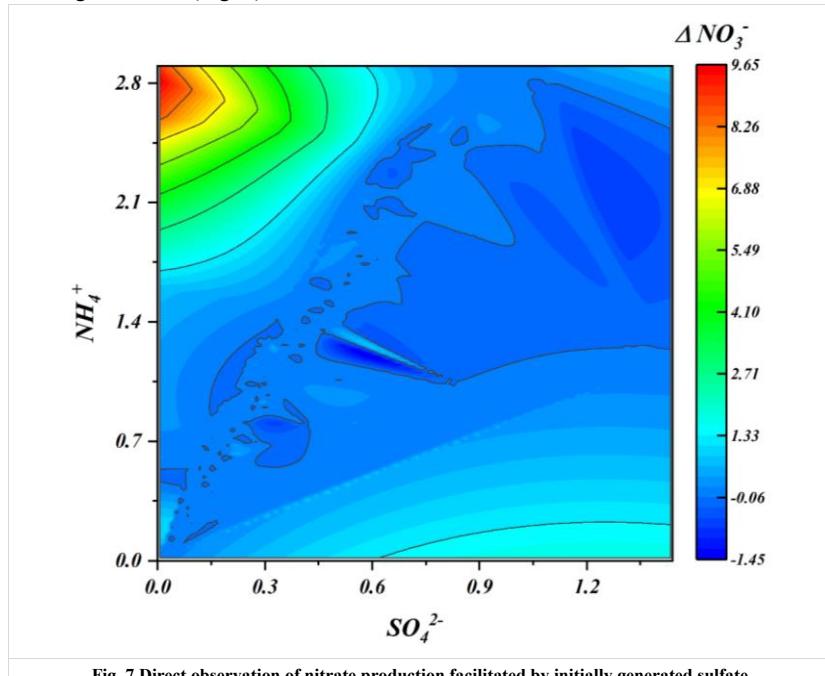


Fig. 7 Direct observation of nitrate production facilitated by initially generated sulfate.

(All data were matrixed to avoid interference caused by dimensionality)

414

415 Here, we proposed a hypothesis about the hydrogen ion concentration to respond the
 416 above observations. As is known to all, apart from the extremely low levels of crustal elements,
 417 ammonia is the only alkaline gas to neutralize the acidic gases in the atmosphere and generate
 418 ammonium ions (Xie et al., 2020). Thus, the concentrations of particulate sulfate and nitrate
 419 are affected by the partitioning of $\text{NH}_4^+/\text{NH}_3$. Thereby, higher values of ΔNO_3^- and ΔSO_4^{2-}

420 always occurred in the regions with higher ammonium ions were not confused (Fig. 7, Fig.
421 S18). According to both our results and published laboratory work (Wang et al., 2016), the
422 acidity of the particulate matter could be significantly modified by the bulk aqueous reaction
423 between NO_2 and SO_2 , in which this reaction could be further enhanced due to in the presence
424 of NH_3 . As a result of the increase in RH, the partitioning of atmospheric ammonia was broken
425 in a deep extent, which enhanced the neutralization of S(VI) by ammonia at the particle surface
426 to generate ammonium sulfate and dissociate huge H^+ (Fig. S13b, red part). Simultaneously,
427 the ALWC did not raised significantly (Fig. S14b) at the beginning of haze event with relative
428 low sulfate concentrations. Thus, hydrogen ions generated from sulfate dissociation absorb
429 ammonia more effectively from the ammonia-rich atmosphere at low relative humidity during
430 the early pollution stages, which significantly promotes the net nitrate production. However,
431 due to the co-effects of elevated RH and hygroscopic nature of pre-generated ammonia sulfate,
432 H^+ concentrations were diluted and shown as nearly constant in-situ pH (Fig. S14a). According
433 to previous works, the reaction between firstly generated sulfate and bisulfate with ammonia
434 were treated as the determination reaction on particle acidity (Weber et al., 2016; Liu et al.,
435 2017a). This reaction is self-limiting due to the acidity effect, namely that it increases the
436 acidity of aqueous phase and in turn reduces the efficiency of Henry's constant for SO_2
437 solubility and reaction rate and reduced the H^+ formation rates from moderate periods,
438 compared with clean periods (Fig. S13b, blue) (Wang et al., 2016; Clifton et al., 1988; Huie
439 and Neta, 1986; Lee and Schwartz, 1982). Due to the co-effects of RH increase and
440 hygroscopic of sulfate, the ALWC was significantly elevated with the worsen of haze. Although
441 more H^+ was generated in this process, no significant decrease in pH was found with the haze
442 aggravation due to the dilution effect of ALWC on H^+ . Previous works suggested that in the
443 case of ALWC increase, nitrate production is controlled by elevated H^+ associating with the
444 increase of sulfate, namely, NO_3^- presented elevating trend with the increases of H^+
445 concentration (Xie et al., 2020). Thus, although H^+ from the dissociation of sulfuric acid and
446 full-loaded particle nitrate in conjunction with the haze aggravation generate particle HNO_3
447 (Fig. S19a) could forcing more ammonia partitioned on the particles to generate ammonium
448 nitrate (Fig. S19b), net nitrate production (ΔNO_3^-) was nearly consistent.

449 **4 Conclusions**

450 The formation of SIAs, especially sulfates and nitrates, was inherently associated with ALWC
451 during the haze aggravation, in which the roles of ALWC should be more significant in
452 ammonia-rich atmosphere. The novelty of our work is to find the shifting of secondary
453 inorganic aerosols formation mechanism during haze aggravation and explain the different

454 roles of ALWC in a broader scale ($\sim 500 \text{ ug/m}^3$) in ammonia-rich atmosphere based on the in-
455 situ high-resolution on-line monitoring data sets. The results showed that chemical domains of
456 perturbation gas limiting the generation of secondary particulate matters presented obvious
457 shifts from HNO_3 sensitive to HNO_3 and NH_3 co-sensitive regime with the haze aggravation,
458 indicating the powerful driving effects of ammonia in ammonia-rich atmosphere. When
459 $\text{ALWC} < 75 \text{ ug/m}^3$, the sulfate generation was preferentially triggered by the high ammonia
460 utilization, then accelerated by nitrogen oxide oxidation from Clean to Moderate pollution
461 stages, characterizing as $\text{NOR} < 0.3$, $\text{SOR} < 0.4$, $\text{NTR} < 0.7$ and the moral ratio of $\text{NO}_3^-:\text{SO}_4^{2-} = 2:1$.
462 While $\text{ALWC} > 75 \text{ ug/m}^3$, aqueous-phase chemistry reaction of SO_2 and NH_3 in ALW became
463 the prerequisite for SIAs formation driven by Henry's law in the ammonia-rich atmosphere
464 during Heavy and Serious stages, characterizing as high SOR (0.5-0.9), NOR (0.3-0.5), NTR
465 (> 0.7) and the moral ratio of $\text{NO}_3^-:\text{SO}_4^{2-} = 1:1$. A positive feedback of sulfate on nitrate
466 production was also observed in this work. Our work provides a potential explanation for the
467 interactive mechanism and feedback between nitric aqueous chemistry and sulfate formation
468 in ammonia-rich atmosphere based on high-resolution field observation. It implies the target
469 controlling of haze should not simply focus on SO_2 and NO_2 , more attention should be paid on
470 gaseous precursors (e.g., SO_2 , NO_2 , NH_3) and aerosol chemical constitution during different
471 haze stages.

472

473 *Data availability.* All data of this study are available from the corresponding author upon
474 reasonable request (lcw2008@imu.edu.cn).

475

476 *Supplement.* The Supplement related to this article is available online at

477

478 *Author Contributions.* FX: Data curation, Formal analysis, Software, Writing-original draft.
479 YS: Investigation, Formal analysis. YLT: Methodology, Software. YSH: Investigation, Formal
480 analysis. XJZ: Investigation, Formal analysis, Software. PW: Methodology, Investigation.
481 RHY: Software, Writing-review & editing. WW: Investigation, Validation, Writing-review &
482 editing. JH: Investigation, Methodology. JYX: Investigation, Validation, Supervision, Writing-
483 review & editing. CWL: Initiating and leading this research, Supervision, Writing-review &
484 editing.

485

486 *Competing interest.* The authors declared that they have no conflict of interest.

487

488 *Acknowledgments.* This work is supported by Science and Technology Major Project on Air
489 Pollution Prevention and Prediction in Hohhot-Baotou-Ordos Cities Group of Inner Mongolia
490 (No. 2020ZD0013), National Natural Science Foundation of China (No. 42167028, 41763014)
491 and Science Fund for Distinguished Young Scholars of Inner Mongolia (2019JQ05).

492

493 **References**

494 Ansari, A. S. and Pandis, S. N.: Water Absorption by Secondary Organic Aerosol and Its Effect on Inorganic
495 Aerosol Behavior, *Environ. Sci. Technol.*, 34, 71-77, 10.1021/es990717q, 2000.

496 Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and
497 Coffman, D. J.: Direct observations of N_2O_5 reactivity on ambient aerosol particles, *Geophys. Res. Lett.*, 36,
498 <https://doi.org/10.1029/2009GL040248>, 2009.

499 Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., and Xu, W. Y.: A study of aerosol liquid water content based on
500 hygroscopicity measurements at high relative humidity in the North China Plain *Atmos. Chem. Phys.*, 14,
501 6417-6426, <https://doi.org/10.5194/acp-14-6417-2014>, 2014.

502 Carlton, A. and Turpin, B.: Particle partitioning potential of organic compounds is highest in the Eastern US and
503 driven by anthropogenic water, *Atmos. Chem. Phys.*, 13, 10203-10214, 2013.

504 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl,
505 U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in
506 China, *Sci. Adv.*, 2, e1601530, 10.1126/sciadv.1601530, 2016.

507 Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the System $\text{H}^+ - \text{NH}_4^+ - \text{SO}_4^{2-} - \text{NO}_3^-$
508 $- \text{H}_2\text{O}$ at Tropospheric Temperatures, *J. Phys. Chem. A*, 102, 2137-2154, 10.1021/jp973042r, 1998.

509 Clifton, C. L., Altstein, N., and Huie, R. E.: Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over
510 the pH range 5.3-13, *Environ. Sci. Technol.*, 22, 586-589, 10.1021/es00170a018, 1988.

511 Davies, J. F. and Wilson, K. R.: Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto
512 viscous aerosol surfaces, *Chem. Sci.*, 6, 7020-7027, 10.1039/C5SC02326B, 2015.

513 Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient Particles, Soluble
514 Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity, *Environ. Sci. Technol.*, 51,
515 2611-2620, 10.1021/acs.est.6b06151, 2017.

516 Fu, H. and Chen, J.: Formation, features and controlling strategies of severe haze-fog pollutions in China, *Sci.
517 Total Environ.*, 578, 121-138, <https://doi.org/10.1016/j.scitotenv.2016.10.201>, 2017.

518 Gao, J., Wei, Y., Shi, G., Yu, H., Zhang, Z., Song, S., Wang, W., Liang, D., and Feng, Y.: Roles of RH, aerosol pH
519 and sources in concentrations of secondary inorganic aerosols, during different pollution periods, *Atmos.
520 Environ.*, 241, 117770, <https://doi.org/10.1016/j.atmosenv.2020.117770>, 2020.

521 Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., Ji, D., Sun, Y., Dong,
522 H., Squires, F. A., Fu, P., and Wang, Z.: Role of Ammonia on the Feedback Between AWC and Inorganic
523 Aerosol Formation During Heavy Pollution in the North China Plain, *Earth Space Sci.*, 6, 1675-1693,
524 <https://doi.org/10.1029/2019EA000799>, 2019.

525 Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R.
526 J.: Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during
527 the 2010 CalNex campaign, *Atmos. Chem. Phys.*, 17, 5703-5719, 10.5194/acp-17-5703-2017, 2017.

528 Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C., Lopez-Hilfiker, F. D., Dibb, J. E., Jimenez, J. L.,
529 Thornton, J. A., Brown, S. S., Nenes, A., and Weber, R. J.: Fine particle pH and the partitioning of nitric

530 acid during winter in the northeastern United States, *J. Geophys. Res.: Atmos.*
531 , 121, 10,355-310,376, <https://doi.org/10.1002/2016JD025311>, 2016.

532 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M.
533 J., and Zhang, R.: Elucidating severe urban haze formation in China, *Proc. Natl. Acad. Sci. USA*, 111,
534 17373-17378, 10.1073/pnas.1419604111, 2014.

535 Gwynn, R. C., Burnett, R. T., and Thurston, G. D.: A time-series analysis of acidic particulate matter and daily
536 mortality and morbidity in the Buffalo, New York, region, *Environ. Health Persp.*, 108, 125-133,
537 doi:10.1289/ehp.00108125, 2000.

538 He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric $\Delta^{17}\text{O}(\text{NO}_3^-)$ reveals
539 nocturnal chemistry dominates nitrate production in Beijing haze, *Atmos. Chem. Phys.*, 18, 14465-14476,
540 10.5194/acp-18-14465-2018, 2018.

541 Hodas, N., Sullivan, A. P., Skog, K., Keutsch, F. N., Collett, J. L., Decesari, S., Facchini, M. C., Carlton, A. G.,
542 Laaksonen, A., and Turpin, B.: Aerosol Liquid Water Driven by Anthropogenic Nitrate: Implications for
543 Lifetimes of Water-Soluble Organic Gases and Potential for Secondary Organic Aerosol Formation, *Environ.
544 Sci. Technol.*, 48, 11127-11136, 10.1021/es5025096, 2014.

545 Huang, R.-J., Duan, J., Li, Y., Chen, Q., Chen, Y., Tang, M., Yang, L., Ni, H., Lin, C., Xu, W., Liu, Y., Chen, C.,
546 Yan, Z., Ovadnevaite, J., Ceburnis, D., Dusek, U., Cao, J., Hoffmann, T., and O'Dowd, C. D.: Effects of
547 NH_3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing, *Sci. Total
548 Environ.*, 717, 137190, <https://doi.org/10.1016/j.scitotenv.2020.137190>, 2020.

549 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M.,
550 Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A.,
551 Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U.,
552 Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze
553 events in China, *Nature*, 514, 218-222, 10.1038/nature13774, 2014.

554 Huang, X., Qiu, R., Chan, C. K., and Ravi Kant, P.: Evidence of high $\text{PM}_{2.5}$ strong acidity in ammonia-rich
555 atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium
556 at $[\text{NH}_4^+]/[\text{SO}_4^{2-}] = 1.5$, *Atmos. Res.*, 99, 488-495, <https://doi.org/10.1016/j.atmosres.2010.11.021>, 2011.

557 Huang, X., Zhang, J., Luo, B., Wang, L., Tang, G., Liu, Z., Song, H., Zhang, W., Yuan, L., and Wang, Y.: Water-
558 soluble ions in $\text{PM}_{2.5}$ during spring haze and dust periods in Chengdu, China: Variations, nitrate formation
559 and potential source areas, *Environ. Pollut.*, 243, 1740-1749, <https://doi.org/10.1016/j.envpol.2018.09.126>,
560 2018.

561 Huie, R. E. and Neta, P.: Kinetics of one-electron transfer reactions involving chlorine dioxide and nitrogen
562 dioxide, *J. Phys. Chem.*, 90, 1193-1198, 10.1021/j100278a046, 1986.

563 Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, *Atmos. Environ.*, 34, 2131-2159,
564 [https://doi.org/10.1016/S1352-2310\(99\)00462-8](https://doi.org/10.1016/S1352-2310(99)00462-8), 2000.

565 Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., Wang, Q., and Cribb, M.:
566 Significant contribution of organics to aerosol liquid water content in winter in Beijing, China, *Atmos. Chem.
567 Phys.*, 20, 901-914, <https://doi.org/10.5194/acp-20-901-2020>, 2020.

568 Kanchan, K., Gorai, A. K., and Goyal, P.: A review on air quality indexing system, *Asian J Atmos. Enviro.*, 9,
569 101-113, 2015.

570 Lavigne, E., Yasseen, A. S., Stieb, D. M., Hystad, P., van Donkelaar, A., Martin, R. V., Brook, J. R., Crouse, D.
571 L., Burnett, R. T., Chen, H., Weichenthal, S., Johnson, M., Villeneuve, P. J., and Walker, M.: Ambient air
572 pollution and adverse birth outcomes: Differences by maternal comorbidities, *Enviro. Res.*, 148, 457-466,
573 <https://doi.org/10.1016/j.envres.2016.04.026>, 2016.

574 Lee, Y. and Schwartz, S.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, Elsevier, New York,
575 pp 453-466 pp.1982.

576 Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid transition in winter aerosol
577 composition in Beijing from 2014 to 2017: response to clean air actions, *Atmos. Chem. Phys.*, 19, 11485-
578 11499, 10.5194/acp-19-11485-2019, 2019.

579 Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.: Fine particle pH
580 during severe haze episodes in northern China, *Geophys. Res. Lett.*, 44, 5213-5221,
581 <https://doi.org/10.1002/2017GL073210>, 2017a.

582 Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang, S., Xu, T., Kang, L., Cai, X., Zhang,
583 H., Yang, F., Wang, H., Yu, J. Z., Lau, A. K. H., He, L., Huang, X., Duan, L., Ding, A., Xue, L., Gao, J., Liu,
584 B., and Zhu, T.: Ammonia emission control in China would mitigate haze pollution and nitrogen deposition,
585 but worsen acid rain, *Proc. Natl. Acad. Sci. USA*, 116, 7760-7765, 10.1073/pnas.1814880116, 2019.

586 Liu, P., Ye, C., Xue, C., Zhang, C., Mu, Y., and Sun, X.: Formation mechanisms of atmospheric nitrate and sulfate
587 during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry,
588 *Atmos. Chem. Phys.*, 20, 4153-4165, 10.5194/acp-20-4153-2020, 2020.

589 Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles:
590 Implications for Sulfate Formation in Polluted Environments, *Environ. Sci. Technol.*, 55, 4227-4242,
591 10.1021/acs.est.0c06496, 2021.

592 Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., and Wang, Y.: Size-resolved aerosol water-soluble ions during the
593 summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols,
594 *Chemosphere*, 183, 119-131, <https://doi.org/10.1016/j.chemosphere.2017.05.095>, 2017b.

595 McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic
596 Aerosols, *Environ. Sci. Technol.*, 49, 1237-1244, 10.1021/es5043707, 2015.

597 Nenes, A., Pandis, S. N., Weber, R. J., and Russell, A.: Aerosol pH and liquid water content determine when
598 particulate matter is sensitive to ammonia and nitrate availability, *Atmos. Chem. Phys.*, 20, 3249-3258,
599 10.5194/acp-20-3249-2020, 2020.

600 Nguyen, T., Petters, M., Suda, S., Guo, H., Weber, R., and Carlton, A.: Trends in particle-phase liquid water during
601 the Southern Oxidant and Aerosol Study, *Atmos. Chem. Phys.*, 14, 10911-10930, 2014.

602 Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V. M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X.
603 Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes
604 on HONO chemistry in eastern China, *Atmos. Chem. Phys.*, 15, 1147-1159, 10.5194/acp-15-1147-2015,
605 2015.

606 Nozière, B., Dziedzic, P., and Córdova, A.: Inorganic ammonium salts and carbonate salts are efficient catalysts
607 for aldol condensation in atmospheric aerosols, *Phys. Chem. Chem. Phys.*, 12, 3864-3872,
608 10.1039/B924443C, 2010.

609 Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China: nitrate
610 formation in an ammonia-deficient atmosphere, *Atmos. Chem. Phys.*, 9, 1711-1722, 10.5194/acp-9-1711-
611 2009, 2009.

612 Rumsey, I. C., Cowen, K. A., Walker, J. T., Kelly, T. J., Hanft, E. A., Mishoe, K., Rogers, C., Proost, R., Beachley,
613 G. M., Lear, G., Frelink, T., and Otjes, R. P.: An assessment of the performance of the Monitor for AeRosols
614 and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds, *Atmos. Chem.
615 Phys.*, 14, 5639-5658, 10.5194/acp-14-5639-2014, 2014.

616 Shang, D., Peng, J., Guo, S., Wu, Z., and Hu, M.: Secondary aerosol formation in winter haze over the Beijing-
617 Tianjin-Hebei Region, China, *Front Env. Sci. Eng.*, 15, 34, 10.1007/s11783-020-1326-x, 2020.

618 Shi, G., Xu, J., Shi, X., Liu, B., Bi, X., Xiao, Z., Chen, K., Wen, J., Dong, S., Tian, Y., Feng, Y., Yu, H., Song, S.,
619 Zhao, Q., Gao, J., and Russell, A. G.: Aerosol pH Dynamics During Haze Periods in an Urban Environment
620 in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and
621 Secondary Aerosol Formation and Urban Environment, *J. Geophys. Res.: Atmos.*
622 , 124, 9730-9742, <https://doi.org/10.1029/2018JD029976>, 2019.

623 Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer model of gas-particle interactions in
624 aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics,
625 oxidants and water, *Atmos. Chem. Phys.*, 12, 2777-2794, 10.5194/acp-12-2777-2012, 2012.

626 Solera García, M. A., Timmis, R. J., Van Dijk, N., Whyatt, J. D., Leith, I. D., Leeson, S. R., Braban, C. F., Sheppard,
627 L. J., Sutton, M. A., and Tang, Y. S.: Directional passive ambient air monitoring of ammonia for fugitive
628 source attribution; a field trial with wind tunnel characteristics, *Atmos. Environ.*, 167, 576-585,
629 <https://doi.org/10.1016/j.atmosenv.2017.07.043>, 2017.

630 Song, C. H., Kim, C. M., Lee, Y. J., Carmichael, G. R., Lee, B. K., and Lee, D. S.: An evaluation of reaction
631 probabilities of sulfate and nitrate precursors onto East Asian dust particles, *J. Geophys. Res. Atmos.*, 112,
632 D18206, <https://doi.org/10.1029/2006JD008092>, 2007.

633 Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH
634 for Beijing winter haze as inferred from different thermodynamic equilibrium models, *Atmos. Chem. Phys.*,
635 18, 7423-7438, 10.5194/acp-18-7423-2018, 2018.

636 Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P., Deng, X., and Wu, D.: An analysis of aerosol liquid water
637 content and related impact factors in Pearl River Delta, *Sci. Total Environ.*, 579, 1822-1830, 2017.

638 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng, J., Guo, S., and Meng, J.:
639 Persistent sulfate formation from London Fog to Chinese haze, *Proc. Natl. Acad. Sci. USA*, 113, 13630-
640 13635, 2016.

641 Wang, G., Chen, J., Xu, J., Yun, L., Zhang, M., Li, H., Qin, X., Deng, C., Zheng, H., Gui, H., Liu, J., and Huang,
642 K.: Atmospheric Processing at the Sea-Land Interface Over the South China Sea: Secondary Aerosol
643 Formation, Aerosol Acidity, and Role of Sea Salts, *J. Geophys. Res.: Atmos.*
644 , 127, e2021JD036255, <https://doi.org/10.1029/2021JD036255>, 2022.

645 Wang, H., Wang, X., Zhou, H., Ma, H., Xie, F., Zhou, X., Fan, Q., Lü, C., and He, J.: Stoichiometric characteristics
646 and economic implications of water-soluble ions in PM_{2.5} from a resource-dependent city, *Environ. Res.*,
647 193, 110522, <https://doi.org/10.1016/j.envres.2020.110522>, 2021.

648 Wang, J., Li, J., Ye, J., Zhao, J., and Jacob, D. J.: Fast sulfate formation from oxidation of SO₂ by NO₂ and HONO
649 observed in Beijing haze, *Nat. Commun.*, 11, 2844, 2020.

650 Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez, A., and Zhou, B.: Atmospheric ammonia
651 and its impacts on regional air quality over the megacity of Shanghai, China, *Sci. Rep.*, 5, 15842,
652 10.1038/srep15842, 2015.

653 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate
654 concentrations over the past 15 years, *Nat. Geosci.*, 9, 282-285, 10.1038/ngeo2665, 2016.

655 Wong, J. P. S., Lee, A. K. Y., and Abbatt, J. P. D.: Impacts of Sulfate Seed Acidity and Water Content on Isoprene
656 Secondary Organic Aerosol Formation, *Environ. Sci. Technol.*, 49, 13215-13221, 10.1021/acs.est.5b02686,
657 2015.

658 Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K., Guo, S., Zeng, L., and Zhang, Y.: Aerosol
659 Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the
660 North China Plain, *Environ. Sci. Technol. Lett.*, 5, 160-166, 10.1021/acs.estlett.8b00021, 2018.

661 Xie, F., Zhou, X., Wang, H., Gao, J., Hao, F., He, J., and Lü, C.: Heating events drive the seasonal patterns of

662 volatile organic compounds in a typical semi-arid city, *Sci. Total Environ.*, 788, 147781,
663 <https://doi.org/10.1016/j.scitotenv.2021.147781>, 2021.

664 Xie, Y., Wang, G., Wang, X., Chen, J., Chen, Y., Tang, G., Wang, L., Ge, S., Xue, G., Wang, Y., and Gao, J.:
665 Nitrate-dominated PM_{2.5} and elevation of particle pH observed in urban Beijing during the winter of 2017,
666 *Atmos. Chem. Phys.*, 20, 5019-5033, 10.5194/acp-20-5019-2020, 2020.

667 Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang, S., Sun,
668 Z., and Xu, B.: Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing,
669 *Environ. Pollut.*, 227, 296-305, <https://doi.org/10.1016/j.envpol.2017.04.076>, 2017.

670 Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Effect of nitrate and sulfate relative abundance in
671 PM_{2.5} on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a
672 polluted receptor site, *Atmos. Environ.*, 99, 24-31, <https://doi.org/10.1016/j.atmosenv.2014.09.049>, 2014.

673 Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Sulfate Formation Enhanced by a Cocktail
674 of High NO_x, SO₂, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An
675 Observation-Based Modeling Investigation, *Environ. Sci. Technol.*, 50, 7325-7334,
676 10.1021/acs.est.6b00768, 2016.

677 Yao, L., Fan, X., Yan, C., Kurtén, T., Daellenbach, K. R., Li, C., Wang, Y., Guo, Y., Dada, L., Rissanen, M. P., Cai,
678 J., Tham, Y. J., Zha, Q., Zhang, S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J., Chan, T., Shen, J.,
679 Kujansuu, J. T., Kangasluoma, J., Jiang, J., Wang, L., Worsnop, D. R., Petäjä, T., Kermanen, V.-M., Liu, Y.,
680 Chu, B., He, H., Kulmala, M., and Bianchi, F.: Unprecedented Ambient Sulfur Trioxide (SO₃) Detection:
681 Possible Formation Mechanism and Atmospheric Implications, *Environ. Sci. Technol. Lett.*, 7, 809-818,
682 10.1021/acs.estlett.0c00615, 2020.

683 Yue, F., He, P., Chi, X., Wang, L., Yu, X., Zhang, P., and Xie, Z.: Characteristics and major influencing factors of
684 sulfate production via heterogeneous transition-metal-catalyzed oxidation during haze evolution in China,
685 *Atmos. Pollut. Res.*, 11, 1351-1358, <https://doi.org/10.1016/j.apr.2020.05.014>, 2020.

686 Zhai, S., Jacob, D. J., Wang, X., Liu, Z., Wen, T., Shah, V., Li, K., Moch, J. M., Bates, K. H., Song, S., Shen, L.,
687 Zhang, Y., Luo, G., Yu, F., Sun, Y., Wang, L., Qi, M., Tao, J., Gui, K., Xu, H., Zhang, Q., Zhao, T., Wang,
688 Y., Lee, H. C., Choi, H., and Liao, H.: Control of particulate nitrate air pollution in China, *Nat. Geosci.*,
689 10.1038/s41561-021-00726-z, 2021.

690 Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.: Formation of
691 Urban Fine Particulate Matter, *Chem. Rev.*, 115, 3803-3855, 10.1021/acs.chemrev.5b00067, 2015.

692 Zhao, Q., Nenes, A., Yu, H., Song, S., Xiao, Z., Chen, K., Shi, G., Feng, Y., and Russell, A. G.: Using High-
693 Temporal-Resolution Ambient Data to Investigate Gas-Particle Partitioning of Ammonium over Different
694 Seasons, *Environ. Sci. Technol.*, 54, 9834-9843, 10.1021/acs.est.9b07302, 2020.

695 Zheng, B., Zhang, Q., Zhang, Y., He, K., Wang, K., Zheng, G., Duan, F., Ma, Y., and Kimoto, T.: Heterogeneous
696 chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during
697 the January 2013 haze episode in North China, *Atmos. Chem. Phys.*, 15, 2031-2049, 2015a.

698 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D.,
699 Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic
700 weather, regional transport and heterogeneous reactions, *Atmos. Chem. Phys.*, 15, 2969-2983, 2015b.

701 Zhou, H., Lü, C., He, J., Gao, M., Zhao, B., Ren, L., Zhang, L., Fan, Q., Liu, T., He, Z., Dudagula, Zhou, B., Liu,
702 H., and Zhang, Y.: Stoichiometry of water-soluble ions in PM_{2.5}: Application in source apportionment for a
703 typical industrial city in semi-arid region, Northwest China, *Atmos. Res.*, 204, 149-160,
704 <https://doi.org/10.1016/j.atmosres.2018.01.017>, 2018.

705 Zhu, Y., Li, W., Lin, Q., Yuan, Q., Liu, L., Zhang, J., Zhang, Y., Shao, L., Niu, H., Yang, S., and Shi, Z.: Iron

706 solubility in fine particles associated with secondary acidic aerosols in east China, Environ. Pollut., 264,
707 114769, <https://doi.org/10.1016/j.envpol.2020.114769>, 2020.

708