Measurement report: Method for evaluating CO₂ emissions from a cement plant <u>using</u> atmospheric $\delta(O_2/N_2)$ and CO₂ measurements and its <u>implication for future</u> detection of CO₂ capture signals

Shigeyuki Ishidoya¹, Kazuhiro Tsuboi², Hiroaki Kondo¹, Kentaro Ishijima², Nobuyuki Aoki¹, Hidekazu Matsueda², and Kazuyuki Saito³

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan, ²Meteorological Research Institute, Tsukuba, Japan, Tsukuba305-0052, Japan, ³Japan Meteorological Agency, Tokyo, Japan, Tokyo 105-8431, Japan *Concernendersea ter*, Shiratayki Ishidaya (a ishidaya @ait ag in)

Correspondence to: Shigeyuki Ishidoya (s-ishidoya@aist.go.jp)

- 10 Abstract. Continuous observations of the atmospheric $\frac{\partial (O_2/N_2)}{\partial (O_2/N_2)}$ and CO_2 amount fractions have been carried out at Ryori (RYO), Japan since August 2017. In these observations, the O₂:CO₂ exchange ratio $(FR_{-\Delta y}(O_2)\Delta y(CO_2)^{-1})$ has frequently been lower than expected from short-term variations in emissions from terrestrial biospheric activities and combustion of liquid, gas, and solid fuels. This finding suggests a <u>substantial</u> effect of CO₂ emissions from a cement plant located about 6 km northwest of RYO. To evaluate this effect quantitatively, we simulated CO₂ amount fractions in the area around RYO by using
- 15 a fine-scale atmospheric transport model that incorporated CO₂ fluxes from terrestrial biospheric activities, fossil fuel combustion, and cement production. The simulated CO₂ amount fractions were converted to O₂ amount fractions by using the respective <u>ER</u> values of 1.1, 1.4, and 0 for the terrestrial biospheric activities, fossil fuel combustion, and cement production. Thus obtained O₂ and CO₂ amount fractions changes were used to derive simulated ER for comparison with the observed ER_{*}. To extract the contribution of CO₂ emissions from the cement plant, we used *y*(CO₂*) as an indicator variable, where *y*(CO₂*)
- 20 is a conservative variable for terrestrial biospheric activities and fossil fuel combustion obtained by simultaneous analysis of observed <u>&O₂N₂</u> and CO₂ amount fractions and simulated <u>ERs</u>. We confirmed that the observed and simulated OR values and also the *y*(CO₂*) values and simulated CO₂ amount fractions due only to cement production were generally consistent. These results suggest that combined measurements of <u>&O₂N₂</u> and CO₂ amount fractions will be useful for evaluating CO₂ capture from flue gas at carbon capture and storage (CCS) plants, which, similar to a cement plant, change CO₂ amount 25 fractions without changing O₂ values, although CCS plants differ from cement plants in the direction of CO₂ exchange with
- the atmosphere.

1 Introduction

Simultaneous analysis of atmospheric <u>aO2/N2</u> and CO2 amount fractions has been used to estimate the global CO2
 budget since the early 1990s (e.g. Keeling and Shertz, 1992). Recently, these analyses have also been applied to separate the contributions of different sources to the local CO2 budget in an urban area (Ishidoya et al., 2020; Sugawara et al., 2021; <u>Pickers</u>

-(削除: by
(削除: e
-(書式を変更: フォント : Symbol
-(削除: applicability
(削除: to the

削除:	O ₂ /N ₂ ratio
書式	を変更:フォントの色 : テキスト 1
削除:	oxidative ratio (OR
削除:	.)
削除:	significant

書式を変更:フォントの色:テキスト1

削除: OR
削除: each of the incorporated CO2 fluxes
削除:,
削除: and then simulated OR values were calculated from the calculated O ₂ and CO ₂ amount fractions.
削除: activity
削除: c
削除: O2/N2 ratios
削除: 0
削除: O2/N2 ratios

(春式を変更: 英語 (米国)
-(削除: c
(削除: O ₂ /N ₂ ratios
\mathcal{I}	削除: have
Y	書式を変更: フォントの色:テキスト1

et al., 2022). This approach uses -O₂:CO₂ exchange ratios (FR, -Δy(O₂)Δ y(CO₂)⁻¹) for terrestrial biospheric activities and fossil fuel combustion. For terrestrial biospheric O₂ and CO₂ fluxes, FRs of 1.1 or 1.05 are generally used (Severinghaus, 1995;
 Resplandy et al., 2019), and for the fluxes due to fossil fuel combustion, FRs of 1.95 for gaseous fuels, 1.44 for oil and other liquid fuels, 1.17 for coal and other solid fuels, and 0 for cement production are typical (Keeling, 1988). Therefore, atmospheric O₂ amount fraction varies in opposite phase with CO₂ amount fraction, owing to terrestrial biospheric activities and fossil fuel combustion. The ERs are typically very stable, and the global average ER for fossil fuels is about 1.4 (e.g. Keeling and Manning, 2014).

60 In the cement production process, calcium carbonate is burned and calcium oxide and CO₂ are produced as follows:

 $CaCO_3 \rightarrow CaO + CO_2$.

(1)

Because this chemical reaction emits CO₂ to the atmosphere without O₂ consumption, its ER is 0. It should be noted that the cement kilns are usually fired with fossil fuels, so that the overall ER for cement production is not 0. CO₂ emissions from cement production account for about 2 % of global fossil fuel CO₂ emissions (Friedlingstein et al., 2022). However, because it is difficult to separate the cement production signal from CO₂ emissions due to fossil fuel combustion and terrestrial biospheric activities, no study has reported direct evidence of variations in the atmospheric CO₂ amount fraction due to cement production at the Global Atmosphere Watch (GAW) program of the World Meteorological Organization (WMO) stations. In

- 70 this context, simultaneous observations of $\frac{\partial (O_2/N_2)}{\partial and CO_2}$ and CO₂ amount fractions are expected to be useful for separating out the cement production signal owing to its characteristic ER value. Moreover, Keeling et al. (2011), who examined the possibility of verifying rates of carbon capture and storage (CCS) and direct air capture of CO₂ (DAC) by using changes in the atmospheric constituents, suggested that combined measurements of the $\frac{\partial (O_2/N_2)}{\partial and CO_2}$ and CO₂ could powerfully constrain estimated rates.
- To investigate CO₂ leak detection from a CCS site, <u>van</u> Leeuwen and Meijer (2015) observed <u>&O₂/N₂</u> and CO₂ from a 75 6-m-tall mast that was 5–15 m away from artificial CO₂ release points. They estimated that their measurement system could detect a CO₂ leak of 10³ t a⁻¹ at a location up to 500 m away from the leak point. Pak et al. (2016) monitored the air for CO₂ plumes at locations between 1 and 100 m from an artificial CO₂ release point, and collected air samples typically between 9 and 20 m from the point where the CO₂ amount fraction was 100–600 µmol mol⁻¹ above ambient. They then analy<u>sed the air</u> samples for O₂ and CO₂ amount fractions and found much lower <u>E</u>Rs than those expected from fossil fuel combustion and
- 80 terrestrial biospheric activities. These studies support the suggestion by Keeling et al. (2011) regarding the usefulness of <u>AO₂N₂</u> and CO₂ measurements. As the next step to verify the usefulness of combined measurements of <u>AO₂N₂</u> and CO₂, their applicability to the detection of not only CO₂ leaks but also CO₂ capture from flue gas should be examined. In this regard, CCS/DAC plants remove CO₂ from the atmosphere without causing any O₂ changes, just as cement plants do, differing only in the direction of CO₂ exchange between the plant and the atmosphere. Therefore, it should be possible to evaluate the ability

•
.,
- Z.
-

(削除:	i.e. the oxidative ratio (OR)
削除:	e ORs
削除:	e ORs
(*** #
	2後史: 下付さ
(書式)	を変更: 下付き
書式	を変更: フォントの色 : テキスト 1
削除:	atmospheric O_2 and CO_2 fluxes due to terrestrial biospheric ties and fossil fuel combustion (avaluding cament production)

vary in opposite phase	

新路• (

削除: 0
削除: 4
削除: 0
削除: ,
削除: and this value is included in global CO ₂ budget analyses based on the atmospheric O ₂ /N ₂ ratio (e.g. Manning and Keeling, 2006)
書式を変更: フォントの色:テキスト1
書式を変更:フォントの色:テキスト1
書式を変更: フォントの色:テキスト1
削除: O2/N2 ratios
削除: 0
削除: O2/N2 ratio
削除: O2/N2 ratios

削除: z	
削除:0	

-(削除: O2/N2 ratios
-(削除: O2/N2 ratios

110	of combined measurements to detect a CO ₂ capture signal by showing that they can be used to detect a cement production signal. In this paper, we present evidence of the successful detection of a cement production signal by combined measurements of $\frac{\partial (O_2/N_2)}{\partial x}$ and CO ₂ at a ground station (a designated WMO/GAW local site) located near a cement plant. We also examine the usefulness of the measurements for future detection of CCS/DAC signals by using a fine-scale 3-D atmospheric transport model to investigate the consistency between the observed signal and the simulated CO ₂ emissions from the plant.	((削除: O ₂ N ₂ ratios 春式を変更: フォントの色 : テキスト 1 春式を変更: フォントの色 : テキスト 1	
	2 Methods			
1	2.1 Observations of atmospheric δ(O ₂ /N ₂) and CO ₂ amount fractions		書式を変更: 下付き	
115		(春式を変更: 下付き	
115	Autospheric $\underline{O(y/y)}_{a}$ and $\underline{C0}_{2}$ amount inactions have open observed continuously at <u>a coastal station</u> (yori (x to: 59)	\sim	削除: O ₂ /N ₂ ratios	_
	2° N, 141° 49 E, 200 m a.s.l.; Fig. 1), Japan, since 2017, by using a paramagnetic O ₂ analyzer (POM-6E, Japan Air Liquid)	7	春式を変更: フォントの色:テキスト1	_
	and a non-dispersive infrared CO_2 analyzer (NDIR; LI-/000, LI-COR), respectively. RYO is a designated WMO/GAW station,			
	and the Japan Meteorological Agency (JMA) has also observed CO_2 , CH_4 , and CO amount fractions there since 1987, 1991,			
1.00	and 1991, respectively (e.g. Wada et al., 2011). The CO ₂ , CH ₄ , and CO amount fraction data observed by JMA are available		春式を変更: フォントの色:テキスト1	_
120	online at the WMO World Data Centre for Greenhouse Gases (WMO/WDCGG; https://gaw.kishou.go.jp/). A cement plant			
	(Taiheiyo Cement Ofunato plant) is 6 km away from RYO (Fig. 1). It should be noted that the CO_2 amount fraction data posted			
	on WDCGG have already been classified into the data for background air and those affected by local fossil fuel combustion			
	including the cement production discussed in this study. The annual cement production at the plant is $1.966 \times 10^{\circ}$ t a ⁻¹			
	(https://www.taiheiyo-cement.co.jp/english/index.html).			
125	The $\frac{\partial O_2 N_2}{\partial N_2}$ is reported in per meg, where 1 per meg is 0.001 ‰:	<	削除: O2/N2 ratio	_
			削除: as &(O ₂ /N ₂)	_
	$\delta_{(0_2/N_2)} = \frac{R_{\text{sample}}({}^{16}0{}^{16}0){}^{14}N{}^{14}N)}{R_{\text{standard}}({}^{16}0{}^{16}0){}^{14}N{}^{14}N)} - 1, $ (2)			
1	where the subscripts "sample" and "standard" indicate the sample air and the standard gas, respectively. Because O2 amount		春式を変更: フォントの色:テキスト1	
130	fraction in dry air is 0.2093 to 0.2094 mol mol ^{-1} (Tohjima et al., 2005; Aoki et al., 2019), the addition of 1 µmol of O ₂ to 1			
	mol of drv air increases $\partial (O_2/N_2)$ by 4.8 per meg (= 1/0.2094). If CO ₂ is converted one-for-one into O ₂ , it causes $\partial (O_2/N_2)$ to	(SilfA. dividing	
	increase by 4.8 per meg, which is equivalent to an increase of 1 µmol mol ⁻¹ of O ₂ for each 1 µmol mol ⁻¹ decrease in CO ₂	- / 2	削除: the ratio	
	Therefore, chearring relative changes in $S(0,N)$ were converted to these in O_2 around fraction by multiplying by 0.2004	1 X	削除: 4.8	-
	Therefore, observed relative changes in $\partial(0_2/v_2)$ were converted to mose in 0_2 amount fraction by <u>untilitying by y_12034</u> ,	Â	削除: per meg	
125		\leq (削除: (µm	
135	In this study, $o(O_2/N_2)$ of each air sample was measured with a paramagnetic analyzer using <u>high- and low-span_standard</u>	(削除: ol mol ⁻¹	
	air of which $\delta(O_2/N_2)$ had been measured against our primary standard air (Cylinder No. CRC00045; AIST-scale) using a mass) 	削除: working	_
		(削除: that	_

spectrometer (Thermo Scientific Delta-V) (Ishidoya and Murayama, 2014). The scale based on the primary standard air is or original scale, called as "EMRI/AIST scale" in Aoki et al. (2021) Sample air was taken at the tower heights of 20 m using

- 150 original scale, called as "EMRI/AIST scale" in Aoki et al. (2021) Sample air was taken at the tower heights of 20 m using a diaphragm pump at a flow rate higher than 10 L min⁻¹ to prevent thermally-diffusive fractionation of air molecules at the air intake (Blaine et al., 2006). The tower situates on the windward side of prevailing wind direction, and the surface below the tower consists of short grass. Then, a large portion of the air is exhausted from the buffer, with the remaining air allowed to flow into the analyzers from the center of the buffer. It is then sent to an electric cooling unit with a water trap cooled to -80°C
- 155 at a flow rate of 100 mL min⁻¹, with the pressure stabilized to 0.1 Pa and measured for 90 minutes. After the measurements, high-span standard gas, prepared by adding appropriate amounts of pure O₂ or N₂ to industrially prepared CO₂ standard air, was introduced into the analyzers with the same flow rate and pressure as the sample air and measured for 5 minutes, and then low-span standard gas was measured by the same procedure. The dilution effects on the O₂ mole fraction measured by the paramagnetic analyzer were corrected experimentally, not only for the changes in CO₂ of the sample air or standard gas.
- 160 measured by the NDIR, but also for the changes in Ar of the standard gas measured by the mass spectrometer as δ(Ar/N₂). The analytical reproducibility of the δ(O₂/N₂) and CO₂ amount fraction measurements by the system was determined by repeated measurements of standard gas and found to be about 5 per meg and 0.06 µmpl mol⁻¹, respectively, for 2-minuteaverage values. For more information see Ishidoya et al. (2017). In this study, we use about 70-minute-average mean values for analysis. It should be noted that gaps in the data seen at the end of August to beginning of September 2017 are due to
- 165 maintenance and technical issues other than routine calibrations described above. The number of δ(O₂/N₂) (and CO₂ amount fraction) data points shown in Fig. 2 is 9221. Note that we used a mass spectrometer to measure both δ(O₂/N₂) and the CO₂ amount fraction of the working standard air, whereas we determined the CO₂ amount fraction on the TU-10 scale using a gravimetrically prepared air-based CO₂ standard gas system (Nakazawa et al., 1997). However, we found that the CO₂ amount fractions observed in this study were systematically higher by about 1 µmol mol⁻¹ than those observed by JMA and reported
- 170 on the WMO scales (X2007), which is larger than that expected from the scale difference of about 0.2 µmol mol⁻¹ between the TU-10 and WMO scales (Tsuboi et al., 2016). This discrepancy might be related to the LI-7000 NDIR used in this study because no significant difference has been found between the TU-10 and WMO scales at Minamitorishima, where a different NDIR (LI-820, LI-COR) has been used for continuous measurements of ∂(O₂/N₂) and CO₂ amount fractions (Ishidoya et al., 2017). However, we found no significant difference in span sensitivities between the CO₂ amount fractions observed in this
- 175 study and those observed by JMA. Therefore, the systematic difference between the observed CO₂ amount fractions and those observed by JMA does not affect the <u>ER</u> values, discussed in section 3, which were calculated from changes in O₂ and CO₂ amount fractions.

2.2 Simulation of atmospheric CO₂ and O₂ amount fractions using an atmospheric transport model,

To calculate local transport of CO₂ around RYO, we used the National Institute of Advanced Industrial Science and 180 Technology (AIST) Mesoscale Model (AIST-MM) fine-scale regional atmospheric transport model (Kondo et al., 2001).

our	
<u>g a</u>	書式を変更: フォントの色:テキスト1
air	
the	
l to	
)°C	
nts,	
air,	
hen	
the	
gas	
<u>by</u>	削除: The dilution effects on the O ₂ amount fraction measured by the paramagnetic analyzer were corrected experimentally, not only for the changes in the CO ₂ of the sample air or standard gas
ite-	measured by the NDIR but also for the changes in the Ar amount fraction of the standard gas measured by the mass spectrometer as
ues	
e to	
unt	
O_2	削除: Details of the continuous measurement system used are given
ga	in Ishidoya et al. (2017).
unt	
ted	春式を変更: フォントの色:テキスト1
the	春式を変更: フォントの色:テキスト1.蛍光ペン(なし)
ıdv	春式を変更: フォントの色:テキスト1
ent	書式を変更: フォントの色:テキスト1
al	(削除:
ai.,	
000	
ose TO-	
.02	
*	書式を変更: 下付き
	春式を変更: フォントの色:テキスト1,英語(米国)
and	春式変更: 見出し2.インデント:最初の行:0mm

	AIST-MM is a one-way nested model with an outer domain that covers East Japan with an approximately 10-km grid interval			
1	and an inner domain that covers an area of 120 km by 120 km near Ryori with a grid interval of approximately 1 km (Fig. 1).			
1	The EAGrid2010-Japan emissions inventory (Fukui et al., 2014), an update of the EAGrid2000-Japan inventory (Kannari et			
ĺ	al., 2007) to the year 2010, was used for fossil fuel combustion. In this study, fossil fuel combustion means anthropogenic CO2		(書式を変更: フォントの色:テキスト1	
195	sources other than cement production. Spatial resolution of EAGrid2010-Japan is approximately 1 km, and temporal resolution			
1	is monthly average of 1 hour. No further inter-annual correction of emissions is employed, but EAGrid2010-Japan considers			
	the difference in traffic volume between weekdays and holidays. To calculate the CO2 budget for vegetation, the NCAR Land			
	Surface Model (Bonan, 1996) was used as a sub-model, replacing the simple function of temperature and solar insolation used			
	in the original AIST-MM for this calculation. The cement plant source was set at the location of the plant's stack, at the effective			
200	stack height of 275 m. The CO ₂ emissions from the cement plant were estimated from the clinker production capacity of the			
I	Ofunato plant in 2018 (Japan Cement Association 2020). The clinker is a solid material produced in the cement manufacture			
	as an intermediary product of Portland cement, mainly consisting of CaO, SiO2, Al2O2 and Fe2O2. The annual emissions were		··· (前除: as	
1	calculated using the method of the Ministry of Environmental Protection (https://www.env.go.jp/earth/ondanka/ghg-		書式を変更:フォントの色:テキスト1	
	mrv/methodology/material/methodology_2A1.pdf, in Japanese) as		春式を変更: 下付き	
205	$E = P \times F \times D. \tag{3}$		春式を変更: 下付き	
	where <i>E</i> is the annual emissions of CO ₂ from the cement plant ($t a^{-1}$). <i>P</i> were the annual production capacity of clinker at the		(書式を変更:下付き	
I	cement plant (t_{3}^{-1}) <i>F</i> is the CO ₂ -to-clinker mass ratio of 0.516 and <i>D</i> is the cement kill dust of 1. For initial and boundary	$ \setminus $	(青式を変更: ト付き) (金式を変更: 下付き)	
	conditions we used GPV/MSM (arid point value of mero scale model) meteorological data of wind temperature and bumidity		「青八と友文: FN a 削除: is	
1	from IMA (https://www.ima.go.ip/ima/an/Activitias/num.html). As a result COs amount fractions at RXO are calculated by			
210	non JMA (https://www.jma.go.jp/jma/ch/Activities/nwp.intin). <u>As a result, CO2 and the result in the contribution of CO</u>			
210	summing up the contributions of CO ₂ amount fraction for fossilitude computation, terrestrial biospheric activities, and centering		● ● A を変更: フォントの色: デキスト1	
	production. In this study, not only CQ_2 amount fractions but also ER are compared between the observed and simulated data.			
l	For this purpose, O_2 amount fractions are calculated by summing up the respective contributions of CO_2 amount fractions for			
l	fossil fuel combustion, terrestrial biospheric activities, and cement production multiplied by the -ER values of -1.4, -1.1, and			
	0. Here the 1.4 and 1.1 are typical ER for fossil fuel combustion and terrestrial biospheric activities, respectively. For		(春式を変更: フォントの色:テキスト1,蛍光へ	ペン (なし)
215	comparison, we also calculate ER values for the O ₂ and CO ₂ amount fractions simulated without including the contribution of			
	cement production,		春式を変更: 英語(米国)	
	2.3 Extraction of a coment signal from the observed data			
	2.5 Extraction of a cement signal from the observed data	_	● 春式を変更: フォントの色:テキスト1	
	We extract signals of cement production based on the simultaneous measurements of $\partial (O_2/N_2)$ and CO ₂ amount fractions.		(書式を変更:フォントの色:テキスト1	
i	For this purpose, we use $y(CO_2^*)$ as an indicator:		唐式を変更: フォントの色: テキスト1	
220	$y_{1}(\text{CO}_{2}^{*}) = y(\text{CO}_{2}) + \frac{x_{1}(\text{O}_{2})}{2} \delta_{1}(\text{O}_{2}/\text{N}_{2}), \tag{4}$		(書式を変更:フォントの色:テキスト1	

 $y_{(CO_2^*)} = y_{(CO_2)} + \frac{\alpha_{B+F}}{\alpha_{B+F}} \delta_{(O_2/N_2)}$ where $X(O_2)$ (= 0.2094) is the fraction of atmospheric O_2 , and α_{B+F} is the expected ER for terrestrial biospheric activities and fossil fuel combustion. The $y(\text{CO}_2^*)$ is closely related to atmospheric potential oxygen ($\partial(\text{APO})$), which is conserved for

1	春式を変更: フォントの色:テキスト1
Á	審式を変更: フォントの色:テキスト1
λ	書式を変更: フォントの色:テキスト1
4	審式を変更: フォントの色:テキスト1
(書式を変更:フォントの色:テキスト1
~(書式を変更: フォントの色:テキスト1
\langle	書式を変更: フォントの色:テキスト1
Y	毒式を変更: フォントの色:テキスト1

225	terrestrial biospheric activities (Stephens et al., 1998). Here, y stands for the dry amount fraction of gas, as recommended by
	the IUPAC Green Book (Cohen et al., 2007). In our previous study, we calculated & APO) as:

(5)

$\delta_{l}APO$	$\delta = \delta_0 O_2 / N_2$	$1 + \frac{u_{\rm B}}{u_{\rm B}} \gamma_{\rm C} CO_{2}$	-2000×10^{-6}	
	/	1 37(1)0) 5 1		

where 2000 is an arbitrary reference (Ishidoya et al., 2022), For α_{B+F} values, we use monthly average ER values calculated from the simulated O₂ and CO₂ values without considering the contribution of cement production (black dotted line in Fig. 5, 230 bottom, discussed below). If there are no substantial contributions from air-sea O2 and CO2 exchanges, then y(CO2*) indicates the change in the atmospheric CO2 amount fraction due only to cement production, No air-sea exchanges can be assumed if the wind field, surface ocean biological production and ocean temperature are constant throughout the month, Actually, day to-day variations in $\partial(O_2/N_2)$ due to the contribution of oceanic signal cannot be ignorable within a month as reported by past studies (e.g. Goto et al., 2017). However, as discussed in Figs. 5 and 6 below, variations in CO2 amount fraction due to cement 235 production occurred over periods of less than a day. Taking these findings into consideration, we derived the baseline variation in $\gamma(CO_2^*)$, which does not include a substantial contribution from cement production, as follows. First, we calculated the standard deviation (1 σ) of each $y(CO_2^*)$ value from the 24-h running means of $y(CO_2^*)$. Then, we removed $y(CO_2^*)$ values greater than the 24-h running mean of $y(CO_2^*) + 1\sigma$ from the analysis. Finally, we recalculated the 24-h running means by using the residual $y(CO_2^*)$ values, and regarded them as the baseline variation. Accordingly, the $y(CO_2^*)$ anomaly obtained by 240 subtracting the baseline variation from each y(CO2*) value is considered to indicate CO2 changes due mainly to the contribution of the cement production.

	書式を変更: フォント:斜体,フォントの色:テキスト1
	春式を変更: フォントの色:テキスト1
	青式を変更:フォントの色:アキスト1
	青式を変更:フォントの色:テキスト1
0	春式を変更: フォントの色:テキスト1
1)	書式を変更: フォントの色:テキスト1
7	春式を変更: フォントの色:テキスト1
//	書式を変更: フォントの色:テキスト1
/	春式変更: インデント:最初の行:0mm
1	書式を変更: フォントの色:テキスト1,蛍光ペン(なし)
-	書式を変更: フォントの色:テキスト1
$\langle \rangle$	春式を変更: フォントの色:テキスト1,蛍光ペン(なし)
//	書式を変更: フォントの色:テキスト1
//	春式を変更: フォントの色:テキスト1,蛍光ペン(なし)
	書式を変更: フォントの色:テキスト1
	書式を変更: フォントの色:テキスト1,蛍光ペン(なし)
	春式を変更: フォントの色:テキスト1
	春式を変更: フォントの色:テキスト1,蛍光ペン(なし)
	春式を変更: フォントの色:テキスト1
	春式を変更: フォントの色:テキスト1
1	書式を変更: フォントの色:テキスト1.蛍光ペン(なし)
-	春式を変更: フォントの色:テキスト1.(言語1)日本語(言
	語 2) 英語 (米国)
\geq	書式を変更: 英語 (英国)

3 Results and discussion

From August 2017 to November 2018, δ(O₂/N₂) and CO₂ amount fractions observed at RYO varied cyclically in opposite
phase to each other on timescales from several hours to seasonal (Fig. 2); however, variations in CO₂ and CO amount fractions were roughly in phase. The opposite-phase variations of δ(O₂/N₂) and CO₂ amount fractions were driven by fossil fuel combustion and terrestrial biospheric activities. In contrast, the atmospheric O₂ variation (µmol mol⁻¹) due to the air–sea exchange of O₂ is much larger than that of CO₂ on timescales shorter than 1 year because of the difference in their equilibration times between the atmosphere and the surface ocean: the equilibration time for O₂ is about a month and CO₂ is about a year
because of the carbonate dissociation effect on the air–sea exchange of CO₂ (Keeling et al., 1993). The in-phase variations of the CO₂ and CO amount fractions were also driven by fossil fuel combustion and biomass burning reported by past studies are about 0.01-0.04 and >0.1, respectively (e.g. Nara et al., 2011; Tohjima et al., 2014; Niwa et al., 2014). The short-term (several hours to several days) variations in CO:CO₂ ratios were about 0.01 from late autumn to early spring, but they were much smaller in summer (Fig. 2). These results suggest, therefore, 255 that the short-term variations in δ(O₂/N₂) and CO₂ amount fractions were driven mainly by fossil fuel combustion in winter

書式を変更:フォントの色:テキスト1

削除: much shorter than that for CO2

書式を変更:フォントの色:テキスト1

and mainly by terrestrial biospheric activities in summer. <u>Over one year of measurements</u> CO amount fractions also showed a seasonal cycle with a summertime minimum that is attributed to the air mass around Japan: in winter the air mass is of continental origin and in summer it is of maritime origin.

- In this study, we focused on the short-term variations in $\partial(O_2/N_2)$ and the CO₂ and CO amount fractions (Fig. 2) to extract local effects of cement production. Therefore, we subtracted 1-week rolling average values of $\partial(O_2/N_2)$ and the CO₂ and CO amount fractions from the observed values to exclude their baseline variations, and examined the relationships among the residuals ($\Delta y(O_2)$, $\Delta y(CO_2)$, and $\Delta y(CO)$; Fig. 3a). Here, $\Delta y(O_2)$ is the equivalent value in µmol mol⁻¹ converted from $\partial(O_2/N_2)$. We also plotted the ER values calculated by least-squares fitting of regression lines to the observed $\Delta y(O_2)$ and
- 265 <u>Ay(CO₂) values during successive 24-h periods in Fig. 3b. As seen in the figure, both ER values higher and lower than 1.1 were observed throughout the observation periods. When terrestrial biosphere emits CO₂ to the atmosphere, i.e. respiration signal is larger than photosynthesis signal, the ER values ranging from 1.05 to 2.00 are expected from combination fluxes of terrestrial biospheric activities, gas, liquid, and solid fuels combustion. Similar ER values have been observed at other Japanese sites (e.g. Mineiima et al., 2012; Goto et al., 2013; Ishidova et al., 2020).</u>
- 270 On the other hand, when photosynthesis signal is larger than respiration signal, ER for the combination fluxes could be variable and potentially even become lower than 1.05. However, we consider the observed low ER values are attributed to substantial CO₂ flux from cement production, of which ER value is 0, rather than the photosynthesis signal because the low ER values and high Δy (CO) appeared simultaneously. These characteristics can be seen from the typical ER and Δy (CO) in August 2018 plotted in Fig. 3c. Therefore, it is considered that the ER lower than 1.05 indicates CO₂ flux from cement
- 275 production mixes with the surrounding air that has already been influenced by terrestrial biospheric activities or fossil fuels combustion. Similar characteristic relationships have previously been observed only in artificial CO₂ release experiments of which ER value is 0, such as those described by <u>van</u> Leeuwen and Meijer (2015) and Pak et al. (2016). Therefore, we used the AIST-MM model to calculate atmospheric CO₂ amount fractions, with or without taking into account the CO₂ flux from the cement plant near RYO, and to convert the calculated CO₂ amount fractions to O₂ amount fractions using the respective <u>ER</u>.
- 280 values of fossil fuels and terrestrial biospheric activities. Then we compared the observed and simulated ER values. Figure 4 shows examples of the performance of the AIST-MM at the present calculation. Figure 4a shows monthly average of hourly CO₂ amount fraction is slightly overestimated at night and underestimated in the daytime except for February, however, absolute value of the difference is less than 2 µmol mol⁻¹ in most case. Figure 4b is a scatter plot of the difference from 391.14, µmol mol⁻¹ (the minimum concentration of observed CO₂ in the 7-months) between calculated and observed concentration for
- 285 all the hourly data in the seven months. FAC2 (fraction of calculations within a factor 2 of observations) is 0.976, where model acceptance criterion of FAC2 is greater than 0.5 (Hanna and Chang, 2012), and Pearson's correlation coefficient is 0.69. The discrepancies between observed and simulated values can be attributed to the limited resolution of the model in the complex terrain, or to problems in the parameterization of transport processes, or in the CO₂ sources/sinks incorporated into the AIST-MM.

(書式を	:変更: フォントの色 : テキスト 1, 下付き
書式家	·変更: フォントの色 : テキスト 1
書式る	·変更: フォントの色: テキスト1
削除: relation biosph fuels, s	Many of the $\Delta y(C_2)$ and $\Delta y(C_2)$ values show the expected aship with the OR for a composite flux from terrestrial eric activities and the consumption of gas, liquid, and solid imilar to
書式を	·変更:フォントの色:テキスト1
削除:	Moreover
削除:	it is clear that relationships with an OR smaller than 1.1
削除: values	appear frequently, especially for data with high $\Delta y(CO)$
削除:	Although these
削除: from c	, they can be interpreted as indicating a significant $\rm CO_2$ flux ement production, which has an OR value of 0
削除:	0
削除:	0
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
書式を	:変更: フォントの色:テキスト1
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
書式を	:変更: フォントの色:テキスト1
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
書式を	:変更: フォントの色:テキスト1
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
削除:	ppmv
削除:	90.13
書式を	*変更:フォントの色:テキスト1
書式を	:変更:フォントの色:テキスト1
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
書式を	:変更:フォントの色:テキスト1
書式を	:変更: フォントの色:テキスト1,蛍光ペン(なし)
書式を	*変更:フォントの色:テキスト1
削除:	ppmv
書式を	:変更: フォントの色 : テキスト 1
書式を	:変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
削除:	5
書式を	:変更: フォントの色:テキスト1
書式を	*変更: フォントの色 : テキスト 1, 蛍光ペン (なし)
削除: reporte	It is noted that we use the hourly CO ₂ amount fraction d by JMA in Fig. 4 for the convenience of comparison with data calculated by the AIST MM (we also confirmed that it

書式を変更:フォントの色:テキスト1

In October 2017, short-term variations in observed CO₂ and $\partial(O_2/N_2)$ were opposite in phase, and the amplitudes (in μ mol mol⁻¹) of some CO₂ variations were larger than those of the corresponding $\partial(O_2/N_2)$ variations (Fig. <u>5</u>). If the short-term variations driven by terrestrial biospheric activities and the consumption of gas, liquid, and solid fuels, then the amplitudes of

- 320 CO₂ should be smaller than those of the δ(O₂/N₂). Therefore, this result suggests an effect of cement production superimposes on fossil fuel combustion and/or terrestrial biosperic activities. Similar characteristic variations suggesting a cement production / effect were also seen in the observations made at RYO in November 2017 and in January. February, April, May, and August 2018 as presented in Appendix A. The simulated CO₂ amount fraction, calculated from the sources and sinks in East Japan area with no background amount fraction by the AIST-MM, is also shown in Fig. 5. The contribution of CO₂ amount fraction
- 325 for the three components (cement production, <u>terrestrial</u> biospheric activities, and fossil fuel consumption other than cement production) are also shown in Fig. 5. The results demonstrate that cement production contributed <u>substantially</u> to the simulated CO₂ amount fraction. We examined the effect of cement production on <u>ER</u> values by calculating <u>ER</u> values by fitting regression lines to the observed and simulated O₂ and CO₂ amount fractions during successive 24-h periods (Fig. 5. bottom), <u>Both the</u> observed <u>ER</u> values and those simulated are frequently lower than 1.1, <u>while the ER values</u> simulated without including cement
- 330 production show lower values than 1.1 occasionally (Fig. 5 and Fig. A1a-f in Appendix A). Therefore, CO₂ emissions from the cement plant must be incorporated into the transport model to reproduce the detailed variations in atmospheric O₂ and CO₂ amount fractions at RYO.

Next, we extracted signals of cement production based on $\gamma(CO_2^*)$ calculated from the simultaneous measurements of $\partial(O_2/N_2)$ and CO₂ amount fractions (see 2.3 in details). In October 2017, $\gamma(CO_2^*)$ and CO amount fraction maxima at RYO

- 335 appeared at the same time that the wind was blowing from the northwest (most frequently over the range of 270-300°) (https://www.data.jma.go.jp/env/data/report/data/download/atm_bg_e.html) (Fig. 6). This result suggests that the short-term variations in y(CO₂^{*}) were driven mainly by air masses transported from the cement plant, which is about 6 km northwest of RYO. These findings also indicate that it is possible to extract CO₂ amount fraction data from background air at RYO by selecting observed ER and CO amount fraction data. We have confirmed the present method of JMA used to select background
- 340 air for the data posted on WDCGG is sufficient to exclude the effect of cement production, nevertheless the use of <u>ER may</u> provide an additional constraint. Note that CO is emitted during fossil fuel combustion at the cement plant to supply electricity and heat for cement production. This means CO₂ is presumably <u>released</u> as well, so that the overall <u>ER for the CO₂ emitted</u> from cement plant (cement production + fossil fuel combustion) would not be 0.
- To examine the consistency between the observed $y(CO_2^*)$ and simulated CO_2 emissions from the cement plant, we 345 compared 5-h means of $y(CO_2^*)$ anomalies with changes in the CO_2 amount fraction due to the contribution of cement production as simulated by the AIST-MM (hereafter referred to as " $y(CO_2, cement)$ ") (Fig. 6, bottom). The result shows that variations in the $y(CO_2^*)$ anomaly and $y(CO_2, cement)$ are of the same order of magnitude, although they do not necessarily occur simultaneously. This result suggests that we succeeded in using $y(CO_2^*)$ to detect a signal of CO_2 emissions <u>owing to</u> the cement <u>production</u>, and that this signal can be used to validate a fine-scale atmospheric transport model. In this context,

III a.... If the short-term variations driven by terrestrial biospheric activities and the consumption of gas, liquid, and solid fuels, then the amplitudes of CO₂ should be smaller than those of the δ(O₂/N₂). Therefore, this result suggests an effect of cement production superimposes on fossil fuel combustion and/or terrestrial biosperic activities. This result suggests an effect of cement production ...imilar characteristic variations suggesting a cement production effect were also seen in the observations made at RYO in November 2017 and in January, February, April, May, and August 2018 as presented in Appendix A(Fig. 4b-c)... The simulated CO₂ amount fraction, calculated from the sources and sinks in East Japan area with no background amount fraction by the AIST-MM, is also shown in Fig. 54... Comparison between the observed and simulated CO amount fractions, how dweak correlations.comedian construction

Or another factorian showed weak conclusions concentration of the efficients were 0.41, 0.28, 0.19, 0.33, and 0.25 for October and lowember 2017 and February, May, and August, 2018, respectively, herefore, the AIST-MM reproduced the general characteristics of the observed short-term variations in CO₂, but not necessarily the hase and amplitude of individual variations. The discrepancies tween observed and simulated values can be attributed to the mited resolution of the model, or to problems in the arameterization of transport processes, or in the CO₂ sources/sinks accorporated into the AIST-MM.⁻¹ [...[2]

書式を変更:フォントの色:テキスト1

Wir: land ...errestrial biospheric activities, and fossil fuel consumption other than cement production) are also shown in Fig. 54... The results demonstrate that cement production contributed substantial significant...y to the simulated CO2 amount fraction. We examined the effect of cement production on EO... values by calculating EO... values by fitting regression lines to the observed and simulated O2 and CO2 amount fractions during successive 24-h periods (Fig. 54... bottom). For this purpose, we converted the simulated CO2 amount fractions to O2 amount fractions by assuming OR values of 0, 1.1, and 1.4 for cement production, terrestrial biospheric activities, and fossil fuel combustion, respectively. For comparison, we also calculated OR values for the O2 and CO2 [...[3]

書式を変更:フォントの色:テキスト1

削除: O... values and those simulated considering cement production ...re frequently lower than 1.1, while the ER values, but no OR values...simulated without considering ...ncluding cen ... [4] 削除: based on **書式を変更:**フォントの色:テキスト1,蛍光ペン(なし) 前除: For this purpose, we use v(CO2*) as an indicator $y(\text{CO}_2^*) = \Delta y(\text{CO}_2) + \frac{x_1(\text{O}_2)}{\alpha_{\text{D}_2}} \Delta \delta(\text{O}_2/\text{N}_2), \quad \rightarrow (4) \in \mathbb{C}$... [6] 前除-[...[7] 書式を変更 ... [5] 書式を変更 ... [8] 削除: production **書式を変更:**フォントの色:テキスト1,英語(米国) 書式を変更:フォントの色:テキスト1

van Leeuwen and Meijer (2015) suggested that a CO₂ leak of 10³ t a⁻¹ is detectable at a location up to 500 m away from the leak point based on their observations of atmospheric O₂ and CO₂ amount fractions. If this relationship follows an inverse square law, a CO₂ leak of 1.44 × 10⁵ t a⁻¹ should be detectable at locations up to 6 km from the leak point. Therefore, about 10⁶ t a⁻¹ of the CO₂ emissions from the cement plant in this study, calculated with Eq. (3), is large enough to be detected at
RYO. Features during November 2017, January, Februaty, April, May and August 2018 were similar (Fig. A2a-Q, although the short-term variations in *y*(CO₂*) in May 2018 (Fig. A2e) were noisier than in the other months, probably because of an effect of short-term variations in the air–sea O₂ flux due to high primary production during the spring bloom in the nearby

coastal ocean (e.g. Yamagishi et al., 2008).

- The monthly mean $y(CO_2^*)$ anomalies shown in Fig. 2 were calculated using the OR (α_{B+F}) value calculated by the 595 AIST-MM for terrestrial biospheric activities and fossil fuel consumption excluding cement production. In Fig. 7, these $y(CO_2^*)$ anomaly values as well as those calculated using α_{B+F} values of 1.4 and 1.1 are compared with monthly mean $y(CO_2,$ cement) values. The monthly mean $y(CO_2^*)$ anomalies were generally consistent with the monthly mean $y(CO_2,$ cement) values from October, November, February and April, while those were smaller in January and larger in May and August. The discrepancy between the monthly mean $y(CO_2^*)$ anomaly and $y(CO_2,$ cement) is not explained by month-to-month changes in /
- 600 the cement production, since the production of clinker at the cement plant for each month was not markedly different with each other (personal communication with Taiheiyo Cement Co.). We have also confirmed monthly mean $y(CO_2, cement)$ values were related to the occurrence of northwesterly winds (i.e. wind blowing from the cement plant). However, the average wind direction simulated by the AIST-MM when high $y(CO_2, cement)$ values appeared (around 300°) was slightly but systematically different from that for observed wind direction (around 270°) (Fig. A3a and A3b in Appendix A). This
- 605 discrepancy is probably due to the underestimation of the altitude of Ryori ridge which locates between the cement plant and the RYO site. Such the underestimation makes it easy to transport the CO_2 emitted from the cement plant directly to RYO over the ridge since the cement plant is located around 300° from the RYO site. This is also consistent with the fact that the larger monthly mean $v(CO_2$, cement) than the monthly mean $v(CO_2^*)$ anomalies are found in January and February when prevailing wind direction is northwesterly. The complex terrain around RYO such as Ryori ridge would also contributes to the discrepancy
- 610 between the monthly mean v(CO2*) anomaly and v(CO2, cement) in May and August at least partly. In May, it is considered that an effect of the oceanic O2 flux on v(CO2*) anomaly is also substantial, since we can distinguish short-term variations in <u>A</u>(O2/N2) without simultaneous changes in CO2 amount fraction (Fig. A1e).

Lt was also found from Fig. 7 that the monthly mean $y(CO_2^*)$ anomaly did not depend on the α_{B+F} value used to calculate $y(CO_2^*)$ except August, 2018. In addition, the average monthly mean $y(CO_2^*)$ anomaly values and the average $y(CO_2$, cement) during the $\frac{1}{2}$ -months (right side of Fig. 2) agreed within their monthly variabilities. These results suggest that it is not necessary

to use the α_{B+F} value simulated by the AIST-MM to estimate the contribution of cement production to the atmospheric CO₂ amount fraction at RYO; rather, it can be estimated from only the observed $y(CO_2^*)$ by assuming an α_{B+F} value of 1.1 or 1.4. Therefore, the observed $y(CO_2^*)$ can be used to validate monthly to annual average CO₂ fluxes from cement production

1	削除: and
6	削除: 5b, d, e
	(削除: 5d
	前除: In February 2018, however, the monthly mean y(CO ₂ *) anomaly was around zero (Fig. 5c), whereas y(CO ₂ , cement) was notably higher.
	(書式を変更:フォントの色:テキスト1
	削除: 5a-e
	(削除: 6
	書式を変更:フォントの色:テキスト1
	Nik: lower during autumn and winter and higher during spring and summer than the monthly mean y(CO ₂ , cement) values. We have confirmed monthly mean y(CO ₂ , cement) values were related to the occurrence of northwesterly winds (i.e. wind blowing from the cement plant). Moreover, t
	削除: in February 2018, when a discrepancy was observed between the y(CO ₂ *) anomalies and y(CO ₂ , cement),
	削除: from the production in the other months
	書式を変更: フォントの色:テキスト1
	書式を変更: フォントの色:テキスト1
	春式を変更: フォントの色:テキスト1
	(書式を変更:フォントの色:テキスト1
	春式を変更: フォントの色:テキスト1
	書式を変更: フォントの色:テキスト1
	春式を変更: 下付き
	書式を変更: フォントの色:テキスト1
	書式を変更: フォントの色:テキスト1
	削除: Therefore, t
	春式を変更: フォントの色:テキスト1
	書式を変更: フォントの色:テキスト 1,下付き
	(書式を変更:フォントの色:テキスト1
$\langle \rangle$	削除: February 2018 may
	前除: be related to inadequate representation of the local transport of CO ₂ by the AIST-MM due to the complicated geography around RYO. Moreover, except in February 2018, t
$\left(\right)$	(削除: (Fig. 6)
//	(削除: 5
/	削除: 6

simulated by a fine-scale atmospheric transport model. It should be also noted that we did not use CO amount fraction for the calculation of y(CO₂*). This is an important advantage to apply y(CO₂*) to detect CO₂ capture and/or CO₂ leak which do not
 645 emit CO.

 $y(\text{CO}_2^*)$ is expected to be an indicator for detecting the signal of CO₂ capture from the flue gas at the cement plant. At a cement plant, CO₂ is removed from the flue gas without any O₂ changes. Therefore, if the CO₂ emitted during cement production, which is about 10⁶ t a⁻¹ at this plant, is removed from the flue gas, then the $\frac{1}{2}$ month mean $y(\text{CO}_2^*)$ anomaly would change from 0.4 to 0 µmol mol⁻¹. Thus, a cement plant can be a useful site not only for demonstrating carbon capture from flue gas but also for monitoring its efficiency based on combined measurements of $\delta(\text{O}_2/\text{N}_2)$ and CO₂. In addition, during the

650 flue gas but also for monitoring its efficiency based on combined measurements of $\delta(O_2/N_2)$ and CO_2 . In addition, during the future operation of a large-scale DAC plant, a negative annual mean $y(CO_2^*)$ anomaly value should be observed because a DAC plant removes CO_2 from the atmosphere without emitting O_2 to the atmosphere.

4 Conclusions

We analysed atmospheric $\partial (O_2/N_2)$ and CO₂ and CO amount fraction data observed continuously at RYO to extract a 655 CO₂ emissions signal from a cement plant located about 6 km northwest of RYO. The observed $\partial (O_2/N_2)$ and CO₂ amount fractions varied cyclically in opposite phase to each other on timescales from several hours to seasonal. From the CO:CO₂ ratios, the short-term variations in $\partial (O_2/N_2)$ and CO₂ amount fraction were inferred to be driven mainly by fossil fuel combustion in winter and by terrestrial biospheric activities in summer. We found that an ER lower than 1.1 was frequently associated with short-term variations, especially when the CO amount fraction was high; this result suggests a <u>substantial effect</u> 660 of cement production, which has an ER of 0. We compared observed CO₂ amount fractions with those simulated by the AIST-

MM for October and November 2017 and January. February, April, May, and August 2018. FAC2 for the data throughout the observation period was 0.976, which was greater than model acceptance criterion of 0.5. Therefore, the AIST-MM reproduced general characteristics of the observed CO₂ amount fraction were reproduced by the AIST-MM.

We calculated the simulated $\underline{\mathbb{R}}$ values by using simulated $\underline{\partial}(O_2/N_2)$ values obtained from simulated $\underline{\mathrm{CO}}_2$ amount fractions and $\underline{\mathbb{R}}$ values of 1.1, 1.4, and 0 for terrestrial biospheric activities, fossil fuel combustion, and cement production, respectively. As in the observations, simulated $\underline{\mathbb{R}}$ values lower than 1.1 were frequently associated with short-term variations. $\underline{\mathcal{M}}(\mathrm{CO}_2^*)$ was calculated from the observed $\underline{\partial}(O_2/N_2)$ and CO_2 amount fractions and the simulated $\underline{\rho}_{B+F}$ to extract the cement production signal. Variations in the $y(\mathrm{CO}_2^*)$ anomaly relative to baseline values were generally of the same order of magnitude as CO_2 amount fraction changes due to contribution of cement production simulated by the AIST-MM ($y(\mathrm{CO}_2, \text{ cement})$). The monthly mean $y(\mathrm{CO}_2^*)$ anomaly averaged over the $\underline{\mathcal{L}}$ months examined in this study and the $\underline{\mathcal{L}}$ month average of $y(\mathrm{CO}_2, \text{ cement})$.

agreed within their variabilities. These results confirm that monthly to annual average CO₂ emissions from a cement plant can be detected by using $y(CO_2^*)$, and, therefore, that a cement plant will be a useful site for demonstrating and monitoring CO₂ capture from flue gas in the future. As a remaining topic, we point out the fact that detail variations in the CO₂ amount fraction were not reproduced 削除: Summary **書式を変更:**(言語 1)日本語,(言語 2)英語(米国) 削除: z **書式を変更:**フォントの色:テキスト1 削除:0 削除: significant 削除:0 削除:5 **審式を変更:**フォントの色:テキスト1,蛍光ペン(なし) 削除: The 前降: the short-term variations in 前除: , although not necessarily their phases or amplitudes 削除:0 削除:0 削除:0 削除:) **書式を変更:**フォントの色:テキスト1

書式を変更:フォントの色:テキスト1

削除:5

- 1	\sim	

書式を変更:フォントの色:デキスト1

書式を変更: フォントの色 : テキス

削除:5

削除:5

by the AIST-MM enough. This is due to insufficiency of spatial resolution of the AIST-MM at least partly, to reproduce air transport from a point source such as the cement plant in the present study. Therefore, as a next step, we should use higherresolution atmospheric transport model to improve an agreement between the observed and simulated CO₂ amount fractions. It is also needed to develop more accurate method to extract $\gamma(CO_2^*)$ due only to cement production especially for the period

695 <u>air-sea O₂ flux is substantial. Such improvement will make it possible to estimate amounts of CO₂ capture and/or CO₂ leak around the observation site from an inversion analysis using the higher-resolution atmospheric transport model.</u>

Appendix A: Additional figures to evaluate an effect of cement production on the observed and simulated CO₂ amount fractions

- 700 In the main text, variations in CO₂ amount fractions and <u>x</u>(O₂/N₂) observed at RYO, CO₂ amount fraction simulated by*, the AIST-MM, and ER calculated from the observed and simulated data in October 2017 were shown in Fig. <u>5</u>. We also show the corresponding figures in November, 2017, and January, February, April, May, and August, 2018 in Fig. A1a, A1b, A1c, A1d, A1e, and A1f, respectively. Variations in y(CO₂*), CO amount fractions in October 2017, and five-hour-averages of the y(CO₂*) anomalies from the y(CO₂*) baseline variation and those of y(CO₂, cement) simulated by the AIST-MM were shown
- in Fig. 6. We also show the corresponding figures in November, 2017, and January, February, April, May, and August, 2018 in Fig. A2a, A2b, A2c, A2d, A2e, and A2f, respectively. General characteristics of Fig. A1a-f and A2a-f are found to be similar to those discussed in the main text for Fig. 5 and 6, respectively. However, we can distinguish short-term variations in ∂(0₂/N₂) without simultaneous changes in CO₂ amount fraction in May 2018 (Fig. A1e), which may be attributed to substantial oceanic O₂ flux due to high primary production during the spring bloom. Figure A3a shows relationships between y(CO₂*) and wind direction at RYO. Same as in A3a but for y(CO₂, cement) simulated by the AIST-MM is shown in A3b. The average wind direction when high g(CO₂, cement) values appeared is around 300°, while that for observed wind direction is around 270°.

This discrepancy is probably due to insufficient spatial resolution of the AIST-MM as discussed in the main text,

- Data availability.
- 715 The (O2/N2) and CO2 amount fraction data at RYO site presented in this study are included as electronic supplement to the manuscript. We will deposit the data in the WDCGG before the manuscript is accepted for publication, and the URL and DOI will be shown here.

Author contributions.

720 SI designed the study and drafted the manuscript. Measurements of O₂ and CO₂ amount fractions were conducted by SI, KT, and KS. KH conducted the AIST-MM simulations. NA prepared the standard gas for the O₂ measurements. KI and HM examined the results and provided feedback on the manuscript. All authors approved the final manuscript.

	1
	I
-	٠

-(書式を変更: フォントの色:テキスト1,下付き
-(書式を変更: フォントの色:テキスト1
)	審式を変更: フォントの色:テキスト1,下付き
Y	書式を変更: フォントの色: テキスト1

(春式を変更: 下付き
· (春式を変更: 英語 (米国)
· (書式を変更: 下付き
春式を変更: フォントの色:テキスト1
書式を変更: 下付き
春式変更: インデント:最初の行: 8.5 mm
書式を変更: フォントの色: テキスト1
春式を変更:フォントの色:テキスト1
春式を変更: フォントの色:テキスト1
書式を変更: フォントの色:テキスト1
* 審式を変更: フォントの色:テキスト1
* 審式を変更: フォントの色: テキスト1
春式を変更: フォントの色:テキスト1
(書式を変更:フォントの色:テキスト1
(書式を変更: フォントの色: テキスト1
春式を変更: フォントの色:テキスト1
書式を変更:フォントの色:テキスト1
(書式を変更:フォントの色:テキスト1
(書式を変更:フォントの色:テキスト1
書式を変更:フォントの色:テキスト1
書式を変更: フォントの色:テキスト1
書式を変更: 英語 (米国)
書式を変更: 英語 (英国)
(書式を変更:フォントの色:テキスト1
(削除: an appropriate data archive
(書式を変更:フォントの色:テキスト1
書式を変更:フォントの色:テキスト1

725 Competing interests.

The authors declare that they have no conflict of interest.

Acknowledgements.

We acknowledge the many staff members of the Japan Meteorological Agency. We also thank Shohei Murayama at the National Institute of Advanced Industrial Science and Technology (AIST), Ryo Fujita at the Meteorological Research Institute, 730 and JANS Co. Ltd. For supporting the observations.

Financial support.

This study was partly supported by JSPS KAKENHI (grant nos. 19H01975 and 22H05006) and the Global Environment 735 Research Coordination System from the Ministry of the Environment, Japan (grant nos. METI1454 and METI1953).

References

740

Aoki, N., Ishidoya, S., Matsumoto, N., Watanabe, T., Shimosaka, T., and Murayama, S.: Preparation of primary standard mixtures for atmospheric oxygen measurements with less than 1 µmol mol⁻¹ uncertainty for oxygen molar fractions,

Atmos. Meas. Tech., 12, 2631-2646, https://doi.org/10.5194/amt-12-2631-2019, 2019. Aoki, N., Ishidoya, S., Tohjima, Y., Morimoto, S., Keeling, R. F., Cox, A., Takebayashi, S., and Murayama, S.: Intercomparison of O2/N2 ratio scales among AIST, NIES, TU, and SIO based on a round-robin exercise using gravimetric standard mixtures, Atmos. Meas. Tech., 14, 6181-6193, https://doi.org/10.5194/amt-14-6181-2021, 2021,

Bonan, G. B.: A Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical 745 description and user's guide, Climate and global dynamics division, National Center for Atmospheric Research, Boulder, Colorado, 150 pp., 1996.

Cohen, E. R., Cvitas, T., Frey, J. G., Holmstrom, B., Kuchitsu, K., Marquardt, R., Mills, I., Pavese, F., Quack, M., Stohner, J., Strauss, H., Takami, M., and Thor, A. J.: IUPAC Green Book: 3rd edn., RSC Publishing, ISBN 0854044337, ISBN-13 9780854044337, 2007.

750 Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, 755 K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K.,

12

書式を変更:フォントの色:テキスト1

書式を変更:フォントの色:テキスト1 **書式を変更:**英語(米国)

書式を変更:フォントの色:テキスト1

Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello,
 F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900,

- https://doi.org/10.5194/essd-14-4811-2022, 2022, Fukui, T., Kokuryo, K., Baba, T., Kannari, A.: Updating EAGrid2000-Japan emissions inventory based on the recent emission
- trends, J. Jpn. Soc. Atmos. Environ. 49 (2), 117-125, 2014 (in Japanese).
- 765 Goto, D., Morimoto, S., Ishidoya, S., Ogi, A., Aoki, S., and Nakazawa, T.: Development of a high precision continuous measurement system for the atmospheric O₂/N₂ ratio and its application at Aobayama, Sendai, Japan, J. Meteorol. Soc. Jpn., 91, 179–192, 2013.
 - Goto, D., Morimoto, S., Aoki, S., Patra, P. K., and Nakazawa, T.: Seasonal and short-term variations in atmospheric potential oxygen at Ny-Ålesund, Svalbard, Tellus 69B, 1311767, DOI: 10.1080/16000889.2017.1311767, 2017.
- 770 Hanna, S. R., and Chang, J. C.: Acceptance criteria for urban dispersion model evaluation. Meteorol. Atmos. Phys., 116, 133-146, 2012.

Ishidoya, S., and Murayama, S.: Development of high precision continuous measuring system of the atmospheric O₂/N₂ and Ar/N₂ ratios and its application to the observation in Tsukuba, Japan, Tellus B, 66, 22574, <u>http://dx.doi.org/10.3402/tellusb.v66.22574</u>, 2014

- 775 Ishidoya, S., Tsuboi, K., Murayama, S., Matsueda, H., Aoki, N., Shimosaka, T., Kondo, H., and Saito, K.: Development of a continuous measurement system for atmospheric O₂/N₂ ratio using a paramagnetic analyzer and its application in Minamitorishima Island, Japan, SOLA, 13, 230-234, 2017,
- Ishidoya, S., Sugawara, H., Terao, Y., Kaneyasu, N., Aoki, N., Tsuboi, K., and Kondo, H.: O₂ : CO₂ exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO₂
 emissions, Atmos. Chem. Phys., 20, 5293–5308, <u>https://doi.org/10.5194/acp-20-5293-2020</u>, 2020.
- Ishidoya, S., Tsuboi, K., Niwa, Y., Matsueda, H., Murayama, S., Ishijima, K., and Saito, K.: Spatiotemporal variations of the δ(O₂/N₂), CO₂ and δ(APO) in the troposphere over the western North Pacific, Atmos. Chem. Phys., 22, 6953–6970, <u>https://doi.org/10.5194/acp-22-6953-2022, 2022.</u>

Japan Cement Association: Handbook of Cement, 2020.

Keeling, R. F.: Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O₂ mole fraction, *Ph.D. thesis*, Harvard University, Cambridge, 1988. Hik: Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoir-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Fvans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joczigr, E., Kadono, K., Kato, E., Kitdis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. L., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Waaton, A. J., Willsire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3300, https://doi.org/10.5194/cssd-12-3269-2020, 2020

(書式を変更: フォントの色:テキスト1
C	変更されたフィールド コード
NC.	書式を変更: フォントの色:テキスト1
10	書式を変更: フォントの色:テキスト1
10	書式を変更: フォントの色:テキスト1
N.	書式を変更: フォントの色:テキスト1
C	書式を変更: フォントの色:テキスト1
C	書式を変更: フォントの色:テキスト1
C	春式を変更: フォントの色:テキスト1
C	書式を変更: フォントの色:テキスト1

(書式を変更:	フォントの色 : テキスト 1
(書式を変更:	フォントの色 : テキスト 1

⁷⁸⁵ Kannari, A., Tonooka, Y., Baba, T., Murano, K.: Development of multiple-species 1 km×1 km resolution hourly basis emissions inventory for Japan, Atmos. Environ., 41, 3428–3439, 2007.

	Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the	
810	global carbon cycle, Nature, 358, 723-727	書式を変更: フォントの色:テキスト1
	Keeling, R. F., Bender, M. L., and Tans, P. P.: What atmospheric oxygen measurements can tell us about the global carbon	
1	cycle, Global Biogeochem. Cycles, 7, 37-67, 1993	書式を変更: フォントの色:テキスト1
1	Keeling, R. F., Manning, A. C., and Dubey, M. K.: The atmospheric signature of carbon capture and storage, Phil. Trans. R.	
1	Soc. A, 369, 2113-2132 doi: 10.1098/rsta.2011.0016, 2011.	
815	Keeling, R. F. and Manning, A. C.: Studies of recent changes in atmospheric O2 content, in Treatise on Geochemistry, vol. 5,4	書式変更: インデント: 左: 0 mm, ぶら下げインデント: 4.25
	2 nd ed., Elsevier, Amsterdam, 385–404, 2014	
	Kondo, H., Saigusa, N., Murayama, S., Yamamoto, S., and Kannari, A.: A numerical simulation of the daily variation of CO2	(書式を変更: フォントの色: テキスト1
	in the central part of Japan—summer case—, J. Meteor. Soc. Japan. Ser. II, 79, 11-21, 2001	書式を変更: フォントの色:テキスト1
	Leeuwen, C.V., and Meijer, H.A.J.: Detection of CO ₂ leaks from carbon capture and storage sites with combined atmospheric	書式変更: タブ位置: 17.72 字, 左揃え
820	CO2 and O2 measurements, Int. J. Greenh. Gas Control, 41, 194–209, 2015,	書式を変更: フォントの色:テキスト1
	Minejima, C., Kubo, M., Tohjima, Y., Yamagishi, H., Koyama, Y., Maksyutov, S., Kita, K., and Mukai, H.: Analysis of	削除: Manning, A. C. and Keeling, R. F.: Global oceanic and land
	$\Delta O_2/\Delta CO_2$ ratios for the pollution events observed at Hateruma Island, Japan, Atmos. Chem. Phys., 12, 2713–2723,	sampling network. Tellus B. 58, 95–116, 2006.⇔
	https://doi.org/10.5194/acp-12-2713-2012, 2012,	審式を変更: フォントの色:テキスト1
•	Nakazawa, T., Sugawara, S., Inoue, G., Machida, T., Mak- shutov, S. and Mukai, H.: Aircraft measurements of the	(書式を変更:フォントの色:テキスト1
825	concentrations of CO_2 , CH_4 , $\mathrm{N}_2\mathrm{O}$ and CO and the carbon and oxygen isotopic ratios of CO_2 in the troposphere over	
1	Russia. J. Geophys. Res. 102, 3843–3859, 1997	書式を変更: フォントの色:テキスト1
	Nara, H., Tanimoto, H., Nojiri, Y., Mukai, H., Zeng, J., Tohjima, Y., and Machida, T.: CO emissions from biomass burning	
	in South-east Asia in the 2006 El Niño year: shipboard and AIRS satellite observations, Environmental Chemistry 8(2)	
	213-223 https://doi.org/10.1071/EN10113, 2011	書式を変更: フォントの色: テキスト1
830	Niwa, Y., Tsuboi, K., Matsueda, H., Sawa, Y., Machida, T., Nakamura, M., Kawasato, T., Saito, K., Takatsuji, S., Tsuji, K.,	書式を変更: フォントの色:テキスト1
	Nishi, H., Dehara, K., Baba, Y., Kuboike, D., Iwatsubo, S., Ohmori, H., and Hanamiya, Y.: Seasonal Variations of CO2,	
	CH4, N2O and CO in the Mid-troposphere over the Western North Pacific Observed using a C-130H Cargo Air- craft, J.	
	Meteorol. Soc. Japan, 92(1), doi:10.2151/jmsj.2014-104, 2014.	
	Pak, N. M., Rempillo, O., Norman, A-L., and & Layzell, D. B.: Early atmospheric detection of carbon dioxide from carbon	
835	capture and storage sites, J. Air Waste Manag. Assoc., 66, 739-747, doi: 10.1080/10962247.2016.1176084, 2016.	
	Pickers, P. A., Manning, A. C., Le Quéré, C., Forster, G. L., Luijkx, I. T., Gerbig, C., Fleming, L. S., Sturges, W. T.: Novel	書式を変更: フォントの色:テキスト1
	quantification of regional fossil fuel CO2 reductions during COVID-19 lockdowns using atmospheric oxygen	
	measurements, Science Advances, 8(16), eabl9250, 2022.	
•	Resplandy, L., Keeling, R.F., Eddebbar, Y., Brooks, M., Wang, R., Bopp, L., Long, M. C., Dunne, J. P., Koeve, W., and	
840	Oschlies, A.: Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition, Sci. Rep., 9,	
1	20244. doi:10.1038/s41598-019-56490-z. 2019.	春式を変更: フォントの色:テキスト1

845	Severinghaus, J.: Studies of the terrestrial O ₂ and carbon cycles in sand dune gases and in biosphere 2, Ph. D. thesis, Columbia University, New York, 1995.		
	Stephens, B. B., Keeling, R. F., Heimann, M., Six, K. D., Murnane, R., and Caldeira, K.: Testing global ocean carbon cycle		
1	models using measurements of atmospheric O2 and CO2 concentration, Global Biogeochem. Cycles, 12, 213–230, 1998	(書式を変更:フォントの色:テキスト1
I	Sugawara, H., Ishidoya, S., Terao, Y., Takane, Y., Kikegawa, Y., and Nakajima, K.: Anthropogenic CO2 emissions changes		
850	in an urban area of Tokyo, Japan, due to the COVID-19 pandemic: A case study during the state of emergency in April-		
	May 2020. Geophysical Research Letters, 48, e2021GL092600. https://doi. Org/10.1029/2021GL092600, 2021	······	書式を変更: フォントの色:テキスト1
	Tohjima, Y., Machida, T., Watai, T., Akama, I., Amari, T., and Moriwaki, Y.: Preparation of gravimetric standards for	(書式を変更: フォントの色:テキスト1
	measurements of atmospheric oxygen and reevaluation of atmospheric oxygen concentration, J. Geophys. Res., 110,		
	D1130, 2005,		審式を変更: フォントの色:テキスト1
855	Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A., Maksyutov, S., Katsumata, K., Machida, T., and		
	Kita, K.: Temporal changes in the emissions of $\rm CH_4$ and CO from China estimated from $\rm CH_4$ / $\rm CO_2$ and CO / $\rm CO_2$		
	correlations observed at Hateruma Island, Atmos. Chem. Phys., 14, 1663-1677, <u>https://doi.org/10.5194/acp-14-1663-</u>	(春式を変更: フォントの色:テキスト1
	2014, 2014	(審式を変更: フォントの色:テキスト1
	Tsuboi, K., Matsueda, H., Sawa, Y., Niwa, Y., Takahashi, M., Takatsuji, S., Kawasaki, T., Shimosaka, T., Watanabe, T., Kato,		
860	K.: Scale and stability of methane standard gas in JMA and comparison with MRI standard gas, Papers in Meteorology		
	and Geophysics, Vol.66, 15-24, 2016,	(審式を変更: フォントの色:テキスト1
	Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., and Okubo, S.: Seasonal variation of enhancement ratios of trace gases observed		
	over 10 years in the western North Pacific, Atmos. Environ., 45, 2129-2137, 2011.		
	Yamagishi, H., Tohjima, Y., Mukai, H., and Sasaoka, K.: Detection of regional scale sea-to-air oxygen emission related to		
865	spring bloom near Japan by using in-situ measurements of the atmospheric oxygen/nitrogen ratio, Atmos. Chem. Phys.,		
	8, 3325–3335, <u>https://doi</u> .org/10.5194/acp-8-3325-2008, 2008.	(春式を変更: フォントの色:テキスト1
•			

Figure 3; (a) Relationship between Δy(O₂) and Δy(CO₂) at RYO for the period from August 2017 to November 2018. Δy(O₂), Δy(CO₂), and Δy(CO), and Δy(CO) water calculated by subtracting the 1-week mean values of δ(O₂/N₂), CO₂ and CO amount fractions from their observed values; then Δδ(O₂/N₂) values were converted to the equivalent Δy(O₂). Δy(CO) values are shown by the color scale. The plotted ER values are from Keeling (1988) and Severinghaus (1995). (b) ER values calculated by least-squares fitting of regression lines to the observed Δy(O₂) and Δy(CO₂) values shown in (a) during successive 24-h periods throughout the observation period, (c) Same ER as in (b) but for August 2018. Δy(CO) (black dots) and its 24-h averages (black line) are also shown.

書式を変更:フォントの色:テキスト1

書式を変更:フォントの色:テキスト1

-(削除: 0
(削除: 0
~(書式を変更: フォントの色:テキスト1
(書式を変更: フォントの色 : テキスト 1, 下付き
X	書式を変更: フォントの色:テキスト1
X	書式を変更: フォントの色 : テキスト 1, 下付き
X	書式を変更: フォントの色:テキスト1
(書式を変更: フォントの色:テキスト1
(書式を変更: フォントの色:テキスト1
(書式を変更: フォントの色:テキスト1

Figure $(\underline{c}, \underline{t}(op) \text{ Variations in } \Delta p(CO_2^*)$ calculated from the observed CO₂ amount fractions and $\partial O_2/N_2$) (black filled circles) in $\underline{\bullet}$ October 2017, and the baseline variation (blue solid line). \underline{A} denotes deviations from their monthly mean values. See text for the definition of $y(CO_2^*)$ and the method used to obtain the baseline variation. (middle) Variations in CO amount fractions in October 2017 and the simultaneously observed wind direction (in degrees). (bottom) Five-hour-average $\Delta p(CO_2^*)$ anomalies from the $\Delta p(CO_2^*)$ baseline variation and the corresponding variation in the CO₂ amount fraction due only to cement production ($p(CO_2^*)$ cement)) simulated by the AIST-MM (same as the red line in the middle part of Fig. 4)_m

 All pike: 5

 別除: (a)

 審式変更: フォントの色: テキスト1

 審式変更: 図表番号

 審式を変更: フォント: Symbol, フォントの色: テキスト1

 審式を変更: フォント: 大字(なし), フォントの色: テキスト1

 審式を変更: フォント: 大字(なし), フォントの色: テキスト1

 審式を変更: フォントの色: テキスト1

 審式を変更: フォントの色: テキスト1

 翻除: a)

 別除: a)

 別除: b) As (a), but for Navember 2017. (c) As (a), but for February 2018. (d) As (a), but for May 2018. (e) As (a), but for August 2018...

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

Figure $\frac{1}{2a}$ Monthly means of $y(CO_2^*)$ anomalies, obtained using model-simulated α_{B+F} values (as in Fig. 5a–e) and α_{B+F} values of 1.4 030 and 1.1, and $y(CO_2$, cement). The monthly mean values averaged over the 5 months are shown at the right. Error bars indicate monthly variability (±1 σ).

