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Multiple pathways for the formation of secondary organic aerosol in North China Plain

in summer

Yifang Gu'*, Ru-Jin Huang1’2’3’4, Jing Duan', Wei Xu', Chunshui Lin', Haobin Zhong1’4, Ying
Wang', Haiyan Ni', Quan Liu®, Ruiguang Xu®’, Litao Wang®’, Yong Jie Li®

Table S1. Summary of Mass Concentrations of PMz.s Species and OA Components (ug m™), Mixing
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Ratios of gas-phase pollutants, and meteorological parameters in the Summer Studies in Handan.

Handan Summer

All P1 P2 P3

Total 37.3£19.0 29.3+12.7 36.0+14.7 64.1+29.4
OA 19.6+5.5 15.4+3.2 19.8+4.7 25.0+6.2
HOA 24421 22415 2.612.5 1.7+¢1.1
COA 3.7+2.6 4.6+3.3 3.142.2 34428
primary-SOA 1.0£1.2 1.0+1.3 1.0£1.2 0.7+1.4
fresh-SOA 3.5425 35413 4.0+£2.3 5.54+2.7
phochem-SOA 6.1+£3.3 6.1+1.9 7.343.1 54424
ag-SOA 3.943.5 29422 1.842.0 8.3+6.3
Sulfate 7.244.9 59458 7.144.0 11.8+6.2
Nitrate 43463 3.542.9 3.0+4.4 14.9+11.3
Ammonium 2.742.5 22419 24417 6.5+4.1
Chloride 0.440.6 0.31+0.3 0.440.6 1.0+1.1
BC 3.1+£2.0 2.0£1.2 3.3+1.9 49+2.4
CO(ppm) 0.840.7 0.6+0.6 0.840.8 1.3%+0.5
NO2(ppb) 14.449.9 11.845.3 15.6£11.7 15.9+5.4
SO2(ppb) 4.0t4.6 24425 52455 22+1.5
Os(ppb) 54.04+22.8 24.0£14.5 49.54+29.1 32.24+24.6
WS(m/s) 1.5+£1.0 1.7£1.1 1.6+1.0 1.0£0.6
WD(®) 187.1+121.8 223.1+126.6 168.2+111.5 201.9+124.4
T(°C) 25.01+4.3 22.3+£2.8 26.4+4.0 23.1+2.6
RH(%) 66.3+19.4 79.4+13.0 57.7+£17.5 83.7+£12.5
ALWC 21.4451.3 22.6148.0 8.4£15.8 95.4+114.2
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24 Table S2. Concentrations of the main chemical components in PM1/PMzs during summer and winter

25 observations in NCP in recent years.

26

Sites

OA

S04

NO3

NH4

Cl

BC

PM

PM;

NR-PM;

PM: s

Our study

2013 Summer, Handan

(Zhao et al., 2019)

2017 Summer, Handan

(Zhao et al., 2019)

2015 winter, Handan
(Lietal., 2017)

2018 Summer, Beijing

(Xu et al., 2019b)

2018 Summer, Beijing (Chen
et al., 2020)

2019 Summer, Beijing (Chen
et al., 2020)

2019 Summer, Xian (Duan et
al., 2020)

19.0

81.2

12.7

12.2

9.3

14.0

7.2

16.1

13.4

28.1

6.5

3.9

4.5

3.9

43

16.5

5.0

26.1

7.4

2.5

2.8

2.8

2.7

7.3

6.2

21.4

43

2.2

2.5

1.7

0.4

33

0.7

16.6

0.2

0.1

0.2

0.1

3.1

94

32

187.6

24.1

19.3

173.4

31.1

36.7

95.6

64.8

22.5
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44

45 Table S3. Elemental ratios and OM:OC ratios in OA obtained from field observations at urban and

46 rural/suburban sites. The ratios are corrected by the “improved-ambient” method (Canagaratna et al.,

47 - 2015).
48
sites site types seasons H:C 0:C OM:OC  ref
our study urban summer 2019 1.58 0.75 2.17
suburban summer 2018 1.67 0.54 1.89 Chen et al.2020b
summer 2012 1.63 0.53 1.88
. Hu et al.2017
Beijing winter 2013 1.52 0.47 1.79
urban
summer 2011 1.61 0.56 1.91
. Hu et al.2016a
winter 2010 1.65 0.32 1.58
Xi'An urban summer 2019 1.64 0.58 1.96 Duan et al. 2020
Before G20 1.78 0.39 1.69
Hangzhou urban During G20 summer 2016 1.65 0.58 2.03 Lietal, 2017
After G20 1.69 0.51 1.84
winter 2014 1.55 0.28 1.51
Lanzhou urban Xuetal., 2016
summer 2012 1.49 0.33 1.58
winter 2014 Nov. 1.63 0.53 1.87
Guangzhou suburban ] Qinetal., 2017
winter 2014 Dec. 1.65 0.53 1.87
Kaiping suburban autumn 2008 1.64 0.6 1.94 Huang et al.,2011
Heshan suburban autumn 2010 1.65 0.51 1.83 Gong et al., 2012
winter 2009 1.83 0.39 1.71 He etal.,2011
Shenzhen urban
summer 2011 1.74 0.45 1.81 Gong et al., 2012
Shanghai urban summer 2010 1.92 0.4 1.69 Huang et al.,2012
Ziyang suburban winter 2013 1.56 0.65 2.02 Hu et al.2016b
o summer 2010 1.94 0.36 1.67
Jiaxing suburban ) Huang et al.,2013
winter 2010 1.73 0.43 1.75
summer 2011 1.48 0.64 1.93
HKUST suburban ) Lietal., 2015
winter 2012 1.53 0.53 1.8
MongKoK urban summer 2013 1.83 0.26 1.5 lee et al., 2015
Fresno.CA .
winter 2010 1.75 0.35 1.63 Ge et al. (2012)
us) urban
Riverside,CA
summer 2005 1.71 0.44 1.73 Docherty et al. (2011)
us) urban
Korea urban winter 2019 1.79 0.37 1.67 Kim et al. 2017
No BB 1.48 0.84 2.26
Oregon (US) BB infl summer 2013 1.49 0.77 2.16 Zhou et al., 2017
BB plm 1.53 0.69 2.06
49
50
51
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Fig. S2 Concentrations (a) and fractions (b) of main chemical components in PM1/PMa.s during summer
and winter observations in NCP in recent years. The data and references are available in Table S2 of the
Supplement. Fractions of main chemical components of PMa2.s and OA in reference events (P1: ¢ & d),

high Ox period (P2: e & f) and high RH period (P3: g & h).
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Fig. S3 Variations of the mass concentrations of aq-SOA, phochem-SOA, primary-SOA and fresh-SOA
as functions of ALWC (a~d) and Ox (e~h). The data were binned according to the ALWC (30 ug m*
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Fig. S4 Correlation between the resolved OA factors and other chemical components in PMa:s, gas-

phase pollutants, and meteorological parameters.
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Fig. S5 Polar plots that illustrate the variations of the hourly averaged concentrations of gases pollutants,

PM2 5 species and OA sources as a function of wind speed (m s!) and wind direction (°).



80
81
82
83
84

85
86
87
88

17 =
_120{(a) : H:C L6120 (b) O:C|®1.0120{(c) OM:OC
Na) ’ - 0.8 =
g 80 g m 15 80 g e 80 g
o s T I = R N
0

0
0 2040 60 80100
RH (%)

0 20 40 60 80100

0
0 20 40 60 80100

24
22
2.0

Fig. S6 RH- and Ox-dependent distributions of (a) H:C, (b) O:C and (c) OM:OC ratios. Grids with the
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Fig. S7 Diurnal patterns of (a) RH, (b) temperature, (c) Ox and (d) O:C ratios in reference events (P1),

high Ox period (P2) and high RH period (P3).
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Fig. S8 Relationship between O:C ratios and O/ALWC in high Ox period (P2: a & c) and high
RH period (P3: b & d) during this campaign.

Supplementary information
1.1

In the studied time period, POA (6.1 + 3.61 ug m™) contributed 30.6% to the bulk OA, including the
hydrocarbon-like OA (HOA, 12.2%) and cooking OA (COA, 19.1%) in summer of Handan. The results

are consistent with the results in summer 2017 and 2018 from Beijing (Xu et al 2019b).
HOA

The spectrum of HOA is substantially contributed by alkyl fragments (CoHan+1™ and CoHant, Fig. 1),
major ions include C3H;", C4H °*, and CsHii* (Zhao et al., 2019; Xu et al., 2019a; Sun et al., 2016; Elser
et al,, 2016; Zhang et al., 2014; Ng et al., 2011), which is consistent with the previous studies
(Canagaratna et al., 2004; Ng et al., 2010). HOA had a relative low O:C ratio of 0.14 and high H:C ratio
of 1.77. On average, it accounted for 12.2% of total OA (Fig. S2a) in Handan, with the absolute
concentration of 2.4 £+ 2.1 ug m™, which was two times lower than that in Beijing (35%) at the same time
period of 2018 (Chen et al., 2020a). The low HOA fraction was consistent with previous study, which
revealed that transportation was a minor source of atmospheric particles in Handan compared to Beijing

(Wang et al., 2014).

High correlations were also observed between the time series of HOA with BC (R=0.5) and NOz (R=0.6,
Fig. S4), supporting the vehicle emission related origins of HOA reported in the previous studies (Lanz

etal., 2007; Docherty et al., 2011). The polar plots (Fig. S5) demonstrated higher concentrations of HOA



112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127

128
129
130
131
132

133
134
135
136
137
138
139

140

141

142
143
144
145

under relatively low WS (< 2.0 m s!), which was very similar with BC, supporting the fact that HOA is
a freshly locally-emitted vehicle OA. HOA exhibited slightly enhanced peaks in the morning (6:00-7:00
local time, LT) and prominent peaks during nighttime (19:00-22:00 LT) when the traffic jam happened
(Fig. 6). However, these kinds of variations were less pronounced in P1 and P3 (Fig. 6), which might
because the high WS and RH had influence to such local sources. Hence the stagnant meteorological
conditions would result in accumulation of local sources during this measurement period. It should be
noted that the fraction of HOA is lower during P3 (7%) compared with P1 and P2, this may be attributed
to the large fraction of SOA (Fig. S2). The average HOA/BC ratio was 0.8, close to other cities in China
e.g., Xianghe (0.91) (Sun et al., 2016), which was between those for diesel trucks (0.5) (Ban-Weiss et
al., 2008) and light-duty vehicles (1.4).

COA

The COA mass spectrum was characterized by higher ratio than HOA between f55 (CsH7"+C3H30") and
57 (C4Ho"™+C3HsO") (Mohr et al., 2012), and the spectral pattern was relatively constant among different
years. The O:C and H:C ratios of COA were 0.18 and 1.57, respectively, suggesting their primary feature
(Xu et al., 2016). On average, the mass contribution of COA to OA was 19.1% (Fig. S2a), which was
close to that in the summer of 2018 (15%) in Beijing (Xu et al., 2019b).

The most pronounced feature of COA (Fig. 6) is its clearly enhanced diurnal peaks around morning
(6:00-7:00), noon (12:00-13:00) and late evening (19:00-20:00), corresponding to the common meal
hours which was consistent with previous studies of other regions of NCP (Sun et al., 2016; Sun et al.,
2018;. During these meal hours, COA account for over 20% ~ 30% of total OA (Fig. S2d), signifying

the importance of cooking sources in aerosol mass concentrations in urban areas of China.

Note that during the different periods, this mass fractions of COA to total OA present stable trend
(14~16%) during P2 and P3, indicating that cooking styles remained consistent and local accumulation
was not the major haze source during the measurement period (Fig. S2). While during the clean periods
of P1 with wind, it increased to 30%, which was the largest contributor to OA. Moreover, the diurnal
pattern of COA show very similar variations from three periods (Fig. 6) with the highest mass
concentration during P1. This significant increase of COA is probably associated with the wind from

southwestern where more residential areas with enhanced domestic cooking activities.
1.2
Characteristics of SOA sources

SOA accounted for 68.7% to total OA, four SOA factors were resolved depending on the oxidation state,
which correspond to aged SOA and fresh SOA respectively (Jimenez et al., 2009). One factor is attributed
to aqueous-phase chemistry (aq-SOA) and the other to photo-oxidation chemistry (phochem-SOA),

while fresher factor is produced by fresh-source (fresh-SOA), and the other considered as oxidized

10



146
147
148
149

150

151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

primary sources denoted as primary-SOA. Although all of the SOA factors were characterized by higher
m/z 44 (CO2") and m/z 28 (CO") signal, their mass spectrum and temporal trends were noticeably
distinguishable, corresponding to different formation mechanism, which will be discussed in the

following section.
aq-SOA

The aq-SOA was identified as it increased with ALWC but decreased with Ox (Fig. S3), which might be
produced in the aqueous-phase events and influenced by aqueous-phase chemistry. The ag-SOA exhibits
the highest O:C ratios of all factors (0.7) and a higher fcoz+ to the total signal of 21.7%, but a low H:C
ratio of 1.24 (Fig. 1). On average, the mass concentration of ag-SOA consisted 15.2% of the total OA
and 22.1% of the SOA (Fig. S2a, b). Good correlations were found between aq-SOA and nitrate (R=0.9),
as well as ammonium (R= 0.9, Fig. S4) (Zhang et al., 2007; Aiken et al., 2009 and Huang et al., 2010).
The high correlation with nitrate may be attributed to their similar precursors and formation pathways. It
is also clear that their polar plot patterns are similar (Fig. S5) with two originations of nitrate and aq-
SOA were observed in our study. Results showed that the local origination associated with low wind
speed (< 1.0 m s™!) had a high concentration up to 4 ug m~, and the regional origination was associated
with relatively high wind speed (> 2.5 m s!) derived from the northern regions (Fig. S5), suggesting that
there were mixing regional and local sources for nitrate and aq-SOA. This supports the ag-SOA is
relatively aged in ambient air and influenced by the combination of local formation and regional transport

(Lanz et al., 2007; Hayes et al., 2013;Chen et al., 2021).

The ag-SOA contributed a major fraction of 33.3 % to the total OA during P3 (peak concentration:
25.2 ug m3; peak fraction: 65.3%), pointing the faster SOA production through aqueous-phase chemistry
during this specific haze event compared to P1 (20.5%) and P2 (9.4%). In addition, the ALWC and ag-
SOA were strongly correlated (R=0.7, Fig. S4), and both were shown dramatically enhancement during
P3 event. This indicates that aq-SOA was either formed via aqueous phase reactions or
absorbed/dissolved into aerosol liquid water. Previous studies also showed that high RH in summer
facilitated the transformation of HNO; into aqueous-phase and increased nitrate concentrations
substantially (Sun et al., 2013; Sun et al., 2015). Due to the high NO2 concentration and high RH in this
period, particulate nitrate was produced during this regional transport homogeneously and/or
heterogeneously, resulting in water uptake and high LWC in the aerosol phase. The high ALWC in turn
facilitated further heterogeneous formation of nitrate. This positive feedback provided favorable
conditions for efficient aqueous chemistry and thus production of ag-SOA (Kuang et al., 2020). Note
that the strong correlation between aq-SOA and ALWC was not driven solely by P3 event, rather, the
two time series were remarkably well correlated throughout the entire campaign. This further supported
the interpretation of aq-SOA as characteristic of aqueous SOA production throughout the campaign,

rather than being characteristic of only a single event.

11
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phochem-SOA

The phochem-SOA presented an opposite trend with significant increase as Ox but decrease as ALWC
(Fig. S3). Ox has been shown to be a conserved tracer to represent photo-oxidation chemistry (Xu et al.,
2017). The relationship between Ox and photochemical SOA can offer insight into the formation
mechanism of SOA associated with ozone production chemistry (Herndon et al., 2008). Therefore, when
the mass concentration of phochem-SOA showed a substantial increase as a function of Ox, it could be
likely due to the enhanced secondary transformation went from less oxidized to more aged with the
progression of atmospheric photochemical aging, which were supported by the large Os fractions in Ox
in summertime (Zhang et al., 2019). Such conclusions were further supported by tightly tracked time
series of phochem-SOA with O3 (R = 0.8) and Ox (R = 0.7) (Fig. S4). Considering O3 has become the
primary air pollutant in summertime in the NCP and had caused the enhancement of atmospheric
oxidation capacity (Chen et al., 2020b), the photochemical processing driven by Os might play an

important role in the formation of phochem-SOA.

The phochem-SOA had the highest average mass concentration of 6.1 + 3.3 ug m™ among the OA
factors, with the highest contribution to total OA (31%) and the SOA (45%) during observation time,
suggesting the predominate role of this factor (Fig. S2). The phochem-SOA was oxidized with an O:C
ratio of 0.67 and H:C ratio of 1.18, and it also had high CO2" contribution of 17.9 %, which further
suggested that the atmospheric oxidation capacity during summer was strong. Similar to aq-SOA,
phochem-SOA also showed large variations during different periods. It accounted the most of 36.9% to
OA during P2, compared to other two periods (21.5% in P1 and 21.3% in P3, respectively), indicating
that the enhancement of phochem-SOA can leads to the development of SOA formation. The phochem-
SOA also had the similar spatial pattern with Os and Ox form the polar plots (Fig. S5), where high
concentration associated with southeast wind originated from Shandong with relatively high wind speed

of over 4 m s}, suggesting the typical feature of regional transport pollutants.
primary-related-SOA

In terms of two fresh SOA factors, they were defined as less oxidized OOA by relative lower O:C,

stronger intensity of m/z 43 (mainly C2H30") and m/z 44 (mainly COz").

The primary-SOA constituted the lowest contribution of 5% among all factors of the total OA and 7%
of the SOA, however, it is still of particular interest in this study. It is characterized by both lower H:C
(1.09) and O:C (0.54) ratios with CO2" comprising 14.3%, which are higher than other POA factors,
indicating a typical nature of less oxidized SOA. However, at m/z > 120, clear polycyclic aromatic
hydrocarbons (PAHs) fragments are evident in mass spectrum of primary-SOA (Fig. 1), as indicated by
the presence of similar patterns of PAH-like ions in their mass spectra at m/z 152, 165, 178, 189, 202,
216, 226 + 228, 240 + 242, 250 + 252, 264 + 266 and 276 + 278 (Dzepina et al., 2007). Previous AMS

studies have observed pronounced peaks of PAHs ions in POA spectrum, such as CCOA (coal

12
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combustion) and BBOA (biomass burning) (Hu et al., 2016a;Zhao et al., 2019), but rarely in SOA. This
observation implies that Primary-SOA may be link to the POA origin from domestic coal combustion
(Xu et al., 2006). Through laboratory combustion studies using online aerosol mass spectrometry, they
examined substantial ion signal at m/z > 100, which potentially link to the fragments of high molecular
weight (HMW) species, was pronounced in both oxidized POA (OPOA) and POA, indicating that POA
can be oxidized by multiphase reactions forming OPOA and the degradation of HMW species from the
oxidation process (Budisulistiorini et al., 2021). In our study, the similar signatures of PAH-like ions was
also found in ag-SOA at m/z > 150, but less pronounced in ag-SOA compared to Primary-SOA,
consistent with previous study in Beijing (Wang et al., 2021). The observation of PAH-likes ions in both
primary-SOA and aq-SOA further indicated they might both originated from coal combustion or
transformation by oxidized POA, and the oxidation of PAHs being involved in the conversion of

Primary-SOA to ag-SOA.

As it is shown in Fig. S4, primary-SOA exhibited relative better correlations with some gaseous
pollutants, such as CO (R = 0.6), NO2 (R = 0.5), and was also consistent with the temporal pattern of
HOA (R = 0.4), suggesting primary-SOA might be transformed from locally primary emissions. In
addition, primary-SOA, had no significant increase trend with both ALWC and Ox (Fig. S3), but its
pollution pattern was similar as some primary precursors such as CO, SOz and NOz, where higher
concentrations appeared with weak west wind (Fig. S5). Therefore, the major pathway of this primary-
SOA formation might be related to primary emission or the its transformation, which also supported by
similar results obtained by Rivellini et al., (2020), who found the oxygenated part of combustion particles
which was co-emitted with HOA and/or produced by oxidation of HOA rapidly could be oxygenated-
HOA (O-HOA) or oxygenated-CCOA. Moreover, some SOA factors were defined as “urban-lifestyle
SOAs” because it could derived from some POA exhaust such as vehicle and cooking through laboratory

experiments (Zhang et al., 2021).
fresh-SOA

The fresh-SOA showed increase substantially as ALWC increasing, similar to ag-SOA. Whereas it also
showed slight increase trend following Ox when Ox < 100 ppb (Fig. S3). Therefore, both aqueous-phase
chemistry and photochemical processing were thought to have positive impacts synchronously on
formation of Fresh-SOA. In this study, CO2" comprised at least in Fresh-SOA of 8.3%, corresponding
with the lowest atomic O:C ratio of 0.41 and a highest atomic H:C ratio of 1.41 among the four SOA
factors. These characteristics consistent with the global average of LO-OOA of 0.35 = 0.14, Ng et al.,
2010), demonstrating the it is more fresh SOA. Besides, Fig. S2 showed that fresh-SOA consisted 18%
of the total OA and 26% of the SOA. Note that the concentration of fresh-SOA increased in every event
following with OA increased no matter the aqueous-phase event and photochemical event under the
stagnant conditions. Meanwhile, it was well correlated with total OA (R = 0.9), PMz5 (R = 0.8) and BC
(R = 0.7, Fig. S4), as well as sulfate (R = 0.7). The sustained contribution from fresh-SOA and
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covariations between fresh-SOA with these species suggest that it was probably a mixed source which
not just dominantly driven by only one formation mechanism. Nevertheless, different pathways among
P1, P2 and P3 lead to the progressive fractions of fresh-SOA to total OA. Compared with PI,
photochemical processing (P2) and aqueous-phase reactions (P3) strengthen to produce fresh-SOA
individually, but the influence driven by aqueous-phase reactions is much greater than photochemical

processing.
1.3 Evolution of OA

The mass spectra of these four factors for PMas are dominated by m/z 44 (mainly CO2%) (Fig. 1).
However, their concentrations show very different temporal variations. The concentration of aq-SOA
correlates with NO3 (R= 0.9) and ALWC (R= 0.7), showing a steady increase as a function of ALWC
(Fig. S4 and Fig. S3) which might indicate aqueous-phase chemistry. The ag-SOA exhibits the highest
O:C ratio of all factors (0.7) and more aged oxidation state, while the O:C ratio of phochem-SOA remains
high (0.67) but slightly lower compared to aq-SOA. The phochem-SOA presents an opposite trend with
significant increase as function of Ox but decrease as function of ALWC (Fig. S3), suggesting the
photochemical formation and further supported by tightly tracked time series of phochem-SOA with Os
(R=0.8) and Ox (R = 0.7) (Fig. S4). The mass spectrum of the fresh-SOA shows a high peak at m/z 43
(mainly CoH3O™) (Fig. 1), corresponding to the lowest atomic O:C ratio of 0.41 and a highest atomic H:C
ratio of 1.41 among SOA factors, which indicate its feature of fresher SOA. Note that the concentration
of fresh-SOA increased in every period with OA increase, and was well correlated with total OA (R =
0.9), PM25 (R = 0.8) and BC (R = 0.7), as well as SO4 (R = 0.7) (Fig. S4), indicating that they were
freshly emitted and less oxidized. The primary-SOA in this study was of particular interest. It has
relatively low O:C (0.54) and H:C (1.09) ratios, indicating a typical nature of less oxidized SOA.
However, as shown in Fig. S4, primary-SOA exhibits relative better correlations with some gaseous
pollutants, such as CO (R = 0.6), NO2 (R = 0.5), and was also consistent with the temporal pattern of

HOA (R = 0.4), suggesting primary-SOA might be transformed from locally primary emissions.
1.4 VK Diagram

During this campaign, the H:C and O:C ratios in this study showed little variation, with average values
0f 0.75 £ 0.09 and 1.58 + 0.28, respectively (Fig. 8a). The H:C ratio in Handan was slightly higher than
that in Hong Kong (1.48) and Lanzhou (1.49) but lower than those at urban sites in Shenzhen (1.83),
MongKok (1.83), Shanghai (1.92) and Jiaxing (1.94) (He et al., 2011; Huang et al., 2012, 2013; Li et al.,
2015; Lee et al., 2015; Xu et al., 2016). Also, a general consistency was observed for the O:C ratio which
was higher than mostly other sites, except the site in Oregon (US) influenced by wildfire. Overall, this
relatively low H:C ratio, high O:C ratios suggested that OA in summer of Handan had higher degree of
oxygenation than those at urban sites due to the progress of atmospheric photochemical aging, and also

indicated the secondary portion having a substantial contribution to the bulk OA. Figure S5 shows a
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synergistically impact of RH and Ox to elemental ratios. For example, H:C increased with the decrease
of Ox concentration and with the increase of RH, which indicated that photochemical process had a
positive effect but aqueous-phase process had an opposite effect on the H:C of atmospheric O. As for
0O:C, higher O:C ratio was mainly observed with high concentration of Ox, highlighting the importance
of photochemical process in aerosol oxidation during summer. Meanwhile, slightly higher O:C also
occurred at high RH levels even though the low concentration of Ox. Previous studies have demonstrated
that aqueous-phase reactions of low-volatility high-molecular weight species detected in the atmosphere,
such as glyoxal (Waxman et al., 2013), methyglyoxal (Lim et al., 2013), glycolaldehyde (Schone and
Herrmann, 2014), pyruvic acid (Altieri et al., 2006), and methacrolein (Liu et al., 2012), were the
important formation pathway of OA (Kroll and Seinfeld, 2008; Hallquist et al., 2009; Sun et al., 2010;
Chen et al., 2018). The products, such as highly oxygenated organic molecules (HOMs), from these
aqueous-phase reactions would be conducive to elevating O:C (Molteni et al., 2018; Bianchi et al., 2019).
On the other hand, the Fig. S7 showed that, the O:C ratio generally increased and the H:C ratio decreased
during the day of 8:00—-16:00 local time (LT), suggesting that SOA formation like photochemical process
or mixing with more aged aerosols from regional sources was dominant during the day and outweighed

the emissions POA (Sun et al., 2013).

To further investigate the pathways of OA factors, ions in the HR mass spectra were used to calculate
the elemental ratios using the improved-ambient method (Canagaratna et al., 2015). The ratios were
represented by the VK diagram in Fig. 8a (Heald et al., 2010) to show the OA evolution in the
summertime of Handan. Based on our data, we found that HOA and COA factors (POA) are both located
at the left-top corner with high H:C, low O:C and OSc below —1. Then, these POAs evolve toward the
right bottom during the formation of SOA (Zhao et al., 2019). Functional groups are further added in Fig.
8a: only oxygen atoms to a carbon backbone results in a slope equal 0, while the replacement of a
hydrogen atom with a carboxylic acid group (—COOH) results in a slope of —1 without fragmentation
(Heald et al., 2010; Ng et al., 2011). As organic compounds are oxidized, a relatively flat slope of —0.19
for H:C versus O:C in this study suggests the importance of the addition of alcohol and/or peroxide (slope
= 0) in OA aging with additional processes adding carboxylic acid and/or carboxyl groups. For SOA
factors, Fresh-SOA factors are located in upper left region with high H:C and low O:C values compared
with the other SOA factors. Although the primary-SOA has the lower O:C than other SOAs, it still
located closely to these two SOAs, which further indicates they might have similar formation,
compositions or transformation between these factors, which is consistent with the results from above

section.

Table S3 present the comparison of average O:C (0.77 £ 0.1) and H:C (1.58 £ 0.1) for bulk OA in this
study (three periods in Handan) with studies from China and other campaigns (four seasons in
urban/suburban sites) based on the updated IA calibrations in Canagaratna et al. (2015). Briefly, OA in

this study are at the higher end of O:C ranges reported in urban areas of China, and are comparable to
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the O:C ratios at the suburban sites, suggesting the OA was fairly oxidized in summer in the urban

Handan.
1.5 fa3 Versus fi

Since the ion fragment with m/z = 44 and 43 are usually originated from different functional groups and
the ratio changes as a function of atmospheric aging, researchers usually use the triangle plot of fas versus
f43 to characterize OA evolutions in the atmosphere. As shown in Fig. 8b, POA and SOA factors fell into
similar regions of fas versus fa3, suggesting that OA factors identified by PMF were fairly similar in the
summertime of Handan. The bottom region of the triangle was dominated by POA factors (including
HOA and COA) with low fas (about 0.05) and f43 of 0.06 to 0.08, indicating that they were freshly emitted
and less oxidized. Comparatively, SOA factors are located in different regions: (1) the fresh-SOA region
with low fa4 (<0.10), indicating they were relatively less oxidized compared to other SOA factors. (2) the
region with high fis (>0.17) than other OA factors, consistent with the fact that sq-SOA and phochem-
SOA were surrogates of highly oxidized or regionally transported SOAs (Zhao et al., 2019); and (3)
primary-SOA region, showing freshly oxidized properties (fas around 0.15). From the color plot of fa9

(mainly fcuo+), fcno+ was observed highly correlated with formation of aged SOA factors.
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