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Abstract. The estimation of daily variations in aerosol concentrations using meteorological data is meaningful and challenging, 

given the need for accurate air quality forecasts and assessments. In this study, a 3×50-layer spatiotemporal deep learning (DL) 

model is proposed to link synoptic variations in aerosol concentrations and meteorology, thereby building a “deep” Weather 10 

Index for Aerosols (deepWIA). The model was trained and validated using seven years of data and tested in Jan–Apr 2022. 

The index successfully reproduced the variation in daily PM2.5 observations in China. The coefficient of determination between 

PM2.5 concentrations calculated from the index and observation was 0.72, with a root-mean-square error of 16.5 µg m−3. 

DeepWIA performed better than Weather Forecast and Research (WRF)-Chem simulations for eight aerosol-polluted cities in 

China. The simulating power of the model also outperformed commonly used PM2.5 concentration retrieval models based on 15 

random forest, XGBoost, and multilayer perceptron. The index and the DL model can be used as robust tools for estimating 

daily variations in aerosol concentrations.  

1 Introduction 

Meteorology and emissions drive variations in aerosol concentrations, with the latter strongly modulating seasonality and 

long-term trends (Zhang et al., 2019a; Wang et al., 2011) but remaining stable at synoptic scales, excluding unexpected events 20 

such as volcanic activity and emergency lockdowns. Meteorology dominates synoptic scale (i.e., high-frequency) variations 

in aerosol concentrations (Bei et al., 2016; Zheng et al., 2015; Leung et al., 2018) and regulates aerosol physicochemical 

processes including their generation, diffusion, transport, and deposition (Feng et al., 2016), thus synchronizing periodic 

accumulation–removal of aerosol pollution with activities of synoptic systems (Chen et al., 2008; Guo et al., 2014). 

Air quality forecasts and emission-reduction evaluations require the estimation of aerosol concentrations and their 25 

variations from meteorological data. The strong impacts of meteorology on physicochemical processes make such estimation 

possible. Chemical transport models (CTMs) can be used as a tool for this purpose. Given an emission inventory, CTMs aim 

to detail the physicochemical processes and simulate variations in aerosol concentrations over all timescales. CTM-based 

simulations provide information on intermediate processes, allowing convenient analysis of mechanisms of aerosol pollution. 

However, uncertainties in parameterization and emission inventories lead to significant estimation errors in aerosol 30 

concentrations (Zhong et al., 2016; Zhang et al., 2018, 2016). Taking the commonly used Weather Forecast and Research 
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(WRF)-Chem model as an example, Sicard et al. (2021) reported a Pearson correlation coefficient of 0.44 (equivalent to a 

coefficient of determination (R2) of ~0.2) between simulated and observed daily surface PM2.5 (particle matter of diameter < 

2.5 µm) concentrations in China, based on an 8-km-resolution simulation in 2015. Another WRF-Chem simulation over 2014–

2015 gave a better R2 value of 0.44 for a smaller WRF-Chem simulation domain over 131 cities in eastern China (Zhou et al., 35 

2017). In addition, the complexity of CTMs requires large computational resources. 

Data-based models provide another estimation tool, using historical datasets to establish empirical or semiempirical models 

linking meteorology and aerosol concentrations without a description of intermediate processes. A data-based model requires 

negligible computational resources compared with CTMs. In China, two semi-empirical meteorological indices are used for 

daily variations in aerosol concentrations, the Parameter Linking Air quality to Meteorological conditions (PLAM) (Yang et 40 

al., 2016) and Air Stagnation Index (ASI) (Feng et al., 2018, 2020b). Both indices include an extra “background factor” 

describing the effects of slowly changing emissions and regional differences. However, the weak nonlinear fitting power of 

these meteorological indices makes it difficult to beat CTMs for daily aerosol concentration estimation. In addition, such 

simple meteorological indices cannot be applied to a large region such as the whole of China (Section 4). 

As machine learning (ML) and deep learning (DL) are approaches to promoting the non-linear fitting power of data-based 45 

models, it is possible to establish an ML/DL model for variations in aerosol concentrations. ML/DL-based observation retrieval 

for PM2.5 concentration has become very popular (Yuan et al., 2020). Estimations in such studies use satellite-based aerosol 

optical depth (AOD) (Wei et al., 2019a; Geng et al., 2021; Wei et al., 2020; Li et al., 2020) or surface visibility observations 

(Zhong et al., 2021; Gui et al., 2020) as “primary” data and meteorological variables and other quasistatic data (e.g., topography, 

population, emissions) as “auxiliary” data, with these being fed into a generic ML/DL model to estimate PM2.5 concentrations. 50 

Commonly used models include random forest (RF) (Wei et al., 2019a; Geng et al., 2021), extreme gradient boost (XGB) (Gui 

et al., 2020), and multilayer perceptron (MLP) (Li et al., 2020) methods, applied individually or together (Song et al., 2021). 

Compared with CTM simulations and meteorological indices, the injection of observation data improves the estimation of 

PM2.5 concentration and its variations. In turn, the popularity of these studies indicates that using only meteorological data as 

primary data for aerosol concentrations is a challenging task, even with ML/DL. 55 

To address this issue, two key points should be considered in model design. First, the model should focus only on the 

synoptic-scale variability of aerosols, as meteorology is not a predominant factor in the low-frequency variability of aerosol 

concentrations. Indeed, the direct fitting of aerosol concentrations misinterprets the relationship between meteorology and 

aerosols, possibly leading to an overfitting ML/DL model. Second, the model should include more spatiotemporal 

meteorological features and a more powerful nonlinear capability to cover the complex characteristics of aerosol variations 60 

over large regions such as China than previous linear and DL/ML models. 

Therefore, here we propose a spatiotemporal deep neural network linking daily averaged meteorological fields and aerosol 

concentrations in China. Rather than fitting PM2.5 concentrations, the DL model focuses on capturing their synoptic variations. 

In the DL model, daily averaged meteorological variables over three days and quasi-static data (as the input variables) are 

fused to provide a daily deep Weather Index for Aerosols (as the model output), termed “deepWIA” (the model is named 65 
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“deepWIA model”). Compared with CTM-based and other data-based estimations reported in previous studies, the model 

efficiently reduces the estimation error in PM2.5 concentrations over China with no significant overfitting, as often occurs in 

previous ML-based models. 

The rest of this paper is organized as follows. Section 2 describes the deepWIA model, training data, methods of feature 

engineering (i.e., pre-processing to generate input variables), and results with training–validation datasets. Section 3 focuses 70 

on the performance of the model using a test dataset, with a comparison with a WRF-Chem simulation in eight heavily polluted 

cities. Section 4 gives a comparison with related studies. We also undertook several ablation experiments to illustrate possible 

reasons for the strong performance of the deepWIA model. Section 5 provides the geographic distribution of synoptic 

variations in aerosol pollution over the test period. Section 6 concludes the study. 

2 DeepWIA model 75 

2.1 Input variables 

Input variables of the deepWIA model includes daily averaged meteorological variables from the fifth-generation European 

Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data (ERA5), with a horizontal resolution of 0.25° × 0.25°. 

Since a trained DL model can automatically select the input variables to compose the best model that fits the target variable 

(PM2.5 concentrations) with activation functions, the task for feature engineering is to feed the DL model with as many variables 80 

as possible that are related to the day-to-day variation of PM2.5 concentration. These input variables (Table 1) can be classified 

into four categories as follows. 

1) Basic meteorological variables near the surface. We use 10-m altitude wind components, 2-m temperature, surface 

pressure, surface downward shortwave radiation, and total precipitation, which are frequently used as input variables in 

ML/DL-based studies of PM2.5 retrieval (Geng et al., 2021; Wei et al., 2020; Gui et al., 2020; Li et al., 2020). In addition, 85 

we introduce 100-m wind components and surface turbulent stress, as they are related to horizontal and vertical diffusion 

in the planetary boundary layer (PBL), respectively. 

2) Meteorological fields in the upper-air, including geopotential height and temperature at 850 hPa. We introduce these two 

variables for the deepWIA model in learning the effects of synoptic patterns on aerosol variations.  

3) Derived input variables referring to previous studies of aerosol concentration–meteorology relationships. Our model 90 

contains potential temperature and wet-equivalent potential temperature derived from PLAM, as they can identify the 

types of aerosol-related air masses controlling the local area (Yang et al., 2016). In addition, we introduce three kernel 

parameters of ASI, including ventilation potency, vertical diffusion potency, and wet deposition potency of aerosols (Feng 

et al., 2018). The ventilation potency illustrates the effects of wind speed in local PBL, which are simply represented by 

the non-linear function of the height-weighted average of wind speed over the PBL; vertical diffusion potency is 95 

represented by the inverse of PBL height, which roughly presents the vertical diffusion range of aerosols due to turbulence; 

and wet deposition potency illustrates a significant decrease in the aerosol concentrations due to precipitation. The values 
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of 0 and e correspond to precipitation greater than or equal to and less than 3 mm day-1 respectively. All the formulae for 

these variables derived from ASI are given in the Supplementary Material (Eq. S1-S3 in supplementary material). 

Moreover, referring to Porter et al. (2015), we use the daily maxima and minima of low-troposphere stability (i.e., the 100 

potential temperature difference between 700 hPa and the surface) and daily maxima of 2-m temperature and of 100-m 

wind speed. 

4) Quasi-static and spatiotemporal variables (non-meteorological variables). Quasi-static data include population density, 

surface altitude, and surface high vegetation cover, which are also commonly used in PM2.5 observation retrieval. The 

population density is re-gridded from the Gridded Population of the World (GPW) version 4 dataset at an original 105 

resolution of 1 km. Surface altitude and surface high vegetation cover are from the ERA5 datasets. These variables and 

latitude and longitude (Gui et al., 2020; Zhong et al., 2021) aid learning of the local characteristics of aerosol concentration. 

In addition, the model is built uniformly using all observed samples in China as the dataset (see subsection 2.3). It is 

difficult for the model to obtain the correct seasonal information in the meteorological variables of these samples. Hence, 

we introduce seasonal information to the deepWIA model through a variable of “day of the year,” which has rarely been 110 

considered in previous models. 

2.2 Target 

The fitting target of the deepWIA model is not the PM2.5 concentration per se but an index that tracks synoptic variations 

in PM2.5 concentrations. Motivated by the ASI and PLAM approaches, we use the predefined form  

𝑟 = 𝐶/𝐵                                                                                                                                                                         (1) 115 

to separate the long-term background aerosol concentration, B, and synoptic variability, r, superimposed on B, where	𝐶 is the 

daily averaged PM2.5 concentration. We term this process “timescale separation”. B is calculated as a 31-day running average 

for the current year and the previous year, i.e., 

𝐵 = !
"#
'∑ ∑ 𝐶$%!&

$'!&
(
('! )		                                                                                                                                                         (2) 

where d and y denote the date and year of the PM2.5 sample, respectively. B contains the seasonality, the long-term trend in 120 

emissions and local characteristics of each sample, and 𝑟, estimated from meteorological data, indicates the effect of weather 

on high-frequency variations in PM2.5 concentration. It should be noted that the timescale of the running average is not a 

sensitive parameter for the performance of the deepWIA model. When a new model with the same structure, input variables, 

and training method as the original deepWIA model, but with a 61-day running average for the current year and the previous 

year as the background is used, the model performance is close to the original one using the background value with 31-day 125 

running averaged (see Fig. S1 in the supplementary material). 

Target data imbalance is an issue of concern. Previous studies have shown that PM2.5 concentrations have an extremely 

asymmetric long-tailed probability distribution function (PDF) (Lu, 2002; Feng et al., 2018). The number of samples with low 

and medium values is much larger than that for high values (Fig. 1); 𝑟 has a similar PDF, with values of 0–15, but concentrated 
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mainly between 0 and 2. Such a distribution would weaken the performance of a data-based model, as it is difficult for such a 130 

model to discern small differences among low-value samples. To mitigate such data imbalance, the fitting target (i.e., the 

deepWIA, labeled �̂�) of our model is defined as 

�̂� 	= log# 𝑟.                                                                                                                                                                                                             (3) 

This label transformation maintains the value of the target between −4 and 4 (Fig. 1(c)), giving a meaningful weather index 

for aerosol, with positive and negative values denoting aerosol pollution days and clean days, respectively. For example, �̂� =135 

+1 and −1 means that the PM2.5 concentration will be 2 times (i.e., 2!) and 1/2 of (i.e., 2'!) the background concentration 𝐵, 

respectively. 

National surface PM2.5 observations are from the real-time air quality platform (https://air.cnemc.cn) of the China National 

Environmental Monitoring Centre. This platform has published air quality data since 2013. We use data from 2015 because 

the number of observation sites since that year exceeds 1000, with a widespread distribution across the country, making the 140 

sample more representative. Furthermore, the number of PM2.5 observation sites within different ERA5 grid cells is uneven, 

which would also undermine the representativeness of the sampling. Therefore, we use gridded observations, with the PM2.5 

observation in a grid cell being the mean of all observations within that cell. 

2.3 Model description 

Aerosol concentrations at specific times and locations depend on local and surrounding meteorological fields over the 145 

current and past few days, as CTMs indicate. Therefore, we designed the deepWIA model as a spatiotemporal neural network 

(Fig. 2).  

The spatial module of the model is based on ResNet (He et al., 2016). At each time step (i.e., day), the module can extract 

the information of the input variable and its spatial pattern within 9 × 9 ERA5 grid cells (about 200 × 200 km in China) around 

each observation sample point. We chose such a 9 × 9 sampling grid cells with reference to Feng et al. (2020) and the limitations 150 

of our computational resources. ResNet has a structure similar to that of the classical ResNet-50 (He et al., 2016), but only 49 

convolution layers and a maximum of 512 channels (i.e., variables in convolution layers). These convolution layers of the 

ResNet automatically reorganize the input variables into multiple features associated with the target (i.e., PM2.5 concentrations). 

This ResNet does not have the final pooling (i.e., spatial average) layer of the original ResNet-50, because a sample over the 

9 × 9 ERA5 grid cells has shrunk to a scalar spatially after 49 convolution layers. The number of channels is also less than the 155 

traditional ResNet-50 due to our computational resource limitation. And more channels do not provide better model 

performance. To be summarized, the ResNet module fuses meteorological and quasi-static variables around the sample points 

at each time step into multiple features.  

The ResNet-extracted features are fed into the temporal module based on Gated Recurrent Unit (GRU) (Cho et al., 2014). 

GRU is a recurrent neural network (RNN) that links the multiple features in a day-by-day order, combines the features together, 160 

and provide the final estimation of PM2.5 concentration. Here, we consider a short three-day GRU structure, with the exclusion 

of impacts of weather more than three days earlier. Unlike other applications of GRU, we do not use the output in every time 
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step except for the final day (Fig. 2), as we fit the deepWIA only on the last day. GRU has learnable “gate” parameters that 

determine the extent to which features in previous days affect current aerosol concentrations. In another word, they would help 

the model understand aerosol accumulation–removal processes caused by weather changes. There is only one hidden layer 165 

with 1024 channels, and it is therefore computationally efficient. To be summarized, GRU quantifies the influences of 

meteorology over three consecutive days and maps these influences on the PM2.5 concentration on the final day. 

Model outputs on the final day fit the target �̂� for observation samples, using the mean-square error as the loss function. 

2.4 Training and validation 

We used ERA5 data and PM2.5 observations for 2015–2021 for training and validation. The number of training-validation 170 

samples was about 1.6 million. We selected the model using traditional ten-fold Cross-Validation (CV), dividing training–

validation samples randomly into ten approximately equal parts, nine of which were used for training and the remaining one 

for validation. To avoid model overfitting, the training process stopped when the loss function in the validation dataset did not 

decrease for several training epochs. Using every part as a validation dataset, the training–validation process was then repeated 

ten times, generating ten models. The mean RMSE for all validation datasets was used to select optimal hyperparameters such 175 

as learning rate, number of convolution channels, and batch size. Finally, retraining the entire training–validation dataset using 

these hyperparameters determined the final deepWIA model.  

Both the deepWIA and the PM2.5 concentration from Eqs (1) and (3) were evaluated to illustrate model performance. We 

used five evaluation metrics in scatterplots, including the commonly used R2, RMSE, and mean absolute error (MAE). It is 

common for ML/DL-based models to underestimate high values and overestimate low values due to data imbalance (including 180 

in PM2.5 retrieval models). Therefore, we used biases in the ranges of �̂� < 0 and �̂� > 0 to evaluate model performance for 

clean and polluted weather, respectively. For PM2.5 concentration (𝐶), we used the ranges of 𝐶 > 35 µg m−3 and 𝐶 < 35 µg 

m−3, as 35 µg m−3 is the PM2.5 concentration limit of the China ambient air quality standard.  

Fitting scatterplots of deepWIA and PM2.5 concentrations for the entire training–validation dataset is shown in Fig. 3. The 

�̂� value had an RMSE of 0.45, an MAE of 0.34, and an R2 value of 0.58. The PM2.5 concentration had an RMSE of 16.91 µg 185 

m−3, an MAE of 9.5 µg m−3, and an R2 value of 0.76. Additionally, The DL model still underestimated high values and 

overestimated low values, although label transformation and some other processes were performed.  

Scatterplots for the first validation dataset (Fig. 4) show slightly lower performance than that for the training set (RMSE = 

0.49, MAE = 0.38, and R2 = 0.49 for �̂�; and 16.01 µg m−3, 9.67 µg m−3 and 0.70, respectively, for PM2.5 concentration), partly 

because of the smaller set of training samples than that used in final training. Validations in the other nine validation datasets 190 

had similar performance, as summarized in Figs S2 and S3 in the supplementary material. The RMSE and R2 values for �̂� for 

these validation datasets were in narrow ranges of 0.48−0.55 and 0.47−0.50, and the RMSE and R2 values for PM2.5 

concentrations were 0.67−0.77 and 15.54−21.68 µg m–3, respectively. These metrics for ten-fold CV indicate no significant 

overfitting by the final deepWIA model and prove the stability of the model generated by the ResNet-GRU structure. 
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Once established the DL model after training, a question worth discussing is the relative importance of these input variables. 195 

A DL model cannot answer by voting as the RF model. Therefore, here we perform sensitivity experiments to solve the problem: 

1) For every input variable shown in Table 1, we deactivate it by setting all related model parameters to zero in the first 

convolutional layer. 2) Apply the modified model (i.e., without the effect of the given variable) to the training dataset and 

compute the RMSE of deepWIA. 3) Compute the difference between the RMSE and that of the original model. The larger the 

RMSE increases, the more important the input variable is. We applied these steps to all input variables and showed their 200 

importance rankings in Table 1. The most five important variables are latitude and longitude, 2-m mixing ratio, population 

density, maximal 2-m temperature, and surface turbulence stress components. But some variables take little effect on the model 

(with an RMSE increase of less than 0.001), including wet-deposition potency, precipitation, geopotential height at 850 hPa, 

ventilation potency, downward shortwave radiation, low cloud cover, and high vegetation cover.  

Nevertheless, it would not be fair to compare the contribution of individual input variables to the DL model because there 205 

are overlaps in the contribution of several variables, such as 100-m and 10-m winds. Therefore, we grouped all variables into 

six groups, namely near-surface wind variables, near-surface temperature-humidity variables, near-surface vertical diffusion 

variables, spatiotemporal geographic variables, synoptic pattern and radiation variables, and precipitation variables (Table S1). 

Using the same approach as the individual variable, we compute the importance of each group of variables. The most important 

group is the spatiotemporal geographic variable, followed by the vertical diffusion and near-surface wind variables. And the 210 

least important one is precipitation (Fig. S4 in the supplementary material). 

3. Model performance on the test dataset 

Data for January 3 to April 30, 2022, were used as the test dataset including about 85,000 samples to demonstrate model 

performance in the normal aerosol-pollution season in China. Feeding the input variables from the test dataset into the final 

deepWIA model yields the estimated �̂�. A scatterplot of �̂� and the corresponding PM2.5 concentration of the test dataset is 215 

shown in Fig. 5. The �̂� value had an RMSE of 0.5, an MAE of 0.39, and R2 of 0.53. The performance just decreased slightly 

relative to that with the training set, indicating that the deepWIA model is strongly robust with the test dataset. And the �̂�-

based PM2.5 concentrations had an RMSE of 16.54 µg m−3, an MAE of 10.25 µg m−3, and R2 of 0.72. Note that some of the 

evaluation metrics were better than those of validation datasets because more samples were used to generate the final model 

than were used in validation. The stable performance using the training set, the ten-fold CV sets, and the test dataset indicates 220 

that our model can be safely used for quantifying weather conditions of PM2.5 concentrations, at least in aerosol-pollution 

seasons. 

The geographic distribution of biases and RMSEs for �̂� and PM2.5 concentration estimated by the deepWIA model are 

shown in Fig. 6. There was no significant estimation bias of �̂� with observations in most grid cells. Small overestimations 

(positive biases) of �̂� occurred in Northeast China, the North China Plain (NCP), Ningxia, and the Zhuhai–Hong Kong–Macao 225 

Bay area (ZHM), whereas underestimations (negative biases) occurred mainly in south-central China. The estimated PM2.5 
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concentration remained unbiased in some areas but was underestimated in some grid cells in the NCP, Northeast China, the 

Sichuan Basin, and south-central China, with values of −6 to −8 µg m−3. The model also significantly underestimated PM2.5 

concentrations in the area around the Taklamakan Desert by up to −10 µg m−3. The �̂� values had small RMSEs in the southern 

NCP, the Sichuan Basin, and the ZHM, with corresponding small RMSEs in estimated PM2.5 concentrations of 0–10 µg m−3. 230 

Larger RMSEs for PM2.5 concentrations occurred in some grid cells located in Northeast China, Xinjiang, Ningxia, and the 

western NCP, with values of >20 µg m−3. Large RMSEs and biases in Xinjiang and Ningxia may be attributed to the frequent 

occurrence of dust storms there (Wang et al., 2004). Due to the scarcity of samples, a meteorological-data-based model cannot 

fully understand dust storm occurrence. 

Eight cities were selected to illustrate the performance of the deepWIA model in time series, with analysis of daily 235 

variations in PM2.5 concentrations (Fig 7). The cities (Fig. 6(c)) are in northern China (Beijing and Xi'an), eastern China 

(Shanghai and Hangzhou), southwest China (Chengdu and Chongqing), and south-central China (Wuhan and Changsha), all 

of which suffer from aerosol pollution.  

For comparison, the results of a WRF-Chem simulation are also presented (Fig. 7). The same as deepWIA, we also use the 

ERA5 data to drive the WRF-Chem model. Hence, both WRF-Chem and deepWIA models are run in hindcast mode. The 240 

simulation domain covered China, including the above eight cities, with a high horizontal resolution of 9 km. The model used 

the Multi-resolution Emission Inventory for China (MEIC, http://meicmodel.org/) (Li et al., 2017) as an emission inventory. 

To avoid weather-system drift due to long-term model integration (Feng et al., 2020a), the simulation restarted every day at 

1200 UTC, with the mean of 12–35 h (i.e., 0000–2300 UTC) simulated PM2.5 concentration being used as the daily value. 

Estimations using the deepWIA model captured day-to-day variations in PM2.5 concentrations, outperforming the WRF-245 

Chem simulation in all eight cities with a significant reduction in RMSEs and improvement in R2 (RMSEs ≤ 19 µg m−3 and 

R2 ≥ 0.65). The simulation accuracy of WRF-Chem varied substantially in different regions of China. The four cities, including 

Beijing, Shanghai, Hangzhou, and Chengdu, yielded good performances, with RMSE ≤ 30 µg m−3. WRF-Chem largely failed 

to capture the day-to-day variations in aerosol concentrations in the other five cities. In comparison, the deepWIA model gave 

a robust performance in both northern and southern China, indicating a wide application potential for different regions. In 250 

conclusion from Fig. 5, the main problem with the deepWIA model is underestimation in extreme values of PM2.5 concentration 

(Fig. 5), leading to the omission of some heavy haze events. 

To furtherly present the good performance of the deepWIA model, two additional comparisons with WRF-Chem are given. 

The first is the comparison of synoptic variabilities that remove the variation longer than 31 days (Fig. S5 in supplementary 

material), like the timescale focused by the deepWIA model. The second is a comparison with an operational system for air 255 

quality forecast based on WRF-Chem (Fig. S6 in supplementary material). The simualtion has the same spatial and temporal 

resolution as the ERA5-driven one above but is optimized for northern China. To reduce initial and boundary errors, the system 

used the real-time assimilated meteorological field and assimilated PM2.5, PM10, SO2, NO2, O3, and CO concentrations within 

the domain using the newly developed 3DVar module for WRF-Chem.  In both comparisons, the deepWIA model significantly 

outperforms the corresponding WRF-Chem simulations for all eight cities.  260 
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4. Ablation experiments and related studies 

4.1 Comparison of ablation experiments  

Although the deepWIA appears accurate and robust in capturing synoptic variations in PM2.5 concentrations, it is of interest 

to investigate the reason for its strong performance. The model has three key points: (1) a ResNet-GRU structure with more 265 

meteorological variables; (2) a timescale separation approach making the model focus only on the effects of meteorology on 

synoptic variations in PM2.5 concentration; and (3) a label transformation approach based on a logarithmic function to mitigate 

data imbalance. To investigate the relative importance of these processes for the final deepWIA model, two additional ablation 

experiments were performed for comparison: 

AbExp_1: with fitting of PM2.5 concentrations directly using the same ResNet-GRU structure, samples, and training 270 

strategy, but with no timescale separation or label transformation. This experiment was similar to studies of ML-based 

PM2.5 concentration retrieval but using meteorological variables as primary data. This experiment was intended to assess 

the basic fitting power due to the DL structure and input variables.  

AbEXP_2: with fitting of r (Section 2.2) using the same model structure, samples, training strategy, and timescale 

separation, but with no label transformation. A comparison of the results of AbEXP_1 and AbEXP_2 illustrates the 275 

importance of timescale separation. A comparison of the results of AbEXP_2 and original deepWIA illustrates the 

impacts of label transform. 

Scatterplots of PM2.5 concentrations for AbExp_1 and AbExp_2 using the same test dataset as that used for the deepWIA 

model are shown in Fig. 8. The AbExp_1 experiment had an RMSE of 19.18 µg m−3, an MAE of 12.9 µg m−3, and an R2 value 

of 0.63, achieving the level of ML-based PM2.5 concentration retrieval (Section 4.2). The DL structure and the feature 280 

engineering for input variables thus builds a solid foundation for the fitting power of the deepWIA model. Compared with 

AbExp_1, AbExp_2 improved the R2 value to 0.70, with the RMSE decreasing to 17.13 µg m−3 and the MAE to 10.92 µg m−3, 

indicating the importance of timescale separation. Furthermore, the focus on synoptic variation also helped mitigate the 

overestimation of low values and underestimation of high values. The final deepWIA model further improved the general 

performance in estimating PM2.5 concentrations, with improved R2, MAE, and RMSE values. The logarithmic-function-based 285 

label transformation mitigated the overestimation of low values while exacerbating the underestimation of high values, with 

this treatment increasing the distance between low values but decreasing the distance between high values of the samples. A 

scheme such as AbExp_2 may therefore be applicable to studies of extreme haze events. To summarize, model and feature 

engineering are most important in determining the final performance of the deepWIA model, with timescale separation and 

label transformation following in that order. 290 
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4.2 Comparison with models used in previous studies 

Recent studies of PM2.5 concentration retrieval using ML/DL models such as RF, XGB and MLP (Table 2). Unlike our 

model, these studies were not concerned with the role of meteorology but only with the accuracy of estimated PM2.5 

concentrations. There are many differences between these methods and the deepWIA model in the model-building processes. 

For example, 1) The deepWIA model uses timescale separation to focus on synoptic variations in aerosol concentrations caused 295 

by meteorology. We do not use an emission inventory as an input feature for the model because of its significant uncertainty. 

It is difficult for DL models, which rely heavily on input data, to build robust relationships among emissions, meteorology, 

and aerosol concentrations. 2) Except for the approach of Geng et al. (2021), the training sample size used in deepWIA is 

much larger than that used in previous models, which often used one-year data for training (Geng et al. (2021) also built the 

ML model year-by-year, starting from 2013). The large sample size aids the building of a more robust model. And 3) We 300 

introduce more derived meteorological variables than most studies by feature engineering.  

Therefore, to make a fair comparison of the model per se, we use six popular ML/DL models, with the same periods, 

stations, and input parameters as the deepWIA model, including two RF, two XGB, and two MLP models using the input data 

over three days (i.e., the same as the deepWIA) and only one day that is fitted, named RF1, RF3, XGB1, XGB3, MLP1, and 

MLP3 respectively (Table 3). The MLP models have nine full connection layers with the maximal 512 neurons in the fifth 305 

layer. Following the previous studies, all the models fit the PM2.5 concentration directly.  It should be noted that these models 

are applied here for the role of meteorological variables and thereby do not introduce satellite or visibility data, so the RMSEs 

here are slightly higher than those reported in previous studies. 

All these six models have higher RMSEs and lower R2 than the deepWIA model in the test set (even than that of the 

AbExp_1, which also fits PM2.5 concentrations directly (Fig. 8a)). The models with three-day data always performed better 310 

than these with only one-day data, indicating the importance of temporal information. Additionally, there is more severe 

overfitting for these models than the deepWIA model, as evidenced by the large performance difference between the training 

and test sets, especially those of the RF1 and RF3. 

The advantages of deepWIA over traditional RF, XGB and MLP models should be attributed to two points: 1) The 

deepWIA model is much deeper than the commonly used RF, XGB, and MLP models, which aids learning of the complex 315 

nonlinear relationship between meteorology and aerosol concentration. And 2) Previous models do not necessarily include 

temporal correlations of aerosol concentrations; rather, some use a predefined spatiotemporal distance for the injection of 

temporal information (Wei et al., 2020, 2019; Li et al., 2020). The deepWIA model uses gate parameters to learn dynamic 

links of aerosol concentration among days. 

We also compare the deepWIA and two semi-empirical meteorological indices for aerosol pollution, namely PLAM and 320 

ASI. These indices are commonly used to assess meteorological effects on variations in aerosol concentrations (Wang et al., 

2021; Zhang et al., 2019). PLAM was applied to the NCP (Yang et al., 2016), using visibility as the target variable. ASI was 

applied to North and Northeast China, using PM2.5 concentration as the target variable. Both indices only considered the 
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meteorology on that day only. By comparison, as described in Section 2.1, deepWIA includes all the kernel variables of these 

two indices, as well as other spatiotemporal information. It will form the best DL model to take advantage of these variables. 325 

Hence, its applicability extends to the whole country. Additionally, PLAM and ASI cannot provide a uniform model for PM2.5 

concentrations, unlike deepWIA. PLAM focused on the relationship between meteorology and visibility; The ASI just 

illustrates the temporal relationship between meteorology and PM2.5 concentrations, which varies from location to location. 

Therefore, estimating PM2.5 concentrations also requires additional linear modeling at each grid cell.  Due to these advantages, 

the deepWIA could be a better tool for assessing the impact of weather on aerosol concentrations.  330 

5. Spatial distribution of deepWIA and its application in quantifying the aerosol-related weather condition 

This section is to show the geographic distribution of deepWIA (�̂�) over the test period, which also can be used to quantify 

the aerosol-related weather conditions over China. A positive or negative deepWIA indicates weather-related enhancement or 

reduction of aerosol pollution, respectively, relative to background concentrations (B). We prepared an animation of daily 

deepWIA from January 3 to April 30, 2022, to illustrate synoptic variations in aerosol-associated weather in China (see the 335 

data availability statements). To assess weather conditions over the test period, we applied a statistical metric, the Ratio of 

Good Weather Days for aerosol pollution (RGW) calculated as 

𝑅𝐺𝑊 = 𝑁)̂+, 𝑁⁄                                                                                                                                                                          (4) 

where 𝑁)̂+, and N denote the number of days with �̂� ≤ 0 values and total days over the test period, respectively. 

The geographic distributions of RGW indicate that most areas in China had good weather for higher air quality during 340 

January–April 2022 (Fig. 9). In South-Central China, almost all grid points had RGWs > 0.5 and negative MVs, implying 

favorable weather conditions for higher air quality. In Beijing, RGW was about 0.65, implying a 15% increase in clean air 

days relative to background concentrations. Unfavorable weather for aerosol pollution was found mainly in the south-central 

NCP and on the western fringe of the Sichuan Basin, with RGWs of 0.4–0.5. Note that with Eqs (1) and (2), all synoptic-scale 

changes are relative to long-term background concentrations for the same season of the last two years. A similar approach can 345 

be used to compare the effects of weather on aerosols between two periods (e.g., two years), by replacing the background 

concentration with that calculated over the base period.  

 

6. Conclusions 

We propose a spatiotemporal deep network architecture to link meteorology and aerosol concentrations. The network uses 350 

a 49-layer ResNet structure to extract meteorological information in the vicinity of observed grid points and a GRU to 

dynamically fuse the information from the ResNet for three consecutive days. Many approaches were undertaken in improving 

its performance, including feature engineering, timescale separation, and logarithmic-function-based label transformation. 

Based on the model, we produced a meteorology index, deepWIA, to capture synoptic variations in aerosol concentrations.  
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The model was trained and ten-fold CV applied using ground-based PM2.5 observations in China and ERA5 meteorological 355 

fields for the period 2015–2021. Tests were performed using data for January–April 2022. The results indicate that the model 

well estimates synoptic variations in PM2.5 concentrations and corresponding weather changes. Performance using the test 

dataset does not degrade significantly relative to the training set, indicating very weak overfitting in the model. We also 

compared time series of PM2.5 concentrations between deepWIA and WRF-Chem in eight cities in China. DeepWIA performed 

better than WRF-Chem simulations with higher R2 values and lower RMSEs in each city. In particular, the model yields 360 

consistent simulating power in both southern and northern China, whereas WRF-Chem failed to capture aerosol variations in 

four cities in southern China. The predictive power of the deepWIA model also outperformed previously reported the PM2.5 

concentration retrieval scheme based on other ML/DL models. 

The strong performance of deepWIA is due to the powerful ResNet-GRU architecture and the treatment of timescale 

separation. Meteorology and emissions dominate different timescales in aerosol variations. Meteorological variables also vary 365 

on different timescales, ranging from hourly to interannually. Therefore, it is very difficult to accurately estimate aerosol 

concentrations directly using a single data-based model. The timescale separation used in this study is thus necessary in 

allowing the model, despite its complexity, to focus on day-to-day variations in aerosol concentrations and associated weather.  

As the background aerosol concentration is currently computed from observations, the deepWIA model cannot directly 

provide the spatial distribution of aerosol concentrations. However, this can be obtained from a CTM simulation, observation 370 

retrieval, or even another ML/DL learning model. Owing to the strong performance of deepWIA, a study is planned for short- 

and medium-range forecast schemes for PM2.5 concentrations based on the spatiotemporal DL model and numerical weather 

prediction. In a real medium-range forecast system, a re-trained deepWIA model should be applied, with the real-time NWP 

data (i.e., from ECMWF or WRF) as input meteorological data. Moreover, a short-range forecast DL model should be more 

complex as it is more sensitive to initial aerosol concentrations. Therefore, more variables such as pre-forecast observations 375 

should be injected into the DL model to provide better initial conditions. 
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Table 1. The input variables and their corresponding categories, references and importance ranking in the deepWIA model.  

Variable name Category References 
Importance 

ranking 

10-m wind components Surface, Basic 

Geng et al. (2021); Wei 

et al. (2020); Gui et al. 

(2020); Li et al. (2020) 

12 

2-m temperature Surface, Basic 6 

surface pressure Surface, Basic 7 

2-m mixing ratio Surface, Basic 2 

precipitation Surface, Basic 21 

100-m wind components Surface, Basic Newly introduced 9 

downward shortwave radiation Surface, Basic 
Geng et al. (2021) 

17 

low cloud cover Surface, Basic 17 

surface turbulence stress components Surface, Basic 
Jia and Zhang (2020) 

(Yin et al., 2019) 
4 

geopotential height at 850 hPa Upper air Miao et al. (2020) 21 

temperature at 850 hPa Upper air Hou et al. (2018) 12 

2-m potential temperature Derived 
Yang et al. (2016) 

15 

2-m wet-equivalent potential temperature Derived 15 

Ventilation potency Derived 
Feng et al. (2018, 

2020b) 

21 

Vertical diffusion potency Derived 9 

wet-deposition potency Derived 24 

max. 2-m temperature Derived 

Porter et al. (2015) 

4 

max. 100-m wind speed Derived 12 

max. and min. low troposphere stability Derived 9 

Population density Quasistatic 

Geng et al. (2021); Wei 

et al. (2020); Li et al. 

(2020) 

3 

High vegetation cover Quasistatic 

Wei et al., 2019a, Li et 

al. (2020) (use 

vegetation index) 

17 

Surface altitude Quasistatic Geng et al. (2021) 7 

Latitude and Longitude Spatio-temporal Gui et al. (2020) 1 

Day of year Spatio-temporal Newly introduced 17 

 490 
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Table 2. Comparison of studies of observation retrieval of PM2.5 concentration and deepWIA. “√” indicates data used as model input features. 

ERT and GBDT denote Extreme Random Trees and Gradient Boosting Decision Trees, respectively.  

  
Wei  

et al. 

2019 

Li  

et al. 

2020 

Gui et 

al. 

2020 

Wei  

et al. 

2020 

Geng et 

al. 

2021 

Song  

et al. 

2021 

deepWIA 

data 

meteor. √ √ √ √ √ √ √ 

quasistatic √ √ √ √ √ √ √ 

satellite √ √  √ √ √  

visibility   √     

CTM     √   

model key 

points 

backbone RF MLP XGB ERT RF 
RF, GBDT, 

MLP 
ResNet-GRU 

data size 0.15 0.06 0.37 0.23 >3 / ~1.7 

spatio-temporal 

info. 

tempo. 

dist. 

tempo. 

dist. 

not 

used 

tempo. 

dist. 
not used not used 

Convolution and 

gates 

 495 
  



 
 

19 

Table 3. Comparison of ML/DL models performance using the same time periods, stations, and input parameters as the deepWIA model.  

models 
Training set Test set 

RMSE R2 RMSE R2  

RF1 7.15 0.97 25.43 0.34 

RF3 6.72 0.97 23.66 0.43 

XGB1 22.40 0.60 24.59 0.38 

XGB3 20.36 0.67 23.76 0.42 

MLP1 23.98 0.54 26.22 0.30 

MLP3 20.42 0.67 22.10 0.50 

deepWIA 16.91 0.76 16.54* 0.72 

* Noted that the RMSE of deepWIA on the test dataset is smaller than that on the training dataset because the model does not directly fit the 

PM2.5 concentration. 
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Fig. 1. Probability density functions of (a) observed PM2.5 concentrations (C, orange line) and background concentrations (B, blue 
line), (b) 𝒓 (𝑪

𝑩
), and (c) 𝒓" (deepWIA target variable). 

 505 
 

 
Fig. 2. Backbone architecture of the deepWIA model. 
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 510 
Fig. 3. Training density scatterplots of (a) deepWIA (𝒓") and (b) PM2.5 concentrations using data for 2015–2021 as a training set. 
 

 
Fig. 4. As for Fig. 3, but for the first validation dataset. 
  515 
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Fig. 5. As for Fig. 3, but for the test dataset for Jan 3 to Apr 30, 2022. 
 
  



 
 

23 

 520 
Fig. 6. Test biases (a, c) and RMSEs (b, d) in deepWIA (𝒓") (a, b) and PM2.5 concentrations (c, d) over China from Jan 3 to Apr 30, 
2022. 
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Fig. 7. Day-to-day series of PM2.5 concentrations based on observations (blue curves), WRF-Chem (orange curves), and deepWIA 525 
model (green curves) in eight cities in China, Jan 3 to Apr 30, 2022. 
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Fig. 8. Density scatterplots of PM2.5 concentrations for the test dataset from the ablation experiments (a) directly using the PM2.5 
concentration as the target, and (b) using r as the target (i.e., without label transform based on logarithmic function). 530 
 
 

 
Fig. 9. Geographic distributions of the ratio of good weather (RGW) days for PM2.5 concentrations, Jan 3 to Apr 30, 2020. 


