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Abstract. Vehicle emission is regarded as a primary contributor to air pollution and related adverse health impacts. 

Heavy traffic congestion increases traffic flow and thus produces more O3 precursors emissions, leading to more 

adverse air quality issues. Although the development of vehicle emission inventory has received great concern and 

continuous efforts, limitations still exist. For example, real-time diurnal variations and increases in emission rates 25 

due to traffic congestion are not well understood. In this study, we developed a new temporal-allocation approach in 

transportation emission to investigate its impacts on air quality and health burden due to traffic congestion in China 

in 2020. Both real-time congestion level data and emission correction factors were considered in the approach. 

Results show that traffic congestion aggravates air pollution and health burden across China, especially in the urban 

clusters such as the North China Plain and Sichuan Basin. In these regions, the average annual increases of fine 30 

particulate matter (PM2.5) and ozone (O3) could be up to 3.5 µg m-3 and 1.1 ppb, respectively. The excess PM2.5 and 

O3 attributed to the traffic congestion also induce an additional 20,000 and 5,000 premature mortality in China, 

respectively. In major cities, the increased rate of premature mortality caused by traffic congestion may reach 

17.5%. Therefore, more effective and comprehensive vehicle emission control policies or better planning of road 

network should be established to reduce traffic congestion and improve air quality in China.  35 
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1 Introduction 

With the rapid development of the economy and automobile industry, vehicle number has increased significantly in 

China in the recent decade. In June 2021, according to the Chinese government, China's vehicle number reached 384 40 

million with the highest historical growth rate of 32.33% (compared to the year 2020)(Xinhua, 2021). However, the 

increasing vehicle number has deteriorated the air quality in China(Hao et al., 2007; Zhang et al., 2016; Miao et al., 

2019). Xu et al. (2019) reported that vehicle volume was the most significant contributor to air pollution compared to 

other factors such as population density during 2005-2016 in China. The vehicle emissions, including nitrogen oxides 

(NOx = NO2 + NO) and volatile organic compounds (VOCs), are the essential precursors of fine particulate matter 45 

(PM2.5) and ozone (O3)(Wang et al., 2019; Jeong et al., 2019; Li et al., 2016; Liu et al., 2017a; Yao et al., 2015). 

Although the Ministry of Ecology and Environment of the People's Republic of China (MEE) has implemented a 

series of strategies (such as updating vehicular emission standards) to reduce vehicle emissions in recent years, it was 

still the dominant contributor to PM2.5 concentration in the key regions such as Beijing-Tianjin-Hebei (BTH) in 

China(Gao et al., 2018). Thus, it is vital to have a comprehensive understanding of vehicle emissions, aiming to 50 

effectively alleviate the air pollution in China.       

 

Vehicle emission also induces adverse health impacts since it is a major source of PM2.5 and O3(Levy et al., 2010; 

Zhang and Batterman, 2013; Zhang et al., 2017; Shindell et al., 2011; Huang et al., 2020b). Although PM2.5 has 

decreased substantially in China(Zhang et al., 2019), it continues to receive substantial attention due to the strong 55 

correlation between adverse health impacts and climate change(De Kok et al., 2006; Chen et al., 2018; Xu et al., 2017; 

Bond et al., 2013). According to the MEE, the annual PM2.5 concentration in China was 33 µg m-3 in 2020, which is 

still ~7 times the latest World Health Organization (WHO) standard(World Health, 2021). Tong et al. (2020b) stated 

that vehicle emissions have the highest impact on public health during the morning rush hours with the annual 

premature deaths up to 4435 (95% confidence interval (CI): 3655, 4904) in Beijing, China. Considering O3, Cohen et 60 

al. (2017) reported that O3 concentrations in all major Chinese metropolitan regions were at least 10% higher than the 

Chinese Ambient Air Quality Standard (CAAQS) level (160 μg/m3). In 2015, 47,000 (CI 95: 32,000 to 70,000) fewer 

deaths attributable to O3 exposure were projected by the implementation of vehicle emission controls(Wang et al., 

2020). In China, the transportation attributable deaths related PM2.5 and O3 in 2015 is 11% of all sources of 

emission(Anenberg et al., 2019). Therefore, it is significant to figure out the related health impacts of vehicle emissions 65 

to reduce premature deaths in China.  

 

Chemical Transport Models (CTMs) have been widely used to study vehicle emissions and their impacts on air quality 

(Liu et al., 2010; Che et al., 2011; Zhang et al., 2020a). Zhang et al. (2012) found that the transportation sector was an 

important contributor to nitrate (a major component of PM2.5) in China by using the source-oriented version of the 70 

Community Multiscale Air Quality model (CMAQ). However, the CTM performance highly depends on the emission 

inventories(Hu et al., 2016a), which may lead to uncertainties in understanding vehicle emissions. In China, the vehicle 
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emission inventory has been developed in national, regional(Deng et al., 2020; Jiang et al., 2020), provincial(Liu et 

al., 2022; Liu et al., 2017b), and city levels in China (Sun et al., 2020b; Yang et al., 2019), which is essential for 

determining air pollution sources and making environmental control policies. The accurate temporal allocation of 75 

vehicle emission inventory is beneficial for air quality simulation. Zheng et al. (2014) first calculated the monthly 

vehicle emissions in China by estimating the monthly emission factors at the county-level. Sun et al. (2020a) 

introduced the speed correction curves to improve the simulation of vehicle emission factors. However, there are still 

shortcomings with temporal allocation in the development of vehicle emission inventories. First, most of the emission 

inventories are distributed at a monthly level(Jiang et al., 2020), without providing a robust diurnal distribution profile. 80 

Second, the emission inventory could not be updated in time and is usually available after several years of latency, 

offering limited help to understand the current air pollution(Zheng et al., 2021a). Third, the changes in emission rates 

due to traffic congestion are not considered(Liu et al., 2022), which could not accurately reflect the temporal emission 

distribution in the inventory. In China, more than 80% of cities have suffered from heavy traffic congestion that leads 

to substantial changes in air pollutants such as PM2.5 and O3(Tong et al., 2020a; Zhang et al., 2018). Consequently, a 85 

more comprehensive temporal distribution approach of vehicle emission is urgently required.       

  

In this study, we used real-time traffic congestion data and the updated CMAQ model (Ying et al., 2015) to investigate 

the characteristics of vehicle emissions in China in 2020. The air pollution related premature death mortality (from O3 

and PM2.5) was also evaluated to determine health impacts attributed to the changes in vehicle emissions. The purposes 90 

of this study are: (1) to provide a diurnal profile for vehicle emission; (2) to improve the hourly vehicle emissions 

rates based on the real-time traffic congestion data; (3) to determine the response of air quality and the associated 

health impacts from the updated emissions. This study aims to give an in-depth investigation of traffic congestion and 

its related air quality and health impacts, which has important implications for establishing effective control strategies 

in China. 95 

2 Methods 

2.1 Temporal-allocation approach of vehicle emissions   

The hourly temporal coefficient in the diurnal profile was estimated considering both the traffic flow and the emission 

rate. First, the traffic flow at the city level was calculated based on TomTom congestion level data collected from 

(https://www.tomtom.com/en_gb/traffic-index/ranking/, last access: 15 Sep. 2021). The TomTom data used GPS 100 

devices to estimate traffic congestion in a total of 404 cities across 58 countries, aiming to show how people were 

moving on the local and global level, in real-time and over time. The TomTom congestion level (CL) describes the 

extra travel time as a percentage compared to the non-congestion situation, which was obtained in 22 major cities in 

China (Figure S1). When CL is zero, the traffic is smooth without congestion, but with cars and emissions. In these 

22 cities, traffic flows asymptotes to the maximum value as CL increases due to the sigmoid relationship. In this study, 105 

daily and hourly congestion level data were collected to achieve high temporal resolution. Then, CL was converted to 

traffic flow  using a sigmoid function-- Eq. (1) from(Liu et al., 2020):   

https://www.tomtom.com/en_gb/traffic-index/ranking/
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𝑄 = 𝑎 +
𝑏∙𝐶𝐿𝑐

𝑑𝑐+𝐶𝐿𝑐                                                                                                                                                     (1) 

where Q is the daily mean car counts, while 𝑎, 𝑏, 𝑐, and 𝑑 are empirical parameters to fit the sigmoid function without 

physical meanings, and their values are 100.87, 671.06, 1.98, and 6.49, respectively, according to  Liu et al. (2021). 110 

In general, the vehicle emissions were proportional to the traffic flow based on TomTom data as described by Gong 

et al. (2017), and the temporal coefficient was calculated as the Eq. (2): 

𝐻𝑇𝐶𝑤,ℎ =
𝑄𝑤,ℎ

∑ 𝑄𝑤,ℎℎ
                                                                                                                                                  (2) 

where 𝐻𝑇𝐶𝑤,ℎ is the hourly temporal coefficient (unit: %); 𝑤 means weekday or weekend, for whom different traffic 

flows are considered separately.  115 

 

Vehicle emissions were influenced by both traffic flow and emission rate(Zhang et al., 2018). During off-peak traffic 

hours, the emission rates were significantly lower than peak hours because vehicles were more polluting under 

congested conditions due to the frequent low and idle speed(Zhang et al., 2020b). To reflect the impact of congestion, 

this study used the temporal coefficient with the emission correction factor to reflect the emission changes in the peak 120 

hours as shown in Eq. (3): 

𝐸′
𝑤,𝑝ℎ = 𝐸𝑚 × 𝐻𝑇𝐶𝑤,𝑝ℎ × 𝐸𝐶𝐹ℎ                                                                                                                         (3) 

where 𝐸′
𝑤,𝑝ℎ  stands for the emission rate at peak hours (𝑝ℎ ranges from 0:00 to 23:00);  𝐸𝑚  is the original emissions 

in month 𝑚; 𝐸𝐶𝐹ℎ  is the emission correction factor, determined by the driving speed from the national technical 

guidelines on emission inventory(Mee, 2014) (Table S1). ECF values were from the gasoline vehicle since it was the 125 

most dominant vehicle type in China(Wu et al., 2017). Our method may slightly underestimate the transportation 

emissions since diesel vehicle was an important contributor to NOx emissions (Sun et al., 2018), which would be 

improved in the future.  

2.2 CMAQ model application and validation 

The CMAQ version 5.0.1 with the updated secondary organic aerosol (SOA) formation mechanism was applied in 130 

this study(Ying et al., 2015). The mechanism incorporated a more explicit description of isoprene oxidation chemistry 

and isoprene SOA formation pathways. The surface uptake of dicarbonyls and isoprene epoxides, glyoxal, and 

methylglyoxal SOA formation pathways were all considered in the model. The simulation period was the whole year 

2020. The Weather Research and Forecasting (WRF) model version 4.2.1 was used to generate the meteorological 

inputs, using the high-resolution final (FNL) reanalysis data from the National Centers for Environmental Prediction 135 

(NCEP; https://rda.ucar.edu/datasets/ds083.3/, last access: 02 Oct. 2021). The WRF model set-up was listed in the 

Table S2. The anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC; 

http://www.meicmodel.org/, last access: 02 Oct. 2021) based on the year 2020(Zheng et al., 2021b; Zheng et al., 2018). 

Due to the lack of explicit vehicle emissions in the MEIC inventory, the vehicle emissions in this study were estimated 

based on the on-road emission ratios of the Emissions Database for Global Atmospheric Research (EDGAR; 140 

https://edgar.jrc.ec.europa.eu/; last access: Oct., 2021)(Crippa et al., 2020). The open burning and biogenic emissions 

https://rda.ucar.edu/datasets/ds083.3/
https://edgar.jrc.ec.europa.eu/
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were from the Fire INventory from NCAR (FINN)(Wiedinmyer et al., 2011), and the Model of Emissions of Gases 

and Aerosols from Nature version 2.1 (MEGAN2.1)(Guenther et al., 2012), respectively. 

 

We set up three CMAQ simulation cases using different transportation emissions as summarized below: (1) the diurnal 145 

profile was determined using TomTom data, without considering the changes in emission rates due to congestion 

(BASE); (2) the diurnal profile was the same as the BASE case, and emissions rates were adjusted using the actual 

speed correction coefficient from Table S1 (CASE 1); and (3) the diurnal profile was the same as the BASE case, and 

emissions rates were adjusted under the extreme congestion condition (emission correction factors from < 20 km h-1 

in Table S1, CASE 2). For CASE 1, the average speeds were 26.0 and 27.3 km h-1 for workdays and weekends, 150 

respectively. As a result, the emission correction factors from 20-30 km h-1 range were used in CASE 1.  

 

The WRF model performance is shown in Table S3 with observation data from the National Climate Data Center 

(NCDC; https://www.ncdc.noaa.gov/, last access: 20 March 2021). Four key parameters including temperature at 2m 

(T2), wind speed and wind direction at 10m (WS and WD), and relative humidity (RH) were selected in the validation. 155 

The WRF model simulated the higher T2 in the winter but lowered T2 in other seasons, indicating the mean bias (MB) 

values variations. WS was slightly overpredicted for the whole year, and its gross error (GE) values all met the 

benchmark(Emery et al., 2001). For WD, its MB values have met the benchmark, while the GE values were 30% 

larger than the benchmark. RH was slightly overpredicted in all months. Our WRF model performance was 

comparable to previous studies in China(Hu et al., 2016a), which could provide reasonable meteorological inputs for 160 

the CMAQ model.       

 

The CMAQ model performance of the BASE case is shown in Table S4. The observation data is from China National 

Environmental Monitoring Centre (CNEMC; http://www.cnemc.cn/, last access: 15 Aug. 2021), and a total of 1600 

sites are included in the validation. The CMAQ model predictions agrees well with the observation (except the O3 in 165 

February slightly over the criteria), which is comparable and even better than previous studies(Hu et al., 2016b; Liu 

et al., 2020). Consequently, the CMAQ model provides robust results to investigate the impacts on air quality and 

public health from traffic congestion.  

2.3 Estimation of premature mortality from air pollution 

The premature mortalities for PM2.5-related and O3-related diseases were estimated according to the methods as 170 

follows. 

2.3.1 Estimation of PM2.5-related premature mortality 

The annual premature mortalities due to long-term exposure of PM2.5 from chronic obstructive pulmonary disease 

(COPD), ischaemic heart disease (IHD), lung cancer (LC), and cerebrovascular disease (CEVD) were estimated in 

this study. The relative risk (RR) from Burnett et al. (2014) was used to estimate premature mortality, as shown in 175 

Eqs. (4) and (5): 

https://www.ncdc.noaa.gov/
http://www.cnemc.cn/
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𝑅𝑅 = 1,    𝑓𝑜𝑟 𝑐 <  𝑐𝑐𝑓 ,                                                                                                                                       (4) 

𝑅𝑅 = 1 + 𝛼 { 1 − 𝑒𝑥𝑝 [−𝛾(𝑐 − 𝑐𝑐𝑓)
𝛿

]} ,   𝑓𝑜𝑟 𝑐 ≥  𝑐𝑐𝑓 ,                                                                                     (5) 

Where 𝑐 is the predicted average annual PM2.5 concentration from the CMAQ model, and 𝑐𝑐𝑓 represents the threshold 

concentration, below which there is no additional health risk; 𝛼, 𝛽, and 𝛾 are relevant parameters, calculated using the 180 

Monte Carlo method (including 1000 simulations) from the Global Health Data Exchange (http://ghdx.healthdata.org/, 

last access: 15 Aug. 2021) as described in Guo et al. (2018). In this study, RR was calculated for people above the age 

of 30, and the premature mortality (∆𝑀𝑜𝑟𝑡) was determined using the Eq. (6):      

∆𝑀𝑜𝑟𝑡 =  𝑦0 [
𝑅𝑅−1

𝑅𝑅
] 𝑃𝑜𝑝,                                                                                                                                   (6) 

where 𝑦0  is the baseline mortality rate, obtained from the China Health Statistical Yearbook 2020 185 

(https://www.yearbookchina.com/navibooklist-n3020013080-1.html, last access: 15 Aug. 2021), and 𝑃𝑜𝑝  is the 

population data that is from China's Seventh Census data (http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/, last access: 15 

Aug. 2021) as shown in Figure S1.      

2.3.2 Estimation of O3-related premature mortality  

In this study, China-specific concentration-response functions (CRF) were adapted to estimate the health impacts due 190 

to O3 exposure(Gu and Yim, 2016; Gu et al., 2018). The relative risk of mortalities with corresponding annual 

maximum daily 8h average ozone (MDA8 O3) concentrations were calculated using the Eq. (7):  

𝑅𝑅 = 𝑒𝑥𝑝 [𝜃(𝑐 − 𝑐𝑐𝑓)],                                                                                                                                       (7)     

Where 𝜃 is fitted by meta-regression based on the previous epidemiological studies in China(Gu et al., 2018). 𝑐 and 

𝑐𝑐𝑓  denote the average annual MDA8 O3 concentration from the CMAQ model and the threshold value, below which 195 

there is no additional risk, respectively. The threshold concentration of MDA8 O3 was 70 μg/m3  in this study(Xie et 

al., 2017). Same as PM2.5, the premature mortality induced by O3 is calculated by Eq. (6), including cardiovascular 

diseases (CDM), COPD, IHD, and LC.   

3 Results and discussion  

3.1 Diurnal temporal-allocation in the vehicle emissions   200 

The congestion levels in urban China have clearly shown the workday and weekend patterns (Figure S2), which is 

consistent with previous studies(Wen et al., 2020; Liu et al., 2018b). In general, the congestion levels are alleviated 

during the weekends. On workdays, the average congestion level is 1.4 times that on weekends. Among the 22 cities, 

the peak congestion level (54%) is found at 08:00 am Monday. In terms of temporal variations, the congestion levels 

on workdays and weekends all present the bimodal patterns with different peak hours. As a result, rush hours are 205 

selected as 07:00-10:00 am, 4:00-7:00 pm, and 10:00-11:00 am, 2:00-7:00 pm for workdays and weekends, 

respectively. Figure S3 shows the 22-city average traffic flow (𝑄) calculated from Eq. (1) using the TomTom 

congestion data. Compared with the level of congestion, the traffic flow on workdays shows a more similar result to 

http://ghdx.healthdata.org/
https://www.yearbookchina.com/navibooklist-n3020013080-1.html
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/
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weekends, which may underestimate the peak traffic flow on workdays. Eq. (1) was derived merely based on data in 

Paris due to the real-time traffic data limitation(Liu et al., 2020). Particularly, congestion level and traffic flow in 210 

Beijing, Shanghai, Guangzhou, and Chengdu are shown in Figures S4-S5. The changes in Beijing and Shanghai are 

roughly the same. In these two cities, traffic flows and congestion levels are higher in the morning than in the evening, 

which is in contrast to Chengdu and Guangzhou. In addition, the traffic flow is largest in Beijing in the morning and 

Chengdu in the evening, respectively. Using this equation in China may introduce additional uncertainties since each 

city has a specific relationship between congestion level and traffic flow. Thus, more localized traffic flow data is 215 

required to improve the accuracy of the vehicle emission inventory development.    

 

Figure 1 shows the hourly temporal coefficient in the diurnal profile of all cases (take VOC emissions as an example, 

other pollutants are similar). In the BASE case on workdays, the temporal coefficient in rush hours is much lower than 

the congestion level, indicating the BASE case may underestimate the emission rates. The cases considering changes 220 

in emissions (CASE 1 and 2) have comparable trends with the congestion level, with the temporal coefficient larger 

than 0.07 in rush hours. Considering the emissions changes, CASE 2 has the highest emissions rate (Figures S6 and 

S7). Notable increases in NOx, VOCs, and CO emissions are found in CASE 2 compared with the BASE case, 

especially in the areas have higher vehicle numbers and population density, such as the North China Plain (NCP), 

Yangtze River Delta (YRD), and Sichuan Basin (SCB). And these increases could lead to significant impacts on air 225 

quality and public health.          

 
Figure 1. The VOC temporal coefficient in the hourly diurnal profile of all simulation cases on workdays and weekends.   

3.2 Response of air quality due to traffic congestion 

The Air Quality Index (AQI) in China is determined by the concentrations of six major pollutants: PM2.5, PM10, SO2, 230 

NO2, O3, and CO. Since PM2.5 is a major component of PM10 and there is no obvious change in the SO2 emission 

(Figure S7), the changes of other four pollutants (PM2.5, O3, NO2, and CO) are discussed in this section. Figure 2 

shows the concentration and changes of these 4 pollutants due to urban traffic congestion. According to the CMAQ 

results, the annual average concentrations of PM2.5, MDA8 O3, NOx, and CO are ~35 µg m-3, 55 ppb, 10 ppb, and 0.36 

ppm, respectively in 2020. The concentrations of the PM2.5 and MDA8 O3 are approximately 7.0 and 1.2 times of the 235 

WHO 2021 standard(World Health, 2021), which may induce severe health impacts. Ubiquitously, the peak values of 
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these pollutants are predicted in the NCP and SCB regions, with the annual average PM2.5 higher than 60 µg m-3. In 

addition, traffic congestion has aggravated air pollution across China, which is consistent with the previous study(Xu 

et al., 2019). Among all simulated cases, CASE 2 (extreme congestion conditions) has the highest pollutants level. 

The significant enhancements in these pollutants (compared to the BASE case) are simulated in NCP and SCB. The 240 

maximum increase of PM2.5 and O3 are 3.5 µg m-3 and 1.1 ppb, respectively. Our simulation was conducted in 2020, 

covering the COVID-19 lockdown period. During the lockdown, a drastic decrease was reported in traffic flow (~70%), 

which may even eliminate the traffic congestion and its impacts on air quality (Huang et al., 2020a; Zheng et al., 

2021b). More remarkable changes in air quality associated the traffic congestion are expected during the normal year.   

 245 

PM2.5, NO2, and CO have lower concentrations on weekends than on workdays (Figure S8), similar to previous 

studies(Liu et al., 2018b; Wen et al., 2020; Bao et al., 2016), which is partially attributed to the lower anthropogenic 

emissions on weekends. Significant decreases on weekends are predicted in the NCP and the SCB regions. In the NCP 

region, the reduction of PM2.5 is up to 6.0 µg m-3. In contrast, the rising trend of O3 has occurred on weekends, which 

is consistent with previous studies(Wang et al., 2021b; Zhao et al., 2019; Wang et al., 2021a). The elevated O3 is 250 

attributed to the reduced NOx emissions on weekends, which promoted the formation of O3 under a VOC-limited 

regime and reduced the titration impacts(Li et al., 2019; Blanchard and Tanenbaum, 2003).        

 

To further investigate the traffic congestion impacts on air quality in urban areas, four representative mega-cities are 

selected (Figure S1): Beijing (NCP), Shanghai (YRD), Guangzhou (PRD), and Chengdu (SCB). Except for Shanghai, 255 

the traffic congestion (CASE 2) enhances the PM2.5 concentration during the morning and evening rush hours (Figure 

3). The peak of PM2.5 always occurred in the morning or evening rush hours, indicating the important role of the traffic 

congestion in the PM2.5 formation(Tong et al., 2020a). Different workday-weekend patterns are also found in these 

mega-cities. The most obvious weekend impact is in Guangzhou with more than 30% of PM2.5 reduced in the morning 

peak hours (compared to workdays). Interestingly, in Shanghai the slightly rising PM2.5 concentration is predicted on 260 

weekends, resulting from the changes of emissions and regional transport during weekends and weekdays(Atkinson-

Palombo et al., 2006; Mönkkönen et al., 2004). The similar phenomenon was also reported in Nanjing(Shen et al., 

2014), another megacity in the YRD region. For all these megacities, the lower NO2 concentrations on weekends lead 

to slightly higher O3 (Figures S9-S12).    
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 265 
Figure 2. The annual average concentrations of (a) PM2.5, (b) MDA8 O3, (c) NO2, and (d) CO of BASE case, and their 

differences between CASE 1, and CASE 2, respectively, in 2020. Unit for PM2.5 is µg m-3, ppb for MDA8 O3 and NO2, and 

ppm for CO. 

 
Figure 3. The diurnal profile of PM2.5 and O3 concentrations of BASE (without considering congestion) and CASE 2 270 
(considering congestion) in Beijing, Shanghai, Guangzhou, and Chengdu, respectively. WK: workday, and WE: weekend. 
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3.3 The aggravated health burden due to traffic congestion 

The traffic congestion leads to more severe health impacts throughout China. As shown in Table 1, the total 

estimated PM2.5-related annual premature mortality is 0.90, 0.91, and 0.92 million for BASE, CASE 1, and CASE 2, 

respectively. The extreme congestion (CASE 2) has induced an average 1.7% increase in the total premature 275 

mortality in China. The CEVD is the most important contributor to total premature mortality, followed by IHD. 

With considering the extreme congestion situation (CASE 2), the CEVD and IHD cause 0.51 and 0.24 million 

deaths, respectively, amounting to 81% of the total premature mortality. In China, the high annual premature 

mortality due to excess PM2.5 is estimated in regions with the higher PM2.5 concentrations or population density, 

such as the NCP and PRD regions (Figure 4 and Figure S13). This result is comparable with previous studies(Guan 280 

et al., 2019; Xie et al., 2016; Maji et al., 2018). More severe health impacts due to traffic congestion are also 

predicted in these regions. It is noted that in the PRD, the annual average PM2.5 concentration is ~20 µg m-3 (57% of 

the national average value), but it still experiences serious health risks, mainly attributed to the surge in population 

density. The population in Guangdong province (where the PRD region is located) increased by 21.7 million from 

2010 to 2020, ranking first in China (http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/, last access: 02 Oct. 2021). Thus, the 285 

establishment of emission control policies in the future should also refer to socioeconomic development level 

besides the pollution level.  

 

As cities are mostly affected by traffic congestion, representative cities from each province in Mainland China except 

Lasa in Tibet were selected to compare the differences among regions. The most significant response to PM2.5-related 290 

health impacts due to the traffic congestion is in Beijing, with the additional 120 annual deaths (Figure 4). In Chengdu 

and the major cities in the YRD (Shanghai, Suzhou, and Nanjing), traffic congestion also negatively impacts public 

health. Surprisingly, in Sanya the increase of PM2.5-related premature mortality is estimated as high as 17.5% (Figure 

S1), which is much higher than that of most megacities. On workdays and weekends, the CEVD is the most significant 

contributor to the PM2.5-related health burden in megacities (Figure 6). Except for Shanghai, all mega-cities (Beijing, 295 

Guangzhou, and Chengdu) have lower mortality on weekends, coinciding with a previous study(Tong et al., 2020a). 

However, in Shanghai, a 14% increase in PM2.5-related daily mortality on weekends is estimated due to the higher 

PM2.5 concentration.  

  

As for O3, the total estimated O3-associated annual premature mortality is 0.414, 0.415, and 0.419 million for BASE, 300 

CASE 1, and CASE 2, respectively. The extreme congestion leads to an average 1.4% increase in the total premature 

mortality in China. CMD became the major disease rather than IHD. In CASE 2, with the extreme congestion situation 

considered, the CEVD and IHD cause 0.26 and 0.08 million deaths, respectively, amounting to 81% of the total 

premature mortality. In China, the highly annual premature mortality due to excess O3 is estimated in YRD and PRD 

regions (Figure 5 and Figure S14). This result is consistent with previous studies(Liu et al., 2018a; Chen et al., 2021).  305 

 

Unlike PM2.5, in the city level, the most significant O3-related health impacts due to traffic congestion is in Chongqing, 

where 139 deaths are added each year (Figure 5). In Chengdu, Beijing, and the major cities in the YRD (Suzhou, 

http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/
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Shanghai) and PRD (Foshan), negative public health impacts of excess O3 are also associated with traffic congestion. 

An average of 46 deaths are added in these regions as estimated in this study. In Beijing, the O3-related premature 310 

mortality increases by 1.1%. This result is comparable to Zhong (2015) where emergency ambulance call rates related 

to heart disease were higher by 2.9% in Beijing, when the traffic congestion index increased by 20%. Traffic 

congestion causes more O3 precursors emissions to be produced, which rises O3 concentration and aggravates health 

risks, coinciding with previous studies(Bigazzi et al., 2015; Ahmad and Aziz, 2013; Wang et al., 2021a). Thus, more 

effective vehicle control regulation in urban areas should be considered to avoid premature death from air pollution. 315 

In addition, CDM is the major contributor to the O3-related health burden on workdays and weekends. On weekends, 

mortality is higher for all diseases (CDM, COPD, LC, and IHD) in these cities (Beijing, Shanghai, Guangzhou, and 

Chengdu), resulting from the O3 weekend effect(Zeldin et al., 1989; Tang et al., 2008) (Figure 6). In Beijing, mortality 

on weekends is 33.6% higher than on weekdays, and 47.0% for CDM in particular.  

 320 

Table 1. Annual premature mortality (×104 deaths) in China due to COPD, LC, IHD, CDM and CEVD of all simulations. 

PM2.5-related COPD LC IHD CEVD Total 

BASE 8.93 8.43 24.15 49.17 90.68 

CASE 1 9.03 8.54 24.28 49.74 91.60 

CASE 2 9.10 8.61 24.44 50.09 92.24 

O3-related   COPD LC IHD CDM Total 

BASE 4.53 3.30 8.18 25.34 41.35 

CASE 1 4.55 3.31 8.21 25.47 41.54 

CASE 2 4.58 3.34 8.27 25.72 41.91 

 

 
Figure 4. The total PM2.5-related premature mortality of (a) BASE case, and its difference between CASE 2 across China 
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(b) and in major cities (c) and (d). 325 

 

 
Figure 5. The total O3-related premature mortality of (a) BASE case, and its difference between CASE 2 across China (b) 

and in major cities (c) and (d). 
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 330 
Figure 6. The annual premature mortality from COPD, LC, IHD, CDM, and CEVD of CASE 2 in Beijing, Shanghai, 

Guangzhou, and Chengdu. (a) is PM2.5-related and (b) is O3-related. 

3.4 Uncertainties discussion   

In this study, there are some uncertainties in the temporal-allocation approach, involving two variables: traffic flow 

and emission rate. The traffic flow is calculated by using Eq. (1), which is derived based on the observation data in 335 

Paris due to data limitations(Liu et al., 2020). Thus, it may not entirely reflect the actual traffic flow in China and 

introduces uncertainties in the following CMAQ simulations. Besides, the emission rate changes only depend on the 

driving speed in this study, which could cause deviation. The emission rate is influenced by various factors, such as 

meteorological conditions, geographical conditions, fuel quality, deterioration level, load rating, and driving 

conditions (Sun et al., 2021). However, it is challenging to incorporate all these factors into the emission rate correction 340 

on such a national scale. Therefore, further efforts should be made to reduce the uncertainties in the vehicle emissions 

inventory.   
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4 Conclusions 

In this study, we develop a new temporal-allocation approach to transportation emissions to investigate traffic 

congestion responses to air quality and health impacts in urban China. The real-time congestion data from TomTom 345 

is used to generate the hourly-diurnal temporal profile of the vehicle emissions, and emission correct factors are 

applied to qualify the emission rate changes corresponding to the traffic congestion. Our results show that traffic 

congestion increases pollutants concentrations, especially in the highly-developed urban clusters such as the NCP and 

SCB. The annual average increases of PM2.5, MDA8 O3, NO2, and CO are up to 3.5 µg m-3, 1.1 ppb, 2.5 ppb, and 0.1 

ppm, respectively. In addition, the rising PM2.5 and O3 concentrations attributed to traffic congestion also enhance the 350 

health burden across China. Compared to the BASE case, the extreme congestion condition (CASE 2) induces an 

additional 20,000 (PM2.5-related) and 5000 (O3-related) premature mortality in China. Similar to the phenomenon in 

air quality, the remarkable increases are estimated in the urban clusters with higher population density. Therefore, 

more effective and comprehensive vehicle control policies considering socioeconomic factors should be implemented 

to alleviate China's air pollution and health burden in the future.                                     355 
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