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Section S1. Observation instruments and factors 25 

Hourly data for meteorological parameters, gaseous pollutants (NO2 and O3), PM2.5 and its major chemical 26 

composition during the campaign were measured online. The meteorological parameters were obtained from a 27 

meteorological monitor (WXT520, VAISALA Inc., FL), which uses ultrasound to measure wind speed and direction, and 28 

a PTU module to measure atmospheric pressure, temperature and humidity using capacitive measurements; O3 and NO2 29 

were measured by a ozone analyzer (49i-PS, Thermo Fisher Scientific, US) and NOx (MODEL450i, Thermo Fisher 30 

Scientific, US) analyzer respectively; PM2.5 mass concentration was measured by an online particulate matter monitor 31 

(BAM1020. Met One Inc., US) using the β-ray method; the concentration of the carbonaceous component of PM2.5 was 32 

measured using a semi-continuous OC/EC analyzer (RT-4, Sunset Laboratory Inc, US) (Nicolosi et al., 2018; Zhang et al., 33 

2017); ions and elements were measured by a MARGA ionic online analyzer (ADI2080, Metrohm, CHN) (Makkonen et 34 

al., 2012) and a atmospheric elements online monitor (EHM-X200, Tianrui, CHN). 35 

 36 

 37 

Figure S1. Time series of PM2.5, chemical components and organic molecular tracers (PAHs, polycyclic aromatic 38 

hydrocarbons; DCAs, dicarboxylic acids; FAs, fatty acids; ARAs, aromatic acids; SOA-T, secondary organic aerosol tracers; 39 

crustal=2.20×[Al]+2.49×[Si]+1.63×[Ca]+2.42×[Fe]+1.94×[Ti] (Huang et al., 2014). ) 40 
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 43 

Figure S2. The variation of the total spatial variance (Choose the most appropriate clustering case based on the change in total 44 

spatial variance (TSV). The point raised down by TSV were selected as the optimal number of clusters, and the optimal solution of 45 

four clusters was finally extracted in this study (He et al., 2020).) 46 
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Figure S3. Correlation of Azelaic (Nonanoic) acid/palmitic acid ratio and oleic acid/palmitic acid ratio for the ambient samples 48 

 49 



 

 

 50 

Figure S4. Correlation of X9-oxononanoic acid with oleic acid normalized by palmitic acid for the ambient samples under 51 

different sources of air masses 52 

 53 

 54 

Figure S5. Day-to-day fitting of oleic acid normalized by palmitic acid 55 

 56 
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 59 

Figure S6. Day-to-day fitting of linoleic acid normalized by palmitic acid 60 

 61 

Section S2. Source apportionment using PMF 62 

Table S1 lists the input PM2.5 and its components in the PMF modeling. The preferential input species for PMF are 63 

those with high abundance and source specific (Norris et al., 2014). Generally, organic markers with lower volatility and 64 

lower reactivity were selected. Figure S7(a) shows the PMF-resolved source profiles and time series of source 65 

contributions to OC for each source factor. Figure S7(b, c) shows the campaign-average percentage source contributions 66 

to OC and PM2.5 from the PMF result (The time period is the whole observation period using TAG from January to 67 

March 2021, that is, the period of Figure S1). Here, we only briefly present the identification of each source factor.  68 

A total of 10 factors are identified. Among them, seven are primary sources, they are industrial emission, biomass 69 

burning, vehicle exhaust, coal combustion, dust, cooking and fireworking. Three secondary sources, namely, secondary 70 

nitrate, secondary sulfate and SOA factor (Li et al., 2020; Wang et al., 2017). 71 

Secondary nitrate factor is identified by high contributions of nitrate and ammonium. The secondary sulfate factor is 72 

characterized by high loadings of sulfate and ammonium. The SOA factor is characterized by high loadings of an 73 

anthropogenic SOA tracer (phthalic acid), isoprene SOA tracer (2-methylglyceric acid) and α-pinene SOA tracers (3-74 

hydroxyglutaric acid, pinic acid and cis-pinonic acid) (Wang et al., 2017). The profile of industrial emission contains 75 

high loadings of Cr, Zn, Fe and Mn (Men et al., 2019; Pant and Harrison, 2013). Industry activities related to steel 76 

production, plating, and metallurgy often emit a large amount of these metallic elements. Biomass burning is identified 77 

by high loadings of levoglucosan and mannosan (Feng et al., 2013; Wang et al., 2019). The sixth factor contains a high 78 



 

 

abundance of n-alkanes and hopanes, and is identified to be vehicle exhaust (Pant and Harrison, 2013; Wang et al., 2017). 79 

Coal combustion is identified by high loadings of Se, As and Pb (Chen et al., 2013; Wang et al., 2017), and the dust 80 

factor is distinguished by crustal elements (ions) Ca, Si, and Ti. The cooking factor is distinguished by fatty acids (oleic 81 

acid, palmitic acid and stearic acid) (Li et al., 2020). The fireworking factor is identified by high loadings of flammable 82 

metals such as Mg2+, Cu and Ba, etc.  83 

During the whole observation period with TAG, although the cooking factor contributes only a small fraction of 84 

PM2.5 (4%), it accounts for 10.8% of the total OC, indicating the importance of cooking emissions to OM in the urban 85 

metropolis. 86 

  

Figure S7. PMF resolved factor profiles (percentage of each species in each factor) (a); percentage contributions of individual 87 

factors to PM2.5 (b) and to OC (c) 88 
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Table S1. PM2.5 and its chemical components included in the PMF analysis  90 

naming grouping unit concentration 

Alk_odd n-C25, n-C27, n-C29, n-C31 and n-C33  ng/m3 14.83 

Alk_even n-C24, n-C26, n-C28, n-C30 and n-C32 ng/m3 17.65 

C30αβ 17α(H)21β(H)-hopane ng/m3 0.27 

C29αβ 17α(H)21β(H)-30-norhopane ng/m3 0.21 

Tm 17α(H)-22,29,30-trisnorhopane ng/m3 0.1 

C31αβR 17α(H)21β(H)-(22R)-homohopane ng/m3 0.1 

C31αβS 17α(H)21β(H)-(22S)-homohopane ng/m3 0.17 

PAHs228 Benzo[a]anthracene, Chrysene ng/m3 0.96 

PAHs252 Benzo[b+k]fluoranthene, Benzo[a]pyrene ng/m3 1.44 

PAHs276 Benzo[g,h,i]perylene, Indeno[1,2,3-cd]pyrene ng/m3 1.67 

Oleic acid Oleic acid ng/m3 28.09 

Palmitic acid Palmitic acid ng/m3 48.86 

Stearic acid Stearic acid ng/m3 19.94 

Levoglucosan Levoglucosan ng/m3 54.12 

Mannosan Mannosan ng/m3 4.23 

Vanillic acid Vanillic acid ng/m3 1.27 

Phthalic acid Phthalic acid ng/m3 16.71 

2-MGA 2-Methylglyceric acid ng/m3 1.78 

α-PinT 
3-Hydroxyglutaric acid, Pinic acid, Cis-pinonic 

acid 

ng/m3 14.95 

NO3
-  μg/m3 17.46 

SO4
2-  μg/m3 7.50 

NH4
+  μg/m3 7.59 

Other ions Mg2+, Ca2+ μg/m3 0.46 

OC  μg/m3 5.98 

EC  μg/m3 1.87 

Crustal elements Si, Ti, Fe μg/m3 0.22 

Other elements Ni, Se, As, Zn, Cu, Co, Cr, V, Mn, Pb, Ba  μg/m3 0.61 

PM2.5  μg/m3 49.93 

O3  μg/m3 49.09 

NO2  μg/m3 45.27 
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