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Abstract. We use the GEOS-Chem global 3-D model and two inverse methods (the Maximum A Posteriori and Ensemble

Kalman Filter) to infer regional methane (CH4) emissions and the corresponding carbon stable isotope source signatures,

2004–2020, across the globe using in situ and satellite remote sensing data. We use the Siegel estimator to determine linear

trends from the in situ data. Over our 17-year study period, we estimate a linear increase of 3.6 Tg/yr/yr in CH4 emissions

from tropical continental regions, including North Africa, southern Africa, tropical South America, and Tropical Asia. The5

second largest increase in CH4 emissions over this period is from China (1.6 Tg/yr/yr). For Boreal regions we estimate a

negative emission trend of -0.2 Tg/yr/yr and for northern and southern temperate regions we estimate trends of 0.03 Tg/yr/yr

and 0.2 Tg/yr/yr, respectively. These increases in CH4 emissions are accompanied by a progressively isotopically lighter

atmospheric δ13C signature over the tropics, particularly since 2012, which is consistent with an increased biogenic emission

source and/or a decrease in a thermogenic/pyrogenic emission source that has a heavier isotopic signature. Previous studies10

have linked increased tropical biogenic emissions to increased continental rainfall, particularly over Eastern Africa. Over

China, we find a weaker trend towards isotopically lighter δ13C sources, suggesting that heavier isotopic source signatures

play a larger contribution to this region. Satellite remote sensing data provide additional evidence of emission hotspots of CH4

that are consistent with the location and seasonal timing of wetland emissions. The collective evidence suggests that increases in

tropical CH4 emissions are from biogenic sources, with a significant fraction from wetlands. To understand the influence of our15

results to changes in the hydroxyl radical (OH), we also report regional CH4 emission estimates using an alternative scenario

of a 0.5%/yr decrease in OH since 2004, followed by a larger 1.5% drop in 2020 during the first COVID-19 lockdown. We

find that our main findings are broadly insensitive to those idealised year-to-year changes in OH, although the corresponding

change in atmospheric CH4 in 2020 is inconsistent with independent global-scale constraints for the estimated annual mean

atmospheric growth rate.20
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1 Introduction

Changes in atmospheric methane (CH4) over the last few decades have unfolded without clear explanation, exposing inadequa-

cies in our measurement coverage and our ability to definitively attribute those changes to individual emissions and losses. The

climatic importance of atmospheric CH4 lies in its ability to absorb and emit infrared radiation at wavelengths that are relevant

to outgoing terrestrial radiation and incoming shortwave radiation (Allen et al., 2023). Consequently, atmospheric CH4 helps25

to maintain Earth’s radiative balance and surface and atmospheric temperatures. Atmospheric CH4 is derived from emissions

due to thermogenic (organic matter broken down at high temperatures and pressures, mainly released during extraction and

transport of fossil fuels), pyrogenic (through incomplete combustion of organic matter), and biogenic (microbial activity) based

production pathways. The main loss process is from from the hydroxyl radical (OH), with minor losses from the reaction with

chlorine, uptake from soils, and stratospheric loss. Methane is the second most abundant anthropogenic greenhouse gas in30

terms of its anthropogenic radiative forcing. The global CH4 growth rate was close to zero from 2000 to 2006 (Dlugokencky

et al., 2020) but has since accelerated, with a global annual growth rate reported by NOAA exceeding 15 ppb for the first time

in 2020 and more than 18 ppb in 2021 (Feng et al., 2023). Concurrently, we are witnessing a progressively isotopically lighter

signature of global averaged CH4 (more negative global average atmospheric δ13C value). Analysis of CH4 mole fraction and

δ13C-CH4 data suggest that thermogenic sources are unlikely to be the dominant driver of the post-2006 global mean increase35

in atmospheric CH4 (Lan et al., 2021)). A growing body of work has proposed a range of hypotheses to explain short periods

of observed global and regional variations in atmospheric CH4 (Turner et al., 2019). In this study, we take a step back to look

at observed CH4 variations from 2004 to 2020, in order to capture the some of the zero-growth rate period and the subsequent

increase in growth rate of CH4 post-2007. We argue that monthly variations are part of a large-scale shift of predominately

thermogenic energy emissions from high northern latitudes to biogenic emissions from the tropics, driven by larger emissions40

over tropical North Africa and tropical South America.

The post-2007 increase in atmospheric CH4 has been the focus of many studies and has been attributed to different plausible

hypotheses associated with changes in various emissions sources, and the OH sink (Turner et al., 2019). These studies have

reached their conclusions using in situ mole fraction observations alone or in combination with other observations, e.g. in situ

δ13C (Schaefer et al., 2016; Rice et al., 2016; Nisbet et al., 2016; Fujita et al., 2020; Lan et al., 2021; Basu et al., 2022; Oh et al.,45

2022), satellite observations (Worden et al., 2017; McNorton et al., 2018; Yin et al., 2021; Feng et al., 2022), or other trace

gases, using a variety of analysis methods and computational models. Typical emissions sizes and uncertainty are indicated in

Table 1, adapted from Saunois et al. (2020). Our approach is unique in that, for our δ13C inversion, we are solving for the δ13C

isotopic source signature of a geographical region. From the isotopic source signature of a region, we can determine how the

source balance within a particular region has shifted over time, e.g. larger or smaller contributions from pyrogenic and biogenic50

sources, and consequently gain understanding of the geographical shifts in the CH4 budget.

Methane oxidation by the OH radical in the troposphere is responsible for 80% of the total CH4 sink globally. Changes in

OH may have played a role in recent changes in atmospheric CH4 (Rigby et al., 2017; Turner et al., 2017) but the magnitude of

this influence is uncertain (its short atmospheric lifetime of <1 s makes direct measurement of global variability very difficult).
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Reducing values of OH, effectively increases atmospheric CH4 and therefore has the same effect as increasing emissions of55

CH4. Chemical reactions responsible for removing CH4 from the atmosphere are faster for lighter isotopologues of CH4.

This isotopic fractionation therefore leads to an atmosphere enriched in heavier isotopes relative to the globally emitted CH4.

Lan et al. (2021) simulated CH4 and δ13C in a 3-D chemistry transport model covering the period 1984-2016, and found

that changes in OH proposed by Turner et al. (2017) are not consistent with the trend of increasingly isotopically light δ13C

observed in the atmospheric record. We explore the impact of reducing OH in a sensitivity study, taking into account a larger60

OH decrease during 2020 (Peng et al., 2022; Feng et al., 2023) that was associated with widespread redutions in nitrogen oxide

emissions (Cooper et al., 2022).

Here, we calculate trends in regional CH4 emissions and isotopic δ13C source signatures across the world, 2004–2020, using

in situ mole fraction and δ13C data, and satellite column-averaged dry-air mole fraction data. This is achieved by using three

sets of inversions: two Maximum A-Posteriori inversions using ground-based data (solving separately for regional emissions65

and isotopic sources signatures), and an Ensemble Kalman Filter inversion using data from the Japanese Greenhouse gases

Observing SATellite (GOSAT) that solves for regional CH4 emissions.

In the next section, we describe the data and methods we use to quantify changes in regional CH4 emissions and the

corresponding regional stable isotope source signatures. In section 3, we report our results of a posteriori regional CH4 fluxes

and regional δ13C isotopic signatures, including analysis of sensitivity calculations that involve different assumptions about70

year to year changes in the OH sink. We conclude the paper in section 4.

2 Data and Methods

2.1 In Situ and Satellite Remote Measurements of Atmospheric Methane

We use surface-level flask data as constraints on both regional CH4 emissions and δ13C regional CH4 emissions isotopic

source signatures. The CH4 mole fraction data are taken from 31 National Oceanic and Atmosphere Administration – Global75

Monitoring Laboratory (NOAA-GML) sites around the world (Figure 1), version 2020-07 (Dlugokencky et al., 2020). The data

are monthly mean values, averaged from discrete data as collected at each site, analysed at NOAA-ESRL in Boulder, Colorado,

and recorded to the NOAA 2004A standard scale (Dlugokencky et al., 2005). Up to August 2019, the analysis was performed

using gas chromatography (Steele et al., 1987, Dlugokency et al., 1994; Dlugokencky et al., 2005) and since August 2019,

cavity ringdown spectroscopy has been used (Dlugokencky et al., 2020). We also include data from a site in Siberia, Karasevoe80

(KRS), which is monitored by the National Institute for Environment Studies (NIES). This site was included to maximise

geographical coverage of in situ data. The CH4 mole fraction measurements from this site are continuous, measuring from

65 m height, covering the period 2004–2020 (Sasakawa et al., 2010). A scale factor of 0.997 is applied to the NIES data in

order to bring it into line with the NOAA 2004A scale (Zhou et al., 2009). The site constitutes part of the Japan-Russia Siberia

Tall Tower Inland Observation Network (JR-STATION).85

δ13C data are similarly monthly mean values, calculated from discrete flask samples at NOAA network sites, reported on

the international carbon isotope scale VPDB (Vienna Pee Dee Belemnite). Isotope ratio ‘delta’ values represent the excess
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of a heavy, less abundant stable isotope (for δ13C values, carbon-13) over the light, most abundant stable isotope (carbon-

12) in a sample, when compared to a standard. These measurements are useful as they are indicative of the source of the

CH4: biogenic sources are dominated by isotopically lighter signatures and thermogenic sources are dominated by isotopically90

heavier signatures. For the NOAA network, isotopic analysis of δ13C was performed at the University of Colorado Institute

of Arctic and Alpine Research Stable Isotope Laboratory (CU-INSTAAR). They follow an isotope ratio mass spectrometry

approach (Miller, 2002; Vaughn et al., 2004). The geographical locations of in situ measurement sites are shown in Figure 1.

These sites are a subset of the entire NOAA network’s capacity for measuring CH4 mole fractions. The sites included in the

inversion (both for CH4 and δ13C) are those that cover the entire period of the inversion (2004-2020) without significant periods95

of measurement breaks to ensure a consistent interpretation of trends without consideration of possible biases introduced

through the inclusion or exclusion of specific sites.

We also estimate CH4 fluxes for 2010-2020 using data from GOSAT that was launched in 2009. GOSAT is in a sun-

synchronous orbit with an equatorial local overpass time of 13:30. Since launch, it has provided continuous global observations

of dry-air atmospheric column-averaged CO2 (XCO2) and CH4 (XCH4), retrieved from shortwave infrared wavelengths that100

are most sensitive to changes in CH4 and CO2 in the lower troposphere (Parker et al., 2020). We use the latest (v9) proxy

XCH4:XCO2 retrievals that use spectral absorption features around the wavelength of 1.6 µm (Parker et al., 2020, Palmer

et al., 2021), because of the smaller bias and better global coverage than those provided by the full physics retrievals. Analyses

show the precision of single proxy retrieval is about 0.72%, with a global bias of 0.2% (Parker et al., 2011, 2015, 2020). In

our calculations, we assume a higher observation uncertainty of 1.2%, and deduct a globally uniform bias of 0.3% to obtain105

better a posteriori agreement with the independent ground-based XCH4 data by the Total Carbon Column Observing Network

(TCCON). These uncertainties are detailed in Feng et al. (2022). To anchor the constraints from the proxy XCH4:XCO2 ratio

(Fraser et al., 2014; Feng et al., 2017), we also assimilate the GLOBALVIEW CH4 and CO2 data (Schuldt et al., 2021),

with assumed uncertainties of 0.5 ppm and 8 ppb for in situ measurements of CO2 and CH4, respectively. GLOBALVIEW

constitutes a combination of CH4 data from ground-based data (both flask and continuous) and aircraft data, from 54 different110

laboratories, combined and published by NOAA-GML (Schuldt et al., 2021). Locations of the assimilated GLOBALVIEW

CH4 (sub) dataset are shown in Feng et al., 2022.

2.2 GEOS-Chem Atmospheric Chemistry and Transport Model

To relate CH4 emissions to atmospheric CH4 concentrations, we use v12.1 of the GEOS-Chem 3-D global chemical transport

model (CTM) (Bey et al., 2001) at a horizontal resolution of 2◦ (latitude) by 2.5◦ (longitude) with 47 vertical levels from the115

surface to 80 km height, with meteorological data from the MERRA-2 meteorological reanalyses (Gelaro et al., 2017) from

the NASA Global Modeling and Assimilation Office (GMAO).

Our a priori emissions include: 1) monthly EDGAR v6 anthropogenic emissions (Crippa et al., 2021) that accounts for

emissions from oil and gas, coal, livestock, landfills, wastewater, rice, and other anthropogenic sources (including biofuel)

from 2004 to 2018, after which we repeat 2018 emission estimates; 2) monthly GFED-4 biomass burning emissions (version120

4.1; Randerson et al., 2017); and 3) monthly v1.0 WetCHARTs wetland emissions (Bloom et al., 2017). The Harvard-NASA
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Emissions COmponent (HEMCO) software within GEOS-Chem converts the emission inventories at their native horizontal

resolution to the GEOS-Chem 2◦ × 2.5◦ resolution. Beyond the end of the emissions inventory, emissions are repeated yearly

in a priori simulation.

Table 1 shows the δ13C signatures for the source types included in our simulations. These are extracted as mean global125

values from Sherwood et al. (2017), which provide a database of global isotopic source signatures that are broken down into

the same sectors as we employed in our simulations. However, individual source types show a wide range of source signatures,

and this uncertainty is reflected in the assigned uncertainty given to the a priori source signatures in inversion (Section 2.3). In

the inversion, we differentiate between Arctic and tropical wetlands by applying a 10‰ isotopically lighter source signature

to the Arctic source (Table 1), following Ganesan et al. (2018) who produced a global wetland source signature map based130

on published δ13C data. Recent work showed that atmospheric simulations that included this isotopic distinction between

Arctic and tropical wetlands provided clearer support for rising microbial emissions being responsible for a large fraction of

the increase in atmospheric CH4 since 2007 (Oh et al., 2022). In GEOS-Chem, we simulate isotopologues separately (i.e.

for δ13C, 12CH4 and 13CH4), and then calculate δ13C values. The arithmetic underlying the conversion of isotope ratios to

isotopologue emissions for input to the model are detailed in Appendix A.135

We include the loss of atmospheric CH4 from reaction with chlorine, soil uptake, and from oxidation by OH. We use

monthly 3-D fields of OH, calculated using the full-chemistry version of GEOS-Chem, and monthly 3-D field of atomic

chlorine (Sherwen et al., 2016). Stratospheric loss frequency fields are determined using the NASA GMI stratospheric model

(Duncan et al., 2007). Estimates of the microbial consumption of CH4 in soils is determined from Fung et al. (1991). The

resulting atmospheric lifetime of CH4 against OH is 9.77 years. The corresponding lifetime for methyl chloroform is 5.41140

years, which is consistent with atmospheric observation of methyl chloroform. This lifetime also compares well with multi-

mode (Voulgarakis et al., 2013; Morgenstern et al., 2017) that reported global mean lifetimes of CH4 that range 7.2–10.1 yrs.

In our default model configuration, none of these loss processes include interannual variations.

To account for isotopic fractionation due to loss of CH4 in the troposphere and stratosphere, we use published kinetic

isotope effect values (KIEs). These values are employed to scale the reaction rate constants used in the simulations for 12CH4145

and 13CH4 (Table A1). The OH and Cl sinks are handled in the hard coding of the model, whereas the soil sink is handled as a

negative emission in the HEMCO file. Therefore, for the soil sink, the KIE is directly applied as a scale factor in the HEMCO

configuration file (Snover and Quay, 2000; Burkholder et al., 2019).

We created the initial conditions for atmospheric CH4 by first scaling a standard CH4 GEOS-Chem restart file (a file contain-

ing a default realistic distribution of CH4 across the atmosphere) to conditions near representative of the start of our analysis in150

January 2004. We then ran the model sixty times with repeating 2004 MERRA-2 meteorology and emissions (corresponding

to approximately six e-folding lifetimes for CH4) to improve as far as possible the simulation of atmospheric gradients in CH4

in the initial conditions. We then ran a single-year inversion for 2004 to optimise the isotope ratios and CH4 concentrations

relative to ground-based observations, following the inverse method detailed below. The δ13C inversion used the regional emis-

sions estimate provided by the posteriori from the CH4 inversion as a starting point, with sectoral emissions scaled as detailed155
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in Appendix A. The output of this 2004 inversion is a final step in creation of the initial conditions, which serve as a starting

point for the longer inversion that we report here (2004- 2020).

For all our calculations, we sample GEOS-Chem at the grid box and local time that corresponds to the in situ and satellite

remote sensing data. For the satellite data, we also apply scene-dependent averaging kernels to account for vertical structure.

This approach allows us to directly compare the model with measurements. Regional trends are calculated by examining the160

grid boxes encompassed by a given region on the global grid.

2.3 Inverse Methods

We use two inverse methods that reflect the volume and simplicity of the data being used. For in situ data we use the Maximum

A Posteriori (MAP) inverse methods and for the more voluminous satellite data we use an ensemble Kalman filter (EnKF). For

brevity, we include only the essential details about either method and refer the reader to dedicated papers.165

2.3.1 Maximum A Posteriori

To infer regional a posteriori CH4 fluxes and regional δ13C emissions source signatures from the atmospheric measurements

of CH4, we use the Maximum A Posteriori solution (MAP) inverse method (Rodgers, 2000). We solve for CH4 fluxes and δ13C

emissions signatures from 14 geographical regions (Figure 1). This method combines a priori knowledge and its uncertainty

with the measurements and their uncertainties, and has been used in a number of studies, e.g., Fraser et al. (2014); McNorton170

et al. (2018).

The MAP solution and the associated a posteriori uncertainty is described as, respectively:

xa = xb +(HTB−1H+ R−1)−1HTB−1(y−Hxb), (1)

A = (HTB−1H+R−1)−1, (2)

using the conventional that lower-case and upper-case variables denote vectors and matrices, where x denotes the state vector175

that describes the estimated quantities, which in this study includes monthly CH4 fluxes and δ13C source signatures from

regions across the world (Figure 1). Subscripts ‘a’ and ‘b’ denote a posteriori and a priori CH4 fluxes, respectively, and

superscripts ‘-1’ and ‘T’ denote matrix inverse and transpose operations, respectively. The measurement vector y includes CH4

mole fraction or δ13C data. The matrices B, A, and R denote the error covariances matrices for the a priori, a posteriori, and

measurements, respectively. B and R are diagonal matrices. For B we assume uncertainties of 50% of the regional CH4 fluxes180

and 15‰ for the δ13C values, and for R we assume 10 ppb for the mole fraction data and 0.1‰ for the isotope data. These

uncertainties were based on similar studies (Fraser et al., 2014; McNorton et al., 2016). We assume a model transport error of

12 ppb, following Feng et al. (2022).

The Jacobian matrix H describes the sensitivity of the measurements to changes in the state vector, i.e. ∂y/∂x. For the mole

fraction CH4 inversion, the Jacobian matrix describes the sensitivity of mole fractions in the model to changes in regional CH4185

emissions. We construct the matrix using a series of GEOS-Chem model runs. We systematically let each individual emitting

region (described by the state vector) emit for one month while all other regions are emitting as normal. The individual regional
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source is then switched off (emissions set to zero) and the effect of this on the 3-D atmospheric distribution of CH4 mole

fractions is recorded over the following three months. The result of this test is recorded at the grid boxes that correspond to the

location of the measurement sites. The resulting mole fractions therefore describe the sensitivity of a particular measurement190

site to changes in a specific regional source up to three months after emission. This is repeated for every month within the

inversion timescale, for every region described in the state vector.

For the δ13C inversions, the Jacobian matrix describes the sensitivity of modelled δ13C to changes in the regional isotopic

source signatures. We construct the Jacobian as the difference between a control model calculation (using the CH4 a posteriori

regional emissions and mean source signature values from Sherwood et al. (2017)) and perturbed source signature model195

calculation for the whole study period (2004-2020). For the perturbed model calculation, we systematically perturb the isotopic

source signature of each region (all of the sectors that are contained geographically within a region) isotopically heavier by

20‰ for the period 2004-2020. The difference between the control and perturbed run in δ13C value at the location of each

measurement site is then divided by the value of δ13C perturbation for the region source signature, to understand the effect of

changing a regions source signature on the δ13C value recorded at each measurement site location.200

The output from the inversion are improved estimates of regional CH4 fluxes and δ13C source signatures. The model simu-

lates the global atmosphere on a 2◦ × 2.5◦ horizontal grid. The a posteriori regional CH4 fluxes and isotopic source signatures

are applied to the grid boxes in the model which correspond to a given region in an a posteriori simulation.

2.3.2 Ensemble Kalman Filter

We use an Ensemble Kalman Filter (EnKF) approach in performing the inversion using satellite data, because we cannot easily205

evaluate the necessary matrix operations associated with an analytic inversion. Here we use an ensemble of flux perturbation

pulses to represent uncertainty in our a priori estimate for regional monthly CH4 fluxes. We subsequently use a global chemistry

transport model (i.e., the GEOS-Chem v12) to track the transport and chemistry processes of the tagged emission pulses in

the atmosphere, to project their spreads to the observation space. With the ensemble of a priori flux perturbations, and the

simulated observation impacts, we use the Ensemble Transform Kalman Filter (ETKF) algorithm to numerically estimate210

the a posteriori CH4 fluxes and the associated uncertainties by optimally comparing the model simulation with observations

(see Feng et al., 2017 for more details). To reduce the computational costs, mainly from tracking tagged emission pulses, we

introduce a 4-month moving lag window for each assimilation step, because any observation has limited ability to distinguish

between the signals emitted long (>4 months) before, from variations in the ambient background atmosphere (Feng et al.,

2017). As a result, we are able to include a larger state vector, consisting of monthly scaling factors for 487 (476 land regions215

and 11 oceanic regions) regional CH4 (and CO2) pulse-like basis functions (Figure S1 in (Feng et al., 2022)). We define these

land sub-regions by dividing the 11 TransCom-3 (Gurney et al., 2002) land regions into 42 to 56 nearly equal sub-regions,

and use the 11 oceanic regions defined by the TransCom-3 experiment. Because of their smaller sizes, we have assumed a

higher uncertainty percentage (60%) for a priori emissions than the MAP approach described above. We also include spatial

correlation with a correlation length of 500km between the sub-regions.220
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2.4 Sensitivity of Results to Changes in Assumed OH Distributions

To examine the sensitivity of our results to changes in the magnitude of OH, we run a single sensitivity run that is made up

of two parts. First, we imposed a 0.5%/yr uniform decrease to our 3-D OH field from 2004 to 2019, consistent with the 7%

reduction over 2003–2016 proposed by Turner et al. (2017). Second, we imposed a larger global-scale OH reduction of 1.5% in

2020 based on recent studies (Miyazaki et al., 2021; Laughner et al., 2021) to describe a more abrupt change due to widespread225

reductions in nitrogen oxides (NOx) associated with closing down manufacturing during the first Covid-19 lockdown (Cooper

et al., 2022). Newer studies have suggested the OH reduction in 2020 was closer to 1% Peng et al. (2022); Feng et al. (2023),

but these estimates are also subject to uncertainties. The purpose of this numerical experiment is to determine the sensitivity of

a posteriori CH4 flux estimates to changes in assumed variations in OH and not to issue an proclamation about a time profile

of OH that would simultaneously fit observed changes in CH4 and δ13C-CH4.230

We use the Siegel linear non-parametric estimates (Siegel, 1980) to fit a line to our a posteriori CH4 emissions from 2004 to

2020. This method is less sensitive to outliers, e.g. El Niño, that would otherwise compromise the linear trend estimate (Palmer

et al., 2021), and the resulting linear trend estiate has lower variables that simpler methods. We find Siegel trend estimates are

similar to those estimated by the Theil-Sen estimator.

3 Results235

Here, we report a posteriori estimates for total CH4 emissions inferred from in situ and GOSAT data and then the corresponding

a posteriori isotopic source signatures forδ13C. We draw comparisons with previous studies throughout this section.

A posteriori emission estimates of total CH4

Figure 2 shows the annual mean differences in regions between a priori emission estimates and a posteriori emission estimates

for both ground-based (2004–2020) and GOSAT results (2009–2020). Absolute emissions values are plotted in Figure 3 and240

shown in Table 2 for completeness.

On a global scale, terrestrial a posteriori emissions inferred in situ and GOSAT data have progressively increased relative to

a priori values since about 2014. The peak difference is in 2020 when we find increased emissions relative to a priori emissions

of 68.5 ± 61.5 Tg/yr in 2020 for the in situ inversion and 61.5 ± 37.3 Tg/yr higher emissions for the GOSAT inversion. Global

ocean CH4 emissions inferred in situ and GOSAT data support a negative bias in the a priori, which we do not discuss further.245

As a zeroth order check of our a posteriori emission estimate of total CH4, Figure 4 we compare the published NOAA atmo-

spheric growth rate of CH4 with our corresponding a posteriori atmospheric mole fractions. Generally, we find the a posteriori

values inferred from in situ and GOSAT data are consistent with the overall trend of the changes in the growth rate, with large

year-to-year changes that we explain now in terms of regional emission changes.

Changes in the global terrestrial emissions reflects changes from different geographical regions. Differences between a pos-250

teriori emission estimates inferred from in situ and GOSAT data are partly due to differences in the geographic coverage of
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the datasets. Ground-based data have poorer geographic coverage, particularly over the tropics and the southern hemisphere

and satellite data are currently available at most once per day in cloud-free conditions. Using the in situ data, we find that the

largest a posteriori emission increases over the 2004 to 2020 period (Table 2), determined by the Siegel linear estimator, are

over the tropics (3.6 Tg/yr/yr, comprising North Africa, southern Africa, tropical South America, and Tropical Asia), followed255

by China (1.6 Tg/yr/yr) then by small contributions (individually <0.2 Tg/yr) from elsewhere.

Table 1 provides an overview our annual mean sector-based a posteriori emissions for 2004–2020. Generally, our values are

close to the reported median values and within the range of values reported by Saunois et al. (2020).

Over the tropics, there is broad consistency between GOSAT and in situ data (Figure 2) that highlights the negative bias

in the a priori over Northern Africa (bias of -8.6 Tg/yr), Tropical Asia (bias of -7.2 Tg/yr), and Tropical South America260

(bias of -11.63 Tg/yr). The in situ and GOSAT data for China support a small, steady increase in emissions from 2009 to

2020 (1.0 Tg/yr), with emissions inferred from the GOSAT data generally smaller than a priori values throughout the period

(Figure 2). Data over India have a small mean annual trend (0.33 Tg/yr). In situ and GOSAT data are more consistent in sign

(but not magnitude) at temperate latitudes (Figure 2). A posteriori emissions from in situ and GOSAT data are generally lower

by more than 12.0 Tg/yr and 5.6 Tg/yr, respectively, over Temperate North America and higher by more than 13.0 Tg/yr and265

7.0 Tg/yr, respectively, over Temperate Eurasia, with the smallest discrepancies relative to the a priori before 2009. A posteriori

emissions from boreal regions appear to be larger than a priori values by 4.2 Tg/yr before 2009 (Figure 2). After 2009, in situ

data become progressively more consistent with the a priori over North America and is typically smaller than a priori values

over Eurasia by ≃2.6 Tg/yr. GOSAT appears to show the converse situation: after 2009, data are lower than a priori values

by 4.4 Tg/yr over North America and comparable with a priori values over Eurasia. In the southern hemisphere, in situ data270

closely a priori values, as expected, since there are few places where data are collected. GOSAT data show a small but persistent

increase in emissions with time over Southern Africa (0.41 Tg/yr), highlighting the negative bias in a priori emissions over

Australia and over Temperature South America.

We use the a posteriori error covariance matrix from our MAP inversion (A, equation 2) to determine our ability to inde-

pendently estimate CH4 emissions from our geographical regions. Figure A1 shows no significant a posteriori correlations275

between neighbouring geographical regions in our state vector. This is consistent with the in situ data being able to estimate

independently regional emission estimates in our state vector.

Our a posteriori emission estimates are broadly consistent with previous studies. For example, the increase in tropical

emissions has been reported using GOSAT data or in situ data within a 3-D CTM inversion (McNorton et al., 2016; Fujita

et al., 2020), which examined shorter time periods of 2003–2015 and 1995–2013, respectively. The increase over Eastern280

Africa (that lies within our North Africa region) has been reported by several studies (Lunt et al., 2019, 2021; Pandey et al.,

2021; Feng et al., 2022). Sheng et al. (2021) reported using GOSAT data that CH4 emissions from China increased by 0.36

Tg/yr from 2012 to 2017. Over the same time period, we estimate an increase of 0.64 Tg/yr and 0.50 Tg/yr inferred from in situ

and GOSAT data, respectively.

Figure A2 shows observed CH4 timeseries at ground-based sites that we use to determine the corresponding GEOS-Chem285

a priori and a posteriori mole fractions. A priori values already show excellent agreement with observations (mean residual of
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14.1 ppb and root-mean-square error (RMSE) of 18.3 ppb), but this is generally improved after the model is fitted to the in situ

data, with smaller mean residuals (12.5 ppb) and RMSE (17.0 ppb). This is consistent previous studies such as McNorton et al.

(2018) that reported a posteriori RMSE values of 12.3 ppb. Figure A3 shows a posteriori CH4 mole fractions at NOAA sites

that we do not include the inversion. This provides an additional and independent test of our ability to describe atmospheric290

CH4 using a subset of NOAA data that we use in our inversion (Table A2). Generally, our a posteriori estimates agree with

these independent data, but for some sites the model has difficulty reproducing the data, e.g. AMY (western S. Korea), KZD

(Kazakhstan), and SDZ (mainland China). This is because some sites are influenced by local sources that are not representative

of the spatial scale of our transport model (≃50,000 km2) Similarly, we find agreement using a posteriori mole fractions using

GOSAT data (Figure A4; mean residual of 29.1 ppb and RMSE 35.1 ppb).295

A posteriori source signatures of δ13C

Figure 5 shows a posteriori regional δ13C emissions source signatures inferred from ground-based in situ data. We group our

results into approximately three-year bands, as a residual from the 2004–2007 mean value, to show how the regional isotopic

source signatures change across the time series.

Relative to a priori emissions (Figure A5), a posteriori values from Northern Boreal regions (Boreal North America and300

Eurasia) have isotopically lighter signatures (-62‰), consistent with a larger contribution from isotopically lighter biogenic

emissions and/or a smaller contribution from isotopically heavier thermogenic or pyrogenic emissions (Figure A5). Conversely,

a posteriori values from regions such as Temperate Eurasia, Australia and Southern Africa have isotopically heavier source

signatures (approximately -40‰), suggesting a larger proportion of thermogenic or pyrogenic emissions and/or a smaller

contribution from isotopically light biogenic emissions.305

Figure 5 shows a general trend towards isotopically lighter regional source signatures of δ13C across the time series. Our

analysis suggests this trend has been ongoing since 2012 and is observed in all regions worldwide, but is strongest (compared

with a priori estimates) over Tropical and Southern Hemispheric regions. For example, Tropical South America and Southern

Africa are 1.2‰ and 0.9‰ isotopically lighter than a priori values for for 2019 and 2020, respectively.

Our analysis also highlights a period 2007-2012 when regional source signatures, particularly northern hemisphere regions,310

become isotopically heavier compared with a priori source signatures (by 1.0‰ 2007–2009; by 0.8‰ 2010–2012; and 0.3‰

2013–2015). After 2012, regional source signatures of δ13C generally become isotopically lighter. This result is suggestive

that 2012 was period when there was a change in the balance of global sources that determine changes in atmospheric CH4.

These isotopic shifts in 2008 and 2012 are noted by Nisbet et al. (2016), who used a box model and examine data from sites

measured by NOAA and Royal Holloway, University of London (RHUL). They found that changes in removal rates could not315

explain these anomalies so that these events were attributed to changing emissions. We find that China experiences a weaker

shift in 2012 to a ( 0.1‰) isotopically lighter δ13C source signature compared to a priori values (Figure 5) and compared to

other temperate regions. This suggests that heavier isotopic source signatures (such as coal mines) play a larger contribution to

this region.

10



Unlike the a posteriori total CH4 emission estimates, we find significant a posteriori correlations between neighbouring320

regions for δ13C source signatures (Figure A6). For example, there is a correlation of 0.95 between estimates for Southern

Africa and Temperate South America so these cannot be considered as independent estimates. This result aligns with Basu

et al. (2022) who used CH4 mole fraction and δ13C measurements to determine that tropical biogenic sources are driving CH4

growth. They acknowledged that measurement coverage limited conclusions based exclusively on isotope ratio measurements.

Nevertheless, they found a clear trend of stronger emissions of isotopically lighter CH4, indicative of an increased role for325

biogenic emissions in the global source makeup.

We find that a posteriori regional δ13C source signatures result in a time series of δ13C that is more consistent with obser-

vations than a priori values (Figure A7), as expected. This particular affects the period 2008–2018 when a priori emissions

source signatures are significantly isotopically lighter. Our a posteriori source signatures result in a mean observed-model

residual and RMSE of 0.11‰ and 0.14‰, respectively. These are smaller than those corresponding to a priori values for the330

observed-model residual (0.37‰) and RMSE (0.41‰). Our comparison is consistent with McNorton et al. (2018) (RMSE

0.1‰) and Fujita et al. (2020) (RMSE 0.08-0.25‰).

Sensitivity to assumptions about OH

Figure 6 shows the result from our sensitivity test that assumes 0.5%/yr uniform decrease to our 3-D OH field from 2004 to

2019, followed by a more abrupt decrease of -1.5% in 2020 to describe the widespread reduction in nitrogen oxide emissions.335

This is an idealised sensitivity test that is inconsistent with global-scale constraints on estimates of the global mean atmospheric

growth of atmospheric CH4, i.e., most of the observed global growth in atmospheric CH4 can be explained by the changes in

OH. Nevertheless this test provides us with some idea of the robustness of our results against changes in OH.

We find that this alternative assumption about OH does not significantly affect our results until much later in the timeseries

(2017–2019), reflecting our large a posteriori uncertainties. We find a similar quality of fit of the a posteriori model to the340

data with or without considering the OH trend (not shown). This does not preclude a role for changes in OH but the concurrent

a posteriori shifts in CH4 emissions and regional isotopic source signatures of δ13C are consistent with decreasing OH playing

a smaller role than increasing emissions with isotopically light δ13C source signatures in determining observed changes in

atmospheric CH4 (Lan et al., 2021).

The larger, abrupt change in 2020 results in a marked reduction (approximately 6%, 40 Tg/yr) in the emissions necessary to345

explain the increase in atmospheric CH4. There is still debate about the impact of a posteriori CH4 methane emissions. Peng

et al. (2022) used in situ data and concluded that the increase in atmospheric CH4 in 2020 could be attributed approximately

equally between a decrease in OH and an increase in OH. Analysis of GOSAT suggest that increased emissions play a larger

role (Qu et al., 2022; Feng et al., 2023).
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4 Conclusions350

We estimated regional CH4 emissions and δ13C source signatures for the period 2004–2020, inclusively, by fitting the GEOS-

Chem 3-D atmospheric chemistry transport model to surface mole fraction data (Figure 1) and GOSAT atmospheric column

data (2010-2020) using Bayesian inverse methods. We used surface sites for which we had complete monthly coverage over

most of the study period (Table A2). Collectively, our results indicate that the post-2007 increases in CH4 emissions are best

explained by a progressive latitudinal shift in emissions from the northern midlatitudes to tropical latitudes. A posteriori CH4355

emission estimates inferred from the ground-based and GOSAT data show larger tropical emissions, particularly over North

Africa, Tropical Asia, and Tropical South America, and over China and at the same time as mid-latitudinal emission proportions

decreases. Source signature estimates inferred from the δ13C measurements (Figure 1) over the same time period indicate that

the latitudinal shift in CH4 emissions is due to larger proportion of sources with a lighter atmospheric δ13C signature (e.g.,

biogenic source such as wetlands) and/or a smaller proportion of sources with a heavier atmospheric δ13C signature (e.g,360

thermogenic or pyrogenic sources). Our results are broadly consistent with previous studies that focus on shorter, contributing

periods (McNorton et al., 2018; Nisbet et al., 2019; Fujita et al., 2020; Yin et al., 2021; Lan et al., 2021; Basu et al., 2022)),

providing confidence in our model assumptions and data selection. We find that our main results are robust against assuming

a 0.5%/yr OH decrease from 2004 to 2019, consistent with Turner et al. (2017), followed by an abrupt 1.5% OH drop in 2020

that reflects the widespread decrease in nitrogen oxide emissions from shutting down manufacturing during the first Covid-19365

lockdown. This is an idealised sensitivity test but nevertheless provides us with some idea of the robustness of our results

against changes in OH. A more detailed discussion of the role of OH in 2020 is discussed elsewhere (Qu et al., 2022; Peng

et al., 2022; Feng et al., 2023).

Sparse geographic coverage of ground-based data results in larger uncertainties for regional emission estimates that are

informed by fewer data, i.e. high and low latitudes in both hemispheres. For CH4, this deficiency can be partly addressed370

using the satellite data, but isotope ratios cannot usefully be retrieved from Earth observation satellite instruments. We use

only three measurement sites for δ13C in the Southern Hemisphere, which have a continuous record over the period of study.

A consequence of this data sparcity is strong correlations between source signatures from neighbouring regions (Figure A6).

We assume mean sectoral δ13C source signatures from Sherwood et al. (2017). These values are highly uncertain, as different

sectors produce a range of possible δ13C values, and there are significant overlaps between recorded source signatures (Douglas375

et al., 2017), but the values chosen represent our current best knowledge of mean values. These data have greater value when

they are used in a broader context with other data, as we have described in this study. We have used satellite observations to

help identify that large-scale emission changes over regions that coincide with wetlands.

Collectively, empirical evidence, including in situ and GOSAT observation of CH4 and in situ δ13C data, points to an

increasing biogenic source originating from the tropics. While we cannot definitively attribute these changes to increasing380

wetland emissions, there is sufficient contextual evidence, building on previous studies, to suggest that wetlands are playing a

significant role in recent growth of atmospheric CH4. First, large changes in OH that would needed to explain this atmospheric

growth are inconsistent with increasingly isotopically light δ13C observations in the atmospheric record (Lan et al., 2021).
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Second, we know from in situ data the broad geographical regions responsible for increasing CH4 emissions and isotopically

lighter δ13C source signature, where the seasonal cycles are consistent with biogenic emissions peaking outside the burning385

season. Third, GOSAT provide us with additional information about the geographical distribution of CH4 emissions: tropical

emission hotspots are colocated with known wetland regions (Lunt et al., 2019, 2021; Pandey et al., 2021; Wilson et al., 2021;

Feng et al., 2022, 2023; Hardy et al., 2023). Finally, we also have evidence from other satellite data, e.g., hydrology, that help

explain the growth of wetland emissions in the last decade (Lunt et al., 2019; Feng et al., 2022). Greater confidence in source

attribution of changes in atmospheric CH4 may come from collecting and interpreting δD and multiply-substituted ‘clumped’390

isotopes (Douglas et al., 2017; Chung and Arnold, 2021), alongside δ13C. This needs to be accompanied by field measurements

of these isotope ratios to improve delineation between different sectors.

The evidence presented here is consistent with a growing body of work that points to a substantial increase in biogenic CH4

emissions from the tropics. This increase will likely have major implications for our achieving the goals of the Paris Agreement

(Nisbet et al., 2019). Nature does not care about the origin of atmospheric CH4 so that increasing biogenic emissions will395

require larger emission reductions from anthropogenic sectors, placing additional pressure on citizens to reduce their carbon

footprints.

5 Code and data availability

The community-led GEOS-Chem model of atmospheric chemistry and model is maintained centrally by Harvard University

(http://geos-chem.seas.harvard.edu), and is available on request. The ensemble Kalman filter code is publicly available as400

PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-tools/).

6 Data availability

All the data and materials used in this study are freely available. The NOAA-GML and CU-INSTAAR ground-based CH4 and

δ13C data are available from the NOAA GML FTP server (https://gml.noaa.gov/dv/data), subject to their fair use policies. Data

from JR-STATION network was provided with cooperation of NIES Japan. The University of Leicester GOSAT Proxy v9.0405

XCH4 data are available from the Centre for Environmental Data Analysis data repository at

(https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb), and from the Copernicus Climate Data Store. EDGAR data is

available at (https://edgar.jrc.ec.europa.eu/), GFED-4 data is available at (https://www.globalfiredata.org/data.html), WETCHARTS

data is available at (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1502).

Appendix A: Isotopologue Emissions410

To simulate the atmospheric isotope ratio δ13C the isotopologues 12CH4 and 13CH4 are considered separately in the model. To

calculate the specific sectoral isotopologue emissions we use the emissions calculated from the mole fraction CH4 simulation

and the isotope ratios defined in Table 1. We consider the isotope 13C relative to all isotopes in the sample (designated thereafter
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as 13x) using:

13x=
13C

12C +13 C
=

13C/12C

1+ (13C/12C)
, (A1)415

where 13C/12C is calculated from the δ13C reported on the international carbon isotope scale VPDB (Vienna Pee Dee Belem-

nite). This is the proportional molar abundance of the isotopologues containing 13C (dominated by 13CH4) relative to the

isotopologues containing 12C (dominated by 12CH4) . This value has to be adjusted before being applied in GEOS-Chem to

convert from isotope ratio values to kg values used by emission inventories:

SF13 = 13x× M13

Mtot
, (A2)420

where SF13 is the scale factor applied to each emissions type for the 13CH4 simulation, M13 is the molecular weight of
13CH4 (17.035 g/mol) and Mtot is the molecular weight of CH4 (16.04 g/mol).

For the 12CH4 counterpart to 13CH4, we use a similar approach. The ratio of 12C compared with all isotopes in the sample

(designated as 12x) is given by:

12x=
12C

13C +12 C
. (A3)425

This is similarly adjusted from molar to mass ratio; SF12 is the scale factor for each emissions type in the 12CH4 simula-

tions:

SF12 = 12x× M12

Mtot
, (A4)

where M12 is the molecular weight of 12CH4 (16.03 g/mol). Since 13C and 12C are the only stable carbon isotopes of CH4,

13x and 12x should sum to 1.430
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Figure 1. Map showing regions that are optimised in the CH4 and δ13C inversions, in different colours. Black dots and labels show the

location of ground-based measurement sites that measure CH4 mole fraction. Red dots and labels indicate both mole fraction CH4 and δ13C

measuring sites. Regions are named as follows: Grey - North American Boreal; Yellow - North American Temperate; Light Green - South

American Tropical; Dark Green - South American Temperate; Purple - Europe; Blue - North Africa; Light Blue - Southern Africa; Pink -

Boreal Eurasia; Orange - China; Brown - India; Peach - Temperate Eurasia; Red - Tropical SE Asia; Lilac - Oceania; White - Oceans. Site

identifiers are detailed in Table A2.
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Figure 2. Annual mean CH4 a posteriori emissions estimates as a residual value relative to a priori (Tg/yr) from each of the inversion

regions in latitudinal order (geographic coverage indicated by Figure 1), for both ground-based and GOSAT inversion results. Uncertainties

are indicated, as calculated from inversion calculations, with a a priori uncertainty of 50% for the ground-based results and 60% for the

GOSAT results. The ground-based a posteriori is in blue; the GOSAT a posteriori are in red.
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Figure 3. A posteriori emissions estimates (Tg/yr) inferred from ground-based in situ data (blue) and GOSAT data (red, with record starting

in 2010) for the geographical regions shown by Figure 1. A priori emissions estimates are denoted by black dots and a posteriori uncertainties

are denoted by whisker bars.
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Figure 4. A posteriori annual mean atmospheric CH4 growth rate inferred from in situ (black line) and GOSAT data (blue line) compared

with the equivalent data as published by NOAA (red line, with uncertainty as blue surrounding field, Dlugokencky et al., 2020). The green

line denotes the annual atmospheric growth rate determined using the in situ mole fraction data from the sites included in the inversion

(‘Sites-Post’). To calculate the atmospheric growth rates from model calculations (Ground-Post and GOSAT-post), we compare the average

global CH4 mole fraction in one year (the mean mole fraction of every grid box in every month of a year), with the mean value from the

following year. The calculation is January-January, in order to remove the effects of the seasonal cycle, following the approach by NOAA

(Dlugokencky et al., 2020).
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Figure 5. Regional and global a posteriori δ13C emissions source signatures (‰), in three-yearly groups (2004-06, 2007-09, 2010-12, 2013-

15, 2016-18, 2019-20) as a residual from the 2004-06 a posteriori regional emissions source signature value. The a priori equivalent is

represented by black dots. The regions are those solved for in the CH4 and δ13C inversions and are indicated by Figure 1.
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Figure 6. Annual mean CH4 emissions (Tg/yr) for each region of the inversion (indicated by Figure 1) inferred from the ground-based data

(dark blue) and the emissions estimates determined by a reduced OH values (described in the text, shown in red). A priori regional emissions

estimates are indicated by black dots. Regional uncertainties for the a posteriori emissions are indicated.
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Figure A1. A posteriori correlations between CH4 emissions from geographical regions inferred from ground-based CH4 mole fraction data.

These correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Eq. 2).
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Figure A2. Observed (red dots), and a priori (grey), a posteriori (black) model atmospheric mole fractions at a series of NOAA sites (subplot

titles denote site codes, Table A2), covering a range of latitudes.
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Figure A3. A posteriori (black) monthly estimates of atmospheric CH4, simulated at NOAA sites across latitudes. Red dots indicate

monthly mean CH4 data from the NOAA network sites indicated. These sites were not included in the CH4 inversion, but are shown

here to provide independent validation of a posteriori emissions. The sites included are: Baltic Sea, Poland (55.35◦N, 17.22◦E); Cold Bay,

Alaska (55.21◦N, 162.72◦W); Sary Taukum, Kazahkstan (44.08◦N, 76.87◦E); Shangdianzi, China (44.65◦N, 117.12◦E); Point Arena, USA

(38.95◦N, 123.74◦W); Anmyeon-do, Republic of Korea (36.54◦N, 126.38◦E); Terceira Island, Azores (38.77◦N, 27.37◦W); Dongsha Island,

Taiwan (20.70◦N, 116.73◦E); High Altitude Global Climate Observation Center, Mexico (18.98◦N, 97.31◦W); Mt Kenya, Kenya (0.06◦S,

37.29◦E); Bukit Kototabang, Indonesia (0.20◦S, 100.31◦E); Arembepe, Brazil (12.77◦S, 38.17◦W); Gobabeb, Namibia (23.58◦S, 15.03◦E);

Cape Point, South Africa (34.35◦S, 18.49◦E); and Drake Passage (59.00◦S, 64.69◦W).
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Figure A4. Observed (red dots), and three-hourly surface a posteriori CH4 values inferred from GOSAT data (black) at the location of a

number of NOAA sites (Table A2) 2010-2020.
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Figure A5. Monthly a priori (grey) and a posteriori (blue) regional δ13C source signatures (‰). Values are produced using ground-based

in situ δ13C data. Uncertainties in source signatures are indicated as shaded envelopes, with a priori uncertainties of 15 ‰.

32



Figure A6. A posteriori correlations between δ13C source signatures from geographical regions inferred from ground-based δ13C data.

These correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Eq. 2).
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Figure A7. A priori (grey) and a posteriori (black) monthly estimates of atmospheric δ13C, simulated at NOAA sites across latitudes (site

codes listed in Table A2). Red dots indicate monthly mean δ13C data from CU-INSTAAR for the respective sites.
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Table 1. Global mean emissions of different CH4 source types from bottom-up inventories (Saunois et al., 2020) and our a posteriori emission

estimates, and the corresponding conventional isotope ratios signatures (Sherwood et al., 2017). Uncertainties are shown as max-min values

in square brackets.

Source Type Annual Mean Emission (Saunois) Annual Mean Emission (This Study) Isotopic Ratio

2003-2012 (Tg/CH4) 2004-2020 (Tg/CH4) δ13C (‰)

Gas and Oil 80 [68-92] 82.0 -44.0 [± 10.7]

Coal 42 [29-61] 53.7 -49.5 [± 11.2]

Livestock 111 [106-116] 115.2 -65.4 [± 6.7]

Waste 65 [60-69] 67.9 -56.0 [± 7.6]

Biomass Burning 17 [14-26] 14.3 -26.2 [± 4.8]

Termites 9 [3-15] 11.9 -63.4 [± 6.4]

Wetlands 149 [102-182] 170.9 -61.5 [± 5.4] (Tropical)

-71.5 [± 5.4] (Arctic)

Rice 30 [25-38] 30.7 -62.2 [± 3.9]
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Table A1. Kinetic Isotope Effects (KIEs) for different isotopologues reacting with the three main sinks of CH4 (OH, Cl, soil) at 298 K. A

KIE indicates relative reaction rate compared with 12CH4; the reaction rate constant is applied to the OH and Cl sinks and is dependent on

temperature (T); and the scaling factor is applied to the soil sink at each timestep (handled as a negative emission).

Isotopologue Sink KIE Reaction Rate Constant Scaling Factor Literature Source

12CH4 OH 1 2.45× 10−12 × e
−1775

T n/a Burkholder et al., 2019
12CH4 Cl 1 9.600× 10−12 × e

−1360
T n/a Kirschke et al., 2013

12CH4 soil n/a n/a 1 Snover and Quay, 2000
13CH4 OH 1.0039 2.44× 10−12 × e

−1775
T n/a Burkholder et al., 2019

13CH4 Cl 1.06 9.057× 10−12 × e
−1360

T n/a Feilberg et al., 2005
13CH4 soil n/a n/a 1.0670 Snover and Quay, 2000
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Table A2. Sites that are included in the in situ inversions. All sites are part of the NOAA network, other than KRS, which is part of the

JR-STATION network, monitored by NIES Japan.

Code Full Name Latitude Longitude

ALT Alert Station 82.28 -62.30

ZEP Ny-Alesund, Svalbard 78.90 11.89

SUM Summit, Greenland 72.60 -38.42

BRW Barrow Station 71.32 156.61

ICE Storhofdi,Iceland 63.40 -20.29

KRS Karasevoe, Siberia 58.14 82.25

MHD Mace Head, Ireland 53.33 -9.90

SHM Shemya Island, Alaska 52.71 174.12

UUM Ulaan Uul, Mongolia 44.45 111.09

NWR Niwot Ridge, Colorado 40.05 -105.59

UTA Wendover, Utah 39.90 -113.72

WLG Mt. Waliguan, China 36.29 100.90

BMW Bermuda 32.26 -64.88

WIS Ketura, Israel 29.96 35.06

IZO Izana, Tenerife 28.31 -16.50

MID Midway Islands 28.22 -177.37

KEY Key Biscane, Florida 25.67 -80.16

ASK Assekrem, Algeria 23.26 5.63

KUM Cape Kumukahi, Hawaii 19.56 -154.89

MLO Mauna Loa, Hawaii 19.54 -155.58

RPB Ragged Point, Barbados 13.17 -59.43

SEY Mahe Island, Seychelles -4.68 55.53

ASC Ascension Island -7.97 -14.40

SMO American Samoa -14.25 -170.56

CGO Cape Grim -40.68 144.69

BHD Baring Head -41.40 174.87

CRZ Crozet Island -46.43 51.85

USH Ushuaia, Argentina -54.84 -68.31

PSA Palmer Station, Antarctica -64.77 -64.05

SYO Syowa Station, Antarctica -69.01 39.59

SPO South Pole, Antarctica -89.98 -24.8
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