| 1 | Composited analyses of the chemical and physical characteristics of co- | |----|--| | 2 | polluted days by ozone and PM _{2.5} over 2013-2020 in the Beijing-Tianjin-Hebei | | 3 | region | | 4 | | | 5 | Huibin Dai ¹ , Hong Liao ^{1*} , Ke Li ¹ , Xu Yue ¹ , Yang Yang ¹ , Jia Zhu ¹ , Jianbing Jin ¹ , | | 6 | Baojie Li ¹ , Xingwen Jiang ² | | 7 | | | 8 | ¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution | | 9 | Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and | | 10 | Equipment Technology, School of Environmental Science and Engineering, Nanjing | | 11 | University of Information Science & Technology, Nanjing 210044, China | | 12 | ² Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, | | 13 | Sichuan 610072, China | | 14 | | | 15 | *Correspondence to: Hong Liao (<u>hongliao@nuist.edu.cn</u>) | | 16 | | ### Abstract. | The co-polluted days by ozone (O ₃) and PM _{2.5} (particulate matter with an | |---| | aerodynamic equivalent diameter of 2.5 µm or less) (O ₃ &PM _{2.5} PD) were frequently | | observed in the Beijing-Tianjin-Hebei (BTH) region in warm seasons (April-October) | | of 2013-2020. We applied the 3-D global chemical transport model (GEOS-Chem) to | | investigate the chemical and physical characteristics of $O_3\&PM_{2.5}PD$ by composited | | analyses of such days that were captured by both the observations and the model. Model | | results showed that, when $O_3\&PM_{2.5}PD$ occurred, the concentrations of hydroxyl | | radical and total oxidant, sulfur oxidation ratio, and nitrogen oxidation ratio were all | | high, and the concentrations of sulfate at the surface were the highest among all | | pollution types. We also found unique features in vertical distributions of aerosols | | during $O_3\&PM_{2.5}PD$; concentrations of $PM_{2.5}$ decreased with altitude near the surface | | but remained stable at 975-819 hPa. Process analyses showed that secondary aerosols | | (nitrate, ammonium and sulfate) had strong chemical productions at 913-819 hPa, | | which were then transported downward, resulting in the quite uniform vertical profiles | | at 975-819 hPa in O_3 &PM _{2.5} PD. The weather patterns for O_3 &PM _{2.5} PD were | | characterized by anomalous high-pressure system at 500 hPa as well as strong | | southerlies and high RH at 850 hPa. The latter resulted in the strong chemical | | productions around 850 hPa in O ₃ &PM _{2.5} PD. The physical and chemical characteristics | | of O_3 &PM _{2.5} PD are quite different from those of polluted days by either O_3 alone or | | PM _{2.5} alone, which have important implications for air quality management. | Keywords: Co-occurrence, Ozone and PM_{2.5}, Pollution, Meteorological parameters. # 1. Introduction Surface ozone (O₃) and PM_{2.5} (particulate matter with an aerodynamic equivalent diameter of 2.5 micrometers or less) are important air pollutants in the atmosphere that have harmful effects on public health (Gao and Ji, 2018; Jiang et al., 2019), ecosystems (Ren et al., 2011; Yue et al., 2017), and crops (Wang et al., 2005; Wang et al., 2007). Surface O₃ is a secondary pollutant produced by photochemical oxidation of volatile organic compounds (VOCs) and nitrogen oxides (NO_x = NO+NO₂) in the presence of intense ultraviolet light, and the major PM_{2.5} components (nitrate (NO₃), ammonium (NH₄⁺), sulfate (SO₄²⁻), black carbon (BC), organic carbon (OC)) are mainly caused by anthropogenic emissions of aerosols and aerosol precursors. Although surface O₃ and PM_{2.5} have different formation mechanisms, they are coupled through the common precursors (NO_x and VOCs) and photochemical reactions (Chu et al., 2020). Since 2013, stringent clean air actions have been implemented to improve air quality in China (State Council of the People's Republic of China, 2013, 2018). However, O₃ concentrations increased unexpectedly, while PM_{2.5} concentrations decreased drastically in the past years (Li et al., 2019). The co-polluted days by O₃ and PM_{2.5} (concentrations of both O₃ and PM_{2.5} exceed the national air quality standards on the same day, hereafter referred to as O₃&PM_{2.5}PD) were also reported (Dai et al., 2019). Therefore, it is fundamental to examine the chemical and physical characteristics of O₃&PM_{2.5}PD. The Beijing-Tianjin-Hebei (BTH) region is the most populated region in northern China. In the past few years, concentrations of O₃ and PM_{2.5} in the BTH were among the highest in China. The observations from China National Environmental Monitoring Center (CNEMC) showed that the mean and maximum MDA8 (daily maximum 8-h average) O₃ in North China in summer of 2019 were 83 ppb and 129 ppb, respectively, and the summer mean MDA8 O₃ increased with a trend of 3.3 ppb a⁻¹ over 2013–2019 (Li et al., 2020). Gong et al. (2020) reported that O₃ polluted days (i.e., MDA8 O₃ 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 concentration exceeds 80 ppb) in May-July in the BTH increased from 35 days in the year of 2014 to 56 days in 2018. As for observed PM_{2.5}, the concentration averaged over BTH had a decreasing trend of 10 µg m⁻³ yr⁻¹ over 2013-2019, and the mean value was $79 \pm 17 \,\mu\text{g m}^{-3}$ over these years (Li et al., 2020). BTH also had the highest frequency and intensity of severe haze pollution days (i.e., days with daily mean PM_{2.5} concentration exceeding 150 µg m⁻³) in China from 2013 to 2017, with an observed mean frequency of 21.2 d yr⁻¹ and an observed mean intensity of 231.6 μg m⁻³ (Dang and Liao, 2019). The interactions between O₃ and PM_{2.5} have been reported in previous studies. Zhu et al. (2019) examined the spatial-temporal characteristics of the correlations between observed O₃ and PM_{2.5} at 1497 sites in China for 2016 and found that O₃- $PM_{2.5}$ had the highest positive correlations (correlation coefficients > +0.7) in July in southern China and the largest negative correlations (r values < -0.5) during January in northern China. Li et al. (2019) used the GEOS-Chem model to analyze the O₃-PM_{2.5} relationship in northern China and found that O₃ production was suppressed under high PM_{2.5} conditions (PM_{2.5} concentrations $> 60 \mu g m^{-3}$) because of the reactive uptake of hydrogen oxide radicals (HO_x) by aerosol particles. Chu et al. (2020) analyzed the observed daily PM_{2.5} and O₃ concentrations in 114 cities in China during years of 2013-2018 and found that the correlations between O₃ and PM_{2.5} tended to change from negative in 2013 to positive in 2018 in China as air quality improved. Few previous studies have examined the co-occurrence of O₃ and PM_{2.5} pollution (MDA8 $O_3 > 80$ ppb and $PM_{2.5} > 75 \mu g m^{-3}$). Zong et al. (2021) used the obliquely rotated principal component analysis in the T-mode (T-PCA) method to identify the synoptic weather pattern associated with O₃&PM_{2.5}PD in eastern China during 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 summer of 2015–2018, and found that O₃&PM_{2.5}PD were associated with a stable western Pacific subtropical high ridge, which brought warm and moist air flow from the East China Sea to the eastern China to promote hygroscopic growth of fine particulate matter in BTH and northern YRD. Dai et al. (2021) analyzed O₃&PM_{2.5}PD in the YRD for April-October of 2013-2019 by using observations and reported that the co-polluted days occurred mainly in April (29.6% of co-polluted days occurred in April), May (23.0%), June (19.5%), and October (10.8%) under meteorological conditions of higher relative humidity, higher surface air temperature, and lower wind speed relative to the days with O₃ pollution alone. Qin et al. (2021) investigated O₃&PM_{2.5}PD by using the hourly observed concentrations of water-soluble ions, OC, and elemental carbon (EC) in 2019 in cities of Nanjing and Changzhou. They found that inorganic aerosols mainly existed as NH₄NO₃ and the correlation coefficients between the secondary components NO₃, NH₄, and SO₄² were relatively high during O₃&PM_{2.5}PD in 2019, indicating a significant formation of secondary inorganic aerosols. Although these studies have discussed the meteorological conditions and some chemical characteristics of O₃&PM_{2.5}PD, the understanding of O₃&PM_{2.5}PD was quite limited because of the limited observations of chemical species involved. In this work, we take advantage of the comprehensive chemical mechanism of the global chemical transport model to have better understanding of O₃&PM_{2.5}PD. We apply the 3-D global chemical transport model (GEOS-Chem) to simulate O₃&PM_{2.5}PD in BTH in years of 2013-2020, and investigate the chemical and physical characteristics of O₃&PM_{2.5}PD by composited analyses of such days that are captured by both the observations and the model. The objectives of this study are: 1) to examine the underlying chemical mechanisms for O₃&PM_{2.5}PD in BTH for warm seasons (April-October) of 2013-2020 by comparing O₃&PM_{2.5}PD with polluted days by O₃ alone or by PM_{2.5} alone, and 2) to identify the weather patterns that are 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 associated with O₃&PM_{2.5}PD in BTH. The observations, the reanalyzed meteorological data, the GEOS-Chem model, and the process analysis are described in Section 2. The observed O₃&PM_{2.5}PD are presented in Section 3.1. The evaluation of simulated concentrations of O₃ and PM_{2.5} as well as the simulated pollution days by O₃ and/or PM_{2.5} are shown in Section 3.2. The underlying mechanisms of O₃&PM_{2.5}PD are shown in Section 3.3. In
Section 3.4, the meteorological conditions for the co-occurrence of O₃ and PM_{2.5} pollution are investigated. The conclusions are presented in Section 4. #### 2. Methods #### 2.1 Observed O₃ and PM_{2.5} concentrations Hourly concentrations of PM_{2.5} and O₃ in China over the years of 2013-2020 were taken from the public website of CNEMC (https://air.cnemc.cn:18007/, CNEMC, 2022). To ensure data quality, the daily mean PM_{2.5} concentration was calculated when there were valid data for more than 20 h during that day and the MDA8 O₃ concentration was calculated when there were valid data for at least 6 h for each 8 h. For the calculation of monthly and annual mean concentrations, the number of days with valid concentrations had to be more than 15 in each month. The spatial distribution of the 79 valid sites within BTH (37-41°N, 114-118°E, the black rectangle) is shown in Fig. 1. For model evaluation, the observed concentrations were averaged over sites within each of the 0.5° latitude × 0.625° longitude MERRA-2 grid cell. There are 18 model grids in BTH. Note that the observed O₃ concentrations from this network have a unit of μg m⁻³. For the consistency of observed and simulated O₃ concentrations, 1 μg m⁻³ of O₃ is approximately 0.5 ppb under the conditions of 298 K and 1013 hPa. The observed O₃ concentrations reported by the CNEMC were under standard conditions of 273 K and 1013 hPa before 31 August 2018 and were under standard conditions of 298 K and 1013 hPa afterwards (http://www.mee.gov.cn/ xxgk2018/xxgk/xxgk01/201808/t20180815_629602.html), which were accounted for as O₃ concentrations were converted to ppb. According to the National Ambient Air Quality Standard of China (GB3095-2012), O_3 (PM_{2.5}) concentration exceeds the national air quality standard if the MDA8 O_3 (daily mean PM_{2.5}) concentration is higher than 160 μ g m⁻³ (75 μ g m⁻³). In this study, we define O_3 polluted days (hereafter called ' O_3 PD') for days with MDA8 O_3 concentration > 160 μ g m⁻³, PM_{2.5} polluted days (hereafter called 'PM_{2.5}PD') with daily mean PM_{2.5} concentration > 75 μ g m⁻³, and the co-pollution days by O_3 and PM_{2.5} (O_3 &PM_{2.5}PD) with daily MDA8 O_3 concentration > 160 μ g m⁻³ as well as the daily mean PM_{2.5} concentration > 75 μ g m⁻³. #### 2.2 Reanalyzed meteorological fields Meteorological fields were obtained from the Version 2 of Modern Era Retrospective-analysis for Research and Application (MERRA2), which were generated by the NASA Global Modeling and Assimilation Office (GMAO). The MERRA2 data have a horizontal resolution of 0.5° latitude × 0.625° longitude and 72 vertical layers (Molod et al., 2015). To analyze the meteorological conditions for O₃&PM_{2.5}PD, vertical pressure velocity (OMEGA), planetary boundary layer height (PBLH), temperature (T), relative humidity (RH), surface incoming shortwave flux (SWGDN) are used. Note that the temporal resolution for PBLH, T, and SWGDN is 1h, and that for OMEGA and RH is 3h. Daily mean geopotential heights at 850 and 500 hPa from the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) global reanalysis with a resolution of 2.5° latitude by 2.5° longitude are also utilized in this study. #### 2.3 Observed aerosol optical depth We obtained the version 3 datasets of observed daily aerosol optical depth (AOD) of level 2 (improved cloud screened and quality-assured) from Aerosol Robotic Network (AERONET, https://aeronet.gsfc.nasa.gov/new_web/index.html) established by NASA and LOA-PHOTONS (Giles et al., 2019). Three sites in the BTH region have observations available over 2013-2020, including Beijing (39.97°N, 116.38°E), Beijing-CAMS (39.93°N, 116.31°E), and Xianghe (39.75°N, 116.96°E). The AOD values at 440 nm and 675 nm at these three sites are analyzed in this study. #### 2.4 GEOS-Chem model We simulated O_3 and $PM_{2.5}$ using the nested version of the 3-D global chemical transport model (GEOS-Chem, version 11-01) driven by the MERRA2 meteorological data. The nested domain was set over Asia (60° - 150° E, 11° S- 55° N) with a horizontal resolution of 0.5° latitude \times 0.625° longitude, and the chemical boundary conditions were provided by the global GEOS-Chem simulation with 2.5° latitude \times 2.5° longitude horizontal resolution. The GEOS-Chem model includes fully coupled O₃-NO_x-hydrocarbon and aerosol chemistry mechanism (Bey et al., 2001; Pye et al., 2009) to simulate aerosols including SO₄²⁻ (Park et al., 2004), NO₃⁻ (Pye et al., 2009), NH₄⁺, BC and OC (Park et al., 2003), mineral dust (Fairlie et al., 2007), and sea salt (Alexander et al., 2005) as well as the gas-phase pollutants such as NO_x and O₃. Over the Asian domain, the anthropogenic emissions of OC, BC, carbon monoxide (CO), sulfur dioxide (SO₂), NO_x, ammonia (NH₃), and VOCs were obtained from the Multi-resolution Emission Inventory for China (MEIC), which includes emissions from industry, power, residential and transportation sectors for years of 2014-2017 (Li et al., 2017; Zheng et al., 2018), 2019 and 2020 (Zheng et al., 2021). Emissions in 2018 were obtained by the interpolation of those in 2017 and 2019 for each grid due to the lack of publicly accessible emission inventories for that year. The biogenic emissions in GEOS-Chem are simulated using MEGAN v2.1 (Guenther et al., 2012). The hourly O_3 and $PM_{2.5}$ concentrations for the years of 2013-2020 were simulated by the GEOS-Chem model which were driven by MERRA-2 meteorological fields. The model was spined up for 6 months before the integration over the studied time period. #### 2.5 Process analysis Process analysis (PA) was applied to identify the relative importance of atmospheric processes in O₃&PM_{2.5}PD. PA has been widely used in previous studies to examine the key processes contributing to air pollution episodes (Gonçalves et al., 2009; Dang and Liao, 2019; Gong and Liao, 2019) as well as the interannual and decadal variations of air pollutants (Mu and Liao, 2014; Lou et al., 2015). Five major processes that influence O₃ and PM_{2.5} concentrations were diagnosed at every time step, including net chemical production, dry deposition, horizontal advection, vertical advection, and diffusion, for the regional pollution days (days with more than half of the sites in BTH experiencing pollutions). We carried out PA for O₃SPD (exclude O₃&PM_{2.5}PD from O₃PD), PM_{2.5}SPD (exclude O₃&PM_{2.5}PD from PM_{2.5}PD), and O₃&PM_{2.5}PD over BTH. # 3. Results 216 217 # 3.1 Observed polluted days by O₃ and PM_{2.5} | 218 | Figure 1a shows the spatial distributions of observed numbers of O ₃ PD, | |-----|---| | 219 | PM _{2.5} PD, and O ₃ &PM _{2.5} PD summed over the warm seasons (April-October) of 2013- | | 220 | 2020. The spatial distributions of polluted days in each year are shown in Fig. S1. The | | 221 | numbers of O ₃ PD, PM _{2.5} PD, and O ₃ &PM _{2.5} PD were high in BTH, which were, | | 222 | respectively, 524.3 344.6, and 128.1 days from observations, as the values were | | 223 | averaged over all sites in BTH. The high numbers of O ₃ PD, PM _{2.5} PD, and | | 224 | O ₃ &PM _{2.5} PD in BTH were associated with the highest anthropogenic emissions (NO _x | | 225 | and NMVOCs) in this region (Dang et al., 2021). | | 226 | Figure 1b shows the numbers of days averaged over all sites in BTH for non- | | 227 | polluted days (NPD, MDA8 O_3 < 80 ppb and $PM_{2.5}$ < 75 μg m ⁻³), O_3PD , | | 228 | O ₃ &PM _{2.5} PD, and PM _{2.5} PD in each month of warm seasons from 2013 to 2020. O ₃ PD | | 229 | and O ₃ &PM _{2.5} PD mainly occurred in May, June, and July, while PM _{2.5} PD mainly | | 230 | appeared in April and October. The monthly numbers of O ₃ &PM _{2.5} PD (PM _{2.5} PD) | | 231 | declined from 2013 to 2020, with the fastest drop in June, from 7.5 (17.1) days in | | 232 | June 2013 to 1.8 (1.8) days in June 2020. On the contrary, the numbers of O ₃ PD kept | | 233 | increasing, especially in June, from 10.9 days in June 2013 to 23.6 days in June 2020. | | 234 | The reductions in O_3 &PM _{2.5} PD were associated with the large reductions in PM _{2.5} | | 235 | since the implementation of the Clean Air Action in 2013. | Figure 1. (a) Spatial distributions of observed numbers of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD summed over April-October of 2013-2020. The solid black rectangle indicates the BTH region. (b) The observed numbers of NPD (non-polluted days, green), O₃PD (blue + purple with slashes), O₃&PM_{2.5}PD (purple with slashes), and PM_{2.5}PD (pink + purple with slashes) averaged over all sites in BTH from April to October in 2013 to 2020. Figure 2a shows the linear trends of observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD in warm seasons of 2013-2020 averaged over the BTH. O₃PD showed an upward trend of 7.9 days yr⁻¹ from 2013 to 2020. However, the numbers of PM_{2.5}PD and O₃&PM_{2.5}PD decreased over 2013-2020, with linear trends of -11.2 and -3.4 days yr⁻¹, respectively. Figure 2b shows the changes in percentage of O₃&PM_{2.5}PD in PM_{2.5}PD from 2013 to 2020 for each month. It should be noted that, when PM_{2.5}PD occurred, the proportions of O₃&PM_{2.5}PD had an upward trend from 2013 to 2020. In May, June, August, and September of 2020, the proportions of O₃&PM_{2.5}PD in PM_{2.5}PD reached 100%, indicating that PM_{2.5} pollution was accompanied by O₃ pollution in #### 252 recent years. **Figure 2.** (a) The trends of observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD in warm seasons from 2013 to 2020 averaged over all sites in BTH. The blue, yellow and purple solid lines (dashed lines) represent the numbers (liner trend) of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD, respectively. (b) The percentage
of O₃&PM_{2.5}PD in PM_{2.5}PD for April to October in 2013 to 2020. The polluted days were averaged over all sites in BTH. #### 3.2 Simulated polluted days and model evaluation #### 3.2.1 Simulated surface-layer MDA8 O₃ and PM_{2.5} concentrations Figures 3a and 3b show, respectively, the spatial distributions of simulated and observed surface-layer concentrations of MDA8 O₃ and PM_{2.5} in China, as the concentrations are averaged over the warm seasons (April-October) of 2013-2020. The concentrations of MDA8 O₃ and PM_{2.5} were both high in BTH. Averaged over BTH and the studied time period, the observed concentrations of MDA8 O₃ and PM_{2.5} were 58.1 ppb and 60.3 μg m⁻³, respectively, while the simulated values were 68.0 ppb and 61.1 μg m⁻³, respectively. Figures 3c and 3d compare the time series of observed and simulated daily MDA8 O₃ and PM_{2.5} concentrations averaged over the BTH. The simulated daily concentrations of MDA8 O₃ (PM_{2.5}) in eight warm seasons have a normalized mean bias (NMB) of 7.9% (10.6%). The model generally captures the daily variations (peaks and troughs) in the observed MDA8 O₃ and PM_{2.5} concentrations, with R values of 0.80 and 0.72, respectively. It should be noted that mineral dust and sea-salt aerosols were not considered in this study, because they are not the major aerosol components in China and the concentrations are generally low based on previous measurements (Xuan et al., 2000; Ye et al., 2003; Duan et al., 2006; Zhao et al., 2013). However, excluding dust and sea salt may lead to low biases in simulated PM_{2.5} concentrations. Due to the lack of the publicly accessible long-term observations of $PM_{2.5}$ components in China, we compared the simulated SO_2 and NO_2 (precursors for SO_4^{2-1} and NO_3^{-1}) with observations from CNEMC in Fig. S2. The simulated daily mean concentrations of NO_2 (SO_2) agree well with the observations from CNEMC with R of 0.82 (0.78) and MB of -14.9% (9.3%). **Figure 3.** Spatial distributions of simulated (shades) and observed (CNEMC, dots) surface-layer concentrations of (a) MDA8 O₃ (ppb) and (b) PM_{2.5} (μg m⁻³) averaged over the eight warm seasons (April to October, 2013–2020). The solid black rectangle in (a) and (b) indicates the BTH region. Simulated and observed daily concentrations of surface-layer (c) MDA8 O₃ and (d) PM_{2.5} averaged over BTH. The correlation coefficient (R) and normalized mean bias (NMB) are also shown for (c) and (d). NMB = $(\sum_{i=1}^{N} (M_i - O_i) / \sum_{i=1}^{N} (O_i)) \times 100\%$, where O_i and M_i are the observed and simulated concentrations, respectively, i refers to the ith day, and N is the total number of days. #### 3.2.2 Simulated O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 Figure S3 shows the capability of the model in capturing the polluted days. Although the GEOS-Chem model well reproduces the spatial distributions of observed MDA8 O₃ and PM_{2.5} concentrations, it underestimates the numbers of O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD because of the model's deficiency in capturing the peak concentrations of air pollutants. Such deficiency was also reported in previous studies that used the GEOS-Chem model or the weather Research and Forecasting with Chemistry (WFR-chem) model (Zhang et al., 2016; Ni et al., 2018; Gong and Liao, 2019; Dang and Liao, 2019). Therefore, to identify O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD using model results, we utilized lower thresholds by considering the NMBs of simulated MDA8 O₃ and PM_{2.5} concentrations in each of 18 grids of BTH. Taking the grid of Beijing as an example, simulated MDA8 O₃ and PM_{2.5} had NMBs of -22.0% and -26.9%, respectively, as the simulated concentrations were compared with observations for days with observed concentrations higher than the national air quality standards over the warm seasons of 2013-2020. We then adjusted the threshold of O₃PD in this grid to be 62.4 ppb (80 ppb×78%) and that of PM_{2.5}PD to be 54.8 μ g m⁻³ (75 μ g m⁻³×73.1%). These adjusted thresholds were also used to identify O₃&PM_{2.5}PD. Such approach was also used in previous studies to better capture the pollution events based on the simulations (Dang and Liao, 2019; Gong and Liao, 2019). With the adjusted thresholds, 56-93% of the observed O₃PD, PM_{2.5}PD, and O₃&PM_{2.5}PD can be captured by the model (Fig. S3e). #### 3.2.3 Simulated O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD Since O₃PD or PM_{2.5}PD encompasses O₃&PM_{2.5}PD, we further define O₃ single pollution days (hereafter called "O₃SPD", which is to exclude O₃&PM_{2.5}PD from O₃PD) and PM_{2.5} single pollution days (hereafter called "PM_{2.5}SPD", which is to exclude O₃&PM_{2.5}PD from PM_{2.5}PD) for the purpose of obtaining the characteristics of different polluted days. Figures 4a and 4b show, respectively, the spatial distributions of numbers of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD from observations and from the GEOS-Chem model using the adjusted thresholds. Considering the total of polluted days in 18 grids in BTH, observed O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD were, respectively, 3937, 3698, and 2024 days, in which 75.0% (2954/3937), 58.1% (2148/3698), and 79.7% (1614/2024) were captured by observation and simulation simultaneously (Fig. 4c). In addition, the numbers of observed and captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in each month are shown in Fig. S4. The model has a fairly good capability of capturing the observed polluted days in each month. **Figure 4.** Spatial distributions of (a) observed numbers of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, (b) numbers of polluted days that were observed and also captured by the GEOS-Chem model with adjusted thresholds, and (c) percentages of observed polluted days that were captured by the model with adjusted thresholds. The values were calculated for the warm months (April to October) of 2013-2020. #### 3.3 Chemical characteristics of polluted days by O₃ and PM_{2.5} In this section, to investigate the chemical characteristics of O₃SPD, PM_{2.5}SPD and O₃&PM_{2.5}PD, we present first the simulated atmospheric oxidants in 3.3.1, and then show the simulated surface concentrations and vertical profiles of PM_{2.5} and MDA8 O₃ in 3.3.2 and 3.3.3, respectively, followed by the process analysis in 3.3.4. The observed AOD values to verify the model results are presented in 3.3.5. #### 3.3.1 Atmospheric oxidants of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 Figure 5 shows the boxplots of daily concentrations of hydroxyl radical (OH) and total oxidant ($O_x = O_3 + NO_2$) from the model for days of O_3SPD , $PM_{2.5}SPD$, and O₃&PM_{2.5}PD that were observed and also captured by the model (samples in Fig. 4b) in the warm seasons of 2013-2020 in 18 grids of BTH. The levels of OH and O_x characterize the atmospheric oxidation capacity, following Hu et al. (2020) and Chan et al. (2017). The concentrations of OH were the highest in O₃SPD, with an averaged value of 2.8×10⁶ molec cm⁻³, followed by that in O₃&PM_{2.5}PD (2.0×10⁶ molec cm⁻³) and in PM_{2.5}SPD (1.0×10⁶ molec cm⁻³). Due to the lack of publicly accessible observations of OH in BTH, we compare the simulated OH concentrations with observations reported in the literature (Table S1). The simulated OH concentrations agree closely with the observed values. In Wangdu of BTH, while the observed daily maximum OH concentrations in summer of 2014 were in the range of 5-15×10⁶ molec cm⁻³ (Tan et al., 2016), the simulated OH concentrations in the same time period in this work were 3.7-9.5×10⁶ molec cm⁻³. In Beijing in summer of 2017, the observed daily mean OH concentration was 5.8×10⁶ molec cm⁻³ (Woodward et al., 2020) and our simulated value was 2.4×10⁶ molec cm⁻³. The mean values of O_x were, respectively, 178.7, 118.1, and 184.1 µg m⁻³ in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, indicating that the atmospheric oxidation capacity was strong in O₃&PM_{2.5}PD, which favored the production of secondary components of PM_{2.5}. Figure 5 also shows sulfur oxidation ratio (SOR, n-SO₄²⁻ / (n- SO_4^{2-} + n-SO₂), where n-SO₄²⁻ and n-SO₂ are the concentrations of SO_4^{2-} and SO_2 , respectively) and nitrogen oxidation ratio (NOR, n-NO₃ / (n-NO₃ + n-NO₂), where n-NO₃ and n-NO₂ are the concentrations of NO₃ and NO₂, respectively). SOR and NOR are measures of the conversion degrees of sulfur and nitrogen, respectively (Zhu et al., 2019). In O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the averaged values of SOR were 50.0%, 36.7%, and 49.7%, and those of NOR were 55.4%, 70.0%, and 70.2%, respectively. The high SOR and NOR in O₃&PM_{2.5}PD indicated the strong formation of SO₄²⁻ and NO₅ that were promoted by high atmospheric oxidation capacity. The monthly variations of OH, O_x, and SOR were similar (Fig. 5), with the highest values in summer, owing to the high temperature that promoted high concentrations of oxidants and SOR. It is interesting that SOR and O_x values were higher in O₃&PM_{2.5}PD than in O₃SPD or in PM_{2.5}SPD during May-August. Similarly, NOR values were higher in O₃&PM_{2.5}PD than in O₃SPD or in PM_{2.5}SPD in May and July-September. Overall, the O₃&PM_{2.5}PD occurred with high levels of atmospheric oxidants, SOR, and NOR, leading to combined increases in O₃ and PM_{2.5} concentrations. **Figure 5.** The boxplots of surface-layer hydroxyl radical (OH, molec cm⁻³), total oxidant (O_x, μg m⁻³), sulfur oxidation ratio (SOR, %), nitrogen oxidation ratio (NOR, %) for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in 18 grids of BTH in the months of April to October from 2013 to 2020. The whiskers represent the standard deviation, the black line represents the mean value of the samples. **3.3.2 Surface-layer concentrations of PM_{2.5} components in O₃SPD, PM_{2.5}SPD, and** O₃&PM_{2.5}PD The
simulated concentrations of PM_{2.5} components (NO₃, NH₄⁺, SO₄²-, BC, and OC, averaged over 18 grids of BTH are shown in Fig. 6 for days of O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in the warm seasons of 2013-2020 that were observed and also captured by the model. While the mean concentrations of NO₃⁻, NH₄⁺, BC, and OC, were all the highest in PM_{2.5}SPD, SO₄²⁻ concentration was the highest in O₃&PM_{2.5}PD. In O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the mean concentrations of SO₄²⁻ were 6.2, 9.4, and 11.97 μg m⁻³, respectively, and the percentages of SO₄²⁻ in PM_{2.5} were 14.9%, 9.0%, and 15.0%, respectively. In July and August, the concentrations of SO₄²⁻ and MDA8 O₃ in O₃&PM_{2.5}PD were the highest compared with those in O₃SPD and PM_{2.5}SPD (Fig. S5). Figure (**Figure 6.** The concentrations of PM_{2.5} components (μg m⁻³) and percentages of PM_{2.5} components (%) at the surface for NO₃⁻, NH₄⁺, SO₄²⁻, BC, and OC. The values were averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in the months of April to October of 2013-2020 in BTH. Figure 7 presents the hourly concentrations of NO₃, NH₄⁺, SO₄², BC, OC, and O₃ for model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over all 18 grids of BTH in the warm seasons from 2013-2020. Concentrations of NO₃ and NH₄⁺ had similarities in diurnal variations, all of which reached the highest values in the early morning (5:00 local time (LT) in O₃SPD and O₃&PM_{2.5}PD, 7:00-8:00 LT in PM_{2.5}SPD) and had the lowest values in the late afternoon (18:00 LT in O₃SPD and O₃&PM_{2.5}PD, 16:00 LT in PM_{2.5}SPD). Concentrations of BC and OC peaked at the same time as those of NO₃ and NH₄ and had the lowest values at 15:00 LT in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD. The diurnal variations in NO₃, NH₄, BC, OC reflected the diurnal variations in PBLH (shown in Fig. S6), which generally reached their highest concentrations before the sudden uplift of PBLH in the early morning (times for uplift of PBLH: 6:00 LT in O₃SPD and O₃&PM_{2.5}PD, 7:00 LT in PM_{2.5}SPD). Compared to O₃SPD and O₃&PM_{2.5}PD, the PBLH of PM_{2.5}SPD was lower and uplifted one hour later, which was more favorable for the accumulation of aerosols. During the daytime, PBLH in O₃&PM_{2.5}PD was between O₃SPD and PM_{2.5}SPD. It is worth noting that the diurnal variations of SO₄² were different from those of other aerosol species, with the highest values at 20:00, 9:00, and 16:00 LT in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, respectively, and the lowest values in early morning and night (5:00 LT in O₃SPD and O₃&PM_{2.5}PD, 23:00 LT in PM_{2.5}SPD). For the diurnal variation of O₃, the highest values occurred during the daytime (16:00 LT in O₃SPD and O₃&PM_{2.5}PD, 15:00 LT in PM_{2.5}SPD) and the lowest values appeared at 5:00 LT in all the cases. Therefore, in O_3 &PM_{2.5}PD, the time of the highest value of SO_4^{2-} was the same as that of O₃, indicating that SO₄² and O₃ were produced synergistically 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 during the daytime with strong atmospheric oxidation. **Figure 7.** The hourly concentrations of NO₃, NH₄⁺, SO₄², BC, OC, and O₃ averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃ &PM_{2.5}PD in BTH in the months of April to October of 2013-2020. # 3.3.3 Vertical distributions of O₃ and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD The simulated vertical distributions of O₃ and PM_{2.5} averaged over the 18 grids of BTH and the O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in warm seasons of 2013-2020 are shown in Fig. 8. The vertical distribution of O₃ in O₃SPD was similar to that in O₃&PM_{2.5}PD (Fig. 8a). In these two cases, concentrations of O₃ increased from the surface to about 975 hPa, remained high between 975 and 819 hPa, and decreased with altitude between 819 and 663 hPa. Although the magnitudes of O₃ were close at the surface (61.9 ppb in O₃&PM_{2.5}PD and 58.1 ppb in O₃SPD), the concentration of O₃ averaged over 975 and 819 hPa was 10.4% higher in O₃&PM_{2.5}PD than in O₃SPD, which was a very unique feature of O₃&PM_{2.5}PD. For the case of PM_{2.5}SPD, the concentrations of O₃ were the lowest among the three cases and increased gently with altitude above 975 hPa. Figure 8b shows the vertical distributions of PM_{2.5} components. In all the cases, PM_{2.5} concentrations were the highest at the surface, and decreased with altitude from the surface to 975 hPa. However, concentrations of PM_{2.5} were quite stable between 975 and 819 hPa for O₃SPD (about 36.4 μg m⁻³) and O₃&PM_{2.5}PD (about 58.1 μg m⁻³), corresponding to the stable O₃ levels at these altitudes in these two cases (Fig. 8a). For PM_{2.5}SPD, while PM_{2.5} concentration at the surface was the highest among the three cases, it decreased rapidly between 975 and 819 hPa. The averaged PM_{2.5} concentration between 975 and 819 hPa was 52.4 μg m⁻³ in PM_{2.5}SPD, which was lower than that in O₃&PM_{2.5}PD. **Figure 8.** The vertical distributions of (a) concentrations of O₃ (ppb) and (b) PM_{2.5} components (μg m⁻³) of NO₃, NH₄⁺, SO₄²⁻, BC, OC averaged over the model-captured O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH in the months of April to October of 2013-2020. To further investigate the differences in vertical profiles of NO₃, NH₄, SO₄², BC, OC, and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD, the ratios of concentration at 975 hPa to that at the surface as well as the concentration at 819 hPa to that at 975 hPa are shown in Table 1. The concentration of PM_{2.5} decreased largely, with the ratio of PM_{2.5}(975 hPa) / PM_{2.5}(1005 hPa) of 0.78 in O₃&PM_{2.5}PD and of 0.74 in PM_{2.5}SPD. For each of the PM_{2.5} components, the ratios near the surface (from 1005 to 975 hPa, gray shaded area in Fig. 8) were close in the three types of pollution. While the ratios of NO₃, NH₄⁺, BC, OC were in the range of 0.65-0.80, the ratios of SO₄²⁻ were about 0.93-0.98, indicating that SO₄²⁻ concentrations were quite uniform from the surface to 975 hPa in all three types of pollution. **Table 1.** The ratios at 975 and 1005 hPa (gray shaded area in Fig. 8) and at 819 and 975 hPa (red frame in Fig. 8) of NO₃, NH₄⁺, SO₄²⁻, BC, OC, and PM_{2.5} in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region. | | | NO ₃ | NH ₄ ⁺ | SO ₄ ²⁻ | ВС | OC | PM _{2.5} | |---------------------------|--------------------------------------|-----------------|------------------------------|-------------------------------|------|------|-------------------| | Cana | O ₃ SPD | 0.95 | 0.90 | 0.85 | 0.73 | 0.73 | 0.86 | | Conc _{819 hPa} / | PM _{2.5} SPD | 0.64 | 0.68 | 0.81 | 0.64 | 0.63 | 0.67 | | Conc _{975 hPa} | O ₃ &PM _{2.5} PD | 0.94 | 0.91 | 0.87 | 0.79 | 0.77 | 0.89 | | | O ₃ SPD | 0.65 | 0.77 | 0.96 | 0.69 | 0.70 | 0.74 | | Conc _{975hPa} / | PM _{2.5} SPD | 0.72 | 0.76 | 0.93 | 0.67 | 0.65 | 0.73 | | Conc _{1005 hPa} | O ₃ &PM _{2.5} PD | 0.72 | 0.80 | 0.98 | 0.76 | 0.73 | 0.78 | In the upper layers (975-819 hPa, red rectangle in Fig. 8), the changes in concentrations of pollutants with altitude in $PM_{2.5}SPD$ were quite different from those in $O_3\&PM_{2.5}PD$ and O_3SPD . The decline of $PM_{2.5}$ from 975 to 819 hPa was slow in $O_3\&PM_{2.5}PD$ ($PM_{2.5(819 hPa)}$ / $PM_{2.5(975 hPa)} = 0.89$) and O_3SPD (0.86) and fast in PM_{2.5}SPD (0.67). Considering that the variation of BC with altitude was mainly driven by meteorology (Sun et al., 2020), the vertical variations of other components that differed significantly from BC indicated the influences of chemical processes. In PM_{2.5}SPD, NO₃, NH₄, OC had about the same ratio as BC (0.64) (with large decreases with height), except for SO₄²⁻ concentration that had a ratio of 0.81. In O₃&PM_{2.5}PD, the ratios of NO₃, NH₄⁺, SO₄²⁻ were, 0.94, 0.91, 0.87, respectively, which were much higher than the value of BC (0.79), indicating NO₃, NH₄⁺, SO₄²⁻ were quite uniform in the layers of 975-819 hPa with the influence of chemical processes, which will be discussed further in Sect. 3.3.4 below. #### 3.3.4 Process analyses for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD The process analysis (PA) is applied to identify the relative importance of atmospheric processes in the three types of pollution. Figure 9 shows the net changes in O₃, NO₃, NH₄⁺, SO₄²⁻ by the processes of chemical production (Chem), horizontal advection (Horizontal_adv), vertical advection (Vertical_avd), and diffusion (Diff, vertical PBL mixing process) in the GEOS-Chem model, as well as the total of all these processes (i.e., Chem + Diff + Horizontal_avd + Vertical_avd) in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD. For O₃, the net changes of O₃ by all processes were positive at altitudes of 975-819 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem had the largest positive contribution (about 1.5 Gg d⁻¹), indicating O₃ is chemically produced at these layers. For NO₃ and NH₄, the nets of all processes increased mass concentrations at 913-819 hPa in O₃&PM_{2.5}PD and O₃SPD, in which Chem and Vertical_avd were positive and Chem had the largest positive contribution. The vertical profiles of Chem were similar for NO₃ and NH₄, both of which had the largest positive values at 913-819 hPa (2.83 Gg d⁻¹ for NO₃ and 0.88 Gg d⁻¹ for NH₄), leading to higher concentrations of NO₃ and NH₄⁺ in O₃&PM_{2.5}PD than in O₃SPD and PM_{2.5}SPD. Chem and Diff of SO₄² were different from those of NO₃ and NH₄⁺. For SO₄², Chem was positive from the surface to 510 hPa with a peak around 819 hPa, and Diff was positive at 819-771 hPa but negative from 819 hPa to the surface, which resulted in the uniform SO₄² profile as shown in Fig. 8. Chem for SO₄² was the highest around 819 hPa in O₃&PM_{2.5}PD, which was related to the strong liquid-phase chemical formation of SO₄² (Fig. S7). In addition to Chem, Vertical_avd also had positive contributions to the net changes in O₃, NO₃, NH₄⁺, and SO₄² at 944-819 hPa. Vertical_avd was negative at 819 hPa and positive between
944 to 819 hPa, implying that the pollutants were transported from 819 hPa to 944 hPa in O₃&PM_{2.5}PD. **Figure 9.** The vertical profiles of net changes in O₃, NO₃, NH₄⁺, and SO₄²⁻ (Gg d⁻¹) over BTH by each and total of processes. The values were averaged over the model-captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in April-October of 2013-2020. Overall, NO₃, NH₄⁺, and SO₄²⁻ all had larger chemical productions at 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD and PM_{2.5}SPD, accompanied by strong vertical transport from 819 hPa to near the surface, resulting in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD. In addition, the vertical profiles of net changes in PM_{2.5} over BTH are shown in Fig. S8 for these three cases. Since NO₃⁻, NH₄⁺, and SO₄²⁻ were the major components of PM_{2.5}, the PA of PM_{2.5} is similar to that of each component. #### 3.3.5 Observed AOD in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD To try to support the model result that O₃&PM_{2.5}PD had more uniform vertical profile than PM_{2.5}SPD from the surface to 819 hPa altitude, we present the scatter plots of observed AOD (at 440 nm and 675 nm) versus observed PM_{2.5} concentrations in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Fig. 10. AERONET observations of AOD from 2013 to 2020 are available at three sites in BTH (that is, Beijing (39.97°N, 116.38° E), Beijing-CAMS (39.93°N, 116.31°E), Xianghe (39.75°N, 116.96°E)). At Beijing (39.97°N, 116.38°E), AOD (440nm and 675nm) increased with PM_{2.5} concentration in all three types of pollution. However, under the same levels of surface PM_{2.5} concentration, AOD values in O₃&PM_{2.5}PD were higher than in PM_{2.5}SPD, implying that the column burdens of aerosols were generally higher in O₃&PM_{2.5}PD than in PM_{2.5}SPD, which may support the unique vertical distribution of PM_{2.5} in O₃&PM_{2.5}PD shown in Fig. 8b. The scatter plots at Beijing-CAMS and Xianghe sites are similar and are shown in Fig. S9. **Figure 10.** The scatterplots of (a) AOD (440 nm) and (b) AOD (675 nm) versus observed PM_{2.5} concentrations in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in Beijing (39.97°N, 116.38°E) in April-October of 2013-2020. #### 3.4 Meteorological conditions for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD over BTH Figure 11 shows the vertical profiles of RH, T, and OMEGA for O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD captured by the model over BTH in the months of April to October form 2013-2020. It should be noted that O₃&PM_{2.5}PD had an unique vertical distribution of RH. Near the surface, the values of RH in O₃&PM_{2.5}PD were between those in O₃SPD and PM_{2.5}SPD. However, in the upper layers (883-771 hPa), O₃&PM_{2.5}PD had the highest RH among the three cases with a peak value of 58.2%. As a result, the strongest aqueous chemical production of SO₄²⁻ (aqueous oxidation of SO₂ by H₂O₂) occurred in O₃&PM_{2.5}PD around 819 to 771 hPa (Fig. S7). The vertical profiles of temperature were similar in the three types of pollution, with the lowest temperature in PM_{2.5}SPD. The vertical profiles of OMEGA were different in the three cases. In O₃SPD and O₃&PM_{2.5}PD, OMEGA had positive values around 819 hPa, indicating a strong sinking airflow, leading to a downward transport of pollutants. Under O₃&PM_{2.5}PD, the average values of PBLH and SWGDN were 946.1 m and 257.2 W m⁻², respectively, which were higher (lower) than those in PM_{2.5}SPD (O₃SPD) (Fig. S10). **Figure 11.** The vertical profiles of RH (%), T (°C), and OMEGA (Pa s⁻¹) averaged over BTH and over the model-captured regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in in April-October of 2013-2020. Figure 12 shows the composited weather patterns for regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD (over 50% cities in the BTH experienced the pollution) that were captured by the model in April-October of 2013-2020. The weather patterns of O₃&PM_{2.5}PD were similar to some extent to those of O₃SPD but were quite different from those of PM_{2.5}SPD. In O₃&PM_{2.5}PD, the BTH region was controlled by westerlies and an anomalous high-pressure system at 500 hPa (Figure S11). At 850 hPa, BTH was at the west boundary of an anomalous anticyclone, and the associated strong anomalous southerlies at 850 hPa brought moist air to BTH (Fig. S12 and S13), resulting in a high RH that was beneficial to the aqueous chemical production of SO₄²⁻ in O₃&PM_{2.5}PD. In O₃SPD, BTH was under the influence of the high pressure ridge of the Western Pacific Subtropical High (WPSH) at 850 hPa. Besides, the Northeast Cold Vortex was located to the southwest of BTH at 850 hPa in O₃SPD, leading to dry and warm conditions, which was favorable for the formation of O₃. In PM_{2.5}SPD, the BTH region was under the influence of both the continental high and the WPSH at 850 hPa. At the surface, BTH was under the influence of a uniform high pressure with very weak winds and hence stagnate atmosphere, which was conducive to the accumulation of PM_{2.5}. **Figure 12.** Composites of wind field (m s⁻¹) with SLP (sea level pressure) and with geopotential height at 850 hPa and 500 hPa for regional O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD that were captured by the model in April-October of 2013-2020. The solid black rectangle indicates BTH region. #### 4. Conclusions We used the observed hourly concentrations of O₃ and PM_{2.5} from CNEMC and the model results from the nested-grid version of the GEOS-Chem model to examine the chemical and physical characteristics of the co-polluted days by O₃ and PM_{2.5} 585 (O₃&PM_{2.5}PD) over the BTH region for eight warm seasons (April-October) from 586 587 2013 to 2020. The characteristic of O₃&PM_{2.5}PD were compared with those of the polluted days by O₃ alone (O₃SPD) and by PM_{2.5} alone (PM_{2.5}SPD). In April-October 588 of 2013-2020, the observed O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD were 2954, 2148, 589 and 1614 days, respectively, in which 75.0% (2954/3937), 58.1% (2148/3698), and 590 591 79.7% (1614/2024) were captured by the GEOS-Chem model, respectively. We carried out composited analyses of the chemical and physical characteristics for 592 593 O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD by using the samples (days) captured by both the observations and the model. 594 The chemical characteristics of O₃&PM_{2.5}PD were found to be different from 595 those of O₃SPD, PM_{2.5}SPD at the surface. O₃&PM_{2.5}PD occurred with high levels of 596 atmospheric oxidants (high OH and O_x), with higher SOR and NOR compared to those 597 in O₃SPD and PM_{2.5}SPD, leading to high concentrations of both O₃ and PM_{2.5}. At the 598 surface, the composited concentrations of NO₃, NH₄, BC, and OC were the highest in 599 PM_{2.5}SPD, while the composited concentration of SO₄²⁻ was the highest in 600 O₃&PM_{2.5}PD. There was a strong formation of SO₄²⁻ during the daytime in 601 O₃&PM_{2.5}PD in the oxidative atmosphere. 602 We also found unique features of the vertical distributions of O₃ and PM_{2.5} in 603 O₃&PM_{2.5}PD. Concentrations of PM_{2.5} were stable and high between 975 and 819 hPa 604 605 in O₃&PM_{2.5}PD, unlike those in PM_{2.5}SPD that decreased rapidly with the altitude. In O₃&PM_{2.5}PD, the vertical profiles of NO₃, NH₄, and SO₄²⁻ were quite uniform at 606 607 975-819 hPa, corresponding to the stable O₃ concentrations at these altitudes. The process analysis (PA) showed that NO₃, NH₄, and SO₄²⁻ all had larger chemical 608 productions at altitudes of 913-819 hPa in O₃&PM_{2.5}PD compared to those in O₃SPD 609 and PM_{2.5}SPD. The chemical production of SO₄²⁻ had large positive values from the surface to about 500 hPa. The Vertical_avd also had positive contributions to the net changes in O₃, NO₃, NH₄⁺, and SO₄²⁻ at 944-819 hPa in O₃&PM_{2.5}PD. Therefore, the strong chemical productions at 913-819 hPa accompanied by the downward transport resulted in the quite uniform vertical profiles at 975-819 hPa in O₃&PM_{2.5}PD. Figure 13 summarizes the chemical and physical characteristics in O₃&PM_{2.5}PD, O₃SPD, and PM_{2.5}SPD in the BTH region. In O₃&PM_{2.5}PD, the strong chemical productions of O₃, NO₃, NH₄⁺, and SO₄²⁻ occurred at high altitudes of 913-819 hPa where RH was high, and the accompanied downward airflow caused the stable concentrations at 944-819 hPa. The composited PBLH in O₃&PM_{2.5}PD was about 946.1 m, and the strong mixed diffusion underneath the PBLH led to high concentrations of pollutants at the ground level. In contrast, O₃SPD occurred in hot and dry atmosphere with composited PBLH of 1073.5 m. Strong O₃ chemical production occurred around 819 hPa, and O₃ was then transported to the surface by downward air flow. The atmosphere was stable and stagnate when PM_{2.5}SPD occurred, with the lowest PBLH of 681.8 m. High RH (high chemical formation of PM_{2.5}) and the accumulation of aerosols led to the highest surface-layer PM_{2.5} in PM_{2.5}SPD. To summarize, O₃&PM_{2.5}PD were characterized by high O_x, SOR, and NOR, uniform vertical profiles at 975-819 hPa, which were caused by an anomalous high-pressure system at 500 hPa, strong southerlies and high RH at 850 hPa. Meteorological parameters around 850 hPa promoted strong chemical production of secondary aerosols and downward transport, resulting in the unique vertical profiles and high surface concentrations in O₃&PM_{2.5}PD. Figure 13. A schematic diagram of chemical and physical and characteristics in O₃SPD, PM_{2.5}SPD, and O₃&PM_{2.5}PD in BTH region. | 636 | Data availability. | |-----|--| | 637 | The GEOS-Chem model is available at https://geos-chem.seas.harvard.edu (last | | 638 | access: 5 August 2022). The observed hourly surface concentrations of air pollutants | | 639 | are derived from the China National Environ- mental Monitoring Center | | 640 | (https://air.cnemc.cn:18007/, CNEMC, 2022). The simulation results are available | | 641 | upon request from the
corresponding author (hongliao@nuist.edu.cn). | | 642 | | | 643 | Author contributions. | | 644 | HD and HL conceived the study and designed the experiments. HD performed model | | 645 | simulations and analysed the data. KL, XY, YY, JZ, JJ, and BL provided useful | | 646 | comments on the paper. HD and HL prepared the paper, with contributions from all co- | | 647 | authors. | | 648 | | | 649 | Competing interests. | | 650 | The authors declare that they have no conflict of interest. | | 651 | | | 652 | Acknowledgements. | | 653 | We acknowledge the CNEMC for making their data publicly available. We | | 654 | acknowledge the efforts of GEOS-Chem working groups for developing and | | 655 | managing the model. | | 656 | | | 657 | Financial support. | | 658 | This work was supported by the National Natural Science Foundation of China (Grant | |-----|--| | 659 | No. 42021004), the National Key Research and Development Program of China | | 660 | (Grant No. 2019YFA0606800), and the Carbon Peak Carbon Neutral Science and | | 661 | Technology Innovation Foundation of Jiangsu Province (BK20220031). | | 662 | | #### References - Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yan-tosca, R. M., Savarino, J., Lee, - 665 C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints - from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, - https://doi.org/10.1029/2004jd005659, 2005. - Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., - 669 Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric - chemistry with assimilated meteorology: Model description and evaluation, J. - Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, - 672 2001. - 673 Chu, B. W., Ma, Q. X., Liu, J., Ma, J. Z., Zhang, P., Chen, T. A., Feng, Q. C., Wang. C. - Y., Yang, N., Ma, H. N., Ma, J. J., Russell, A. G., He, H.: Air Pollutant Correlations - in China: Secondary Air Pollutant Responses to NO_x and SO₂ Control, Environ. - 676 Sci. Tech. Let., 7(10), 695-700, http://dx.doi.org/10.1021/acs.estlett.0c00403, - 677 2020. - Dai, H. B., Zhu, J., Liao, H., Li, J. D., Liang, M. X., Yang, Y., Yue, X.: Co-occurrence - of ozone and PM_{2.5} pollution in the Yangtze River Delta over 2013-2019: - spatiotemporal distribution and meteorological conditions, Atmos. Res., 249, - 681 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021. - Dang, R. J. and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region - from 1985-2017 and the roles of anthropogenic emissions and meteorology, Atmos. - 684 Chem. Phys., 19, 10801-10816, https://doi.org/10.5194/acp-19-10801-2019, 2019. - Dang, R. J., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological - influences on summertime surface ozone in China over 2012-2017, Sci. Total. - 687 Environ., 754, 142394, https://doi:10.1016/j.scitotenv.2020.142394, 2021. - 688 Duan, F., He, K., Ma, Y., Yang, F., Yu, X., Cadle, S. H., Chan, T., and Mulawa, P. A.: - Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001– - 690 2002, Sci. Total Environ., 355(1–3), 264–275, - 691 https://doi:10.1016/j.scitotenv.2005.03.001, 2006. - 692 Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of - mineral dust in the United States, Atmos. Environ., 41, 1251-1266, - 694 https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007. - 695 Gao, Y. and Ji, H. B.: Microscopic morphology and seasonal variation of health effect - arising from heavy metals in $PM_{2.5}$ and PM_{10} : One-year measurement in a densely - populated area of urban Beijing, Atmos. Res., 212, 213–226, https://doi.org/ - 698 10.1016/j.atmosres.2018.04.027, 2018. - 699 Giles, D. M., Sinyuk, A., Sorokin, M. S., Schafer, J. S., Lyapustin, A.: Advancements - in the aerosol robotic network (aeronet) version 3 database automated near real- - time quality control algorithm with improved cloud screening for sun photometer - aerosol optical depth (aod) measurements, Atmos. Meas. Tech., 12, 169–209, - 703 https://doi.org/10.5194/amt-12-169-2019. 2019. - 704 Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of - atmospheric processes affecting the dynamics of air pollution in South-Western - Europe during a typical summer-time photochemical episode, Atmos. Chem. Phys., - 707 9, 849–864, https://doi.org/10.5194/acp-9-849-2009, 2009. - 708 Gong, C. and Liao, H.: A typical weather pattern for the ozone pollution events in North - 709 China, Atmos. Chem. Phys., 19, 13725-13740, https://doi.org/10.5194/acp-19- - 710 13725-2019, 2019. - Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R. J., Yang, Y.: Persistent ozone pollution - episodes in North China exacerbated by regional transport, Environ. Pollut., 265, - 713 115056, https://doi:10.1016/j.envpol.2020.115056, 2020. - Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. - 715 K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature - version 2.1 (MEGAN2.1): an extended and updated framework for mod-eling - 717 biogenic emissions, Geosci. Model Dev., 5, 1471–1492, - 718 https://doi.org/10.5194/gmd-5-1471-2012, 2012. - 719 Jiang, N., Li, L., Wang, S., Li, Q., Dong, Z., Duan, S., Zhang, R., Li, S.: Variation - tendency of pollution characterization, sources, and health risks of PM_{2.5}-bound - polycyclic aromatic hydrocarbons in an emerging megacity in China: based on - 722 three-year data, Atmos. Res., 217, 81–92, https://doi.org/10.1016/j. - 723 atmosres.2018.10.023, 2019. - Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K., Zhang, Q., Zhai, S. - 725 X.: A two-pollutant strategy for improving ozone and particulate air quality in - 726 China, Nat. Geosci., 12, 906–910, https://doi.org/10.1038/s41561-019-0464-x, - 727 2019. - Li, K., Jacob, D. J., Shen, L., Lu, X., Smedt, D. I., Liao, H.: Increases in surface ozone - pollution in China from 2013 to 2019: anthropogenic and meteorological - 730 influences, Atmos. Chem. Phys., 20, 11423-11433, https://doi.org/10.5194/acp- - 731 20-11423-2020, 2020. - 732 Li, M., Wang, L., Liu, J.: Exploring the regional pollution characteristics and - meteorological formation mechanism of PM_{2.5} in North China during 2013-2017, - Environ. Int., 134, 105283, https://doi.org/10.1016/j.envint.2019.105283, 2019. - 735 Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., - Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, - 737 S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission - inventory under the international collaboration framework of the MICS-Asia and - 739 HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935- - 740 2017, 2017. - 741 Liu, Y. X., Zhao, Q. B., Hao, X., Zhao, J. R., Zhang, Y., Yang, X., Fu, Q. Y., Xu, X. Y., - Wang, X. F., Huo, J. T., Chen, J. M.: Increasing surface ozone and enhanced - secondary organic carbon formation at a city junction site: An epitome of the - Yangtze River Delta, China (2014–2017), Environ. Pollut., 265, 0269-7491, - 745 https://doi.org/10.1016/j.envpol.2020.114847, 2020. - Lou, S. J., Liao, H., Yang, Y., and Mu, Q.: Simulation of the interannual variations of - 747 tropospheric ozone over China: Roles of variations in meteorological parameters - and anthropogenic emissions, Atmos. Environ., 122, 839–851, - 749 https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015. - Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 - atmospheric general circulation model: evolution from MERRA to MERRA2, - 752 Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, - 753 2015. - Mu, Q. and Liao, H.: Simulation of the interannual variations of aerosols in China: - role of variations in meteo-rological parameters, Atmos. Chem. Phys., 14, 9597– - 756 9612, https://doi.org/10.5194/acp-14-9597-2014, 2014. - Nan, J. L., Wang, S. S., Guo, Y. L., Xiang, Y. J., Zhou. B.: Study on the daytime OH - radical and implication for its relationship with fine particles over megacity of - 759 Shanghai, China, Atmos. Environ., 154, 167-178, - 760 https://doi.org/10.1016/j.atmosenv.2017.01.046, 2017. - Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime - 762 ozone over China, Atmos. Chem. Phys., 18, 11447–11469, - 763 https://doi.org/10.5194/acp-18-11447- 2018, 2018. - Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols - over the United States and implications for natural visibility, J. Geophys. Res.- - 766 Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190, 2003. - Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and - transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the - United States: Im- plications for policy, J. Geophys. Res.-Atmos., 109, D15204, - 770 https://doi.org/10.1029/2003jd004473, 2004. - Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, - J. H.: Effect of changes in climate and emissions on future sulfate-nitrate- - ammonium aerosol lev- els in the United States, J. Geophys. Res.-Atmos., 114, - 774 D01205, https://doi.org/10.1029/2008jd010701, 2009. - 775 Qin, Y., Li, J. Y., Gong, K. J., Wu, Z., Chen, M. D., Qin, M. M., Huang, L., Hu, J. L.: - Double high pollution events in the Yangtze River Delta from 2015 to 2019: - Characteristics, trends, and meteorological situations, Sci. Total. Environ., 792, - 778 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021. - 779 Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., Xu, X.: - 780 Impacts of tropospheric ozone and climate change on net primary productivity and - net carbon exchange of China's forest
ecosystems, Glob. Ecol. Biogeogr., 20, 391– - 782 406, https://doi.org/10.1111/j.1466-8238.2010.00606.x, 2011. - 783 Sun, T., Wu, C. and Wu, D.: Time-resolved black carbon aerosol vertical distribution - measurements using a 356-m meteorological tower in Shenzhen, Theor. Appl. - 785 Climatol., 140, 1263–1276, https://doi.org/10.1007/s00704-020-03168-6, 2020. - 786 Tan, Z. F., Fuchs, H., and Lu, K. D.: Radical chemistry at a rural site (Wangdu) in the - North China Plain: Observation and model calculations of OH, HO₂ and RO₂ - radicals, Atmos. Chem. Phys., 17(1): 663–690, https://doi.org/10.5194/acp-17- - 789 663-2017, 2017. - 790 Wang, H., Kiang, C., Tang, X., Zhou, X., Chameides, W. L.: Surface ozone: a likely - threat to crops in Yangtze delta of China, Atmos. Eviron., 39, 3843–3850, - 792 https://doi. org/10.1016/j.atmosenv.2005.02.057, 2005. - Wang, X., Manning, W., Feng, Z., Zhu, Y.: Ground-level ozone in China: distribution - and effects on crop yields, Environ. Pollut., 147 (2), 394-400, https:// - 795 doi.org/10.1016/j.envpol.2006.05.006, 2007. - 796 Woodward-Massey, R., Slater, E. J., Alen, J.: Implementation of a chemical background - 797 method for atmospheric OH measurements by laser-induced fluorescence: - characterisation and observations from the UK and China, Atmos. Meas. Tech., - 799 13(6): 3119–3146, https://doi.org/10.5194/amt-13-3119-2020, 2020. - 800 Xuan, J., Liu, G., and Du, K.: Dust emission inventory in northern China, Atmos. - 801 Environ., 34(26), 4565–4570, https://doi:10.1016/S1352-2310(00) 00203-X, 2000. - 802 Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T., and Mulawa, P. - A.: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year - 804 period, Atmos. Environ., 37(4), 499–510, https://doi:10.1016/S1352- - 805 2310(02)00918-4, 2003. - 806 Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., Li, J.: - Ozone and haze pollution weakens net primary productivity in China, Atmos. - 808 Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-2016-1025, 2017. - 809 Zhang, Y. and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the - Southeast United States, P. Natl. Acad. Sci. USA, 113, 10025-10030, - 811 https://doi.org/10.1073/pnas.1602563113, 2016. - 812 Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: - Analysis of a winter regional haze event and its formation mechanism in the North - China Plain, Atmos. Chem. Phys., 13, 5685–5696, https://doi:10.5194/acp-13- - 815 5685-2013, 2013. - 816 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's 817 anthropogenic emissions since 2010 as the consequence of clean air actions, 818 Atmos. Chem. Phys., 18, 14095-14111, https://doi.org/10.5194/acp-18-14095-819 2018, 2018. 820 Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., He, K.: Changes in 821 822 China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895-2907, https://doi.org/10.5194/essd-13-823 2895-2021, 2021. 824 Zhu, J., Chen, L., Liao, H., Dang, R. J.: Correlations between PM_{2.5} and ozone over 825 826 China and associated underlying reasons, Atmosphere, 10(7),352, https://doi.org/10.3390/atmos10070352, 2019. 827 Zong, L., Yang, Y., and Gao, M.: Large-scale synoptic drivers of co-occurring 828 summertime ozone and PM_{2.5} pollution in eastern China, Atmos. Chem. Phys., 11, 9105-9124, https://doi.org/10.5194/acp-21-9105-2021, 2021. 829