1	Composited analyses of the chemical and physical characteristics of co-
2	polluted days by ozone and PM _{2.5} over 2013-2020 in the Beijing–Tianjin–Hebei
3	region
4	
5	Huibin Dai ¹ , Hong Liao ^{1*} , Ke Li ¹ , Xu Yue ¹ , Yang Yang ¹ , Jia Zhu ¹ , Jianbing Jin ¹ ,
6	Baojie Li ¹ , Xingwen Jiang ²
7	
8	¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
9	Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and
10	Equipment Technology, School of Environmental Science and Engineering, Nanjing
11	University of Information Science & Technology, Nanjing 210044, China
12	² Institute of Plateau Meteorology, China Meteorological Administration, Chengdu,
13	Sichuan 610072, China
14	
15	*Correspondence to: Hong Liao (<u>hongliao@nuist.edu.cn</u>)
16	

17 Abstract.

The co-polluted days by ozone (O₃) and PM_{2.5} (particulate matter with an 18 aerodynamic equivalent diameter of 2.5 µm or less) (O₃&PM_{2.5}PD) were frequently 19 observed in the Beijing-Tianjin-Hebei (BTH) region in warm seasons (April-October) 20 of 2013-2020. We applied the 3-D global chemical transport model (GEOS-Chem) to 21 investigate the chemical and physical characteristics of O₃&PM_{2.5}PD by composited 22 23 analyses of such days that were captured by both the observations and the model. Model results showed that, when O₃&PM_{2.5}PD occurred, the concentrations of hydroxyl 24 radical and total oxidant, sulfur oxidation ratio, and nitrogen oxidation ratio were all 25 high, and the concentrations of sulfate at the surface were the highest among all 26 pollution types. We also found unique features in vertical distributions of aerosols 27 during O₃&PM_{2.5}PD; concentrations of PM_{2.5} decreased with altitude near the surface 28 but remained stable at 975-819 hPa. Process analyses showed that secondary aerosols 29 (nitrate, ammonium and sulfate) had strong chemical productions at 913-819 hPa, 30 which were then transported downward, resulting in the quite uniform vertical profiles 31 32 at 975-819 hPa in O₃&PM_{2.5}PD. The weather patterns for O₃&PM_{2.5}PD were characterized by anomalous high-pressure system at 500 hPa as well as strong 33 southerlies and high RH at 850 hPa. The latter resulted in the strong chemical 34 35 productions around 850 hPa in O₃&PM_{2.5}PD. The physical and chemical characteristics of O₃&PM_{2.5}PD are quite different from those of polluted days by either O₃ alone or 36 PM_{2.5} alone, which have important implications for air quality management. 37

38

39 Keywords: Co-occurrence, Ozone and PM_{2.5}, Pollution, Meteorological parameters.

40

41 **1. Introduction**

Surface ozone (O_3) and $PM_{2.5}$ (particulate matter with an aerodynamic equivalent 42 diameter of 2.5 micrometers or less) are important air pollutants in the atmosphere that 43 44 have harmful effects on public health (Gao and Ji, 2018; Jiang et al., 2019), ecosystems 45 (Ren et al., 2011; Yue et al., 2017), and crops (Wang et al., 2005; Wang et al., 2007). Surface O₃ is a secondary pollutant produced by photochemical oxidation of volatile 46 organic compounds (VOCs) and nitrogen oxides (NO_x \equiv NO+NO₂) in the presence of 47 intense ultraviolet light, and the major PM_{2.5} components (nitrate (NO₃), ammonium 48 (NH_4^+) , sulfate (SO_4^{2-}) , black carbon (BC), organic carbon (OC)) are mainly caused by 49 anthropogenic emissions of aerosols and aerosol precursors. Although surface O₃ and 50 PM_{2.5} have different formation mechanisms, they are coupled through the common 51 52 precursors (NO_x and VOCs) and photochemical reactions (Chu et al., 2020). Since 2013, 53 stringent clean air actions have been implemented to improve air quality in China (State Council of the People's Republic of China, 2013, 2018). However, O₃ concentrations 54 55 increased unexpectedly, while PM_{2.5} concentrations decreased drastically in the past years (Li et al., 2019). The co-polluted days by O₃ and PM_{2.5} (concentrations of both 56 O₃ and PM_{2.5} exceed the national air quality standards on the same day, hereafter 57 referred to as O₃&PM_{2.5}PD) were also reported (Dai et al., 2019). Therefore, it is 58 fundamental to examine the chemical and physical characteristics of O₃&PM₂ ₅PD. 59 60 The Beijing–Tianjin–Hebei (BTH) region is the most populated region in northern China. In the past few years, concentrations of O₃ and PM_{2.5} in the BTH were among 61

the highest in China. The observations from China National Environmental Monitoring Center (CNEMC) showed that the mean and maximum MDA8 (daily maximum 8-h average) O₃ in North China in summer of 2019 were 83 ppb and 129 ppb, respectively, and the summer mean MDA8 O₃ increased with a trend of 3.3 ppb a⁻¹ over 2013–2019 (Li et al., 2020). Gong et al. (2020) reported that O₃ polluted days (i.e., MDA8 O₃ 67 concentration exceeds 80 ppb) in May-July in the BTH increased from 35 days in the year of 2014 to 56 days in 2018. As for observed PM_{2.5}, the concentration averaged 68 over BTH had a decreasing trend of 10 µg m⁻³ yr⁻¹ over 2013-2019, and the mean value 69 was $79 \pm 17 \,\mu g \, m^{-3}$ over these years (Li et al., 2020). BTH also had the highest 70 frequency and intensity of severe haze pollution days (i.e., days with daily mean PM_{2.5} 71 concentration exceeding 150 μ g m⁻³) in China from 2013 to 2017, with an observed 72 mean frequency of 21.2 d yr⁻¹ and an observed mean intensity of 231.6 μ g m⁻³ (Dang 73 and Liao, 2019). 74

75 The interactions between O₃ and PM_{2.5} have been reported in previous studies. Zhu et al. (2019) examined the spatial-temporal characteristics of the correlations 76 between observed O₃ and PM_{2.5} at 1497 sites in China for 2016 and found that O₃-77 $PM_{2.5}$ had the highest positive correlations (correlation coefficients > +0.7) in July in 78 southern China and the largest negative correlations (r values < -0.5) during January in 79 northern China. Li et al. (2019) used the GEOS-Chem model to analyze the O₃-PM_{2.5} 80 81 relationship in northern China and found that O₃ production was suppressed under high $PM_{2.5}$ conditions ($PM_{2.5}$ concentrations > 60 µg m⁻³) because of the reactive uptake of 82 hydrogen oxide radicals (HO_x) by aerosol particles. Chu et al. (2020) analyzed the 83 observed daily PM_{2.5} and O₃ concentrations in 114 cities in China during years of 2013-84 2018 and found that the correlations between O3 and PM2.5 tended to change from 85 negative in 2013 to positive in 2018 in China as air quality improved. 86

Few previous studies have examined the co-occurrence of O₃ and PM_{2.5} pollution (MDA8 O₃ > 80 ppb and PM_{2.5} > 75 μ g m⁻³). Zong et al. (2021) used the obliquely rotated principal component analysis in the T-mode (T-PCA) method to identify the synoptic weather pattern associated with O₃&PM_{2.5}PD in eastern China during summer of 2015–2018, and found that O₃&PM_{2.5}PD were associated with a stable

92	western Pacific subtropical high ridge, which brought warm and moist air flow from
93	the East China Sea to the eastern China to promote hygroscopic growth of fine
94	particulate matter in BTH and northern YRD. Dai et al. (2021) analyzed O ₃ &PM _{2.5} PD
95	in the YRD for April-October of 2013-2019 by using observations and reported that
96	the co-polluted days occurred mainly in April (29.6% of co-polluted days occurred in
97	April), May (23.0%), June (19.5%), and October (10.8%) under meteorological
98	conditions of higher relative humidity, higher surface air temperature, and lower wind
99	speed relative to the days with O ₃ pollution alone. Qin et al. (2021) investigated
100	O ₃ &PM _{2.5} PD by using the hourly observed concentrations of water-soluble ions, OC,
101	and elemental carbon (EC) in 2019 in cities of Nanjing and Changzhou. They found
102	that inorganic aerosols mainly existed as NH4NO3 and the correlation coefficients
103	between the secondary components NO_3^- , NH_4^+ , and SO_4^{2-} were relatively high during
104	O ₃ &PM _{2.5} PD in 2019, indicating a significant formation of secondary inorganic
105	aerosols. Although these studies have discussed the meteorological conditions and
106	some chemical characteristics of O ₃ &PM _{2.5} PD, the understanding of O ₃ &PM _{2.5} PD
107	was quite limited because of the limited observations of chemical species involved.
108	In this work, we take advantage of the comprehensive chemical mechanism of
109	the global chemical transport model to have better understanding of O ₃ &PM _{2.5} PD. We
110	apply the 3-D global chemical transport model (GEOS-Chem) to simulate
111	O ₃ &PM _{2.5} PD in BTH in years of 2013-2020, and investigate the chemical and
112	physical characteristics of O ₃ &PM _{2.5} PD by composited analyses of such days that are
113	captured by both the observations and the model. The objectives of this study are: 1)
114	to examine the underlying chemical mechanisms for O_3 &PM _{2.5} PD in BTH for warm
115	seasons (April-October) of 2013-2020 by comparing O ₃ &PM _{2.5} PD with polluted days
116	by O_3 alone or by $PM_{2.5}$ alone, and 2) to identify the weather patterns that are

- associated with O₃&PM_{2.5}PD in BTH. The observations, the reanalyzed
- 118 meteorological data, the GEOS-Chem model, and the process analysis are described
- in Section 2. The observed O₃&PM_{2.5}PD are presented in Section 3.1. The evaluation
- 120 of simulated concentrations of O_3 and $PM_{2.5}$ as well as the simulated pollution days by
- 121 O₃ and/or PM_{2.5} are shown in Section 3.2. The underlying mechanisms of
- 122 O₃&PM_{2.5}PD are shown in Section 3.3. In Section 3.4, the meteorological conditions
- for the co-occurrence of O_3 and $PM_{2.5}$ pollution are investigated. The conclusions are
- 124 presented in Section 4.
- 125

126 **2. Methods**

127 **2.1 Observed O₃ and PM_{2.5} concentrations**

Hourly concentrations of PM_{2.5} and O₃ in China over the years of 2013-2020 128 were taken from the public website of CNEMC (https://air.cnemc.cn:18007/, last 129 access: 17 November 2022). To ensure data quality, the daily mean PM_{2.5} 130 concentration was calculated when there were valid data for more than 20 h during 131 that day and the MDA8 O₃ concentration was calculated when there were valid data 132 133 for at least 6 h for each 8 h. For the calculation of monthly and annual mean concentrations, the number of days with valid concentrations had to be more than 15 134 in each month. The spatial distribution of the 79 valid sites within BTH (37-41°N, 135 114-118°E, the black rectangle) is shown in Fig. 1. For model evaluation, the 136 observed concentrations were averaged over sites within each of the 0.5° latitude \times 137 0.625° longitude MERRA-2 grid cell. There are 18 model grids in BTH. Note that the 138 observed O_3 concentrations from this network have a unit of $\mu g m^{-3}$. For the 139 consistency of observed and simulated O_3 concentrations, 1 µg m⁻³ of O_3 is 140 approximately 0.5 ppb under the conditions of 298 K and 1013 hPa. The observed O₃ 141

- 142 concentrations reported by the CNEMC were under standard conditions of 273 K and
- 143 1013 hPa before 31 August 2018 and were under standard conditions of 298 K and
- 144 1013 hPa afterwards (http://www.mee.gov.cn/
- 145 xxgk2018/xxgk/xxgk01/201808/t20180815_629602.html, last access: 17 November
- 146 2022), which were accounted for as O₃ concentrations were converted to ppb.
- 147 According to the National Ambient Air Quality Standard of China (GB3095-
- 148 2012), O₃ (PM_{2.5}) concentration exceeds the national air quality standard if the MDA8
- 149 O_3 (daily mean PM_{2.5}) concentration is higher than 160 µg m⁻³ (75 µg m⁻³). In this
- 150 study, we define O₃ polluted days (hereafter called 'O₃PD') for days with MDA8 O₃
- 151 concentration > 160 μ g m⁻³, PM_{2.5} polluted days (hereafter called 'PM_{2.5}PD') with
- daily mean $PM_{2.5}$ concentration > 75 µg m⁻³, and the co-pollution days by O_3 and
- 153 $PM_{2.5}$ (O₃&PM_{2.5}PD) with daily MDA8 O₃ concentration > 160 µg m⁻³ as well as the
- 154 daily mean $PM_{2.5}$ concentration > 75 µg m⁻³.
- 155

156 2.2 Reanalyzed meteorological fields

Meteorological fields were obtained from the Version 2 of Modern Era 157 Retrospective-analysis for Research and Application (MERRA2), which were 158 generated by the NASA Global Modeling and Assimilation Office (GMAO). The 159 MERRA2 data have a horizontal resolution of 0.5° latitude $\times 0.625^{\circ}$ longitude and 160 72 vertical layers (Molod et al., 2015). To analyze the meteorological conditions for 161 O₃&PM_{2.5}PD, vertical pressure velocity (OMEGA), planetary boundary layer height 162 (PBLH), temperature (T), relative humidity (RH), surface incoming shortwave flux 163 (SWGDN) are used. Note that the temporal resolution for PBLH, T, and SWGDN is 164 1h, and that for OMEGA and RH is 3h. Daily mean geopotential heights at 850 and 165 500 hPa from the National Center for Environmental Prediction (NCEP) and National 166

167	Center for Atmospheric Research (NCAR) global reanalysis with a resolution of 2.5°
168	latitude by 2.5° longitude are also utilized in this study.
169	
170	2.3 Observed aerosol optical depth
171	We obtained the version 3 datasets of observed daily aerosol optical depth
172	(AOD) of level 2 (improved cloud screened and quality-assured) from Aerosol
173	Robotic Network (AERONET, https://aeronet.gsfc.nasa.gov/new_web/index.html, last
174	access: 17 November 2022) established by NASA and LOA-PHOTONS (Giles et al.,
175	2019). Three sites in the BTH region have observations available over 2013-2020,
176	including Beijing (39.97°N, 116.38°E), Beijing-CAMS (39.93°N, 116.31°E), and
177	Xianghe (39.75°N, 116.96°E). The AOD values at 440 nm and 675 nm at these three
178	sites are analyzed in this study.
179	
180	2.4 GEOS-Chem model
181	We simulated O_3 and $PM_{2.5}$ using the nested version of the 3-D global chemical
182	transport model (GEOS-Chem, version 11-01) driven by the MERRA2
183	meteorological data. The nested domain was set over Asia (60°-150°E,11°S-55°N)
184	with a horizontal resolution of 0.5° latitude $\times 0.625^{\circ}$ longitude, and the chemical
185	boundary conditions were provided by the global GEOS-Chem simulation with 2.5°
186	latitude $\times 2.5^{\circ}$ longitude horizontal resolution.
187	The GEOS-Chem model includes fully coupled O ₃ -NO _x -hydrocarbon and
188	aerosol chemistry mechanism (Bey et al., 2001; Pye et al., 2009) to simulate aerosols
189	including SO_4^{2-} (Park et al., 2004), NO_3^{-} (Pye et al., 2009), NH_4^+ , BC and OC (Park
190	et al., 2003), mineral dust (Fairlie et al., 2007), and sea salt (Alexander et al., 2005) as

191	well as the gas-phase pollutants such as NO_x and O_3 . Over the Asian domain, the
192	anthropogenic emissions of OC, BC, carbon monoxide (CO), sulfur dioxide (SO ₂),
193	NO _x , ammonia (NH ₃), and VOCs were obtained from the Multi-resolution Emission
194	Inventory for China (MEIC), which includes emissions from industry, power,
195	residential and transportation sectors for years of 2014-2017 (Li et al., 2017; Zheng et
196	al., 2018), 2019 and 2020 (Zheng et al., 2021). Emissions in 2018 were obtained by
197	the interpolation of those in 2017 and 2019 for each grid due to the lack of publicly
198	accessible emission inventories for that year. The biogenic emissions in GEOS-Chem
199	are simulated using MEGAN v2.1 (Guenther et al., 2012).
200	The hourly O_3 and $PM_{2.5}$ concentrations for the years of 2013-2020 were
201	simulated by the GEOS-Chem model which were driven by MERRA-2
202	meteorological fields. The model was spined up for 6 months before the integration
203	over the studied time period.
204	

NO

10

0----

- 1

41.

1

*4*1.

205 **2.5 Process analysis**

101

Process analysis (PA) was applied to identify the relative importance of 206 atmospheric processes in O₃&PM_{2.5}PD. PA has been widely used in previous studies 207 to examine the key processes contributing to air pollution episodes (Gonçalves et al., 208 2009; Dang and Liao, 2019; Gong and Liao, 2019) as well as the interannual and 209 210 decadal variations of air pollutants (Mu and Liao, 2014; Lou et al., 2015). Five major processes that influence O₃ and PM_{2.5} concentrations were diagnosed at every time 211 step, including net chemical production, dry deposition, horizontal advection, vertical 212 213 advection, and diffusion, for the regional pollution days (days with more than half of the sites in BTH experiencing pollutions). We carried out PA for O₃SPD (exclude 214 O₃&PM_{2.5}PD from O₃PD), PM_{2.5}SPD (exclude O₃&PM_{2.5}PD from PM_{2.5}PD), and 215

216 O_3 &PM_{2.5}PD over BTH.

217

218 **3. Results**

- 219 3.1 Observed polluted days by O₃ and PM_{2.5}
- Figure 1a shows the spatial distributions of observed numbers of O₃PD,
- 221 PM_{2.5}PD, and O₃&PM_{2.5}PD summed over the warm seasons (April-October) of 2013-
- 222 2020. The spatial distributions of polluted days in each year are shown in Fig. S1. The

numbers of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD were high in BTH, which were,

respectively, 524.3 344.6, and 128.1 days from observations, as the values were

averaged over all sites in BTH. The high numbers of O₃PD, PM_{2.5}PD, and

- O_3 O_3 $PM_{2.5}$ PD in BTH were associated with the highest anthropogenic emissions (NO_x)
- and NMVOCs) in this region (Dang et al., 2021).
- Figure 1b shows the numbers of days averaged over all sites in BTH for non-
- polluted days (NPD, MDA8 $O_3 < 80$ ppb and $PM_{2.5} < 75 \ \mu g \ m^{-3}$), O_3PD ,
- 230 O₃&PM_{2.5}PD, and PM_{2.5}PD in each month of warm seasons from 2013 to 2020. O₃PD
- and O₃&PM_{2.5}PD mainly occurred in May, June, and July, while PM_{2.5}PD mainly
- appeared in April and October. The monthly numbers of O₃&PM_{2.5}PD (PM_{2.5}PD)
- declined from 2013 to 2020, with the fastest drop in June, from 7.5 (17.1) days in
- June 2013 to 1.8 (1.8) days in June 2020. On the contrary, the numbers of O₃PD kept
- increasing, especially in June, from 10.9 days in June 2013 to 23.6 days in June 2020.
- 236 The reductions in O_3 PM_{2.5}PD were associated with the large reductions in PM_{2.5}
- since the implementation of the Clean Air Action in 2013.

238

Figure 1. (a) Spatial distributions of observed numbers of O₃PD, PM_{2.5}PD, and

in warm seasons of 2013-2020 averaged over the BTH. O₃PD showed an upward

trend of 7.9 days yr⁻¹ from 2013 to 2020. However, the numbers of $PM_{2.5}PD$ and

- O_3 PM_{2.5}PD decreased over 2013-2020, with linear trends of -11.2 and -3.4 days yr⁻¹,
- respectively. Figure 2b shows the changes in percentage of O₃&PM_{2.5}PD in PM_{2.5}PD
- from 2013 to 2020 for each month. It should be noted that, when $PM_{2.5}PD$ occurred,
- the proportions of O_3 &PM_{2.5}PD had an upward trend from 2013 to 2020. In May,
- June, August, and September of 2020, the proportions of O₃&PM_{2.5}PD in PM_{2.5}PD
- reached 100%, indicating that PM_{2.5} pollution was accompanied by O₃ pollution in

Figure 2. (a) The trends of observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD in warm seasons from 2013 to 2020 averaged over all sites in BTH. The blue, yellow and purple solid lines (dashed lines) represent the numbers (liner trend) of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD, respectively. (b) The percentage of O₃&PM_{2.5}PD in PM_{2.5}PD for April to October in 2013 to 2020. The polluted days were averaged over all sites in BTH.

262 **3.2 Simulated polluted days and model evaluation**

263 3.2.1 Simulated surface-layer MDA8 O₃ and PM_{2.5} concentrations

Figures 3a and 3b show, respectively, the spatial distributions of simulated and observed surface-layer concentrations of MDA8 O₃ and PM_{2.5} in China, as the

concentrations are averaged over the warm seasons (April-October) of 2013-2020.

267 The concentrations of MDA8 O₃ and PM_{2.5} were both high in BTH. Averaged over

 $BTH and the studied time period, the observed concentrations of MDA8 O_3 and PM_{2.5}$

269 were 58.1 ppb and 60.3 μ g m⁻³, respectively, while the simulated values were 68.0 ppb

and 61.1 µg m⁻³, respectively. Figures 3c and 3d compare the time series of observed

- and simulated daily MDA8 O₃ and PM_{2.5} concentrations averaged over the BTH. The
- simulated daily concentrations of MDA8 O₃ (PM_{2.5}) in eight warm seasons have a
- 273 normalized mean bias (NMB) of 7.9% (10.6%). The model generally captures the
- daily variations (peaks and troughs) in the observed MDA8 O₃ and PM_{2.5}

concentrations, with R values of 0.80 and 0.72, respectively. It should be noted that
mineral dust and sea-salt aerosols were not considered in this study, because they are
not the major aerosol components in China and the concentrations are generally low
based on previous measurements (Xuan et al., 2000; Ye et al., 2003; Duan et al., 2006;
Zhao et al., 2013). However, excluding dust and sea salt may lead to low biases in
simulated PM_{2.5} concentrations.
Due to the lack of the publicly accessible long-term observations of PM_{2.5}

components in China, we compared the simulated SO_2 and NO_2 (precursors for SO_4^{2-} and NO_3^{-}) with observations from CNEMC in Fig. S2. The simulated daily mean concentrations of NO_2 (SO₂) agree well with the observations from CNEMC with R of 0.82 (0.78) and MB of -14.9% (9.3%).

Figure 3. Spatial distributions of simulated (shades) and observed (CNEMC, dots)
surface-layer concentrations of (a) MDA8 O₃ (ppb) and (b) PM_{2.5} (µg m⁻³) averaged
over the eight warm seasons (April to October, 2013–2020). The solid black rectangle
in (a) and (b) indicates the BTH region. Simulated and observed daily concentrations

of surface-layer (c) MDA8 O₃ and (d) PM_{2.5} averaged over BTH. The correlation

292 coefficient (R) and normalized mean bias (NMB) are also shown for (c) and (d).

NMB = $(\sum_{i=1}^{N} (M_i - O_i) / \sum_{i=1}^{N} (O_i)) \times 100\%$, where O_i and M_i are the observed and simulated concentrations, respectively, *i* refers to the *i*th day, and *N* is the total number of days.

3.2.2 Simulated O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD

Figure S3 shows the capability of the model in capturing the polluted days. 297 Although the GEOS-Chem model well reproduces the spatial distributions of observed 298 MDA8 O₃ and PM_{2.5} concentrations, it underestimates the numbers of O₃PD, PM_{2.5}PD, 299 and O₃&PM_{2.5}PD because of the model's deficiency in capturing the peak 300 concentrations of air pollutants. Such deficiency was also reported in previous studies 301 302 that used the GEOS-Chem model or the weather Research and Forecasting with Chemistry (WFR-chem) model (Zhang et al., 2016; Ni et al., 2018; Gong and Liao, 303 2019; Dang and Liao, 2019). Therefore, to identify O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD 304 using model results, we utilized lower thresholds by considering the NMBs of simulated 305 306 MDA8 O₃ and PM_{2.5} concentrations in each of 18 grids of BTH. Taking the grid of Beijing as an example, simulated MDA8 O₃ and PM_{2.5} had NMBs of -22.0% and -307 26.9%, respectively, as the simulated concentrations were compared with observations 308 for days with observed concentrations higher than the national air quality standards over 309 the warm seasons of 2013-2020. We then adjusted the threshold of O₃PD in this grid to 310 be 62.4 ppb (80 ppb×78%) and that of PM_{2.5}PD to be 54.8 μ g m⁻³ (75 μ g m⁻³×73.1%). 311 312 These adjusted thresholds were also used to identify O₃&PM_{2.5}PD. Such approach was also used in previous studies to better capture the pollution events based on the 313 simulations (Dang and Liao, 2019; Gong and Liao, 2019). With the adjusted thresholds, 314 56-93% of the observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD can be captured by the 315

316 model (Fig. S3e).

317 3.2.3 Simulated O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

Since O₃PD or PM_{2.5}PD encompasses O₃&PM_{2.5}PD, we further define O₃ single 318 pollution days (hereafter called "O₃SPD", which is to exclude O₃&PM_{2.5}PD from O₃PD) 319 and PM_{2.5} single pollution days (hereafter called "PM_{2.5}SPD", which is to exclude 320 O₃&PM_{2.5}PD from PM_{2.5}PD) for the purpose of obtaining the characteristics of 321 322 different polluted days. Figures 4a and 4b show, respectively, the spatial distributions of numbers of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD from observations and from the 323 GEOS-Chem model using the adjusted thresholds. Considering the total of polluted 324 days in 18 grids in BTH, observed O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD were, 325 respectively, 3937, 3698, and 2024 days, in which 75.0% (2954/3937), 58.1% 326 327 (2148/3698), and 79.7% (1614/2024) were captured by observation and simulation simultaneously (Fig. 4c). In addition, the numbers of observed and captured O₃SPD, 328 PM_{2.5}SPD, and O₃&PM_{2.5}PD in each month are shown in Fig. S4. The model has a 329 fairly good capability of capturing the observed polluted days in each month. 330

Figure 4. Spatial distributions of (a) observed numbers of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, (b) numbers of polluted days that were observed and also captured by the GEOS-Chem model with adjusted thresholds, and (c) percentages of observed polluted days that were captured by the model with adjusted thresholds. The values were calculated for the warm months (April to October) of 2013-2020.

331

338 3.3 Chemical characteristics of polluted days by O₃ and PM_{2.5}

In this section, to investigate the chemical characteristics of O_3 SPD, $PM_{2.5}$ SPD and O_3 &PM_{2.5}PD, we present first the simulated atmospheric oxidants in 3.3.1, and then show the simulated surface concentrations and vertical profiles of $PM_{2.5}$ and MDA8 O_3 in 3.3.2 and 3.3.3, respectively, followed by the process analysis in 3.3.4. The observed AOD values to verify the model results are presented in 3.3.5.

344 3.3.1 Atmospheric oxidants of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

Figure 5 shows the boxplots of daily concentrations of hydroxyl radical (OH) and 345 total oxidant ($O_x = O_3 + NO_2$) from the model for days of O_3SPD , $PM_{2.5}SPD$, and 346 O₃&PM_{2.5}PD that were observed and also captured by the model (samples in Fig. 4b) 347 in the warm seasons of 2013-2020 in 18 grids of BTH. The levels of OH and O_x 348 349 characterize the atmospheric oxidation capacity, following Hu et al. (2020) and Chan et al. (2017). The concentrations of OH were the highest in O₃SPD, with an averaged 350 value of 2.8×10⁶ molec cm⁻³, followed by that in O₃&PM_{2.5}PD (2.0×10⁶ molec cm⁻³) 351 and in PM_{2.5}SPD (1.0×10^6 molec cm⁻³). Due to the lack of publicly accessible 352 observations of OH in BTH, we compare the simulated OH concentrations with 353 observations reported in the literature (Table S1). The simulated OH concentrations 354 355 agree closely with the observed values. In Wangdu of BTH, while the observed daily maximum OH concentrations in summer of 2014 were in the range of 5-15×10⁶ molec 356 cm⁻³ (Tan et al., 2016), the simulated OH concentrations in the same time period in this 357 work were 3.7-9.5×10⁶ molec cm⁻³. In Beijing in summer of 2017, the observed daily 358 mean OH concentration was 5.8×10⁶ molec cm⁻³ (Woodward et al., 2020) and our 359 simulated value was 2.4×10^6 molec cm⁻³. 360

The mean values of O_x were, respectively, 178.7, 118.1, and 184.1 µg m⁻³ in 361 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, indicating that the atmospheric oxidation 362 capacity was strong in O₃&PM_{2.5}PD, which favored the production of secondary 363 components of PM_{2.5}. Figure 5 also shows sulfur oxidation ratio (SOR, $n-SO_4^{2-}$ / (n-364 SO_4^{2-} + n-SO₂), where n-SO₄²⁻ and n-SO₂ are the concentrations of SO_4^{2-} and SO₂, 365 respectively) and nitrogen oxidation ratio (NOR, n-NO₃ / (n-NO₃ + n-NO₂), where n-366 NO_3^- and n-NO₂ are the concentrations of NO_3^- and NO_2 , respectively). SOR and NOR 367 are measures of the conversion degrees of sulfur and nitrogen, respectively (Zhu et al., 368

2019). In O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the averaged values of SOR were 369 50.0%, 36.7%, and 49.7%, and those of NOR were 55.4%, 70.0%, and 70.2%, 370 respectively. The high SOR and NOR in O₃&PM_{2.5}PD indicated the strong formation 371 of SO_4^{2-} and NO_3^{-} that were promoted by high atmospheric oxidation capacity. The 372 373 monthly variations of OH, O_x , and SOR were similar (Fig. 5), with the highest values in summer, owing to the high temperature that promoted high concentrations of 374 oxidants and SOR. It is interesting that SOR and Ox values were higher in O3&PM2.5PD 375 than in O₃SPD or in PM_{2.5}SPD during May-August. Similarly, NOR values were higher 376 in O₃&PM_{2.5}PD than in O₃SPD or in PM_{2.5}SPD in May and July-September. Overall, 377 the O₃&PM_{2.5}PD occurred with high levels of atmospheric oxidants, SOR, and NOR, 378 leading to combined increases in O₃ and PM_{2.5} concentrations. 379

Figure 5. The boxplots of surface-layer hydroxyl radical (OH, molec cm⁻³), total

oxidant (O_x , μg m⁻³), sulfur oxidation ratio (SOR, %), nitrogen oxidation ratio

383 (NOR, %) for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in 18 grids of

BTH in the months of April to October from 2013 to 2020. The whiskers represent the

standard deviation, the black line represents the mean value of the samples.

386 **3.3.2** Surface-layer concentrations of PM_{2.5} components in O₃SPD, PM_{2.5}SPD, and

387 O3&PM2.5PD

The simulated concentrations of $PM_{2.5}$ components (NO₃, NH₄⁺, SO₄²⁻, BC, and 388 OC, averaged over 18 grids of BTH are shown in Fig. 6 for days of O₃SPD, PM_{2.5}SPD, 389 and O₃&PM_{2.5}PD in the warm seasons of 2013-2020 that were observed and also 390 captured by the model. While the mean concentrations of NO₃, NH₄⁺, BC, and OC, 391 were all the highest in $PM_{2.5}SPD$, SO_4^{2-} concentration was the highest in $O_3\&PM_{2.5}PD$. 392 In O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the mean concentrations of SO₄²⁻ were 6.2, 393 9.4, and 11.97 μ g m⁻³, respectively, and the percentages of SO₄²⁻ in PM_{2.5} were 14.9%, 394 9.0%, and 15.0%, respectively. In July and August, the concentrations of SO_4^{2-} and 395 MDA8 O₃ in O₃&PM_{2.5}PD were the highest compared with those in O₃SPD and 396 PM_{2.5}SPD (Fig. S5). 397

398

Figure 6. The concentrations of $PM_{2.5}$ components (µg m⁻³) and percentages of $PM_{2.5}$ components (%) at the surface for NO_3^- , NH_4^+ , SO_4^{2-} , BC, and OC. The values were averaged over the model-captured O₃SPD, $PM_{2.5}SPD$, and O₃&PM_{2.5}PD in the months of April to October of 2013-2020 in BTH.

Figure 7 presents the hourly concentrations of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and O_3 for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over all 18 grids of BTH in

the warm seasons from 2013-2020. Concentrations of NO_3^- and NH_4^+ had similarities 405 in diurnal variations, all of which reached the highest values in the early morning (5:00 406 local time (LT) in O₃SPD and O₃&PM_{2.5}PD, 7:00-8:00 LT in PM_{2.5}SPD) and had the 407 lowest values in the late afternoon (18:00 LT in O₃SPD and O₃&PM_{2.5}PD, 16:00 LT in 408 $PM_{2.5}SPD$). Concentrations of BC and OC peaked at the same time as those of NO_3 409 and NH₄⁺ and had the lowest values at 15:00 LT in O₃SPD, PM_{2.5}SPD, and 410 O₃&PM_{2.5}PD. The diurnal variations in NO₃, NH₄⁺, BC, OC reflected the diurnal 411 variations in PBLH (shown in Fig. S6), which generally reached their highest 412 concentrations before the sudden uplift of PBLH in the early morning (times for uplift 413 of PBLH: 6:00 LT in O₃SPD and O₃&PM_{2.5}PD, 7:00 LT in PM_{2.5}SPD). Compared to 414 O₃SPD and O₃&PM_{2.5}PD, the PBLH of PM_{2.5}SPD was lower and uplifted one hour 415 416 later, which was more favorable for the accumulation of aerosols. During the daytime, PBLH in O₃&PM_{2.5}PD was between O₃SPD and PM_{2.5}SPD. 417

It is worth noting that the diurnal variations of SO_4^{2-} were different from those of 418 other aerosol species, with the highest values at 20:00, 9:00, and 16:00 LT in O₃SPD, 419 PM_{2.5}SPD, and O₃&PM_{2.5}PD, respectively, and the lowest values in early morning and 420 night (5:00 LT in O₃SPD and O₃&PM_{2.5}PD, 23:00 LT in PM_{2.5}SPD). For the diurnal 421 variation of O₃, the highest values occurred during the daytime (16:00 LT in O₃SPD 422 and O₃&PM_{2.5}PD, 15:00 LT in PM_{2.5}SPD) and the lowest values appeared at 5:00 LT 423 in all the cases. Therefore, in O_3 &PM_{2.5}PD, the time of the highest value of SO_4^{2-} was 424 the same as that of O_3 , indicating that SO_4^{2-} and O_3 were produced synergistically 425 during the daytime with strong atmospheric oxidation. 426

Figure 7. The hourly concentrations of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and O₃ averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃ &PM_{2.5}PD in BTH in the months of April to October of 2013-2020.

431 3.3.3 Vertical distributions of O₃ and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and 432 O₃&PM_{2.5}PD

The simulated vertical distributions of O_3 and $PM_{2.5}$ averaged over the 18 grids of BTH and the O_3SPD , $PM_{2.5}SPD$, and $O_3\&PM_{2.5}PD$ in warm seasons of 2013-2020 are shown in Fig. 8. The vertical distribution of O_3 in O_3SPD was similar to that in $O_3\&PM_{2.5}PD$ (Fig. 8a). In these two cases, concentrations of O_3 increased from the surface to about 975 hPa, remained high between 975 and 819 hPa, and decreased with altitude between 819 and 663 hPa. Although the magnitudes of O_3 were close at the surface (61.9 ppb in $O_3\&PM_{2.5}PD$ and 58.1 ppb in O_3SPD), the concentration of O_3 440 averaged over 975 and 819 hPa was 10.4% higher in $O_3\&PM_{2.5}PD$ than in O_3SPD , 441 which was a very unique feature of $O_3\&PM_{2.5}PD$. For the case of $PM_{2.5}SPD$, the 442 concentrations of O_3 were the lowest among the three cases and increased gently with 443 altitude above 975 hPa.

Figure 8b shows the vertical distributions of PM_{2.5} components. In all the cases, 444 PM_{2.5} concentrations were the highest at the surface, and decreased with altitude from 445 446 the surface to 975 hPa. However, concentrations of PM_{2.5} were quite stable between 975 and 819 hPa for O₃SPD (about 36.4 µg m⁻³) and O₃&PM_{2.5}PD (about 58.1 µg m⁻³), 447 448 corresponding to the stable O₃ levels at these altitudes in these two cases (Fig. 8a). For PM_{2.5}SPD, while PM_{2.5} concentration at the surface was the highest among the three 449 cases, it decreased rapidly between 975 and 819 hPa. The averaged PM_{2.5} concentration 450 between 975 and 819 hPa was 52.4 µg m⁻³ in PM_{2.5}SPD, which was lower than that in 451 O₃&PM_{2.5}PD. 452

455 components ($\mu g m^{-3}$) of NO₃, NH₄⁺, SO₄²⁻, BC, OC averaged over the model-

456 captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH in the months of April to

457 October of 2013-2020.

458 To further investigate the differences in vertical profiles of NO_3^- , NH_4^+ , SO_4^{2-} , BC,

OC, and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the ratios of concentration at 459 975 hPa to that at the surface as well as the concentration at 819 hPa to that at 975 hPa 460 461 are shown in Table 1. The concentration of PM_{2.5} decreased largely, with the ratio of PM_{2.5(975 hPa)} / PM_{2.5(1005 hPa)} of 0.78 in O₃&PM_{2.5}PD and of 0.74 in PM_{2.5}SPD. For each 462 of the PM_{2.5} components, the ratios near the surface (from 1005 to 975 hPa, gray shaded 463 area in Fig. 8) were close in the three types of pollution. While the ratios of NO_3^- , NH_4^+ , 464 BC, OC were in the range of 0.65-0.80, the ratios of SO_4^{2-} were about 0.93-0.98, 465 indicating that SO_4^{2-} concentrations were quite uniform from the surface to 975 hPa in 466 all three types of pollution. 467

468 **Table 1.** The ratios at 975 and 1005 hPa (gray shaded area in Fig. 8) and at 819 and

469	975 hPa (red fi	rame in Fig. 8	8) of	NO_3 ,	$\mathrm{NH}_{4}^{+},$	SO_4^{2-} , BC,	OC, a	and PM _{2.5}	in O ₃ SPD,
		U U							

		NO ₃	NH_4^+	SO_4^{2-}	BC	OC	PM _{2.5}
Cara	O ₃ SPD	0.95	0.90	0.85	0.73	0.73	0.86
Conc _{819 hPa} /	PM _{2.5} SPD	0.64	0.68	0.81	0.64	0.63	0.67
Conc _{975 hPa}	O3&PM2.5PD	0.94	0.91	0.87	0.79	0.77	0.89
	O ₃ SPD	0.65	0.77	0.96	0.69	0.70	0.74
Conc _{975hPa} /	PM _{2.5} SPD	0.72	0.76	0.93	0.67	0.65	0.73
Conc _{1005 hPa}	O ₃ &PM _{2.5} PD	0.72	0.80	0.98	0.76	0.73	0.78

470 PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region.

471

In the upper layers (975-819 hPa, red rectangle in Fig. 8), the changes in concentrations of pollutants with altitude in $PM_{2.5}SPD$ were quite different from those in $O_3\&PM_{2.5}PD$ and O_3SPD . The decline of $PM_{2.5}$ from 975 to 819 hPa was slow in $O_3\&PM_{2.5}PD$ ($PM_{2.5(819 hPa)} / PM_{2.5(975 hPa)} = 0.89$) and O_3SPD (0.86) and fast in

PM_{2.5}SPD (0.67). Considering that the variation of BC with altitude was mainly driven 476 by meteorology (Sun et al., 2020), the vertical variations of other components that 477 478 differed significantly from BC indicated the influences of chemical processes. In $PM_{2.5}SPD$, NO_3^- , NH_4^+ , OC had about the same ratio as BC (0.64) (with large decreases 479 with height), except for SO_4^{2-} concentration that had a ratio of 0.81. In O_3 &PM_{2.5}PD, 480 the ratios of NO_3^- , NH_4^+ , SO_4^{2-} were, 0.94, 0.91, 0.87, respectively, which were much 481 higher than the value of BC (0.79), indicating NO_3^- , NH_4^+ , SO_4^{2-} were quite uniform 482 in the layers of 975-819 hPa with the influence of chemical processes, which will be 483 discussed further in Sect. 3.3.4 below. 484

485 3.3.4 Process analyses for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

The process analysis (PA) is applied to identify the relative importance of atmospheric processes in the three types of pollution. Figure 9 shows the net changes in O₃, NO₃, NH₄⁺, SO₄²⁻ by the processes of chemical production (Chem), horizontal advection (Horizontal_adv), vertical advection (Vertical_avd), and diffusion (Diff, vertical PBL mixing process) in the GEOS-Chem model, as well as the total of all these processes (i.e., Chem + Diff + Horizontal_avd + Vertical_avd) in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD.

For O₃, the net changes of O₃ by all processes were positive at altitudes of 975-493 819 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem had the largest positive 494 contribution (about 1.5 Gg d⁻¹), indicating O₃ is chemically produced at these layers. 495 For NO_3^- and NH_4^+ , the nets of all processes increased mass concentrations at 913-819 496 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem and Vertical avd were positive and 497 498 Chem had the largest positive contribution. The vertical profiles of Chem were similar for NO_3^- and NH_4^+ , both of which had the largest positive values at 913-819 hPa (2.83 499 Gg d⁻¹ for NO₃ and 0.88 Gg d⁻¹ for NH₄⁺), leading to higher concentrations of NO₃⁻ 500

and $\rm NH_4^+$ in $\rm O_3\&PM_{2.5}PD$ than in $\rm O_3SPD$ and $\rm PM_{2.5}SPD.$ Chem and Diff of $\rm SO_4^{2-}$ 501 were different from those of NO_3^- and NH_4^+ . For SO_4^{2-} , Chem was positive from the 502 surface to 510 hPa with a peak around 819 hPa, and Diff was positive at 819-771 hPa 503 but negative from 819 hPa to the surface, which resulted in the uniform SO_4^{2-} profile 504 as shown in Fig. 8. Chem for SO₄²⁻ was the highest around 819 hPa in O₃&PM_{2.5}PD, 505 which was related to the strong liquid-phase chemical formation of SO_4^{2-} (Fig. S7). In 506 addition to Chem, Vertical avd also had positive contributions to the net changes in O₃, 507 NO_3^- , NH_4^+ , and SO_4^{2-} at 944-819 hPa. Vertical_avd was negative at 819 hPa and 508 positive between 944 to 819 hPa, implying that the pollutants were transported from 509 819 hPa to 944 hPa in O₃&PM_{2.5}PD. 510

512 **Figure 9.** The vertical profiles of net changes in O₃, NO_3^- , NH_4^+ , and SO_4^{2-} (Gg d⁻¹)

- 513 over BTH by each and total of processes. The values were averaged over the model-
- 514 captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in April-October of 2013-
- 515 2020.

Overall, NO₃, NH₄⁺, and SO₄²⁻ all had larger chemical productions at 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD and PM_{2.5}SPD, accompanied by strong vertical transport from 819 hPa to near the surface, resulting in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD. In addition, the vertical profiles of net changes in PM_{2.5} over BTH are shown in Fig. S8 for these three cases. Since NO₃⁻, NH₄⁺, and SO₄²⁻ were the major components of PM_{2.5}, the PA of PM_{2.5} is similar to that of each component.

523 3.3.5 Observed AOD in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

To try to support the model result that O₃&PM_{2.5}PD had more uniform vertical 524 profile than PM_{2.5}SPD from the surface to 819 hPa altitude, we present the scatter plots 525 of observed AOD (at 440 nm and 675 nm) versus observed PM2.5 concentrations in 526 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Fig. 10. AERONET observations of AOD 527 from 2013 to 2020 are available at three sites in BTH (that is, Beijing (39.97°N, 116.38° 528 E), Beijing-CAMS (39.93°N, 116.31°E), Xianghe (39.75°N, 116.96°E)). At Beijing 529 (39.97°N, 116.38°E), AOD (440nm and 675nm) increased with PM_{2.5} concentration in 530 all three types of pollution. However, under the same levels of surface PM_{2.5} 531 concentration, AOD values in O₃&PM_{2.5}PD were higher than in PM_{2.5}SPD, implying 532 that the column burdens of aerosols were generally higher in O₃&PM_{2.5}PD than in 533 PM_{2.5}SPD, which may support the unique vertical distribution of PM_{2.5} in O₃&PM_{2.5}PD 534 shown in Fig. 8b. The scatter plots at Beijing-CAMS and Xianghe sites are similar and 535

537

Figure 10. The scatterplots of (a) AOD (440 nm) and (b) AOD (675 nm) versus
observed PM_{2.5} concentrations in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Beijing
(39.97°N, 116.38°E) in April-October of 2013-2020.

542 **3.4 Meteorological conditions for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over BTH**

Figure 11 shows the vertical profiles of RH, T, and OMEGA for O₃SPD, PM_{2.5}SPD, 543 544 and O₃&PM_{2.5}PD captured by the model over BTH in the months of April to October form 2013-2020. It should be noted that O₃&PM_{2.5}PD had an unique vertical 545 distribution of RH. Near the surface, the values of RH in O₃&PM_{2.5}PD were between 546 547 those in O₃SPD and PM_{2.5}SPD. However, in the upper layers (883-771 hPa), O₃&PM_{2.5}PD had the highest RH among the three cases with a peak value of 58.2%. 548 As a result, the strongest aqueous chemical production of SO_4^{2-} (aqueous oxidation of 549 SO₂ by H₂O₂) occurred in O₃&PM_{2.5}PD around 819 to 771 hPa (Fig. S7). The vertical 550 profiles of temperature were similar in the three types of pollution, with the lowest 551 temperature in PM_{2.5}SPD. The vertical profiles of OMEGA were different in the three 552

cases. In O₃SPD and O₃&PM_{2.5}PD, OMEGA had positive values around 819 hPa,
indicating a strong sinking airflow, leading to a downward transport of pollutants.
Under O₃&PM_{2.5}PD, the average values of PBLH and SWGDN were 946.1 m and
257.2 W m⁻², respectively, which were higher (lower) than those in PM_{2.5}SPD (O₃SPD)
(Fig. S10).

559 **Figure 11.** The vertical profiles of RH (%), T (°C), and OMEGA (Pa s⁻¹) averaged over

558

BTH and over the model-captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in in
April-October of 2013-2020.

Figure 12 shows the composited weather patterns for regional O₃SPD, PM_{2.5}SPD, 562 and O₃&PM_{2.5}PD (over 50% cities in the BTH experienced the pollution) that were 563 captured by the model in April-October of 2013-2020. The weather patterns of 564 O₃&PM_{2.5}PD were similar to some extent to those of O₃SPD but were quite different 565 566 from those of PM_{2.5}SPD. In O₃&PM_{2.5}PD, the BTH region was controlled by westerlies and an anomalous high-pressure system at 500 hPa (Figure S11). At 850 hPa, BTH was 567 at the west boundary of an anomalous anticyclone, and the associated strong anomalous 568 southerlies at 850 hPa brought moist air to BTH (Fig. S12 and S13), resulting in a high 569 RH that was beneficial to the aqueous chemical production of SO_4^{2-} in O_3 &PM_{2.5}PD. 570 In O₃SPD, BTH was under the influence of the high pressure ridge of the Western 571 Pacific Subtropical High (WPSH) at 850 hPa. Besides, the Northeast Cold Vortex was 572 located to the southwest of BTH at 850 hPa in O₃SPD, leading to dry and warm 573 conditions, which was favorable for the formation of O₃. In PM_{2.5}SPD, the BTH region 574

- 575 was under the influence of both the continental high and the WPSH at 850 hPa. At the
- surface, BTH was under the influence of a uniform high pressure with very weak winds 576
- and hence stagnate atmosphere, which was conducive to the accumulation of PM_{2.5}. 577

578

5500 5540 5580 5620 5660 5700 5740 5780 5820 5860 5900 5940

Figure 12. Composites of wind field (m s⁻¹) with SLP (sea level pressure) and with 579

geopotential height at 850 hPa and 500 hPa for regional O₃SPD, PM_{2.5}SPD, and 580

- O₃&PM_{2.5}PD that were captured by the model in April-October of 2013-2020. The 581
- solid black rectangle indicates BTH region. 582
- 583

584 4. Conclusions

We used the observed hourly concentrations of O₃ and PM_{2.5} from CNEMC and 585 the model results from the nested-grid version of the GEOS-Chem model to examine 586

587	the chemical and physical characteristics of the co-polluted days by O_3 and $PM_{2.5}$
588	(O ₃ &PM _{2.5} PD) over the BTH region for eight warm seasons (April-October) from
589	2013 to 2020. The characteristic of O_3 &PM _{2.5} PD were compared with those of the
590	polluted days by O ₃ alone (O ₃ SPD) and by PM _{2.5} alone (PM _{2.5} SPD). In April-October
591	of 2013-2020, the observed O ₃ SPD, PM _{2.5} SPD, and O ₃ &PM _{2.5} PD were 2954, 2148,
592	and 1614 days, respectively, in which 75.0% (2954/3937), 58.1% (2148/3698), and
593	79.7% (1614/2024) were captured by the GEOS-Chem model, respectively. We
594	carried out composited analyses of the chemical and physical characteristics for
595	O ₃ SPD, PM _{2.5} SPD, and O ₃ &PM _{2.5} PD by using the samples (days) captured by both
596	the observations and the model.

The chemical characteristics of O3&PM2.5PD were found to be different from 597 those of O₃SPD, PM_{2.5}SPD at the surface. O₃&PM_{2.5}PD occurred with high levels of 598 atmospheric oxidants (high OH and O_x), with higher SOR and NOR compared to those 599 in O₃SPD and PM_{2.5}SPD, leading to high concentrations of both O₃ and PM_{2.5}. At the 600 surface, the composited concentrations of NO_3^- , NH_4^+ , BC, and OC were the highest in 601 $PM_{2.5}SPD$, while the composited concentration of SO_4^{2-} was the highest in 602 O₃&PM_{2.5}PD. There was a strong formation of SO₄²⁻ during the daytime in 603 O₃&PM_{2.5}PD in the oxidative atmosphere. 604

We also found unique features of the vertical distributions of O_3 and $PM_{2.5}$ in O₃&PM_{2.5}PD. Concentrations of PM_{2.5} were stable and high between 975 and 819 hPa in O₃&PM_{2.5}PD, unlike those in PM_{2.5}SPD that decreased rapidly with the altitude. In O₃&PM_{2.5}PD, the vertical profiles of NO₃⁻, NH₄⁺, and SO₄²⁻ were quite uniform at 975-819 hPa, corresponding to the stable O₃ concentrations at these altitudes. The process analysis (PA) showed that NO₃⁻, NH₄⁺, and SO₄²⁻ all had larger chemical productions at altitudes of 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD and PM_{2.5}SPD. The chemical production of SO_4^{2-} had large positive values from the surface to about 500 hPa. The Vertical_avd also had positive contributions to the net changes in O₃, NO₃, NH₄⁺, and SO₄²⁻ at 944-819 hPa in O₃&PM_{2.5}PD. Therefore, the strong chemical productions at 913-819 hPa accompanied by the downward transport resulted in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD.

Figure 13 summarizes the chemical and physical characteristics in O₃&PM_{2.5}PD, 617 O₃SPD, and PM_{2.5}SPD in the BTH region. In O₃&PM_{2.5}PD, the strong chemical 618 productions of O₃, NO₃, NH₄⁺, and SO₄²⁻ occurred at high altitudes of 913-819 hPa 619 where RH was high, and the accompanied downward airflow caused the stable 620 621 concentrations at 944-819 hPa. The composited PBLH in O₃&PM_{2.5}PD was about 946.1 m, and the strong mixed diffusion underneath the PBLH led to high concentrations of 622 pollutants at the ground level. In contrast, O₃SPD occurred in hot and dry atmosphere 623 with composited PBLH of 1073.5 m. Strong O₃ chemical production occurred around 624 819 hPa, and O₃ was then transported to the surface by downward air flow. The 625 626 atmosphere was stable and stagnate when PM2.5SPD occurred, with the lowest PBLH of 681.8 m. High RH (high chemical formation of PM_{2.5}) and the accumulation of 627 aerosols led to the highest surface-layer PM_{2.5} in PM_{2.5}SPD. 628

To summarize, O_3 &PM_{2.5}PD were characterized by high O_x , SOR, and NOR, uniform vertical profiles at 975-819 hPa, which were caused by an anomalous highpressure system at 500 hPa, strong southerlies and high RH at 850 hPa. Meteorological parameters around 850 hPa promoted strong chemical production of secondary aerosols and downward transport, resulting in the unique vertical profiles and high surface concentrations in O_3 &PM_{2.5}PD.

Figure 13. A schematic diagram of chemical and physical and characteristics in

637 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region.

639	The GEOS-Chem model is available at https://geos-chem.seas.harvard.edu (last
640	access: 17 November 2022). The observed hourly surface concentrations of air
641	pollutants are derived from the China National Environ- mental Monitoring Center
642	(https://air.cnemc.cn:18007/, last access: 17 November 2022). The simulation results
643	are available upon request from the corresponding author (hongliao@nuist.edu.cn).
644	
645	Author contributions.
646	HD and HL conceived the study and designed the experiments. HD performed model
647	simulations and analysed the data. KL, XY, YY, JZ, JJ, and BL provided useful
648	comments on the paper. HD and HL prepared the paper, with contributions from all co-
649	authors.
650	
651	Competing interests.
652	The authors declare that they have no conflict of interest.
653	
654	Acknowledgements.

- 655 We acknowledge the CNEMC for making their data publicly available. We
- acknowledge the efforts of GEOS-Chem working groups for developing and
- 657 managing the model.

Data availability.

638

658

659 *Financial support.*

- 660 This work was supported by the National Natural Science Foundation of China (Grant
- No. 42021004), the National Key Research and Development Program of China
- 662 (Grant No. 2019YFA0606800), and the Carbon Peak Carbon Neutral Science and
- 663 Technology Innovation Foundation of Jiangsu Province (BK20220031).

665 **References**

- 666 Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yan- tosca, R. M., Savarino, J., Lee,
- C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints
 from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307,
 https://doi.org/10.1029/2004jd005659, 2005.
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B.,
- 671 Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric
- chemistry with assimilated meteorology: Model description and evaluation, J.
 Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807,
 2001.
- 675 Chu, B. W., Ma, Q. X., Liu, J., Ma, J. Z., Zhang, P., Chen, T. A., Feng, Q. C., Wang. C.
- 676 Y., Yang, N., Ma, H. N., Ma, J. J., Russell, A. G., He, H.: Air Pollutant Correlations
- 677 in China: Secondary Air Pollutant Responses to NO_x and SO₂ Control, Environ.
- Sci. Tech. Let., 7(10), 695-700, http://dx.doi.org/10.1021/acs.estlett.0c00403,
 2020.
- Dai, H. B., Zhu, J., Liao, H., Li, J. D., Liang, M. X., Yang, Y., Yue, X.: Co-occurrence
 of ozone and PM_{2.5} pollution in the Yangtze River Delta over 2013-2019:
 spatiotemporal distribution and meteorological conditions, Atmos. Res., 249,
- 683 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021.
- Dang, R. J. and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region
 from 1985-2017 and the roles of anthropogenic emissions and meteorology, Atmos.
 Chem. Phys., 19, 10801-10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.

687	Dang, R. J., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological
688	influences on summertime surface ozone in China over 2012-2017, Sci. Total.
689	Environ., 754, 142394, https://doi:10.1016/j.scitotenv.2020.142394, 2021.

- Duan, F., He, K., Ma, Y., Yang, F., Yu, X., Cadle, S. H., Chan, T., and Mulawa, P. A.:
- 691 Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–
- 692 2002, Sci. Total Environ., 355(1–3), 264–275,
 693 https://doi:10.1016/j.scitotenv.2005.03.001, 2006.
- Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of
 mineral dust in the United States, Atmos. Environ., 41, 1251–1266,
 https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
- Gao, Y. and Ji, H. B.: Microscopic morphology and seasonal variation of health effect
 arising from heavy metals in PM_{2.5} and PM₁₀: One-year measurement in a densely
 populated area of urban Beijing, Atmos. Res., 212, 213–226, https://doi.org/
 10.1016/j.atmosres.2018.04.027, 2018.
- Giles, D. M., Sinyuk, A., Sorokin, M. S., Schafer, J. S., Lyapustin, A.: Advancements
 in the aerosol robotic network (aeronet) version 3 database automated near realtime quality control algorithm with improved cloud screening for sun photometer
 aerosol optical depth (aod) measurements, Atmos. Meas. Tech., 12, 169–209,
 https://doi.org/10.5194/amt-12-169-2019. 2019.
- Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of
 atmospheric processes affecting the dynamics of air pollution in South-Western
 Europe during a typical summer-time photochemical episode, Atmos. Chem. Phys.,

9, 849-864, https://doi.org/10.5194/acp-9-849-2009, 2009.

- Gong, C. and Liao, H.: A typical weather pattern for the ozone pollution events in North
- China, Atmos. Chem. Phys., 19, 13725-13740, https://doi.org/10.5194/acp-1913725-2019, 2019.
- 713 Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R. J., Yang, Y.: Persistent ozone pollution
- episodes in North China exacerbated by regional transport, Environ. Pollut., 265,
 115056, https://doi:10.1016/j.envpol.2020.115056, 2020.
- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.
- K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
 version 2.1 (MEGAN2.1): an extended and updated framework for mod- eling
- biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
 https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- Jiang, N., Li, L., Wang, S., Li, Q., Dong, Z., Duan, S., Zhang, R., Li, S.: Variation
- tendency of pollution characterization, sources, and health risks of PM_{2.5}-bound
- polycyclic aromatic hydrocarbons in an emerging megacity in China: based on
- three-year data, Atmos. Res., 217, 81–92, https://doi.org/10.1016/j.
 atmosres.2018.10.023, 2019.
- Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K., Zhang, Q., Zhai, S.
- X.: A two-pollutant strategy for improving ozone and particulate air quality in
 China, Nat. Geosci., 12, 906–910, https://doi.org/10.1038/s41561-019-0464-x,
 2019.
- 730 Li, K., Jacob, D. J., Shen, L., Lu, X., Smedt, D. I., Liao, H.: Increases in surface ozone

731	pollution in China from 2013 to 2019: anthropogenic and meteorological
732	influences, Atmos. Chem. Phys., 20, 11423-11433, https://doi.org/10.5194/acp-
733	20-11423-2020, 2020.

- Li, M., Wang, L., Liu, J.: Exploring the regional pollution characteristics and
 meteorological formation mechanism of PM_{2.5} in North China during 2013-2017,
 Environ. Int., 134, 105283, https://doi.org/10.1016/j.envint.2019.105283, 2019.
- 737 Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y.,
- 738 Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang,
- S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
 inventory under the international collaboration framework of the MICS-Asia and
 HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-
- 742 2017, 2017.
- Liu, Y. X., Zhao, Q. B., Hao, X., Zhao, J. R., Zhang, Y., Yang, X., Fu, Q. Y., Xu, X. Y.,
 Wang, X. F., Huo, J. T., Chen, J. M.: Increasing surface ozone and enhanced
 secondary organic carbon formation at a city junction site: An epitome of the
 Yangtze River Delta, China (2014–2017), Environ. Pollut., 265, 0269-7491,
 https://doi.org/10.1016/j.envpol.2020.114847, 2020.
- Lou, S. J., Liao, H., Yang, Y., and Mu, Q.: Simulation of the interannual variations of
 tropospheric ozone over China: Roles of variations in meteorological parameters
 and anthropogenic emissions, Atmos. Environ., 122, 839–851,
 https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015.
- 752 Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5

753	atmospheric general circulation model: evolution from MERRA to MERRA2,
754	Geosci. Model Dev., 8, 1339-1356, https://doi.org/10.5194/gmd-8-1339-2015,
755	2015.

- Mu, Q. and Liao, H.: Simulation of the interannual varia- tions of aerosols in China:
 role of variations in meteo- rological parameters, Atmos. Chem. Phys., 14, 9597–
 9612, https://doi.org/10.5194/acp-14-9597-2014, 2014.
- Nan, J. L., Wang, S. S., Guo, Y. L., Xiang, Y. J., Zhou. B.: Study on the daytime OH
- radical and implication for its relationship with fine particles over megacity of
- 761 Shanghai, China, Atmos. Environ., 154, 167-178,
 762 https://doi.org/10.1016/j.atmosenv.2017.01.046, 2017.
- Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime
- 764 ozone over China, Atmos. Chem. Phys., 18, 11447–11469,
 765 https://doi.org/10.5194/acp-18-11447- 2018, 2018.
- Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols
- 767 over the United States and implica- tions for natural visibility, J. Geophys. Res.-
- 768 Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190, 2003.
- 769 Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and
- transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the
- United States: Im- plications for policy, J. Geophys. Res.-Atmos., 109, D15204,
 https://doi.org/10.1029/2003jd004473, 2004.
- Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld,
- J. H.: Effect of changes in climate and emissions on future sulfate-nitrate-

- ammonium aerosol lev- els in the United States, J. Geophys. Res.-Atmos., 114, 775 D01205, https://doi.org/10.1029/2008jd010701, 2009. 776 777 Qin, Y., Li, J. Y., Gong, K. J., Wu, Z., Chen, M. D., Qin, M. M., Huang, L., Hu, J. L.: Double high pollution events in the Yangtze River Delta from 2015 to 2019: 778 779 Characteristics, trends, and meteorological situations, Sci. Total. Environ., 792, 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021. 780 Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., Xu, X.: 781 Impacts of tropospheric ozone and climate change on net primary productivity and 782 783 net carbon exchange of China's forest ecosystems, Glob. Ecol. Biogeogr., 20, 391-
- 784 406, https://doi.org/10.1111/j.1466-8238.2010.00606.x, 2011.
- Sun, T., Wu, C. and Wu, D.: Time-resolved black carbon aerosol vertical distribution
 measurements using a 356-m meteorological tower in Shenzhen, Theor. Appl.
- 787 Climatol., 140, 1263–1276, https://doi.org/10.1007/s00704-020-03168-6, 2020.
- 788 Tan, Z. F., Fuchs, H., and Lu, K. D.: Radical chemistry at a rural site (Wangdu) in the
- North China Plain: Observation and model calculations of OH, HO₂ and RO₂
- radicals, Atmos. Chem. Phys., 17(1): 663–690, https://doi.org/10.5194/acp-17663-2017, 2017.
- Wang, H., Kiang, C., Tang, X., Zhou, X., Chameides, W. L.: Surface ozone: a likely
 threat to crops in Yangtze delta of China, Atmos. Eviron., 39, 3843–3850,
 https://doi.org/10.1016/j.atmosenv.2005.02.057, 2005.
- Wang, X., Manning, W., Feng, Z., Zhu, Y.: Ground-level ozone in China: distribution
 and effects on crop yields, Environ. Pollut., 147 (2), 394–400, https://

doi.org/10.1016/j.envpol.2006.05.006, 2007.

- Woodward-Massey, R., Slater, E. J., Alen, J.: Implementation of a chemical background 798 799 method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China, Atmos. Meas. Tech., 800 801 13(6): 3119–3146, https://doi.org/10.5194/amt-13-3119-2020, 2020. Xuan, J., Liu, G., and Du, K.: Dust emission inventory in northern China, Atmos. 802 Environ., 34(26), 4565–4570, https://doi:10.1016/S1352-2310(00) 00203-X, 2000. 803 Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T., and Mulawa, P. 804 A.: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year 805 499-510, https://doi:10.1016/S1352period, Atmos. Environ., 37(4), 806 2310(02)00918-4, 2003. 807 808 Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., Li, J.: Ozone and haze pollution weakens net primary productivity in China, Atmos. 809 Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-2016-1025, 2017. 810 Zhang, Y. and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the 811 Southeast United States, P. Natl. Acad. Sci. USA, 113, 10025-10030, 812 813 https://doi.org/10.1073/pnas.1602563113, 2016. Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: 814 Analysis of a winter regional haze event and its formation mechanism in the North 815 China Plain, Atmos. Chem. Phys., 13, 5685-5696, https://doi:10.5194/acp-13-816
- 817 **5685-2013**, **2013**.
- 818 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J.,

- Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
 anthropogenic emissions since 2010 as the consequence of clean air actions,
 Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-140952018, 2018.
- 823 Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., He, K.: Changes in
- China's anthropogenic emissions and air quality during the COVID-19 pandemic
 in 2020, Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-132895-2021, 2021.
- Zhu, J., Chen, L., Liao, H., Dang, R. J.: Correlations between PM_{2.5} and ozone over
 China and associated underlying reasons, Atmosphere, 10(7), 352,
 https://doi.org/10.3390/atmos10070352, 2019.
- 830 Zong, L., Yang, Y., and Gao, M.: Large-scale synoptic drivers of co-occurring
- summertime ozone and PM_{2.5} pollution in eastern China, Atmos. Chem. Phys., 11,
- 832 9105-9124, https://doi.org/10.5194/acp-21-9105-2021, 2021.