1	Composited analyses of the chemical and physical characteristics of co-
2	polluted days by ozone and PM _{2.5} over 2013-2020 in the Beijing–Tianjin–Hebei
3	region
4	
5	Huibin Dai ¹ , Hong Liao ^{1*} , Ke Li ¹ , Xu Yue ¹ , Yang Yang ¹ , Jia Zhu ¹ , Jianbing Jin ¹ ,
6	Baojie Li ¹ , Xingwen Jiang ²
7	
8	¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
9	Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and
10	Equipment Technology, School of Environmental Science and Engineering, Nanjing
11	University of Information Science & Technology, Nanjing 210044, China
12	² Institute of Plateau Meteorology, China Meteorological Administration, Chengdu,
13	Sichuan 610072, China
14	
15	*Correspondence to: Hong Liao (<u>hongliao@nuist.edu.cn</u>)
16	

17 Abstract.

The co-polluted days by ozone (O₃) and PM_{2.5} (particulate matter with an 18 aerodynamic equivalent diameter of 2.5 µm or less) (O₃&PM_{2.5}PD) were frequently 19 observed in the Beijing-Tianjin-Hebei (BTH) region in warm seasons (April-October) 20 of 2013-2020. We applied the 3-D global chemical transport model (GEOS-Chem) to 21 investigate the chemical and physical characteristics of O₃&PM_{2.5}PD by composited 22 23 analyses of such days that were captured by both the observations and the model. Model results showed that, when O₃&PM_{2.5}PD occurred, the concentrations of hydroxyl 24 radical and total oxidant, sulfur oxidation ratio, and nitrogen oxidation ratio were all 25 high, and the concentrations of sulfate at the surface were the highest among all 26 pollution types. We also found unique features in vertical distributions of aerosols 27 during O₃&PM_{2.5}PD; concentrations of PM_{2.5} decreased with altitude near the surface 28 but remained stable at 975-819 hPa. Process analyses showed that secondary aerosols 29 (nitrate, ammonium and sulfate) had strong chemical productions at 913-819 hPa, 30 which were then transported downward, resulting in the quite uniform vertical profiles 31 32 at 975-819 hPa in O₃&PM_{2.5}PD. The weather patterns for O₃&PM_{2.5}PD were characterized by anomalous high-pressure system at 500 hPa as well as strong 33 southerlies and high RH at 850 hPa. The latter resulted in the strong chemical 34 35 productions around 850 hPa in O₃&PM_{2.5}PD. The physical and chemical characteristics of O₃&PM_{2.5}PD are quite different from those of polluted days by either O₃ alone or 36 PM_{2.5} alone, which have important implications for air quality management. 37

38

39 Keywords: Co-occurrence, Ozone and PM_{2.5}, Pollution, Meteorological parameters.

40

41 **1. Introduction**

Surface ozone (O_3) and $PM_{2.5}$ (particulate matter with an aerodynamic equivalent 42 diameter of 2.5 micrometers or less) are important air pollutants in the atmosphere that 43 44 have harmful effects on public health (Gao and Ji, 2018; Jiang et al., 2019), ecosystems 45 (Ren et al., 2011; Yue et al., 2017), and crops (Wang et al., 2005; Wang et al., 2007). Surface O₃ is a secondary pollutant produced by photochemical oxidation of volatile 46 organic compounds (VOCs) and nitrogen oxides (NO_x \equiv NO+NO₂) in the presence of 47 intense ultraviolet light, and the major PM_{2.5} components (nitrate (NO₃), ammonium 48 (NH_4^+) , sulfate (SO_4^{2-}) , black carbon (BC), organic carbon (OC)) are mainly caused by 49 anthropogenic emissions of aerosols and aerosol precursors. Although surface O₃ and 50 PM_{2.5} have different formation mechanisms, they are coupled through the common 51 52 precursors (NO_x and VOCs) and photochemical reactions (Chu et al., 2020). Since 2013, 53 stringent clean air actions have been implemented to improve air quality in China (State Council of the People's Republic of China, 2013, 2018). However, O₃ concentrations 54 55 increased unexpectedly, while PM_{2.5} concentrations decreased drastically in the past years (Li et al., 2019). The co-polluted days by O₃ and PM_{2.5} (concentrations of both 56 O₃ and PM_{2.5} exceed the national air quality standards on the same day, hereafter 57 referred to as O₃&PM_{2.5}PD) were also reported (Dai et al., 2019). Therefore, it is 58 fundamental to examine the chemical and physical characteristics of O₃&PM₂ ₅PD. 59 60 The Beijing–Tianjin–Hebei (BTH) region is the most populated region in northern China. In the past few years, concentrations of O₃ and PM_{2.5} in the BTH were among 61

the highest in China. The observations from China National Environmental Monitoring Center (CNEMC) showed that the mean and maximum MDA8 (daily maximum 8-h average) O₃ in North China in summer of 2019 were 83 ppb and 129 ppb, respectively, and the summer mean MDA8 O₃ increased with a trend of 3.3 ppb a⁻¹ over 2013–2019 (Li et al., 2020). Gong et al. (2020) reported that O₃ polluted days (i.e., MDA8 O₃ 67 concentration exceeds 80 ppb) in May-July in the BTH increased from 35 days in the year of 2014 to 56 days in 2018. As for observed PM_{2.5}, the concentration averaged 68 over BTH had a decreasing trend of 10 µg m⁻³ yr⁻¹ over 2013-2019, and the mean value 69 was $79 \pm 17 \,\mu g \, m^{-3}$ over these years (Li et al., 2020). BTH also had the highest 70 frequency and intensity of severe haze pollution days (i.e., days with daily mean PM_{2.5} 71 concentration exceeding 150 µg m⁻³) in China from 2013 to 2017, with an observed 72 mean frequency of 21.2 d yr⁻¹ and an observed mean intensity of 231.6 μ g m⁻³ (Dang 73 and Liao, 2019). 74

75 The interactions between O₃ and PM_{2.5} have been reported in previous studies. Zhu et al. (2019) examined the spatial-temporal characteristics of the correlations 76 between observed O₃ and PM_{2.5} at 1497 sites in China for 2016 and found that O₃-77 $PM_{2.5}$ had the highest positive correlations (correlation coefficients > +0.7) in July in 78 southern China and the largest negative correlations (r values < -0.5) during January in 79 northern China. Li et al. (2019) used the GEOS-Chem model to analyze the O₃-PM_{2.5} 80 81 relationship in northern China and found that O₃ production was suppressed under high $PM_{2.5}$ conditions ($PM_{2.5}$ concentrations > 60 µg m⁻³) because of the reactive uptake of 82 hydrogen oxide radicals (HO_x) by aerosol particles. Chu et al. (2020) analyzed the 83 observed daily PM_{2.5} and O₃ concentrations in 114 cities in China during years of 2013-84 2018 and found that the correlations between O3 and PM2.5 tended to change from 85 negative in 2013 to positive in 2018 in China as air quality improved. 86

Few previous studies have examined the co-occurrence of O_3 and $PM_{2.5}$ pollution (MDA8 $O_3 > 80$ ppb and $PM_{2.5} > 75 \ \mu g \ m^{-3}$). Zong et al. (2021) used the obliquely rotated principal component analysis in the T-mode (T-PCA) method to identify the synoptic weather pattern associated with O_3 &PM_{2.5}PD in eastern China during summer of 2015–2018, and found that O_3 &PM_{2.5}PD were associated with a stable

92	western Pacific subtropical high ridge, which brought warm and moist air flow from
93	the East China Sea to the eastern China to promote hygroscopic growth of fine
94	particulate matter in BTH and northern YRD. Dai et al. (2021) analyzed O ₃ &PM _{2.5} PD
95	in the YRD for April-October of 2013-2019 by using observations and reported that
96	the co-polluted days occurred mainly in April (29.6% of co-polluted days occurred in
97	April), May (23.0%), June (19.5%), and October (10.8%) under meteorological
98	conditions of higher relative humidity, higher surface air temperature, and lower wind
99	speed relative to the days with O ₃ pollution alone. Qin et al. (2021) investigated
100	O ₃ &PM _{2.5} PD by using the hourly observed concentrations of water-soluble ions, OC,
101	and elemental carbon (EC) in 2019 in cities of Nanjing and Changzhou. They found
102	that inorganic aerosols mainly existed as NH4NO3 and the correlation coefficients
103	between the secondary components NO_3^- , NH_4^+ , and SO_4^{2-} were relatively high during
104	O ₃ &PM _{2.5} PD in 2019, indicating a significant formation of secondary inorganic
105	aerosols. Although these studies have discussed the meteorological conditions and
106	some chemical characteristics of O ₃ &PM _{2.5} PD, the understanding of O ₃ &PM _{2.5} PD
107	was quite limited because of the limited observations of chemical species involved.
108	In this work, we take advantage of the comprehensive chemical mechanism of
109	the global chemical transport model to have better understanding of O ₃ &PM _{2.5} PD. We
110	apply the 3-D global chemical transport model (GEOS-Chem) to simulate
111	O ₃ &PM _{2.5} PD in BTH in years of 2013-2020, and investigate the chemical and
112	physical characteristics of O3&PM2.5PD by composited analyses of such days that are
113	captured by both the observations and the model. The objectives of this study are: 1)
114	to examine the underlying chemical mechanisms for O3&PM2.5PD in BTH for warm
115	seasons (April-October) of 2013-2020 by comparing O3&PM2.5PD with polluted days
116	by O_3 alone or by $PM_{2.5}$ alone, and 2) to identify the weather patterns that are

- associated with O₃&PM_{2.5}PD in BTH. The observations, the reanalyzed
- 118 meteorological data, the GEOS-Chem model, and the process analysis are described
- in Section 2. The observed O₃&PM_{2.5}PD are presented in Section 3.1. The evaluation
- 120 of simulated concentrations of O_3 and $PM_{2.5}$ as well as the simulated pollution days by
- 121 O₃ and/or PM_{2.5} are shown in Section 3.2. The underlying mechanisms of
- 122 O₃&PM_{2.5}PD are shown in Section 3.3. In Section 3.4, the meteorological conditions
- for the co-occurrence of O_3 and $PM_{2.5}$ pollution are investigated. The conclusions are
- 124 presented in Section 4.
- 125

126 **2. Methods**

127 **2.1 Observed O₃ and PM_{2.5} concentrations**

Hourly concentrations of PM_{2.5} and O₃ in China over the years of 2013-2020 128 were taken from the public website of CNEMC (https://air.cnemc.cn:18007/, 129 CNEMC, 2022). To ensure data quality, the daily mean $PM_{2.5}$ concentration was 130 calculated when there were valid data for more than 20 h during that day and the 131 MDA8 O3 concentration was calculated when there were valid data for at least 6 h for 132 133 each 8 h. For the calculation of monthly and annual mean concentrations, the number of days with valid concentrations had to be more than 15 in each month. The spatial 134 distribution of the 79 valid sites within BTH (37-41°N, 114-118°E, the black 135 rectangle) is shown in Fig. 1. For model evaluation, the observed concentrations were 136 averaged over sites within each of the 0.5° latitude $\times 0.625^{\circ}$ longitude MERRA-2 137 grid cell. There are 18 model grids in BTH. Note that the observed O₃ concentrations 138 from this network have a unit of $\mu g m^{-3}$. For the consistency of observed and 139 simulated O_3 concentrations, 1 µg m⁻³ of O_3 is approximately 0.5 ppb under the 140 conditions of 298 K and 1013 hPa. The observed O₃ concentrations reported by the 141

- 142 CNEMC were under standard conditions of 273 K and 1013 hPa before 31 August
- 143 2018 and were under standard conditions of 298 K and 1013 hPa afterwards
- 144 (http://www.mee.gov.cn/ xxgk2018/xxgk/xxgk01/201808/t20180815_629602.html),
- 145 which were accounted for as O₃ concentrations were converted to ppb.
- 146 According to the National Ambient Air Quality Standard of China (GB3095-
- 147 2012), O₃ (PM_{2.5}) concentration exceeds the national air quality standard if the MDA8
- 148 O_3 (daily mean PM_{2.5}) concentration is higher than 160 µg m⁻³ (75 µg m⁻³). In this
- study, we define O₃ polluted days (hereafter called 'O₃PD') for days with MDA8 O₃

150 concentration > 160 μ g m⁻³, PM_{2.5} polluted days (hereafter called 'PM_{2.5}PD') with

- daily mean $PM_{2.5}$ concentration > 75 µg m⁻³, and the co-pollution days by O₃ and
- 152 $PM_{2.5}$ (O₃&PM_{2.5}PD) with daily MDA8 O₃ concentration > 160 µg m⁻³ as well as the
- 153 daily mean $PM_{2.5}$ concentration > 75 µg m⁻³.
- 154

155 **2.2 Reanalyzed meteorological fields**

156 Meteorological fields were obtained from the Version 2 of Modern Era

157 Retrospective-analysis for Research and Application (MERRA2), which were

158 generated by the NASA Global Modeling and Assimilation Office (GMAO). The

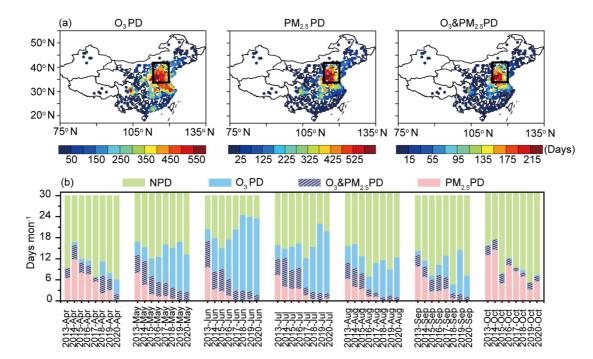
- 159 MERRA2 data have a horizontal resolution of 0.5° latitude $\times 0.625^{\circ}$ longitude and
- 160 72 vertical layers (Molod et al., 2015). To analyze the meteorological conditions for
- 161 O₃&PM_{2.5}PD, vertical pressure velocity (OMEGA), planetary boundary layer height
- 162 (PBLH), temperature (T), relative humidity (RH), surface incoming shortwave flux
- 163 (SWGDN) are used. Note that the temporal resolution for PBLH, T, and SWGDN is
- 164 1h, and that for OMEGA and RH is 3h. Daily mean geopotential heights at 850 and
- 165 500 hPa from the National Center for Environmental Prediction (NCEP) and National
- 166 Center for Atmospheric Research (NCAR) global reanalysis with a resolution of 2.5°

167 latitude by 2.5° longitude are also utilized in this study.

169	2.3 Observed aerosol optical depth
170	We obtained the version 3 datasets of observed daily aerosol optical depth
171	(AOD) of level 2 (improved cloud screened and quality-assured) from Aerosol
172	Robotic Network (AERONET, https://aeronet.gsfc.nasa.gov/new_web/index.html)
173	established by NASA and LOA-PHOTONS (Giles et al., 2019). Three sites in the
174	BTH region have observations available over 2013-2020, including Beijing (39.97°N,
175	116.38°E), Beijing-CAMS (39.93°N, 116.31°E), and Xianghe (39.75°N, 116.96°E).
176	The AOD values at 440 nm and 675 nm at these three sites are analyzed in this study.
177	
178	2.4 GEOS-Chem model
179	We simulated O_3 and $PM_{2.5}$ using the nested version of the 3-D global chemical
180	transport model (GEOS-Chem, version 11-01) driven by the MERRA2
181	meteorological data. The nested domain was set over Asia (60°-150°E,11°S-55°N)
182	with a horizontal resolution of 0.5° latitude $\times 0.625^{\circ}$ longitude, and the chemical
183	boundary conditions were provided by the global GEOS-Chem simulation with 2.5°
184	latitude $\times 2.5^{\circ}$ longitude horizontal resolution.
185	The GEOS-Chem model includes fully coupled O ₃ -NO _x -hydrocarbon and
186	aerosol chemistry mechanism (Bey et al., 2001; Pye et al., 2009) to simulate aerosols
187	including SO_4^{2-} (Park et al., 2004), NO_3^{-} (Pye et al., 2009), NH_4^+ , BC and OC (Park
188	et al., 2003), mineral dust (Fairlie et al., 2007), and sea salt (Alexander et al., 2005) as
189	well as the gas-phase pollutants such as NO_x and O_3 . Over the Asian domain, the
190	anthropogenic emissions of OC, BC, carbon monoxide (CO), sulfur dioxide (SO ₂),

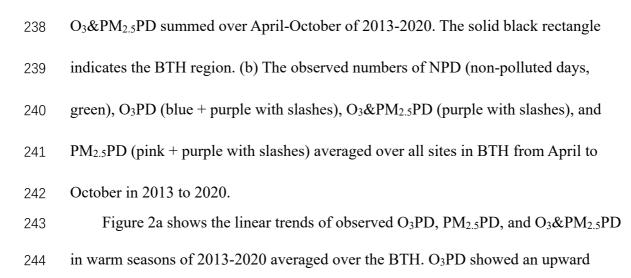
191	NO _x , ammonia (NH ₃), and VOCs were obtained from the Multi-resolution Emission
192	Inventory for China (MEIC), which includes emissions from industry, power,
193	residential and transportation sectors for years of 2014-2017 (Li et al., 2017; Zheng et
194	al., 2018), 2019 and 2020 (Zheng et al., 2021). Emissions in 2018 were obtained by
195	the interpolation of those in 2017 and 2019 for each grid due to the lack of publicly
196	accessible emission inventories for that year. The biogenic emissions in GEOS-Chem
197	are simulated using MEGAN v2.1 (Guenther et al., 2012).
198	The hourly O_3 and $PM_{2.5}$ concentrations for the years of 2013-2020 were
199	simulated by the GEOS-Chem model which were driven by MERRA-2
200	meteorological fields. The model was spined up for 6 months before the integration
201	over the studied time period.

203 2.5 Process analysis


Process analysis (PA) was applied to identify the relative importance of 204 atmospheric processes in O₃&PM_{2.5}PD. PA has been widely used in previous studies 205 to examine the key processes contributing to air pollution episodes (Gonçalves et al., 206 2009; Dang and Liao, 2019; Gong and Liao, 2019) as well as the interannual and 207 decadal variations of air pollutants (Mu and Liao, 2014; Lou et al., 2015). Five major 208 209 processes that influence O₃ and PM_{2.5} concentrations were diagnosed at every time 210 step, including net chemical production, dry deposition, horizontal advection, vertical advection, and diffusion, for the regional pollution days (days with more than half of 211 the sites in BTH experiencing pollutions). We carried out PA for O₃SPD (exclude 212 213 O₃&PM_{2.5}PD from O₃PD), PM_{2.5}SPD (exclude O₃&PM_{2.5}PD from PM_{2.5}PD), and O₃&PM_{2.5}PD over BTH. 214

215

216 **3. Results**


217 3.1 Observed polluted days by O₃ and PM_{2.5}

- Figure 1a shows the spatial distributions of observed numbers of O_3PD ,
- 219 PM_{2.5}PD, and O₃&PM_{2.5}PD summed over the warm seasons (April-October) of 2013-
- 220 2020. The spatial distributions of polluted days in each year are shown in Fig. S1. The
- numbers of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD were high in BTH, which were,
- respectively, 524.3 344.6, and 128.1 days from observations, as the values were
- averaged over all sites in BTH. The high numbers of O₃PD, PM_{2.5}PD, and
- O_3 $PM_{2.5}$ PD in BTH were associated with the highest anthropogenic emissions (NO_x
- and NMVOCs) in this region (Dang et al., 2021).
- Figure 1b shows the numbers of days averaged over all sites in BTH for non-
- polluted days (NPD, MDA8 $O_3 < 80$ ppb and $PM_{2.5} < 75 \ \mu g \ m^{-3}$), O_3PD ,
- 228 O₃&PM_{2.5}PD, and PM_{2.5}PD in each month of warm seasons from 2013 to 2020. O₃PD
- and O₃&PM_{2.5}PD mainly occurred in May, June, and July, while PM_{2.5}PD mainly
- appeared in April and October. The monthly numbers of O₃&PM_{2.5}PD (PM_{2.5}PD)
- declined from 2013 to 2020, with the fastest drop in June, from 7.5 (17.1) days in
- June 2013 to 1.8 (1.8) days in June 2020. On the contrary, the numbers of O₃PD kept
- increasing, especially in June, from 10.9 days in June 2013 to 23.6 days in June 2020.
- 234 The reductions in O_3 PM_{2.5}PD were associated with the large reductions in PM_{2.5}
- since the implementation of the Clean Air Action in 2013.

236

Figure 1. (a) Spatial distributions of observed numbers of O₃PD, PM_{2.5}PD, and

- trend of 7.9 days yr⁻¹ from 2013 to 2020. However, the numbers of $PM_{2.5}PD$ and
- O_3 PM_{2.5}PD decreased over 2013-2020, with linear trends of -11.2 and -3.4 days yr⁻¹,
- respectively. Figure 2b shows the changes in percentage of O₃&PM_{2.5}PD in PM_{2.5}PD
- from 2013 to 2020 for each month. It should be noted that, when $PM_{2.5}PD$ occurred,
- the proportions of O_3 &PM_{2.5}PD had an upward trend from 2013 to 2020. In May,
- June, August, and September of 2020, the proportions of O₃&PM_{2.5}PD in PM_{2.5}PD
- reached 100%, indicating that PM_{2.5} pollution was accompanied by O₃ pollution in

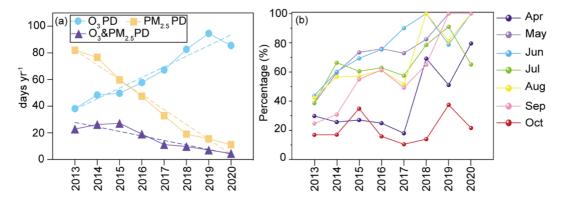


Figure 2. (a) The trends of observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD in warm seasons from 2013 to 2020 averaged over all sites in BTH. The blue, yellow and purple solid lines (dashed lines) represent the numbers (liner trend) of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD, respectively. (b) The percentage of O₃&PM_{2.5}PD in PM_{2.5}PD for April to October in 2013 to 2020. The polluted days were averaged over all sites in BTH.

260 **3.2 Simulated polluted days and model evaluation**

261 3.2.1 Simulated surface-layer MDA8 O₃ and PM_{2.5} concentrations

Figures 3a and 3b show, respectively, the spatial distributions of simulated and observed surface-layer concentrations of MDA8 O₃ and PM_{2.5} in China, as the

concentrations are averaged over the warm seasons (April-October) of 2013-2020.

265 The concentrations of MDA8 O₃ and PM_{2.5} were both high in BTH. Averaged over

 $BTH and the studied time period, the observed concentrations of MDA8 O_3 and PM_{2.5}$

267 were 58.1 ppb and 60.3 μ g m⁻³, respectively, while the simulated values were 68.0 ppb

and 61.1 µg m⁻³, respectively. Figures 3c and 3d compare the time series of observed

- and simulated daily MDA8 O₃ and PM_{2.5} concentrations averaged over the BTH. The
- 270 simulated daily concentrations of MDA8 O₃ (PM_{2.5}) in eight warm seasons have a
- normalized mean bias (NMB) of 7.9% (10.6%). The model generally captures the
- daily variations (peaks and troughs) in the observed MDA8 O₃ and PM_{2.5}

concentrations, with R values of 0.80 and 0.72, respectively. It should be noted that
mineral dust and sea-salt aerosols were not considered in this study, because they are
not the major aerosol components in China and the concentrations are generally low
based on previous measurements (Xuan et al., 2000; Ye et al., 2003; Duan et al., 2006;
Zhao et al., 2013). However, excluding dust and sea salt may lead to low biases in
simulated PM_{2.5} concentrations.
Due to the lack of the publicly accessible long-term observations of PM_{2.5}

280 components in China, we compared the simulated SO_2 and NO_2 (precursors for SO_4^{2-}

concentrations of NO₂ (SO₂) agree well with the observations from CNEMC with R

and NO_3) with observations from CNEMC in Fig. S2. The simulated daily mean

283 of 0.82 (0.78) and MB of -14.9% (9.3%).

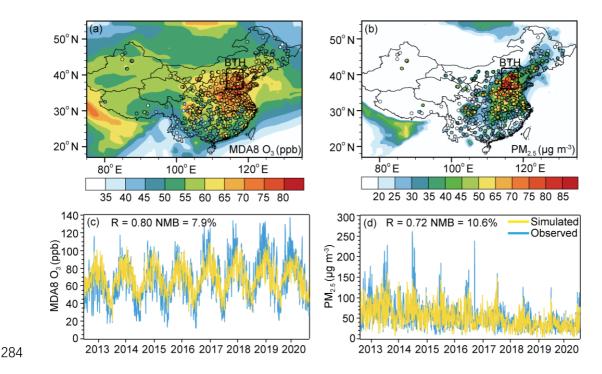


Figure 3. Spatial distributions of simulated (shades) and observed (CNEMC, dots)
surface-layer concentrations of (a) MDA8 O₃ (ppb) and (b) PM_{2.5} (µg m⁻³) averaged
over the eight warm seasons (April to October, 2013–2020). The solid black rectangle
in (a) and (b) indicates the BTH region. Simulated and observed daily concentrations

of surface-layer (c) MDA8 O₃ and (d) PM_{2.5} averaged over BTH. The correlation

290 coefficient (R) and normalized mean bias (NMB) are also shown for (c) and (d).

NMB = $(\sum_{i=1}^{N} (M_i - O_i) / \sum_{i=1}^{N} (O_i)) \times 100\%$, where O_i and M_i are the observed and simulated concentrations, respectively, *i* refers to the *i*th day, and *N* is the total number of days.

3.2.2 Simulated O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD

Figure S3 shows the capability of the model in capturing the polluted days. 295 Although the GEOS-Chem model well reproduces the spatial distributions of observed 296 MDA8 O₃ and PM_{2.5} concentrations, it underestimates the numbers of O₃PD, PM_{2.5}PD, 297 and O₃&PM_{2.5}PD because of the model's deficiency in capturing the peak 298 concentrations of air pollutants. Such deficiency was also reported in previous studies 299 300 that used the GEOS-Chem model or the weather Research and Forecasting with Chemistry (WFR-chem) model (Zhang et al., 2016; Ni et al., 2018; Gong and Liao, 301 2019; Dang and Liao, 2019). Therefore, to identify O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD 302 using model results, we utilized lower thresholds by considering the NMBs of simulated 303 304 MDA8 O₃ and PM_{2.5} concentrations in each of 18 grids of BTH. Taking the grid of Beijing as an example, simulated MDA8 O₃ and PM_{2.5} had NMBs of -22.0% and -305 26.9%, respectively, as the simulated concentrations were compared with observations 306 for days with observed concentrations higher than the national air quality standards over 307 the warm seasons of 2013-2020. We then adjusted the threshold of O₃PD in this grid to 308 be 62.4 ppb (80 ppb×78%) and that of PM_{2.5}PD to be 54.8 μ g m⁻³ (75 μ g m⁻³×73.1%). 309 310 These adjusted thresholds were also used to identify O₃&PM_{2.5}PD. Such approach was also used in previous studies to better capture the pollution events based on the 311 simulations (Dang and Liao, 2019; Gong and Liao, 2019). With the adjusted thresholds, 312 313 56-93% of the observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD can be captured by the

314 model (Fig. S3e).

315 3.2.3 Simulated O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

Since O₃PD or PM_{2.5}PD encompasses O₃&PM_{2.5}PD, we further define O₃ single 316 pollution days (hereafter called "O₃SPD", which is to exclude O₃&PM_{2.5}PD from O₃PD) 317 and PM_{2.5} single pollution days (hereafter called "PM_{2.5}SPD", which is to exclude 318 O₃&PM_{2.5}PD from PM_{2.5}PD) for the purpose of obtaining the characteristics of 319 320 different polluted days. Figures 4a and 4b show, respectively, the spatial distributions of numbers of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD from observations and from the 321 GEOS-Chem model using the adjusted thresholds. Considering the total of polluted 322 days in 18 grids in BTH, observed O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD were, 323 respectively, 3937, 3698, and 2024 days, in which 75.0% (2954/3937), 58.1% 324 325 (2148/3698), and 79.7% (1614/2024) were captured by observation and simulation simultaneously (Fig. 4c). In addition, the numbers of observed and captured O₃SPD, 326 PM_{2.5}SPD, and O₃&PM_{2.5}PD in each month are shown in Fig. S4. The model has a 327 fairly good capability of capturing the observed polluted days in each month. 328

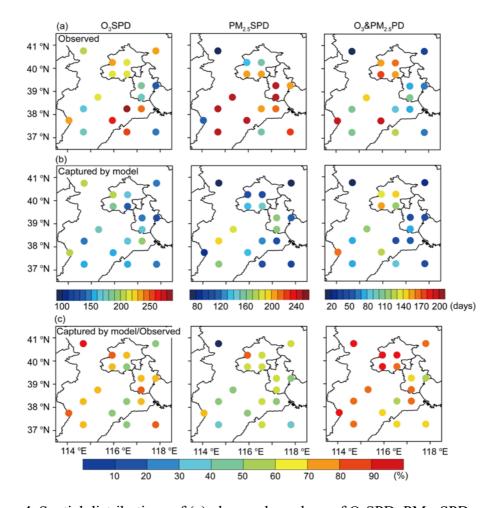
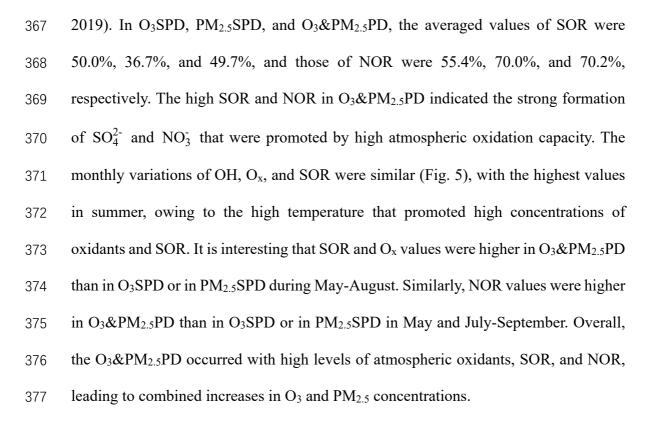


Figure 4. Spatial distributions of (a) observed numbers of O₃SPD, PM_{2.5}SPD, and
O₃&PM_{2.5}PD, (b) numbers of polluted days that were observed and also captured by
the GEOS-Chem model with adjusted thresholds, and (c) percentages of observed
polluted days that were captured by the model with adjusted thresholds. The values
were calculated for the warm months (April to October) of 2013-2020.

329


336 **3.3 Chemical characteristics of polluted days by O3 and PM2.5**

In this section, to investigate the chemical characteristics of O_3 SPD, $PM_{2.5}$ SPD and O_3 &PM_{2.5}PD, we present first the simulated atmospheric oxidants in 3.3.1, and then show the simulated surface concentrations and vertical profiles of $PM_{2.5}$ and MDA8 O_3 in 3.3.2 and 3.3.3, respectively, followed by the process analysis in 3.3.4. The observed AOD values to verify the model results are presented in 3.3.5.

342 3.3.1 Atmospheric oxidants of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

Figure 5 shows the boxplots of daily concentrations of hydroxyl radical (OH) and 343 total oxidant ($O_x = O_3 + NO_2$) from the model for days of O_3SPD , $PM_{2.5}SPD$, and 344 O₃&PM_{2.5}PD that were observed and also captured by the model (samples in Fig. 4b) 345 in the warm seasons of 2013-2020 in 18 grids of BTH. The levels of OH and O_x 346 347 characterize the atmospheric oxidation capacity, following Hu et al. (2020) and Chan et al. (2017). The concentrations of OH were the highest in O₃SPD, with an averaged 348 value of 2.8×10⁶ molec cm⁻³, followed by that in O₃&PM_{2.5}PD (2.0×10⁶ molec cm⁻³) 349 and in PM_{2.5}SPD (1.0×10^6 molec cm⁻³). Due to the lack of publicly accessible 350 observations of OH in BTH, we compare the simulated OH concentrations with 351 observations reported in the literature (Table S1). The simulated OH concentrations 352 353 agree closely with the observed values. In Wangdu of BTH, while the observed daily maximum OH concentrations in summer of 2014 were in the range of 5-15×10⁶ molec 354 cm⁻³ (Tan et al., 2016), the simulated OH concentrations in the same time period in this 355 work were 3.7-9.5×10⁶ molec cm⁻³. In Beijing in summer of 2017, the observed daily 356 mean OH concentration was 5.8×10⁶ molec cm⁻³ (Woodward et al., 2020) and our 357 simulated value was 2.4×10^6 molec cm⁻³. 358

The mean values of O_x were, respectively, 178.7, 118.1, and 184.1 µg m⁻³ in 359 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, indicating that the atmospheric oxidation 360 capacity was strong in O₃&PM_{2.5}PD, which favored the production of secondary 361 components of PM_{2.5}. Figure 5 also shows sulfur oxidation ratio (SOR, $n-SO_4^{2-}$ / (n-362 SO_4^{2-} + n-SO₂), where n-SO₄²⁻ and n-SO₂ are the concentrations of SO_4^{2-} and SO₂, 363 respectively) and nitrogen oxidation ratio (NOR, n-NO₃ / (n-NO₃ + n-NO₂), where n-364 NO_3^- and n-NO₂ are the concentrations of NO_3^- and NO_2 , respectively). SOR and NOR 365 are measures of the conversion degrees of sulfur and nitrogen, respectively (Zhu et al., 366

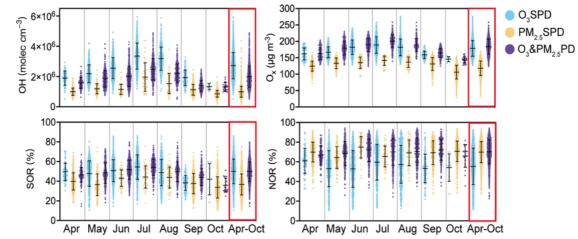
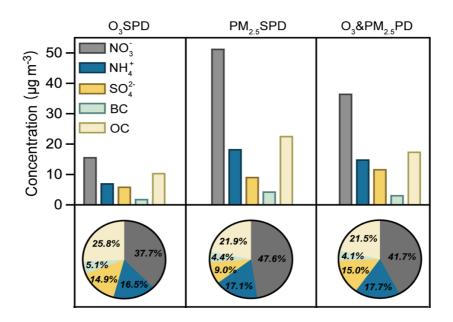


Figure 5. The boxplots of surface-layer hydroxyl radical (OH, molec cm⁻³), total

oxidant (O_x , μg m⁻³), sulfur oxidation ratio (SOR, %), nitrogen oxidation ratio

381 (NOR, %) for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in 18 grids of


BTH in the months of April to October from 2013 to 2020. The whiskers represent the

standard deviation, the black line represents the mean value of the samples.

384 **3.3.2** Surface-layer concentrations of PM_{2.5} components in O₃SPD, PM_{2.5}SPD, and

385 **O3&PM2.5PD**

The simulated concentrations of $PM_{2.5}$ components (NO₃⁻, NH₄⁺, SO₄²⁻, BC, and 386 OC, averaged over 18 grids of BTH are shown in Fig. 6 for days of O₃SPD, PM_{2.5}SPD, 387 and O₃&PM_{2.5}PD in the warm seasons of 2013-2020 that were observed and also 388 captured by the model. While the mean concentrations of NO₃, NH₄⁺, BC, and OC, 389 were all the highest in $PM_{2.5}SPD$, SO_4^{2-} concentration was the highest in $O_3\&PM_{2.5}PD$. 390 In O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the mean concentrations of SO₄²⁻ were 6.2, 391 9.4, and 11.97 μ g m⁻³, respectively, and the percentages of SO₄²⁻ in PM_{2.5} were 14.9%, 392 9.0%, and 15.0%, respectively. In July and August, the concentrations of SO_4^{2-} and 393 MDA8 O₃ in O₃&PM_{2.5}PD were the highest compared with those in O₃SPD and 394 PM_{2.5}SPD (Fig. S5). 395

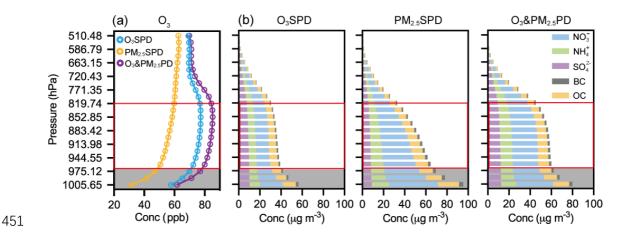
396

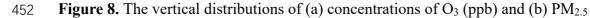
Figure 6. The concentrations of $PM_{2.5}$ components (µg m⁻³) and percentages of $PM_{2.5}$ components (%) at the surface for NO₃⁻, NH₄⁺, SO₄²⁻, BC, and OC. The values were averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in the months of April to October of 2013-2020 in BTH.

401 Figure 7 presents the hourly concentrations of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and O_3 402 for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over all 18 grids of BTH in

the warm seasons from 2013-2020. Concentrations of NO_3^- and NH_4^+ had similarities 403 in diurnal variations, all of which reached the highest values in the early morning (5:00 404 local time (LT) in O₃SPD and O₃&PM_{2.5}PD, 7:00-8:00 LT in PM_{2.5}SPD) and had the 405 lowest values in the late afternoon (18:00 LT in O₃SPD and O₃&PM_{2.5}PD, 16:00 LT in 406 $PM_{2.5}SPD$). Concentrations of BC and OC peaked at the same time as those of NO_3 407 and NH₄⁺ and had the lowest values at 15:00 LT in O₃SPD, PM_{2.5}SPD, and 408 O₃&PM_{2.5}PD. The diurnal variations in NO₃, NH₄⁺, BC, OC reflected the diurnal 409 variations in PBLH (shown in Fig. S6), which generally reached their highest 410 concentrations before the sudden uplift of PBLH in the early morning (times for uplift 411 of PBLH: 6:00 LT in O₃SPD and O₃&PM_{2.5}PD, 7:00 LT in PM_{2.5}SPD). Compared to 412 O₃SPD and O₃&PM_{2.5}PD, the PBLH of PM_{2.5}SPD was lower and uplifted one hour 413 414 later, which was more favorable for the accumulation of aerosols. During the daytime, PBLH in O₃&PM_{2.5}PD was between O₃SPD and PM_{2.5}SPD. 415

It is worth noting that the diurnal variations of SO_4^{2-} were different from those of 416 other aerosol species, with the highest values at 20:00, 9:00, and 16:00 LT in O₃SPD, 417 PM_{2.5}SPD, and O₃&PM_{2.5}PD, respectively, and the lowest values in early morning and 418 night (5:00 LT in O₃SPD and O₃&PM_{2.5}PD, 23:00 LT in PM_{2.5}SPD). For the diurnal 419 variation of O₃, the highest values occurred during the daytime (16:00 LT in O₃SPD 420 and O₃&PM_{2.5}PD, 15:00 LT in PM_{2.5}SPD) and the lowest values appeared at 5:00 LT 421 in all the cases. Therefore, in O_3 &PM_{2.5}PD, the time of the highest value of SO_4^{2-} was 422 the same as that of O_3 , indicating that SO_4^{2-} and O_3 were produced synergistically 423 during the daytime with strong atmospheric oxidation. 424




Figure 7. The hourly concentrations of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and O₃ averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃ &PM_{2.5}PD in BTH in the months of April to October of 2013-2020.

429 3.3.3 Vertical distributions of O₃ and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and 430 O₃&PM_{2.5}PD

The simulated vertical distributions of O_3 and $PM_{2.5}$ averaged over the 18 grids of BTH and the O_3SPD , $PM_{2.5}SPD$, and $O_3\&PM_{2.5}PD$ in warm seasons of 2013-2020 are shown in Fig. 8. The vertical distribution of O_3 in O_3SPD was similar to that in $O_3\&PM_{2.5}PD$ (Fig. 8a). In these two cases, concentrations of O_3 increased from the surface to about 975 hPa, remained high between 975 and 819 hPa, and decreased with altitude between 819 and 663 hPa. Although the magnitudes of O_3 were close at the surface (61.9 ppb in $O_3\&PM_{2.5}PD$ and 58.1 ppb in O_3SPD), the concentration of O_3 438 averaged over 975 and 819 hPa was 10.4% higher in $O_3\&PM_{2.5}PD$ than in O_3SPD , 439 which was a very unique feature of $O_3\&PM_{2.5}PD$. For the case of $PM_{2.5}SPD$, the 440 concentrations of O_3 were the lowest among the three cases and increased gently with 441 altitude above 975 hPa.

Figure 8b shows the vertical distributions of PM_{2.5} components. In all the cases, 442 PM_{2.5} concentrations were the highest at the surface, and decreased with altitude from 443 444 the surface to 975 hPa. However, concentrations of PM_{2.5} were quite stable between 975 and 819 hPa for O₃SPD (about 36.4 µg m⁻³) and O₃&PM_{2.5}PD (about 58.1 µg m⁻³), 445 446 corresponding to the stable O₃ levels at these altitudes in these two cases (Fig. 8a). For PM_{2.5}SPD, while PM_{2.5} concentration at the surface was the highest among the three 447 cases, it decreased rapidly between 975 and 819 hPa. The averaged PM_{2.5} concentration 448 between 975 and 819 hPa was 52.4 µg m⁻³ in PM_{2.5}SPD, which was lower than that in 449 O₃&PM_{2.5}PD. 450

453 components ($\mu g m^{-3}$) of NO₃, NH₄⁺, SO₄²⁻, BC, OC averaged over the model-

454 captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH in the months of April to

455 October of 2013-2020.

456 To further investigate the differences in vertical profiles of NO_3^- , NH_4^+ , SO_4^{2-} , BC,

457	OC, and PM _{2.5} in O ₃ SPD, PM _{2.5} SPD, and O ₃ &PM _{2.5} PD, the ratios of concentration at
458	975 hPa to that at the surface as well as the concentration at 819 hPa to that at 975 hPa
459	are shown in Table 1. The concentration of $PM_{2.5}$ decreased largely, with the ratio of
460	$PM_{2.5(975 hPa)} / PM_{2.5(1005 hPa)}$ of 0.78 in $O_3 \& PM_{2.5} PD$ and of 0.74 in $PM_{2.5} SPD$. For each
461	of the $PM_{2.5}$ components, the ratios near the surface (from 1005 to 975 hPa, gray shaded
462	area in Fig. 8) were close in the three types of pollution. While the ratios of NO_3^- , NH_4^+ ,
463	BC, OC were in the range of 0.65-0.80, the ratios of SO_4^{2-} were about 0.93-0.98,
464	indicating that SO_4^{2-} concentrations were quite uniform from the surface to 975 hPa in
465	all three types of pollution.

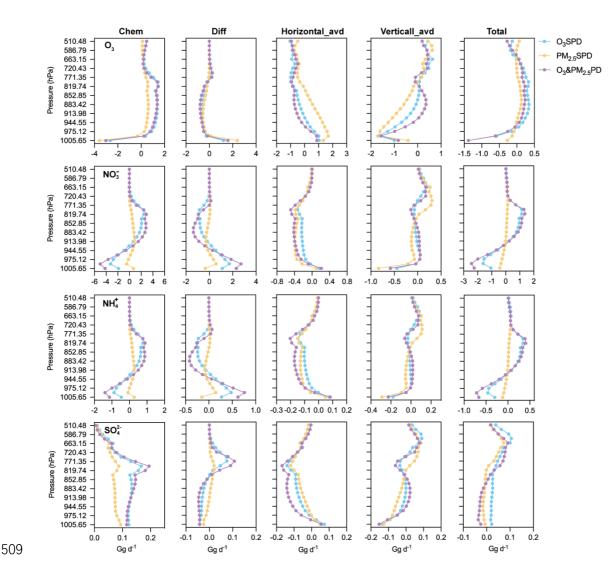
466 Table 1. The ratios at 975 and 1005 hPa (gray shaded area in Fig. 8) and at 819 and

		0) 0.1707	• • • • • +	a^2 b^2 b^2 b^2
467	975 hPa (red frame in Fig.	$(8) \text{ of } NO_3^-,$	NH_4 ,	SO_4^{2-} , BC, OC, and PM _{2.5} in O ₃ SPD,

		NO ₃	NH_4^+	SO_4^{2-}	BC	OC	PM _{2.5}
Come	O ₃ SPD	0.95	0.90	0.85	0.73	0.73	0.86
Conc _{819 hPa} /	PM _{2.5} SPD	0.64	0.68	0.81	0.64	0.63	0.67
Conc _{975 hPa}	O3&PM2.5PD	0.94	0.91	0.87	0.79	0.77	0.89
	O ₃ SPD	0.65	0.77	0.96	0.69	0.70	0.74
Conc _{975hPa} /	PM _{2.5} SPD	0.72	0.76	0.93	0.67	0.65	0.73
Conc _{1005 hPa}	O ₃ &PM _{2.5} PD	0.72	0.80	0.98	0.76	0.73	0.78

468 PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region.

In the upper layers (975-819 hPa, red rectangle in Fig. 8), the changes in concentrations of pollutants with altitude in PM_{2.5}SPD were quite different from those in O₃&PM_{2.5}PD and O₃SPD. The decline of PM_{2.5} from 975 to 819 hPa was slow in O₃&PM_{2.5}PD (PM_{2.5(819 hPa)} /PM_{2.5(975 hPa)} = 0.89) and O₃SPD (0.86) and fast in

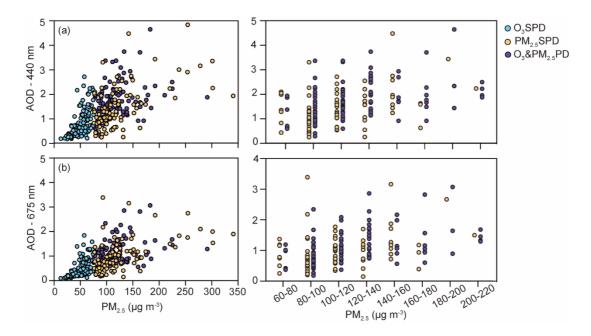

PM_{2.5}SPD (0.67). Considering that the variation of BC with altitude was mainly driven 474 by meteorology (Sun et al., 2020), the vertical variations of other components that 475 476 differed significantly from BC indicated the influences of chemical processes. In $PM_{2.5}SPD$, NO_3^- , NH_4^+ , OC had about the same ratio as BC (0.64) (with large decreases 477 with height), except for SO_4^{2-} concentration that had a ratio of 0.81. In O_3 &PM_{2.5}PD, 478 the ratios of NO₃, NH₄⁺, SO₄²⁻ were, 0.94, 0.91, 0.87, respectively, which were much 479 higher than the value of BC (0.79), indicating NO_3^- , NH_4^+ , SO_4^{2-} were quite uniform 480 in the layers of 975-819 hPa with the influence of chemical processes, which will be 481 discussed further in Sect. 3.3.4 below. 482

483 3.3.4 Process analyses for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

The process analysis (PA) is applied to identify the relative importance of atmospheric processes in the three types of pollution. Figure 9 shows the net changes in O₃, NO₃, NH₄⁺, SO₄²⁻ by the processes of chemical production (Chem), horizontal advection (Horizontal_adv), vertical advection (Vertical_avd), and diffusion (Diff, vertical PBL mixing process) in the GEOS-Chem model, as well as the total of all these processes (i.e., Chem + Diff + Horizontal_avd + Vertical_avd) in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD.

For O₃, the net changes of O₃ by all processes were positive at altitudes of 975-491 819 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem had the largest positive 492 contribution (about 1.5 Gg d⁻¹), indicating O₃ is chemically produced at these layers. 493 For NO_3^- and NH_4^+ , the nets of all processes increased mass concentrations at 913-819 494 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem and Vertical avd were positive and 495 496 Chem had the largest positive contribution. The vertical profiles of Chem were similar for NO_3^- and NH_4^+ , both of which had the largest positive values at 913-819 hPa (2.83 497 Gg d⁻¹ for NO₃ and 0.88 Gg d⁻¹ for NH₄⁺), leading to higher concentrations of NO₃⁻ 498

and $\rm NH_4^+$ in O_3&PM_{2.5}PD than in O_3SPD and PM_{2.5}SPD. Chem and Diff of $\rm SO_4^{2-}$ 499 were different from those of NO_3^- and NH_4^+ . For SO_4^{2-} , Chem was positive from the 500 surface to 510 hPa with a peak around 819 hPa, and Diff was positive at 819-771 hPa 501 but negative from 819 hPa to the surface, which resulted in the uniform SO_4^{2-} profile 502 as shown in Fig. 8. Chem for SO₄²⁻ was the highest around 819 hPa in O₃&PM_{2.5}PD, 503 which was related to the strong liquid-phase chemical formation of SO_4^{2-} (Fig. S7). In 504 addition to Chem, Vertical avd also had positive contributions to the net changes in O₃, 505 NO_3^- , NH_4^+ , and SO_4^{2-} at 944-819 hPa. Vertical_avd was negative at 819 hPa and 506 positive between 944 to 819 hPa, implying that the pollutants were transported from 507 819 hPa to 944 hPa in O₃&PM_{2.5}PD. 508


510 **Figure 9.** The vertical profiles of net changes in O₃, NO₃⁻, NH₄⁺, and SO₄²⁻ (Gg d⁻¹)

- 511 over BTH by each and total of processes. The values were averaged over the model-
- 512 captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in April-October of 2013-
- 513 2020.

Overall, NO₃, NH₄⁺, and SO₄²⁻ all had larger chemical productions at 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD and PM_{2.5}SPD, accompanied by strong vertical transport from 819 hPa to near the surface, resulting in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD. In addition, the vertical profiles of net changes in PM_{2.5} over BTH are shown in Fig. S8 for these three cases. Since NO₃⁻, NH₄⁺, and SO₄²⁻ were the major components of PM_{2.5}, the PA of PM_{2.5} is similar to that of each component.

521 3.3.5 Observed AOD in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD

To try to support the model result that O₃&PM_{2.5}PD had more uniform vertical 522 profile than PM_{2.5}SPD from the surface to 819 hPa altitude, we present the scatter plots 523 of observed AOD (at 440 nm and 675 nm) versus observed PM2.5 concentrations in 524 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Fig. 10. AERONET observations of AOD 525 526 from 2013 to 2020 are available at three sites in BTH (that is, Beijing (39.97°N, 116.38° E), Beijing-CAMS (39.93°N, 116.31°E), Xianghe (39.75°N, 116.96°E)). At Beijing 527 (39.97°N, 116.38°E), AOD (440nm and 675nm) increased with PM_{2.5} concentration in 528 all three types of pollution. However, under the same levels of surface PM_{2.5} 529 concentration, AOD values in O₃&PM_{2.5}PD were higher than in PM_{2.5}SPD, implying 530 that the column burdens of aerosols were generally higher in O₃&PM_{2.5}PD than in 531 PM_{2.5}SPD, which may support the unique vertical distribution of PM_{2.5} in O₃&PM_{2.5}PD 532 shown in Fig. 8b. The scatter plots at Beijing-CAMS and Xianghe sites are similar and 533

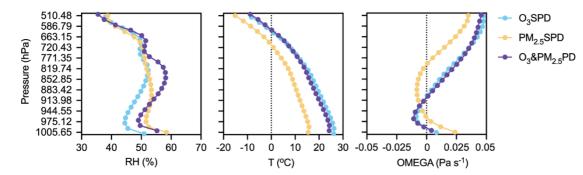

535

Figure 10. The scatterplots of (a) AOD (440 nm) and (b) AOD (675 nm) versus
observed PM_{2.5} concentrations in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Beijing
(39.97°N, 116.38°E) in April-October of 2013-2020.

540 **3.4 Meteorological conditions for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over BTH**

Figure 11 shows the vertical profiles of RH, T, and OMEGA for O₃SPD, PM_{2.5}SPD, 541 542 and O₃&PM_{2.5}PD captured by the model over BTH in the months of April to October form 2013-2020. It should be noted that O₃&PM_{2.5}PD had an unique vertical 543 distribution of RH. Near the surface, the values of RH in O₃&PM_{2.5}PD were between 544 545 those in O₃SPD and PM_{2.5}SPD. However, in the upper layers (883-771 hPa), O₃&PM_{2.5}PD had the highest RH among the three cases with a peak value of 58.2%. 546 As a result, the strongest aqueous chemical production of SO_4^{2-} (aqueous oxidation of 547 SO₂ by H₂O₂) occurred in O₃&PM_{2.5}PD around 819 to 771 hPa (Fig. S7). The vertical 548 profiles of temperature were similar in the three types of pollution, with the lowest 549 temperature in PM_{2.5}SPD. The vertical profiles of OMEGA were different in the three 550

cases. In O₃SPD and O₃&PM_{2.5}PD, OMEGA had positive values around 819 hPa,
indicating a strong sinking airflow, leading to a downward transport of pollutants.
Under O₃&PM_{2.5}PD, the average values of PBLH and SWGDN were 946.1 m and
257.2 W m⁻², respectively, which were higher (lower) than those in PM_{2.5}SPD (O₃SPD)
(Fig. S10).

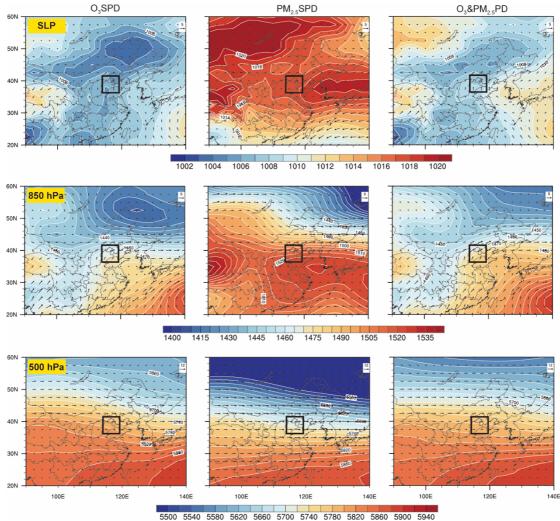

556

Figure 11. The vertical profiles of RH (%), T (°C), and OMEGA (Pa s⁻¹) averaged over
BTH and over the model-captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in in

559 April-October of 2013-2020.

Figure 12 shows the composited weather patterns for regional O₃SPD, PM_{2.5}SPD, 560 and O₃&PM_{2.5}PD (over 50% cities in the BTH experienced the pollution) that were 561 captured by the model in April-October of 2013-2020. The weather patterns of 562 O₃&PM_{2.5}PD were similar to some extent to those of O₃SPD but were quite different 563 564 from those of PM_{2.5}SPD. In O₃&PM_{2.5}PD, the BTH region was controlled by westerlies and an anomalous high-pressure system at 500 hPa (Figure S11). At 850 hPa, BTH was 565 at the west boundary of an anomalous anticyclone, and the associated strong anomalous 566 southerlies at 850 hPa brought moist air to BTH (Fig. S12 and S13), resulting in a high 567 RH that was beneficial to the aqueous chemical production of SO_4^{2-} in O_3 &PM_{2.5}PD. 568 In O₃SPD, BTH was under the influence of the high pressure ridge of the Western 569 Pacific Subtropical High (WPSH) at 850 hPa. Besides, the Northeast Cold Vortex was 570 located to the southwest of BTH at 850 hPa in O₃SPD, leading to dry and warm 571 conditions, which was favorable for the formation of O₃. In PM_{2.5}SPD, the BTH region 572

- was under the influence of both the continental high and the WPSH at 850 hPa. At the 573
- surface, BTH was under the influence of a uniform high pressure with very weak winds 574
- and hence stagnate atmosphere, which was conducive to the accumulation of PM_{2.5}. 575

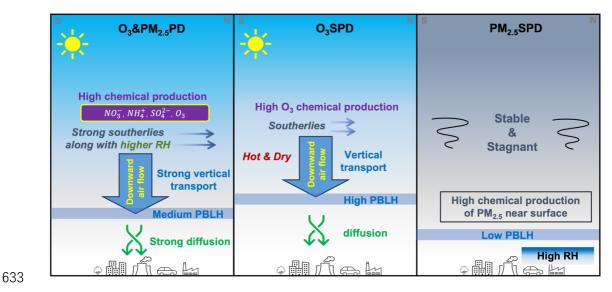
Figure 12. Composites of wind field (m s⁻¹) with SLP (sea level pressure) and with 577

geopotential height at 850 hPa and 500 hPa for regional O₃SPD, PM_{2.5}SPD, and 578

- O₃&PM_{2.5}PD that were captured by the model in April-October of 2013-2020. The 579
- solid black rectangle indicates BTH region. 580
- 581

582 4. Conclusions

We used the observed hourly concentrations of O₃ and PM_{2.5} from CNEMC and 583 the model results from the nested-grid version of the GEOS-Chem model to examine 584


585	the chemical and physical characteristics of the co-polluted days by O_3 and $PM_{2.5}$
586	(O3&PM _{2.5} PD) over the BTH region for eight warm seasons (April-October) from
587	2013 to 2020. The characteristic of O_3 &PM _{2.5} PD were compared with those of the
588	polluted days by O ₃ alone (O ₃ SPD) and by PM _{2.5} alone (PM _{2.5} SPD). In April-October
589	of 2013-2020, the observed O ₃ SPD, PM _{2.5} SPD, and O ₃ &PM _{2.5} PD were 2954, 2148,
590	and 1614 days, respectively, in which 75.0% (2954/3937), 58.1% (2148/3698), and
591	79.7% (1614/2024) were captured by the GEOS-Chem model, respectively. We
592	carried out composited analyses of the chemical and physical characteristics for
593	O ₃ SPD, PM _{2.5} SPD, and O ₃ &PM _{2.5} PD by using the samples (days) captured by both
594	the observations and the model.

The chemical characteristics of O3&PM2.5PD were found to be different from 595 those of O₃SPD, PM_{2.5}SPD at the surface. O₃&PM_{2.5}PD occurred with high levels of 596 atmospheric oxidants (high OH and O_x), with higher SOR and NOR compared to those 597 in O₃SPD and PM_{2.5}SPD, leading to high concentrations of both O₃ and PM_{2.5}. At the 598 surface, the composited concentrations of NO_3^- , NH_4^+ , BC, and OC were the highest in 599 $PM_{2.5}SPD$, while the composited concentration of SO_4^{2-} was the highest in 600 O₃&PM_{2.5}PD. There was a strong formation of SO₄²⁻ during the daytime in 601 O₃&PM_{2.5}PD in the oxidative atmosphere. 602

We also found unique features of the vertical distributions of O_3 and $PM_{2.5}$ in O₃&PM_{2.5}PD. Concentrations of PM_{2.5} were stable and high between 975 and 819 hPa in O₃&PM_{2.5}PD, unlike those in PM_{2.5}SPD that decreased rapidly with the altitude. In O₃&PM_{2.5}PD, the vertical profiles of NO₃⁻, NH₄⁺, and SO₄²⁻ were quite uniform at 975-819 hPa, corresponding to the stable O₃ concentrations at these altitudes. The process analysis (PA) showed that NO₃⁻, NH₄⁺, and SO₄²⁻ all had larger chemical productions at altitudes of 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD and PM_{2.5}SPD. The chemical production of SO_4^{2-} had large positive values from the surface to about 500 hPa. The Vertical_avd also had positive contributions to the net changes in O₃, NO₃, NH₄⁺, and SO₄²⁻ at 944-819 hPa in O₃&PM_{2.5}PD. Therefore, the strong chemical productions at 913-819 hPa accompanied by the downward transport resulted in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD.

Figure 13 summarizes the chemical and physical characteristics in O₃&PM_{2.5}PD, 615 O₃SPD, and PM_{2.5}SPD in the BTH region. In O₃&PM_{2.5}PD, the strong chemical 616 productions of O₃, NO₃, NH₄⁺, and SO₄²⁻ occurred at high altitudes of 913-819 hPa 617 where RH was high, and the accompanied downward airflow caused the stable 618 619 concentrations at 944-819 hPa. The composited PBLH in O₃&PM_{2.5}PD was about 946.1 m, and the strong mixed diffusion underneath the PBLH led to high concentrations of 620 pollutants at the ground level. In contrast, O₃SPD occurred in hot and dry atmosphere 621 with composited PBLH of 1073.5 m. Strong O₃ chemical production occurred around 622 819 hPa, and O₃ was then transported to the surface by downward air flow. The 623 624 atmosphere was stable and stagnate when PM2.5SPD occurred, with the lowest PBLH of 681.8 m. High RH (high chemical formation of PM_{2.5}) and the accumulation of 625 aerosols led to the highest surface-layer PM_{2.5} in PM_{2.5}SPD. 626

To summarize, O_3 &PM_{2.5}PD were characterized by high O_x , SOR, and NOR, uniform vertical profiles at 975-819 hPa, which were caused by an anomalous highpressure system at 500 hPa, strong southerlies and high RH at 850 hPa. Meteorological parameters around 850 hPa promoted strong chemical production of secondary aerosols and downward transport, resulting in the unique vertical profiles and high surface concentrations in O_3 &PM_{2.5}PD.

Figure 13. A schematic diagram of chemical and physical and characteristics in

635 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region.

637	The GEOS-Chem model is available at https://geos-chem.seas.harvard.edu (last
638	access: 5 August 2022). The observed hourly surface concentrations of air pollutants
639	are derived from the China National Environ- mental Monitoring Center
640	(https://air.cnemc.cn:18007/, CNEMC, 2022). The simulation results are available
641	upon request from the corresponding author (hongliao@nuist.edu.cn).
642	
643	Author contributions.
644	HD and HL conceived the study and designed the experiments. HD performed model
645	simulations and analysed the data. KL, XY, YY, JZ, JJ, and BL provided useful
646	comments on the paper. HD and HL prepared the paper, with contributions from all co-
647	authors.
648	
649	Competing interests.
650	The authors declare that they have no conflict of interest.
651	
652	Acknowledgements.
653	We acknowledge the CNEMC for making their data publicly available. We
654	acknowledge the efforts of GEOS-Chem working groups for developing and

Financial support.

managing the model.

Data availability.

- 658 This work was supported by the National Natural Science Foundation of China (Grant
- No. 42021004), the National Key Research and Development Program of China
- 660 (Grant No. 2019YFA0606800), and the Carbon Peak Carbon Neutral Science and
- 661 Technology Innovation Foundation of Jiangsu Province (BK20220031).

663 **References**

- Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yan- tosca, R. M., Savarino, J., Lee,
- C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints
 from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307,
 https://doi.org/10.1029/2004jd005659, 2005.
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B.,
- 669 Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric
- chemistry with assimilated meteorology: Model description and evaluation, J.
 Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807,
 2001.
- 673 Chu, B. W., Ma, Q. X., Liu, J., Ma, J. Z., Zhang, P., Chen, T. A., Feng, Q. C., Wang. C.
- 674 Y., Yang, N., Ma, H. N., Ma, J. J., Russell, A. G., He, H.: Air Pollutant Correlations
- in China: Secondary Air Pollutant Responses to NO_x and SO_2 Control, Environ.
- 676 Sci. Tech. Let., 7(10), 695-700, http://dx.doi.org/10.1021/acs.estlett.0c00403,
 677 2020.
- Dai, H. B., Zhu, J., Liao, H., Li, J. D., Liang, M. X., Yang, Y., Yue, X.: Co-occurrence
 of ozone and PM_{2.5} pollution in the Yangtze River Delta over 2013-2019:
 spatiotemporal distribution and meteorological conditions, Atmos. Res., 249,
 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021.
- Dang, R. J. and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region
 from 1985-2017 and the roles of anthropogenic emissions and meteorology, Atmos.
 Chem. Phys., 19, 10801-10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.

685	Dang, R. J., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological
686	influences on summertime surface ozone in China over 2012-2017, Sci. Total.
687	Environ., 754, 142394, https://doi:10.1016/j.scitotenv.2020.142394, 2021.

- Duan, F., He, K., Ma, Y., Yang, F., Yu, X., Cadle, S. H., Chan, T., and Mulawa, P. A.:
- 689 Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–
- 690 2002, Sci. Total Environ., 355(1-3), 264-275,
 691 https://doi:10.1016/j.scitotenv.2005.03.001, 2006.
- Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of
 mineral dust in the United States, Atmos. Environ., 41, 1251–1266,
 https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
- Gao, Y. and Ji, H. B.: Microscopic morphology and seasonal variation of health effect
 arising from heavy metals in PM_{2.5} and PM₁₀: One-year measurement in a densely
 populated area of urban Beijing, Atmos. Res., 212, 213–226, https://doi.org/
 10.1016/j.atmosres.2018.04.027, 2018.
- 699 Giles, D. M., Sinyuk, A., Sorokin, M. S., Schafer, J. S., Lyapustin, A.: Advancements
- in the aerosol robotic network (aeronet) version 3 database automated near real time quality control algorithm with improved cloud screening for sun photometer
- aerosol optical depth (aod) measurements, Atmos. Meas. Tech., 12, 169–209,
 https://doi.org/10.5194/amt-12-169-2019. 2019.
- Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of
 atmospheric processes affecting the dynamics of air pollution in South-Western
 Europe during a typical summer-time photochemical episode, Atmos. Chem. Phys.,

9, 849-864, https://doi.org/10.5194/acp-9-849-2009, 2009.

- 708 Gong, C. and Liao, H.: A typical weather pattern for the ozone pollution events in North
- China, Atmos. Chem. Phys., 19, 13725-13740, https://doi.org/10.5194/acp-1913725-2019, 2019.
- 711 Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R. J., Yang, Y.: Persistent ozone pollution
- episodes in North China exacerbated by regional transport, Environ. Pollut., 265,
 115056, https://doi:10.1016/j.envpol.2020.115056, 2020.
- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.
- 715 K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
- version 2.1 (MEGAN2.1): an extended and updated framework for mod- eling
- 717 biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
 718 https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- Jiang, N., Li, L., Wang, S., Li, Q., Dong, Z., Duan, S., Zhang, R., Li, S.: Variation
- tendency of pollution characterization, sources, and health risks of PM_{2.5}-bound
- polycyclic aromatic hydrocarbons in an emerging megacity in China: based on
- three-year data, Atmos. Res., 217, 81–92, https://doi.org/10.1016/j.
 atmosres.2018.10.023, 2019.
- Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K., Zhang, Q., Zhai, S.
- X.: A two-pollutant strategy for improving ozone and particulate air quality in
 China, Nat. Geosci., 12, 906–910, https://doi.org/10.1038/s41561-019-0464-x,
- 727 2019.
- Li, K., Jacob, D. J., Shen, L., Lu, X., Smedt, D. I., Liao, H.: Increases in surface ozone

729	pollution in China from 2013 to 2019: anthropogenic and meteorological
730	influences, Atmos. Chem. Phys., 20, 11423-11433, https://doi.org/10.5194/acp-
731	20-11423-2020, 2020.

- Li, M., Wang, L., Liu, J.: Exploring the regional pollution characteristics and
 meteorological formation mechanism of PM_{2.5} in North China during 2013-2017,
 Environ. Int., 134, 105283, https://doi.org/10.1016/j.envint.2019.105283, 2019.
- Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y.,
- 736 Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang,
- S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
 inventory under the international collaboration framework of the MICS-Asia and
 HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-
- 740 2017, 2017.
- Liu, Y. X., Zhao, Q. B., Hao, X., Zhao, J. R., Zhang, Y., Yang, X., Fu, Q. Y., Xu, X. Y.,
 Wang, X. F., Huo, J. T., Chen, J. M.: Increasing surface ozone and enhanced
 secondary organic carbon formation at a city junction site: An epitome of the
 Yangtze River Delta, China (2014–2017), Environ. Pollut., 265, 0269-7491,
 https://doi.org/10.1016/j.envpol.2020.114847, 2020.
- Lou, S. J., Liao, H., Yang, Y., and Mu, Q.: Simulation of the interannual variations of
 tropospheric ozone over China: Roles of variations in meteorological parameters
 and anthropogenic emissions, Atmos. Environ., 122, 839–851,
 https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015.
- 750 Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5

751	atmospheric general circulation model: evolution from MERRA to MERRA2,
752	Geosci. Model Dev., 8, 1339-1356, https://doi.org/10.5194/gmd-8-1339-2015,
753	2015.

- Mu, Q. and Liao, H.: Simulation of the interannual varia- tions of aerosols in China:
 role of variations in meteo- rological parameters, Atmos. Chem. Phys., 14, 9597–
 9612, https://doi.org/10.5194/acp-14-9597-2014, 2014.
- Nan, J. L., Wang, S. S., Guo, Y. L., Xiang, Y. J., Zhou. B.: Study on the daytime OH
 radical and implication for its relationship with fine particles over megacity of
 Shanghai, China, Atmos. Environ., 154, 167-178,

760 https://doi.org/10.1016/j.atmosenv.2017.01.046, 2017.

- 761 Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime
- 762 ozone over China, Atmos. Chem. Phys., 18, 11447–11469,
 763 https://doi.org/10.5194/acp-18-11447- 2018, 2018.
- Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols
- 765 over the United States and implica- tions for natural visibility, J. Geophys. Res.-

766 Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190, 2003.

- Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and
 transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the
 United States: Im- plications for policy, J. Geophys. Res.-Atmos., 109, D15204,
- 770 https://doi.org/10.1029/2003jd004473, 2004.
- Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld,
- J. H.: Effect of changes in climate and emissions on future sulfate-nitrate-

- ammonium aerosol lev- els in the United States, J. Geophys. Res.-Atmos., 114, 773 D01205, https://doi.org/10.1029/2008jd010701, 2009. 774 775 Qin, Y., Li, J. Y., Gong, K. J., Wu, Z., Chen, M. D., Qin, M. M., Huang, L., Hu, J. L.: Double high pollution events in the Yangtze River Delta from 2015 to 2019: 776 777 Characteristics, trends, and meteorological situations, Sci. Total. Environ., 792, 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021. 778 Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., Xu, X.: 779 Impacts of tropospheric ozone and climate change on net primary productivity and 780 781 net carbon exchange of China's forest ecosystems, Glob. Ecol. Biogeogr., 20, 391-406, https://doi.org/10.1111/j.1466-8238.2010.00606.x, 2011. 782 Sun, T., Wu, C. and Wu, D.: Time-resolved black carbon aerosol vertical distribution 783 784 measurements using a 356-m meteorological tower in Shenzhen, Theor. Appl. Climatol., 140, 1263–1276, https://doi.org/10.1007/s00704-020-03168-6, 2020. 785
- 786 Tan, Z. F., Fuchs, H., and Lu, K. D.: Radical chemistry at a rural site (Wangdu) in the
- North China Plain: Observation and model calculations of OH, HO₂ and RO₂
- radicals, Atmos. Chem. Phys., 17(1): 663–690, https://doi.org/10.5194/acp-17663-2017, 2017.
- Wang, H., Kiang, C., Tang, X., Zhou, X., Chameides, W. L.: Surface ozone: a likely
 threat to crops in Yangtze delta of China, Atmos. Eviron., 39, 3843–3850,
 https://doi.org/10.1016/j.atmosenv.2005.02.057, 2005.
- Wang, X., Manning, W., Feng, Z., Zhu, Y.: Ground-level ozone in China: distribution
 and effects on crop yields, Environ. Pollut., 147 (2), 394–400, https://

doi.org/10.1016/j.envpol.2006.05.006, 2007.

- Woodward-Massey, R., Slater, E. J., Alen, J.: Implementation of a chemical background 796 797 method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China, Atmos. Meas. Tech., 798 13(6): 3119–3146, https://doi.org/10.5194/amt-13-3119-2020, 2020. 799 Xuan, J., Liu, G., and Du, K.: Dust emission inventory in northern China, Atmos. 800 Environ., 34(26), 4565–4570, https://doi:10.1016/S1352-2310(00) 00203-X, 2000. 801 Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T., and Mulawa, P. 802 A.: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year 803 period, 499-510, https://doi:10.1016/S1352-Atmos. Environ., 37(4), 804 2310(02)00918-4, 2003. 805 806 Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., Li, J.: Ozone and haze pollution weakens net primary productivity in China, Atmos. 807 Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-2016-1025, 2017. 808 Zhang, Y. and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the 809 Southeast United States, P. Natl. Acad. Sci. USA, 113, 10025-10030, 810 https://doi.org/10.1073/pnas.1602563113, 2016. 811 Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: 812 Analysis of a winter regional haze event and its formation mechanism in the North 813 China Plain, Atmos. Chem. Phys., 13, 5685-5696, https://doi:10.5194/acp-13-814
- 8155685-2013, 2013.
- 816 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J.,

- Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
 anthropogenic emissions since 2010 as the consequence of clean air actions,
 Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-140952018, 2018.
- Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., He, K.: Changes in
- China's anthropogenic emissions and air quality during the COVID-19 pandemic
 in 2020, Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-132895-2021, 2021.
- Zhu, J., Chen, L., Liao, H., Dang, R. J.: Correlations between PM_{2.5} and ozone over
 China and associated underlying reasons, Atmosphere, 10(7), 352,
 https://doi.org/10.3390/atmos10070352, 2019.
- 828 Zong, L., Yang, Y., and Gao, M.: Large-scale synoptic drivers of co-occurring
- summertime ozone and PM_{2.5} pollution in eastern China, Atmos. Chem. Phys., 11,
- 830 9105-9124, https://doi.org/10.5194/acp-21-9105-2021, 2021.