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Abstract. We use the GEOS-Chem global 3-D model and a Maximum A Posteriori inverse method to infer regional methane

emissions and the corresponding carbon stable isotope source signatures, 2004–2020, across the globe using in situ and satellite

remote sensing data. Over our study period, we find consistent evidence from both atmospheric C H4 datasets of a progressive

increase of methane emissions at tropical (30◦N to 30 ◦S) latitudes (+3.80 Tg/yr/yr), accompanied by a progressively lighter

atmospheric δ13C signature, consistent with increasing natural emissions. The satellite remote sensing data provide evidence5

of higher spatially resolved hotspots of methane that are consistent with the location and seasonal timing of wetland emissions,

limiting the hypothesis about the hydroxyl radical (OH) sink for methane playing a significant role in observed global growth in

atmospheric methane. We find that since 2004, the largest growing regional contributions (2004–2020) are from North Africa

(+19.9 Tg/yr), China (+21.6 Tg/yr), and Tropical South America (+14.2 Tg/yr). To quantify the influence of our results to

changes in OH, we also report regional emission estimates using an alternative scenario of a 0.5%/yr decrease in OH since10

2004, followed by a 5 % drop in 2020 during the first COVID-19 lockdown. We find that our main findings are robust against

those year-to-year changes in OH.

1 Introduction

Changes in atmospheric methane (CH4) over the last decades have unfolded without clear explanation, exposing inadequacies

in our measurement coverage and our ability to definitively attribute those changes to individual emissions and losses. The15

climatic importance of atmospheric CH4 lies in its ability to absorb and emit infrared radiation, at wavelengths that are relevant

to outgoing terrestrial radiation. Consequently, atmospheric CH4 helps to maintain Earth’s radiative balance and surface and

atmospheric temperatures. Concentrations of atmospheric CH4 are determined by a large range of anthropogenic, pyrogenic,

and biogenic emissions and losses from the hydroxyl radical (OH), reaction with chlorine, uptake from soils, and a small
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stratospheric loss. The global CH4 growth rate was close to zero from 2000 to 2006 (Dlugokencky et al., 2020) but has since20

accelerated to unprecedented values in 2020 and 2021 (Feng et al., 2022a). Concurrently, we are witnessing progressively

lighter CH4 (more negative δ13C), indicative of a higher proportion of microbial emissions. A growing body of work have

proposed a range of hypotheses to explain short periods of observed global and regional variations in atmospheric CH4 (Turner

et al., 2019). In this study, we take a step back to look at observed CH4 variations from 2004 onwards, and argue that short-term

variations are part of a large-scale shift of predominately anthropogenic emissions from high northern latitudes to microbial25

emissions from the tropics, driven by Tropical North African and Tropical South American wetlands. As the global atmospheric

mass balance of CH4 emissions shifts further from anthropogenic to microbial sources, our ability to mitigate emissions

becomes more of a challenge.

The post-2006 increase in atmospheric CH4 has been the focus of many studies and has been attributed to different plausible

hypotheses associated with changes in fossil fuel, biomass burning, and wetland emissions and the OH sink (Turner et al.,30

2019). These studies have reached their conclusions using in situ mole fraction observations alone or in combination with

other observations, e.g. in situ δ13C (Schaefer et al., 2016; Rice et al., 2016; Nisbet et al., 2016; Fujita et al., 2020; Lan et al.,

2021), satellite observations (Worden et al., 2017; McNorton et al., 2018; Yin et al., 2021; Feng et al., 2022b), or other trace

gases, using a variety of analysis methods and computational models. Our approach is unique in that, for our δ13C inversion, we

are solving for the δ13C source signature of a region. From the source signature of a region, we can determine how the source35

balance within a region is shifting over time (i.e., towards more pyrogenic or microbial sources), and so gain understanding of

the geographical shifts in the CH4 budget.

Changes in OH are likely to play some role in recent changes in atmospheric CH4 (Rigby et al., 2017; Turner et al., 2017)

but they are unlikely to be a dominant factor. Lan et al. (2021) simulated CH4 and δ13C in a 3-D chemistry transport model

covering the period 1984-2016, and found that proposed changes in OH (by Turner et al., 2017) do not align with the trend40

of increasingly light δ13C observed in the atmospheric record, due to the weak fractionation of OH. We explore the impact

of reducing OH in a sensitivity study. The first COVID-19 lockdown in 2020 corresponded to an unexpected large increase in

atmospheric CH4. Studies have suggested this could be partly explained by a 3-5 % reduction in OH (Miyazaki et al., 2021;

Laughner et al., 2021) resulting from a large-scale reduced emissions of nitrogen oxides associated with industry. This has yet

to be corroborated by satellite data that provide complementary constraints on the key emitting regions over the tropics (Feng45

et al., 2022b), or by δ13C data.

In the next section, we describe the data and methods we use to quantify changes in CH4 emissions and the corresponding

stable isotope source signatures. In section 3, we report our results including analysis of sensitivity calculations that involve

different assumptions about year to year changes in the OH sink. We conclude the paper in section 4.
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2 Data and Methods50

2.1 In Situ and Satellite Remote Measurements of Atmospheric Methane

We use surface-level flask data as constraints on both total CH4 emissions and δ13C regional emissions source signatures. These

data are taken from 31 National Oceanic and Atmosphere Administration — Global Monitoring Laboratory (NOAA-GML)

sites around the world (Figure 1), version 2020-07 (Dlugokencky et al., 2020). The data are monthly mean values, averaged

from discrete data as collected at each site, analysed at NOAA-ESRL in Boulder, Colorado, and recorded to the NOAA 2004A55

standard scale (Dlugokencky et al., 2005). Up to August 2019, the analysis was performed using gas chromatography (Steele

et al., 1987, Dlugokency et al., 1994; Dlugokencky et al., 2005) and since August 2019, cavity ringdown spectroscopy has

been used (Dlugokencky et al., 2020). We also include data from a site in Siberia, Karasevoe (KRS), which is monitored by the

National Institute for Environment Studies (NIES). This site was included to maximise geographical coverage of in situ data.

The CH4 measurements from this site are continuous, measuring from 65 m height, covering the period 2004-2020 (Sasakawa60

et al., 2010). A scale factor of 0.997 is applied to the NIES data in order to bring it into line with the NOAA 2004A scale (Zhou

et al., 2009). The site constitutes part of the Japan-Russia Siberia Tall Tower Inland Observation Network (JR-STATION).

δ13C data are similarly monthly mean values, calculated from discrete flask samples at NOAA network sites. Isotopic anal-

ysis of δ13C was performed at the University of Colorado Institute of Arctic and Alpine Research Stable Isotope Laboratory

(CU-INSTAAR). They follow an isotope ratio mass spectrometry approach (Miller, 2002; Vaughn et al., 2004). The geograph-65

ical locations of in situ data used are shown in Figure 1 and represent a subset of those used to collect total CH4 amount

fractions (10 of 32). The sites included in the inversion, both for CH4 and δ13C are those that cover the entire period of the

inversion (2004-2020) without significant period of measurement breaks so as to ensure a consistent interpretation of trends

without consideration of possible biases introduced through the inclusion or exclusion of specific sites.

We also estimate CH4 fluxes for 2010-2020 from the Japanese Greenhouse gases Observing SATellite (GOSAT) that was70

launched in 2009. GOSAT is in a sun-synchronous orbit with an equatorial local overpass time of 13:30. Since launch, it

has provided continuous global observations of dry-air atmospheric column-averaged carbon dioxide CO2 (XCO2) and CH4

(XCH4), retrieved from shortwave infrared wavelengths that are most sensitive to changes in CH4 and CO2 in the lower

troposphere (Parker et al., 2020). We use the latest (v9) proxy XCH4:XCO2 retrievals that use spectral absorption features

around the wavelength of 1.6 µm (Parker et al., 2020, Palmer et al., 2021), because of the smaller bias and better global75

coverage than those provided by the full physics retrievals. Analysis shows the precision of single proxy retrieval is about

0.72 %, with a global bias of 0.2 % (Parker et al., 2011, 2015, 2020). In our calculations, we assume a higher observation

uncertainty of 1.2 %, and deduct a globally uniform bias of 0.3 % to obtain better a posteriori agreement with the independent

ground-based XCH4 data by the Total Carbon Column Observing Network (TCCON). To anchor the constraints from the

proxy XCH4:XCO2 ratio (Fraser et al., 2014; Feng et al., 2017), we also assimilate the GLOBALVIEW CH4 and CO2 data80

(Schuldt et al., 2021), with assumed uncertainties of 0.5 ppm and 8 ppb for in situ measurements of CO2 and CH4, respectively.

Locations of the assimilated GLOBALVIEW CH4 (sub) dataset are shown in Feng et al., 2022b.
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2.2 GEOS-Chem Atmospheric Chemistry and Transport Model

To relate CH4 emissions to atmospheric CH4 concentrations, we use v12.1 of the GEOS-Chem 3-D global chemical transport

model (CTM) (Bey et al., 2001) at a horizontal resolution of 2◦ (latitude) by 2.5◦ (longitude) with 47 vertical levels from85

the surface to 80 km height, driven by the MERRA-2 meteorological reanalyses (Gelaro et al., 2017) from the NASA Global

Modeling and Assimilation Office (GMAO).

Our a priori emissions include: 1) monthly EDGAR 4.3.2 anthropogenic emissions (Source: European Commission, 2011)

that accounts for emissions from oil and gas, coal, livestock, landfills, wastewater, rice, and other anthropogenic sources; 2)

monthly GFED-4 biomass burning emissions (version 4.1; Randerson et al., 2017); and 3) monthly v1.0 WetCHARTs wetland90

emissions (Bloom et al., 2017). The Harvard-NASA Emissions COmponent (HEMCO) software within GEOS-Chem converts

the emission inventories at their native horizontal resolution to the GEOS-Chem 2◦ × 2.5◦ resolution.

Table 1 shows the δ13C signatures for the source types included in our simulations. These are extracted as mean global

values from Sherwood et al. (2017), which provides a database of global source signatures, broken down into the same sectors

as we employed in our simulations. However, individual source types show a wide range of source signatures (e.g., coal mines95

(Zazzeri et al., 2016)), and this uncertainty is reflected in the assigned uncertainty given to the a priori source signatures in

inversion (Section 2.3). We differentiate between Arctic and tropical wetlands by applying a 10 ‰ lighter source signature

to the Arctic source (Table 1), following Ganesan et al. (2018) who produced a global wetland source signature map based

upon published δ13C data. The arithmetic underlying the conversion of isotope ratios to isotopologue emissions for input to

the model are detailed in Appendix A.100

We include the loss of atmospheric CH4 from reaction with chlorine, soil uptake, and from oxidation by OH. We use

monthly 3-D fields of OH, calculated using the full-chemistry version of GEOS-Chem, and monthly 3-D field of atomic

chlorine ((Sherwen et al., 2016)). Stratospheric loss frequency fields are determined using the NASA GMI stratospheric model

(Duncan et al., 2007). Estimates of the microbial consumption of CH4 in soils is determined from Fung et al. (1991). The

resulting atmospheric lifetime of CH4 against OH is 9.73 years, consistent with the observed methyl chloroform lifetime of105

5.39 years. In our default model configuration, none of these loss processes include interannual variations.

To account for isotopic fractionation due to loss of CH4 in the troposphere and stratosphere, we use published kinetic

isotope effect values (KIEs). These values are employed to scale the reaction rate constants used in the simulations for 12CH4

and 13CH4 (Table 2). The OH and Cl sinks are handled in the hard coding of the model, whereas the soil sink is handled as a

negative emission in the HEMCO file. Therefore, for the soil sink, the KIE is directly applied as a scale factor in the HEMCO110

configuration file (Snover and Quay, 2000; Burkholder et al., 2019).

‘Spinning up’ is an important aspect of atmospheric modelling in order for simulated mole fractions to reach equilibrium. We

spin-up the model by scaling a CH4 restart file from and older, coarser resolution GEOS-Chem model run. The δ13C inversion

uses a posteriori regional emissions from the CH4 inversion as a starting point, with sectoral emissions scaled as detailed in

Appendix A. We then run the model over the year 2004 sixty times using the 2004 MERRA-2 meteorology and emissions,115

corresponding to approximately six times the chemical lifetime of CH4. We find this is sufficient to allow mole fractions and
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isotope ratios to equilibrate (not shown). We then run a single-year inversion for 2004 to optimise the δ13C and total CH4

values relative to NOAA observations, following inverse method detailed below. The output of this short inversion is improved

estimates of initial conditions for δ13C and total CH4, which serve as a starting point for the longer inversion we report here

(2004-2020).120

For all our calculations, we sample GEOS-Chem at the grid square and local time that corresponds to the in situ and satellite

remote sensing data. For the satellite data, we also apply scene-dependent averaging kernels to account for vertical structure.

This approach allows us to directly compare the model with measurements. Regional trends are calculated by examining the

grid squares which correspond with a given region on the global grid.

2.3 Inverse Methods125

We use two inverse methods that reflect the volume and simplicity of the data being used. For in situ data we use the Maximum

A Posteriori (MAP) inverse methods and for the more voluminous satellite data we use an ensemble Kalman filter. For brevity,

we include only the essential details about either method and refer the reader to dedicated papers.

2.3.1 Maximum A Posteriori

To infer regional a posteriori CH4 fluxes and regional δ13C emissions source signatures from the atmospheric measurements130

of CH4, we use the Maximum A Posteriori solution (MAP) inverse method. We solve for fluxes and δ13C emissions signatures

from 14 geographical regions (Figure 1). This method combines a priori knowledge and its uncertainty with the measurements

and their uncertainties, and has been used in a number of studies, e.g., Fraser et al. (2014); McNorton et al. (2018).

The MAP solution and the associated a posteriori uncertainty is described as, using the conventional that lower-case and

upper-case variables denote vectors and matrices, respectively:135

xa = xb + (HT B−1H+ R−1)−1HT B−1(y−Hxb), (1)

A = (HT B−1H+R−1)−1, (2)

where x denotes the state vector that describes the estimated quantities, which in this study includes monthly CH4 fluxes and

δ13C source signatures from regions across the world (Figure 1). Subscripts ‘a’ and ‘b’ denote a posteriori and a priori fluxes,

respectively, and superscripts ‘-1’ and ‘T’ denote matrix inverse and transpose operations, respectively. The measurement140

vector y includes either NOAA mole fraction data and the δ13C data. The matrices B, A, and R denote the error covariances

matrices for the a priori, a posteriori, and measurements, respectively. B and R are diagonal matrices. For B we assume

uncertainties of 50 % of the regional CH4 fluxes and 15 ‰ for the δ13C values, and for R we assume 10 ppb for the mole

fraction data and 0.1 ‰ for the isotope data. We assume a model transport error of 12 ppb, following Feng et al. (2022b).

The Jacobian matrix H describes the sensitivity of the measurements to changes in the state vector, i.e. ∂y/∂x. For the145

total CH4 inversion, the Jacobian matrix describes the sensitivity of mole fractions in the model to changes in regional CH4

emissions. We construct the matrix using a series of GEOS-Chem model runs. We systematically let each individual emitting

region (described by the state vector) emit for one month while all other regions are emitting as normal The individual regional
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source is then switched off (emissions set to zero) and the effect of this on the 3-D atmospheric distribution of CH4 mole

fractions is recorded over the following three months. The result of this test is recorded at the grid squares that correspond150

with the measurement sites. The resulting mole fractions therefore describe the sensitivity of a particular measurement site to

changes in a specific regional source up to three months after emission. This is repeated for every month within the inversion

timescale, for every region described in the state vector.

For the δ13C inversions, the a priori simulation uses a posteriori regional emissions from the CH4 inversion as a starting

point. The Jacobian matrix in this case describes the sensitivity of modelled δ13C to changes in the regional source signatures.155

We construct the Jacobian as the difference between a control model calculation (using the CH4 a posteriori regional emissions)

and perturbed source signature model calculation for the whole study period (2004-2020). For the perturbed model calculation,

we systematically perturb the source signature of each region (all of the sectors that are containing geographically within a

region) so that it is heavier by 20 ‰ for the period 2004-2020. The difference between the control and perturbed run in δ13C

value at the location of each measurement site is then divided by the ‰ value of δ13C perturbation for the region source160

signature, to understand the effect of changing a regions source signature upon the δ13C value recorded at each measurement

site location. Each individual regions’ model calculation is spun up separately from the control model calculation in order to

account for lagging in the model.

The output from the inversion are improved estimates of regional fluxes and δ13C source signatures. The model simulates

the global atmosphere on a 2◦ × 2.5◦ grid. The a posteriori regional fluxes and source signatures are applied to the grid squares165

in the model which correspond with a given region in an a posteriori simulation.

2.3.2 Ensemble Kalman Filter

We use an Ensemble Kalman Filter (EnKF) approach in performing the inversion using satellite data, because we cannot easily

evaluate the necessary matrix operations associated with an analytic inversion. Here we use an ensemble of flux perturbation

pulses to represent uncertainty in our a priori estimate for regional monthly fluxes. We subsequently use a global chemistry170

transport model (i.e., the GEOS-Chem v12) to track the transport and chemistry processes of the tagged emission pulses in

the atmosphere, to project their spreads to the observation space. With the ensemble of a priori flux perturbations, and the

simulated observation impacts, we use the Ensemble Transform Kalman Filter (ETKF) algorithm to numerically estimate the

a posteriori fluxes and the associated uncertainties by optimally comparing the model simulation with observations (see Feng

et al., 2017 for more details). To reduce the computational costs, mainly from tracking tagged emission pulses, we introduce175

a 4-month moving lag window for each assimilation step, because any observation has limited ability to distinguish between

the signals emitted long (>4 months) before, from variations in the ambient background atmosphere (Feng et al., 2017). As

a result, we are able to include a larger state vector, consisting of monthly scaling factors for 487 (476 land regions and

11 oceanic regions) regional CH4 (and CO2) pulse-like basis functions (Figure S1 in (Feng et al., 2022b)). We define these

land sub-regions by dividing the 11 TransCom-3 (Gurney et al., 2002) land regions into 42 to 56 nearly equal sub-regions,180

and use the 11 oceanic regions defined by the TransCom-3 experiment. Because of their smaller sizes, we have assumed a
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higher uncertainty percentage (60 %) for a priori emissions than the MAP approach described above. We also include spatial

correlation with a correlation length of 500km between the sub-regions.

3 Results

Figure 2 shows the regional differences between a priori and a posteriori emission estimates, with absolute emissions values185

plotted in Figure A1. Here we show the annual mean difference between the a posteriori and the a priori emissions, for

both NOAA and GOSAT inversion results. This indicates the changes from the a priori emissions and allows comparison

of the two independent approaches. The a priori emissions are constructed as detailed in Section 2.2. At a global scale, we

find increased emissions relative to a priori emissions of 72.0±35.51 Tg/yr in 2020 for the in situ inversion and 61.5±37.3

Tg/yr higher emissions for the GOSAT inversion. The in situ inversion results indicate that this difference originates from190

tropical regions such as Tropical South America (+13.5±1.9 Tg/yr in 2020), North Africa (+15.1±6.8 Tg/yr, 2020) and China

(+17.3±4.4 Tg/yr, 2020). There are decreases relative to a priori emissions in 2020 in Temperate North America (-13.3 ± 3.4

Tg/yr), Southern Africa (- 5.6 ± 2.1 Tg/yr), Temperate South America (-4.1±4.0 Tg/yr) and Boreal Eurasia (-2.3±3.9 Tg/yr).

Therefore, the estimates from bottom up inventories underestimate CH4 emissions, especially in tropical regions. According

to these results, mid-latitudinal emissions are being overestimated and tropical emissions underestimated.195

Likewise, the GOSAT-based inversion results indicate a posteriori emissions increases from the a priori emissions are

centred around tropical regions. In 2020, there are emissions increases from the a priori estimates in Tropical South America

(+20.3 ± 1.9 Tg/yr) and North Africa (+13.1 ± 6.8 Tg/yr). Similar to the in situ results, there are decreases in some mid-

latitudinal regions, specifically Temperate North America (-3.9 ± 1.8 Tg/yr) and Temperate South America (-6.4 ± 7.1 Tg/yr).

The increase in tropical emissions has been highlighted by previous studies, whether using GOSAT data or in situ data as200

constraints in a 3-D CTM inversion (McNorton et al., 2016 and Fujita et al., 2020, examining (2003-2015) and (1995-2013)

respectively). The increase in North Africa is especially noteworthy in 2020, where emissions have been attributed to increased

wetland emissions by previous studies (Lunt et al., 2019, 2021; Pandey et al., 2021; Feng et al., 2022b).

There are some differences between the two inversion results. Specifically, emissions from Boreal North America and China

are lower than the a priori emissions for the GOSAT-based inversion (- 4.6±1.1 and - 5.1±3.8 Tg/yr in 2020 respectively), but205

increase for the in situ inversion (+4.4 ±3. and +17.3±4.4 Tg/yr in 2020 respectively). It is noteworthy that, despite differences

in the absolute annual emissions estimates, both the GOSAT-based inversion and the in situ based inversion indicate a gradual

emissions increase in China from 2012. Sheng et al. (2021) find anthropogenic CH4 emissions from China increasing by 0.36

Tg/yr, from 2012 to 2017 using GOSAT data. Comparing the same time period, we find an increase of Chinese emissions of

0.72 Tg/yr inferred from the ground-based in situ data and increase of 1.34 Tg/yr inferred from the GOSAT data.210

Figure A4 shows mole fraction estimates and a posteriori mole fraction estimates inferred from the NOAA surface data at site

locations. We find smaller residuals between simulated mole fractions using the a posteriori emissions and the measurements

(mean residual 9.01 ppb; root-mean-square error (RMSE) 11.94 ppb) than between the a priori values and the measurements

(mean residual 13.06 ppb; RMSE 17.13 ppb). This compares favourably with studies such as McNorton et al. (2018), with
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a posteriori RMSE of 12.30 ppb. Likewise, we see agreement of mole fraction estimates using GOSAT data (Figure A5; mean215

residual 41.72 ppb, RMSE 51.57 ppb). There are no significant a posteriori correlations between neighbouring regions (Figure

A6), determined by the a posteriori error covariance matrix, A, meaning that the a posteriori regional emissions estimates are

independent of one another.

Figure A7 shows the monthly regional source signature values for a priori an a posteriori simulations. General observations

from this figure are that lighter signatures are observed ( -62 ‰) from Northern Boreal regions (Boreal North America and220

Eurasia), which indicates the dominance of biogenic emissions here. Conversely, we observe heavier source signatures ( -40 ‰,

indicative of a greater proportion of anthropogenic emissions) from regions such as Temperate Eurasia, Australia and Southern

Africa. Some regional δ13C source signatures have a much stronger seasonal cycle than others (strongest in Boreal North

America and Boreal Eurasia but also in Northern and Southern Africa), with lighter values during summer months, driven

by a greater proportion of biogenic emissions at this time. It therefore follows that less significant seasonality is indicative225

of anthropogenic emissions making up a significant part of the emissions mix (observed for example in China and Temperate

Eurasia). Tropical Asia shows a yearly cycle with dual peaks, which is due to a combination of wetland and rice emissions. This

assessment assumes that sources are playing the most significant role in controlling seasonal cycle in δ13C source signature,

although we do not discount a role for changes in the loss processes.

Figure 3 shows a posteriori regional δ13C emissions source signatures inferred from ground-based in situ data. The results230

are grouped into approximately three-year bands, as a residual from the 2004-2007 mean value, to show how the source

signatures change across the time series. There is a general trend towards lighter regional source signatures of δ13C across the

time series. This trend has been ongoing since 2012 and is observed in all regions worldwide, however is strongest as compared

with a priori estimates in Tropical and Southern Hemispheric regions such as Tropical South America and Southern Africa (1.8

‰ and 2.1 ‰ lighter than a priori for 2019-2020, respectively). There is also evidence to suggest a period around 2012 when235

regional source signatures become heavier (by approximately 1.0 ‰ compared with a priori source signatures), especially in

the Northern Hemisphere, before becoming lighter again. The heavy trend is dominant in the Northern Hemisphere, suggesting

a larger proportion of anthropogenic emissions in this region at this time. This heavy shift around 2008 and light shift in 2012 is

also noted by Nisbet et al. (2016), who use a box model and examine data from sites measured by NOAA and Royal Holloway,

University of London (RHUL). They found that changes in removal rates would not explain these anomalies; the events are240

therefore attributed to changing emissions. Emissions growth post-2012 aligns with our atmospheric growth rates plotted in

Figures A2, A1.

We find some significant a posteriori correlations between neighbouring regions for these source signatures (Figure A8),

determined by the a posteriori error covariance matrix, A, which indicates that we cannot differentiate between the source

signatures of neighbouring regions (such as Southern Africa and Temperate South America). Nevertheless, the trend of stronger245

emissions of lighter CH4 is clear, indicating an increased role in biogenic or wetland emissions in the global source makeup.

Lan et al. (2021) corroborate this using a 3-D chemical transport model to simulate different possible emissions scenarios, and

find that microbial emissions (wetlands, agriculture and waste) are responsible for increasingly light δ13C signature, examining

1984-2016.
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The corresponding a posteriori regional δ13C source signatures produce an atmospheric time series more consistent with250

measurements than a priori values (Figure A9), particularly during 2008-2018 when a priori values result in significantly

lighter emissions source signatures. Figure A9 shows δ13C a priori and a posteriori values at site locations. The a posteriori

source signatures result in smaller residuals between the a posteriori simulation and measurement (mean residual 0.11 ‰,

RMSE 0.15 ‰), than from the prior (mean residual 0.19 ‰, RMSE 0.23 ‰). These compare well to McNorton et al. (2018)

(a posteriori RMSE 0.1 ‰) and Fujita et al. (2020) (a posteriori RMSE 0.08 - 0.25 ‰).255

In Figure 4, we combine this information into a zonal plot, reported approximately every 30◦ latitude, for CH4 emissions and

the corresponding changes in regional source signatures of δ13C. We find consistency between the magnitude of the changes in

CH4 inferred from NOAA and GOSAT data, particularly in the low latitudes. The plot also shows there has been a progressive

increase in emissions from tropical latitudes (between 60-80 Tg/yr in 2019-2020) and a decrease at northern midlatitudes (up

to -10 Tg/yr). This suggests that emissions have shifted from northern midlatitudes towards tropical emissions. We also find a260

move towards lighter regional source signatures of δ13C across all latitudinal bands, with a change of approximately -2 ‰ in

the tropics. Comparing Figures 3 and 4, we see similar trends across latitudinal bands and the regions within them, for example

trends in European and Chinese source signatures align with the 30-60◦ N latitudinal band. Our results compare well with

Nisbet et al. (2019), who use a box model to fit emissions scenarios to in situ measurements, examining 2000-2018. They show

strongest emissions increases from the tropics (approximately + 20 Tg/yr, Figure 5). They likewise show consistently lighter265

δ13 across the time series of δ13C by approximately 0.5 ‰/yr.

Figure A2 compares our calculated atmospheric growth rate from the model simulations with the growth rates calculated

from the in situ observations alone. We applied the same technique as NOAA follow to compare their published growth rate

to the a posteriori mole fractions of our inversion. The general trend in increasing growth rate is evident in both measurement

and model datasets with inter-annual discrepancies explained through model measurement mismatch at specific sites.270

To examine the sensitivity of our results to changes in OH, we run a single sensitivity run that is made up of two parts.

First, we imposed a 0.5 %/yr uniform decrease to our 3-D OH field from 2004 to 2019, following similar trends proposed

by Turner et al. (2017) (who proposed a 7 % reduction in OH, 2003-2016) and second, we uniformly decrease OH by 5 %

in 2020 to describe estimated changes due to a global-scale reduction in emissions of nitrogen oxides (NOx) associated with

the first COVID-19 lockdown Miyazaki et al. (2021); Laughner et al. (2021). It has also been suggested that OH levels may275

have actually increased during 2000–2016 due to increasing water vapour and NOx in the tropics (Zhao et al., 2019), however

considering the scenario under COVID-19 lockdowns in 2020, a decreasing trend over the previous years is only considered

here. A similar approach to this was followed by Feng et al. (2022b) for which there is some opposition that suggests the change

in OH during COVID-19 should be larger although there is no empirical determination of this change. We then recalculate

a posteriori emissions inferred from the in situ NOAA data. Figure A3 shows that the 0.5 % negative trend in OH does not280

make a significant difference to our a posteriori estimates (emissions change is not larger than a posteriori uncertainty) until

later in the timeseries (2017-2019), reflecting our large a posteriori uncertainties. However, we find that a sudden 5 % decrease

in OH during 2020 results in a marked reduction (approximately 9 %, 50 Tg/yr) in the increased emissions necessary to explain

the increase in atmospheric CH4. This reduction in necessary increases in emissions particular affects high-emitting regions
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such as China and Tropical Asia. Despite this, the regional results are generally within the a posteriori uncertainties of our285

control calculation, which does not include a year-to-year change in OH. On balance, given the large-scale, unprecedented

changes in atmospheric chemistry during 2020 it is likely that OH has a role to play in the global growth rate of CH4 but

changes in emissions overwhelm the impact from reduced OH. We find a similar fit of the model to data with or without

considering the OH trend (not shown).

4 Conclusions290

We estimated regional CH4 emissions and δ13C source signatures for the period 2004-2020, inclusively, by fitting the GEOS-

Chem 3-D atmospheric chemistry transport model to NOAA in situ surface mole fraction data and GOSAT atmospheric column

data using Bayesian inverse methods. Collectively, our results indicate that the post-2007 increase in CH4 emissions are best

explained by a progressive latitudinal shift in emissions from the northern midlatitudes to tropical latitudes. A posteriori CH4

emission estimates inferred from the NOAA and GOSAT data show larger tropical emissions, particularly over North Africa,295

Tropical Asia, and Tropical South America, at the same time as mid-latitudinal emission proportion decreases. Source signature

estimates inferred from the δ13C measurements over the same time period indicate that the latitudinal shift in CH4 emissions

is due to larger proportion of biogenic sources. Our results are broadly consistent with previous studies that focus on shorter,

contributing periods (McNorton et al., 2018; Nisbet et al., 2019; Fujita et al., 2020; Yin et al., 2021; Lan et al., 2021)).

Our control calculations used monthly 3-D distributions of OH without any year-to-year variation. To explore how changes in300

OH might affect our results, we ran a sensitivity experiment for which the monthly 3-D OH fields was decreased 0.5 %/yr from

2004 to 2019, inclusively, based on values proposed by previous studies (Turner et al., 2017). For this sensitivity experiment,

we find our results are within a posteriori uncertainty of the control calculations for most of the time series, and therefore

steadily decreasing OH concentrations are not responsible for observed changes in the distribution of CH4. We also considered

how a proposed larger 5% change in 2020 (Miyazaki et al., 2021; Laughner et al., 2021), due to widespread COVID-19 related305

emission reductions in nitrogen oxides, affected our results. We find smaller CH4 emissions increases during 2020, as expected,

but for most regions they are still within our control a posteriori emissions estimates for 2020. A much larger reduction in OH

would be necessary to describe exclusively observed changes in atmospheric CH4, which would consequently affect regional

isotope signatures and observed variations of many atmospheric trace gases in a manner that has yet to be reported.

Sparse geographic coverage of ground-based data results in larger uncertainties for regional emission estimates that are310

poorly covered, i.e., high and low latitudes. For CH4, this deficiency can be partly addressed using the satellite data, but isotopes

are not currently retrieved reliably from satellite remote sensing instruments. In this study, there are only three long-term

measurement sites for δ13C employed in the southern hemisphere. A consequence of this data sparseness is strong correlations

between source signatures from neighbouring regions (Figure A8). We further limited our study by picking measurements sites

for which data are available over our study period (Figure 1). Sectoral source signatures δ13C are taken as mean values from315

Sherwood et al. (2017), representing our current best knowledge. Different sectors produce a range of possible δ13C values, and

there are significant overlaps between recorded source signatures (Douglas et al., 2017). These data have greater value when
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they are used in a broader context with other data, as we have described in this study. We have used satellite observations to help

identify that large-scale emission changes over regions that coincide with wetlands. The collective evidence demonstrates that

increasing natural, tropical emissions play a significant role in the observed atmospheric growth of CH4. Greater confidence320

in source attribution of changes in atmospheric CH4 may come from collecting and interpreting δD and multiply-substituted

‘clumped’ isotopes (Douglas et al., 2017), alongside δ13C. This needs to be accompanied by laboratory and field measurements

of these isotopes to improve delineation between different sectors.

Our work is also consistent with recent studies that have reported anomalous large CH4 emissions over Eastern Africa (East

Africa and the Horn of Africa) due to elevated rainfall over upstream catchment areas (Lunt et al., 2019, 2021; Pandey et al.,325

2021). These large-scale precipitation changes have been linked with the positive phase of the Indian Ocean Dipole (Feng et al.,

2022b), which describes a sea-surface temperature gradient over the Indian Ocean. Similarly, increase CH4 emissions over the

Amazon basin (Wilson et al., 2021) are linked with large-scale changes in climate (Feng et al., 2022b). These substantial

increases in natural CH4 emissions will likely have major implications for our achieving the goals of the Paris Agreement

(Nisbet et al., 2019). Nature does not care about the origin of atmospheric CH4 so that increasing natural emissions will330

require larger emission reductions from anthropogenic sectors, placing additional pressure on citizens to reduce their carbon

footprints.

5 Code and data availability

The community-led GEOS-Chem model of atmospheric chemistry and model is maintained centrally by Harvard University

(http://geos-chem.seas.harvard.edu), and is available on request. The ensemble Kalman filter code is publicly available as335

PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-tools/).

All the data and materials used in this study are freely available. The NOAA-GML and CU-INSTAAR ground-based CH4

and δ13C data are available from the NOAA GML FTP server (https://gml.noaa.gov/dv/data), subject to their fair use policies.

Data from JR-STATION network was provided with cooperation of NIES Japan. The University of Leicester GOSAT Proxy

v9.0 XCH4 data are available from the Centre for Environmental Data Analysis data repository at340

(https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb), and from the Copernicus Climate Data Store. EDGAR data is

available at (https://edgar.jrc.ec.europa.eu/), GFED-4 data is available at (https://www.globalfiredata.org/data.html), WETCHARTS

data is available at (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1502).

Appendix A: Isotopologue Emissions

To simulate the atmospheric isotope ratio δ13C the isotopologues 12CH4 and 13CH4 are considered separately in the model. To345

calculate the specific sectoral isotopologue emissions we use the emissions calculated from the total CH4 simulation and the

isotope ratios defined in Table 1. We consider the isotope 13C relative to all isotopes in the sample (designated thereafter as
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13x) using:

13x =
13C

12C +13 C
=

13C/12C

1 + (13C/12C)
, (A1)

where 13C/12C is calculated from the δ13C reported on the international carbon isotope scale (VPDB). This is the proportional350

molar abundance of the isotopologues containing 13C (dominated by 13CH4). This value has to be adjusted before being applied

in GEOS-Chem to convert from isotope ratio values to kg values used by emission inventories:

SF13 = 13x× M13

Mtot
, (A2)

where ‘SF13’ is the scale factor applied to each emissions type for the 13CH4 simulation, M13 is the molecular weight of
13CH4 (17.035 g/mol) and Mtot is the molecular weight of CH4 (16.04 g/mol).355

For the 12CH4 counterpart to 13CH4, we use a similar approach. The ratio of 12C compared with all isotopes in the sample

(designated as 12x) is given by:

12x =
12C

13C +12 C
. (A3)

This is similarly adjusted from molar to mass ratio; ‘SF12’ is the scale factor for each emissions type in the 12CH4 simula-

tions:360

SF12 = 12x× M12

Mtot
, (A4)

where M12 is the molecular weight of 12CH4 (16.03 g/mol). Since 13C and 12C are the only stable carbon isotopes of CH4,

13x and 12x should sum to 1.
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Figure 1. Map showing regions that are optimised in the CH4 and δ13C inversions, in different colours. Black dots and labels show the

location of ground-based in situ measuring sites that measure CH4 mole fraction. Red dots and labels indicate both total CH4 and δ13C

measuring sites. Regions are named as follows: Grey - North American Boreal; Yellow - North American Temperate; Light Green - South

American Tropical; Dark Green - South American Temperate; Purple - Europe; Blue - North Africa; Light Blue - Southern Africa; Pink -

Boreal Eurasia; Orange - China; Brown - India; Peach - Temperate Eurasia; Red - Tropical SE Asia; Lilac - Oceania; White - Oceans. Site

identifiers are detailed in Table A1.
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Figure 2. Annual mean CH4 emissions (Tg/yr) from each of the inversion regions in latitudinal order (geographic coverage indicated by

Figure 1), for both ground-based and GOSAT inversion results. The emissions are shown as a residual value, relative to the a priori yearly

emission for each region. Uncertainties in yearly emissions are indicated, as calculated from inversion calculations, with a a priori uncertainty

of 50 % for the in situ results and 60 % for the GOSAT results. The ground-based a posteriori is in blue; the GOSAT a posteriori are in red.
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Figure 3. Regional and global a posteriori δ13C emissions source signatures (‰), in three-yearly groups (2004-06, 2007-09, 2010-12, 2013-

15, 2016-18, 2019-20) as a residual from the 2004-06 a posteriori regional emissions source signature value. The a priori equivalent is

represented by black dots. The regions are those solved for in the CH4 and δ13C inversions and are indicated by Figure 1.
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Figure 4. Triennial mean CH4 emission anomalies (Tg/yr) from 2004 to 2020 for NOAA data (denoted by shades of red) and from 2010

to 2020 for GOSAT data (denoted by shades of grey), and triennial mean δ13C emissions source signatures (‰, denoted by shades of blue)

from 2004 to 2020, all grouped every 30◦ latitude. Anomalies are defined relative to the 2004–2006 mean values.

23

https://doi.org/10.5194/acp-2022-561
Preprint. Discussion started: 2 September 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure A1. A posteriori emissions estimates (Tg/yr) inferred from ground-based in situ data (blue) and GOSAT data (red, with record starting

in 2010) for the geographical regions shown by Figure 1. A priori emissions estimates are denoted by black dots and a posteriori uncertainties

are denoted by whisker bars.
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Figure A2. A posteriori annual mean atmospheric CH4 growth rate inferred from in situ (black line) and GOSAT data(blue line) compared

with the equivalent data as published by NOAA (red line, Dlugokencky et al., 2020). The green line denotes the annual atmospheric growth

rate determined using the in situ mole fraction data from the sites included in the inversion (’Sites-Post’). To calculate the atmospheric growth

rates from model calculations (NOAA-Post and GOSAT-post), we compare the average global CH4 mole fraction in one year (the mean mole

fraction of every grid square in every month of a year), with the mean value from the following year. The calculation is January-January, in

order to remove the effects of the seasonal cycle, following the approach by NOAA (Dlugokencky et al., 2020).
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Figure A3. Annual mean CH4 emissions (Tg/yr) for each region of the inversion (indicated by Figure 1) inferred from the ground-based

data (dark blue) and the emissions estimates determined by a reduced OH values (described in the text, shownn in red). A priori regional

emissions estimates are indicated by black dots. Regional uncertainties for the a posteriori emissions are indicated.
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Figure A4. Observed (red dots), and a priori (grey), a posteriori (black) model atmospheric mole fractions at a series of NOAA sites (subplot

titles denote site codes, Table A1), covering a range of latitudes.
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Figure A5. Observed (red dots), and three-hourly surface a posteriori CH4 values inferred from GOSAT data (black) at the location of a

number of NOAA sites (Table A1) 2010-2020.
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Figure A6. A posteriori correlations between CH4 emissions from geographical regions inferred from NOAA CH4 mole fraction data. These

correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Eq. (2)).
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Figure A7. Monthly a priori (grey) and a posteriori (blue) regional δ13C source signatures (‰). Values are produced using ground-based

in situ δ13C data. Uncertainties in source signatures are indicated as shaded envelopes, with a priori uncertainties of 15 ‰.
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Figure A8. A posteriori correlations between δ13C source signatures from geographical regions inferred from ground-based δ13C data.

These correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Equation 2).
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Figure A9. A priori (grey) and a posteriori (black) monthly estimates of atmospheric δ13C, simulated at NOAA sites across latitudes (site

codes listed in Table A1). Red dots indicate monthly mean δ13C data from CU-INSTAAR for the respective sites.
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Table 1. Magnitudes of different CH4 source types and the corresponding conventional isotope ratios (Sherwood et al., 2017). Magnitudes

are from bottom-up inventories (Saunois et al., 2016), with uncertainties as max-min values in square brackets.

Source Type Annual Mean Emission Isotopic Ratio

2003-2012 (Tg/CH4) δ13C

Gas and Oil 79 [69-88] -44.0

Coal 41 [26-50] -49.5

Livestock 106 [97-11] -65.4

Waste 195 [178-206] -56.0

Biomass Burning 18 [15-20] -26.2

Termites 9 [3-15] -63.4

Wetlands 185 [153-227] -61.5 (Tropical)

-71.5 (Arctic)

Rice 30 [27-35] -62.2
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Table 2. Kinetic Isotope Effects (KIEs) for different isotopologues reacting with the three main sinks of CH4 (OH, Cl, soil) at 298K. A KIE

indicates relative reaction rate compared with 12CH4; the reaction rate constant is applied to the OH and Cl sinks and is dependent upon

temperature (T); and the scaling factor is applied to the soil sink at each timestep (handled as a negative emission).

Isotopologue Sink KIE Reaction Rate Constant Scaling Factor Literature Source
12CH4 OH 1 2.45× 10−12× e

−1775
T n/a Burkholder et al., 2019

12CH4 Cl 1 9.600× 10−12× e
−1360

T n/a Kirschke et al., 2013
12CH4 soil n/a n/a 1 Snover and Quay, 2000
13CH4 OH 1.0039 2.44× 10−12× e

−1775
T n/a Burkholder et al., 2019

13CH4 Cl 1.06 9.057× 10−12× e
−1360

T n/a Feilberg et al., 2005
13CH4 soil n/a n/a 1.0670 Snover and Quay, 2000
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Table A1. Sites that are included in the in situ inversions. All sites are part of the NOAA network, other than KRS, which is part of the

JR-STATION network, monitored by NIES Japan.

Code Full Name Latitude Longitude

ALT Alert Station 82.28 -62.30

ZEP Ny-Alesund, Svalbard 78.90 11.89

SUM Summit, Greenland 72.60 -38.42

BRW Barrow Station 71.32 156.61

ICE Storhofdi,Iceland 63.40 -20.29

KRS Karasevoe, Siberia 58.14 82.25

MHD Mace Head, Ireland 53.33 -9.90

SHM Shemya Island, Alaska 52.71 174.12

UUM Ulaan Uul, Mongolia 44.45 111.09

NWR Niwot Ridge, Colorado 40.05 -105.59

UTA Wendover, Utah 39.90 -113.72

WLG Mt. Waliguan, China 36.29 100.90

BMW Bermuda 32.26 -64.88

WIS Ketura, Israel 29.96 35.06

IZO Izana, Tenerife 28.31 -16.50

MID Midway Islands 28.22 -177.37

KEY Key Biscane, Florida 25.67 -80.16

ASK Assekrem, Algeria 23.26 5.63

KUM Cape Kumukahi, Hawaii 19.56 -154.89

MLO Mauna Loa, Hawaii 19.54 -155.58

RPB Ragged Point, Barbados 13.17 -59.43

SEY Mahe Island, Seychelles -4.68 55.53

ASC Ascension Island -7.97 -14.40

SMO American Samoa -14.25 -170.56

CGO Cape Grim -40.68 144.69

BHD Baring Head -41.40 174.87

CRZ Crozet Island -46.43 51.85

USH Ushuaia, Argentina -54.84 -68.31

PSA Palmer Station, Antarctica -64.77 -64.05

SYO Syowa Station, Antarctica -69.01 39.59

SPO South Pole, Antarctica -89.98 -24.8
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