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Text S1. Background subtraction and error calculations

The microlitre Nucleation by Immersed Particle Instrument (UL-NIPI) droplet freezing assay is
described by [Whale et al., 2015]. Briefly, this technique involves pipetting an array of 1 pl droplets
onto a hydrophobic surface and cooling them at a defined rate (1 °C min™). A camera allows the user
to determine when each droplet freezes and relate this to the droplet freezing temperature via
synchronised temperature measurements. In this technique, droplets of ultrapure water (not containing
aerosol) always freeze well above that expected for homogeneous freezing, indicating that there are
contaminants in both the water and on the substrate. When the atmospheric INP concentration is
relatively low, the fraction frozen curves for the handling blanks (where water has been exposed to the
same process as when a sample is involved) is very close to or sometimes indistinguishable from the
fraction frozen curve for an aerosol sample. Hence, it is necessary to background subtract the data and
appropriately account for the uncertainties.

While ice nucleation data is often reported in cumulative quantities, such as fraction frozen or INP
concentration, it is necessary to do the background subtraction with the differential quantity. That is,
we need to do the subtraction with a quantity where we have nucleation events expressed per
temperature interval [Vali, 2019].

To determine the contribution of impurities to the overall INP signal of the collected aerosol samples
during uL-NIP1 analysis, we first collated all of the blanks and handling blanks into a single dataset
and produced a polynomial fit to represent the baseline. This was achieved by binning all of the
droplet freezing assay data for the individual blank runs into 0.5 °C temperature intervals and
calculating the differential nucleus spectrum, k(T), in terms of freezing events per unit volume per
degree Celsius, using Equation 1:

1 __AN(D)

k(T) =——— -In(1 N(T)) Equation 1

v- AT

where v is the volume of the droplets used (1 uL), AT is the temperature interval (0.5 °C), AN is the
number of droplets that froze in the temperature interval and N(T) is the total number of droplets.

The first set of temperature intervals, in which freezing events occurred but were separated from the
bulk of the data by more than 1 °C, were removed from the overall compilation of the baseline data
since these data points had very large Poisson uncertainties. Once compiled, a polynomial fit was
applied to the data and the standard deviation was calculated. The background k(T) was approximated
by log k(T) =—1.57 x 1072 T2 — 9.46T — 11.22, with a standard deviation of + 0.3 cm™ °C* (see
Figure S1).

The freezing data for the aerosol samples was then also binned into 0.5°C intervals and k(T)
determined along with uncertainties. If a data point (with associated error) was consistent with the
background, then this was then regarded as an upper limit. Figure S2 shows two examples, one
example falls completely within the baseline and one example only has a few points above that are
limiting. In Figure S3, we show the background-subtracted values of k(T) where background values
(using the parameterisation) were subtracted from those for the aerosol samples. Limiting values are
indicated as open symbols. The uncertainty associated with the background was determined using the
uncertainty range in the background. This uncertainty was combined with the Poisson uncertainty in
guadrature.

These errors were then converted into the cumulative quantity (i.e. the integrated volume density of
active sites), K(T), by summing k(T) for all temperatures greater than T (see Figure S3) [Vali, 2019].



This allowed for the errors to be calculated in other cumulative expressions such as INP concentration
([INP]) and ns(T). When plotting the cumulative plots in Figure 2 and Figure 3, the data points which
are consistent with zero (i.e. are upper limits) are shown as hollow symbols. This is common for the
first few data points in a spectrum, but in some cases the whole spectrum was in the baseline. In the
case where k(T) is equal to or smaller than the background value, but where k(T) at higher
temperatures is positive, the best estimate does not increase at those temperatures. For example, the
k(T) values at -25.75 °C, -26.25 °C and -26.75 °C in Figure S2b for sample ‘170819 1116 1606’ are
all below the best fit background line. In Figure S3, the best estimate of K(T) does not increase at
these temperatures. If k(T) at any higher T was above the baseline (lower error bar above upper bound
of the background), then all points below that T in K(T) would have a lower bound above zero.



Supplementary Tables

Table S1: Sampling durations and the volume of air sampled for 28 samples collected onto filters and
their corresponding symbols used in Figure 4. Aerosol surface areas were only calculated for filters
where both SMPS and APS measurements were available.

Symbol | Start End Vol. Air Aerosol
sampled surface area
(Litres) (um2 cm-)
. 24/08/17 11:30 24/08/17 18:00 6513 30.2
19/08/17 16:15 19/08/17 18:44 2458 N/A
19/08/17 11:16 19/08/17 16:06 4843 N/A
17/08/17 15:43 17/08/17 18:31 2805 N/A
. 17/08/M17 11:02 16/08M17 11:17 24299 N/A
. 16/08/17 20:31 17/08/17 05:15 8750 N/A
15/08/17 20:38 15/08/17 23:02 2405 35.9
. 15/08/17 15:40 15/08/17 23:24 7749 40.0
. 13/08/17 13:40 14/08/17 02:31 12676 11.3
. 13/08/17 16:34 13/08/17 17:41 1119 13.0
- 10/08/17 02:05 10/08/17 05:37 3540 N/A
. 09/08/17 18:56 10/08/17 05:46 10655 N/A
. 09/08/17 10:15 09/08/17 12:57 2705 N/A
. 04/08/17 15:42 05/08/17 10:16 15598 N/A
04/08/17 10:21 04/08/17 18:37 8283 N/A
. 04/08/17 10:07 04/08/17 15:40 go67 N/A
. 03/08/17 09:49 03/08/17 19:27 9653 12.5
02/08/17 14:32 02/08/17 16:50 2305 241
02/08/17 10:44 02/08/17 20:47 10070 26.4
02/08/17 10:43 02/08/17 14:28 3758 29.1
01/08/17 10:20 01/08/17 22:50 12525 32.8
310717 16:22 01/08/17 06:42 14362 25.9
. 310717 16:22 31/07/17 158:05 1720 211
. 31/07/17 09:09 31/07/17 16:19 7164 20.5
. 29/07/17 14:47 31/07/17 03:08 36423 16.0
270717 12:05 28/07/17 09:41 21643 19.0
. 26/07/17 10:15 270717 11:44 25534 N/A
" 24/07/17 08:31 24/0717 16:17 7766 35.2




Supplementary Figures
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Figure S1: Plot of log k(T), where k(T) is the differential nucleus spectrum, versus temperature for the
baselines of the experiments, together with the exponential fit and standard deviation used to represent

the baseline in subsequent error calculations and background subtractions.
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Figure S2: k(T) versus temperature for two examples of collected aerosol. Also plotted is the
representation of the baseline (background impurities) from Figure S1. Data points that are
highlighted by a red oval are not considered to be statistically above the background signal; when
later converted to cumulative quantities for K(T), [INP] and ns(T) plots, these would be shown as
hollow symbols to represent that they are considered to be upper limits. a) An example where the
majority of the data points are above the baseline, and hence are statistically significant. The first two
freezing events at the warmest temperatures (outlined by the red oval) have large uncertainties and so



cannot be said to be statistically above the baseline. b) An example where the INP signal is not
significantly above the background signal and so all data points are consistent with the baseline.
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Figure S3: The calculated cumulative spectrum (or integrated volume density of active sites), K(T),

values for the examples from Figure S2 and their corresponding errors. Hollow symbols represent
data points which are statistically within the baseline and so are considered to be upper values.
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Figure S4: X-ray diffraction analysis and Rietveld refinement of aerosol collected in rain water from
the 3'-4" of August 2017. The limit of detection of this technique was ~2 wt%, hence K-feldspar was
below this limit.
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Figure S5: INP concentration predictions based on the mineralogy of the dust sample collected from rainwater
and the 3 and 4" August 2017. Parameterisations for the various minerals from Harrison et al. [2019] were
scaled according to the proportions determined by X-ray diffraction.
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Figure S6: HYSPLIT ten day back trajectories [Stein et al., 2015] for the date and times of the filter
samples collected in this study. Above ground level (AGL) altitudes of 500 m (shown in red), 2000 m
(shown in green), and 4000 m (shown in blue) were chosen to represent the marine boundary layer
and the base of the Saharan air layer (SAL) and top of the SAL. The star represents the starting
location in Barbados.
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Figure S7: Time series for the (a) relative humidity, (b) wind direction, (c) [INP]rat 0.01 L™t and (d)
aerosol mass as measured by the APS. The INP concentration of 0.01 L*was chosen to offer the
greatest time resolution as most filter samples gave data points at this concentration. The dust mass

concentration is taken from [Zuidema et al., 2019].
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Figure S8: The fraction frozen curves for heated and unheated aerosol suspensions. a-f) Fraction frozen curves
for aerosol suspensions before and after heat treatment. Also see Figure 6 in the main paper.
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Figure S9: GLOMAP model simulation of the mass fraction of K-feldspar relative to aerosolised
mineral dust. In Barbados, it can be seen that K-feldspar is predicted to account for roughly 8 % of the
aerosolised mineral dust (rather than the 0.1-2% that was measured). The red point marks the location
of Barbados.
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