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Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) 

observations of Aerosol Black Carbon over India 

Mukunda M. Gogoi et al., https://doi.org/10.5194/acp-2022-555 

 

Response to Referee #2  

 

General opinion: 

The authors proposed an algorithm to retrieve black carbon from GOSAT-2 CAI-2. 

The authors also incorporated evaluation and validation of the satellite retrievals 

across a network of aerosol observatories (ARFINET) over India and the findings are 

extended to comprehend the global BC features. Such model is in highly demand if 

it is proven to work effectively. However, I am more concerned about the validity of 

the algorithm itself because the authors did not provide enough details on the 

methods, equations, and uncertainties. This may prevent the readers from 

understanding their work. Some descriptions and discussions are sometime 

puzzling, and there are thus much more revisions need to be made carefully by the 

authors. 

We appreciate the summary evaluation of the reviewer. We have complied with the 
observations and revised the manuscript incorporating valuable comments by the 
reviewers. In the revised manuscript, we have given more emphasis on the algorithm 
description, including the various steps involved in the retrieval process. The 
validation and uncertainties involved in this retrieval method is also elaborated. Our 
point wise response to each of the comment is given below in bold letters, below the 
respective comments.  

Major Comments 

1. Inadequate innovation of the MS based on the claim of Line 40-41 “the direct 

retrieval of BC from satellite-based radiation measurement have not 

addressed so far.” This is really not true. Below are some articles published in 

recent years, proposed similar algorithm in other countries. 

Bao, F., Cheng, T., Li, Y., Gu, X., Guo, H., Wu, Y., Wang, Y., & Gao, J. (2019). 

Retrieval of black carbon aerosol surface concentration using satellite remote 

sensing observations. Remote Sensing of Environment, 226, 93-108. 

Bao, F., Li, Y., Cheng, T., Gao, J., & Yuan, S. (2020). Estimating the Columnar 

Concentrations of Black Carbon Aerosols in China Using MODIS Products. 

Environmental Science & Technology, 54, 11025-11036. 

Li, L., Che, H., Derimian, Y., Dubovik, O., Schuster, G.L., Chen, C., Li, Q., Wang, 

Y., Guo, B., & Zhang, X. (2020). Retrievals of fine mode light-absorbing 

carbonaceous aerosols from POLDER/PARASOL observations over East and 

South Asia. Remote Sensing of Environment, 247, 111913. 
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Response: We thank the reviewer for suggesting to include relevant works in our 
manuscript. The following information is added. 

Lines 37-55: “Even though several new algorithms have been developed for aerosol 
retrieval over land (e.g., Multi-Angle Imaging Spectroradiometer (MISR) retrieval by 
Dinner et al., 1998; Dark Target method by Levy et al., 2007; Non-linear optimal 
estimation algorithm for retrieval of aerosol microphysical properties from SAGE II 
satellite observations in the volcanically unperturbed lower stratosphere by Wurl et 
al., (2010); Multi-Angle Implementation of Atmospheric Correction (MAIAC) by 
Lyapustin et al., 2011; Deep Blue aerosol retrieval algorithm by Hsu et al., 2013; UV 
method by Fukuda et al., 2013; Multi-Angle and Polarization Measurements of 
Radiations by Dubovik et al., 2011, 2014; GOCI Yonsei Aerosol Retrieval (YAER) 
algorithm by Choi et al., (2016); Multi-Wavelength and -Pixel Method (MWPM) by 
Hashimoto and Nakajima, 2017 etc.), the retrieval of BC from satellite-based radiation 
measurement is very limited. Based on Effective Medium Approximations and 
statistically optimized aerosol inversion algorithm, Bao et al., (2019) have reported the 
retrieval of the surface mass concentration of BC from PARASOL (Polarization and 
Anisotropy of Reflectance for Atmospheric Sciences Coupled with Observations from 
a LiDAR) measurements. In another paper by Bao et al., (2020), MODIS Aqua Level-1B 
observations (MYD021KM) at three visible-infrared channels (470, 660, and 2100 nm) 
are used to estimate the columnar concentrations of BC aerosols based on BC and 
non-BC Maxwell−Garnett effective medium approximation (MG-EMA). 
POLDER/PARASOL satellite observations are also used by Li et al., (2020) to retrieve 
BC and brown carbon (BrC) concentrations based on aerosol component approach of 
Li et al., (2019). Apart from satellite observations, there are also efforts to retrieve BC 
from ground based remote sensing data. Hara et al., (2018) have reported the retrieval 
of BC from multi-wavelength Mie-Raman lidar (MMRL) observations, based on the 
modified algorithm of Nishizawa et al., (2017). Ceolato et al., (2022) have reported a 
direct and remote technique to estimate the BC number and mass concentration from 
picosecond short-range elastic backscatter lidar observations." 

 

2. Comprehensive literature review and rigorous discussion is required in the 

introduction. And some details about the satellite sensor and data should be 

removed from the introduction to make the introduction concise. 

Response: Complied with the suggestion. New discussions citing the following 
literatures are included in the revised manuscript. The details about the satellite 
sensors are also shifted to the methodology section. 

Wurl, D., Grainger, R. G., McDonald, A. J., and Deshler, T.: Optimal estimation retrieval 
of aerosol microphysical properties from SAGE~II satellite observations in the 
volcanically unperturbed lower stratosphere, Atmos. Chem. Phys., 10, 4295–4317, 
https://doi.org/10.5194/acp-10-4295-2010, 2010. 

Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Jeong, U., Kim, W., Hong, H., Holben, B., 
Eck, T. F., Song, C. H., Lim, J.-H., and Song, C.-K.: GOCI Yonsei Aerosol Retrieval 
(YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmos. 
Meas. Tech., 9, 1377–1398, https://doi.org/10.5194/amt-9-1377-2016, 2016. 

 
Bao, F., Cheng, T., Li, Y., Gu, X., Guo, H., Wu, Y., Wang, Y., and Gao, J.: Retrieval of 
black carbon aerosol surface concentration using satellite remote sensing 
observations. Remote Sensing of Environment, 226, 93-108, 2019. 
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Bao, F., Li, Y., Cheng, T., Gao, J., and Yuan, S.: Estimating the Columnar 
Concentrations of Black Carbon Aerosols in China Using MODIS Products. 
Environmental Science & Technology, 54, 11025-11036, 2020. 

Ceolato, R., Bedoya-Velásquez, A.E., Fossard, F. et al.: Black carbon aerosol number 
and mass concentration measurements by picosecond short-range elastic 
backscatter lidar. Scientific Report, 12, 8443, https://doi.org/10.1038/s41598-022-
11954-7, 2022. 

Hara, Y., Nishizawa, T., Sugimoto, N., Osada, K., Yumimoto, K., Uno, I., Kudo, R., 
Ishimoto, H.: Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman 
Lidar and Comparison with Ground Aerosol Sampling. Remote Sensing, 10(6):937. 
https://doi.org/10.3390/rs10060937, 2018. 

Li, L., Che, H., Derimian, Y., Dubovik, O., Schuster, G.L., Chen, C., Li, Q., Wang, Y., 
Guo, B., & Zhang, X.: Retrievals of fine mode light-absorbing carbonaceous aerosols 
from POLDER/PARASOL observations over East and South Asia. Remote Sensing of 
Environment, 247, 111913, 2020. 

Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., 
Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol 
components directly from satellite and ground-based measurements, Atmos. Chem. 
Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, 2019. 

Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., Hara, Y., Itsushi, U., Kim, S.-W.: 
Ground-based network observation using Mie–Raman lidars and multi-wavelength 
Raman lidars and algorithm to retrieve distributions of aerosol components. Journal 
of Quantitative Spectroscopy and Radiative Transfer, 188, 79–93, 2017. 

3. The authors should give a clear description of their algorithm. In section 2.1 

the authors seem to spend a lot of space to review some other scholar's 

algorithms, which is confusing for some cross-field. In addition, did the 

authors use official unpublished products? The authors mentioned that the 

algorithm cite an under-preparation version of CAI-2 L2 aerosol retrieval 

ATBD (L117). If an official unpublished product is used, then a detailed 

description of the algorithm is needed. If the MS focuses on the 

improvements to existing algorithms, the basis, formulas, and the updates in 

this paper should also be emphasized. These descriptions must be detailed 

and not misleading. 

Response: We are sorry for the lack of clarity in the description of the algorithm. In 
the revised version of the manuscript, we have clearly highlighted that the data 
products used in this study are official unpublished products. Theoretical details 
about the retrieval of aerosol products from Cloud and Aerosol Imager (CAI) is 
available in Hashimoto and Nakajima (2017). The CAI-2 data products used in this 
study is also retrieved using the same principle, which is now clearly mentioned and 
described in the revised manuscript. In addition, various other steps (e.g., cloud 
discrimination and atmospheric corrections) involved in the retrieval process are 
clearly elaborated. Proper citations are also made to support the theoretical basis, 
formulas and the uncertainties involved in the retrieval process.  

 

https://doi.org/10.1038/s41598-022-11954-7
https://doi.org/10.1038/s41598-022-11954-7
https://doi.org/10.3390/rs10060937
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Lines 85-170: 

 “2.1 Retrieval of aerosol properties from Cloud and Aerosol Imager -2 (CAI-2) 

CAI-2 on-board GOSAT-2 satellite is a push-broom imaging sensor which records the 
backscattered radiances at 7-wavelengths/ 10-spectral bands in ultraviolet (UV: 339, 
377 nm), visible (VIS: 441, 546, 672 nm) and near-infrared (NIR: 865, 1630 nm) 
equipped in forward (bands: 339, 441, 672, 865 and 1630 nm) and backward (bands: 
377, 546, 672, 865 and 1630 nm) looking directions (± 20°). For cloud discrimination as 
well as deriving aerosol properties, CAI-2 Level 1B (L1B) data is used, which contains 
spectral radiance data per pixel converted from sensor output (GOSAT-2 TANSO-CAI-
2 L1B Processing Algorithm Theoretical Basis Document).  

The flowchart of CAI-2 L2 preprocessing algorithm is shown in the supplementary 
Figure-S1. The radiance measured at forward viewing bands (3-5) and the backward 
viewing bands (8-10) are used for cloud discrimination. The cloud detection algorithm 
(Ishida et al. 2009, 2018) uses reflectance (at the top of atmosphere) of these bands 
for detecting clouds from 11 recurrences (one month before and after the observation 
date) (GOSAT-2 TANSO-CAI-2 L2 Cloud Discrimination Processing ATBD). A flow-
chart of the Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA3; 
Ishida et al., 2018; Oishi et al., 2017) employed for cloud-screening of GOSAT-2 CAI-2 
data is given in Supplementary Figure-S2. CLOUDIA3 is designed to automatically 
find the optimized boundary between clear and cloudy areas based on a supervised 
pattern recognition which uses support vector machines (SVM; Oishi et al., 2017). 
Before using the radiance (L1B) data in CLAUDIA3, a pre-processing is done to 
discriminate day and night, saturation flag, missing flag, polar region, water and land 
areas and sun-glint area for water area except Polar Regions. Following this, solar 
reflection properties by clouds and ground surface are examined, which includes: (i) 
solar reflectance and reflectance ratio in the VIS and SWIR regions, (ii) wavelength 
dependence of reflectance in the VIS and NIR region, (iii) NDVI test for cloud 
discrimination over vegetated areas, and (iv) reflectance ratio between NIR and SWIR 
bands for cloud discrimination over desert areas (details in Cloud Discrimination 
Processing ATBD). Subsequently, this information is used in the CLOUDIA3 
algorithm, which performs the cloud discrimination by SVM (Ishida et al., 2018) in 
order to objectively determine thresholds using multivariate analysis. SVM is one of 
the supervised pattern recognition methods, which first determines a decision 
function (called separating hyperplane) that defines clear or cloudy conditions 
according to the features of training samples (support vectors) in combination with a 
decision function. 

The next step after cloud discrimination is the detection of cloud shadows. A 
minimum reflectance criterion is used for this purpose (Fukuda et al., 2013), which 
incorporates the difference between first and second minimum reflectance data at UV 
(339 nm in forward viewing band-1 and 377 nm in backward viewing band-6), visible 
(670 nm in forward viewing bands-3 and backward viewing band-8) and NIR (865 nm in 
forward viewing band-4 and backward viewing band-9) bands.  The first and second 
minimum reflectance at 670 nm are selected from multiple day from about two-months 
data between Xday − n1 and Xday + n2 day, where Xday is an analysis day and n1 and n2 
are the number of scenes required before and after the analysis date that take the 
same path as the analysis date. When the difference between first and second 
minimum is smaller than a threshold for band-1 (339 nm; forward viewing) and band-6 
(377 nm; backward viewing), i.e., R(2nd,min)band1,6 - R(1st,min)band1,6 < 0.10; and greater than a 
threshold for band-4 (865 nm; forward viewing) and band-9 (865 nm; backward 
viewing), i.e., R(2nd,min)band4,9 - R(1st,min)band4,9 > 0.06; the first minimum reflectance of the 
bands 3 and 8 are judged to be affected by cloud shadows and the second minimum 
reflectance is selected as a minimum reflectance (Fukuda et al., 2013). The advantage 
of using near-UV wavelengths is that the surface reflectance at UV over land is 
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smaller than that at visible wavelengths, as is already applied for aerosol retrieval in 
TOMS and OMI (Torres et al., 1998; 2002; 2007; 2013) and the MODIS (Hsu et al., 2004; 
2006).  
 
After cloud shadow correction, the influence of atmospheric molecular scattering 
(Rayleigh scattering) is corrected from the minimum reflectance data. For this, 
radiative transfer calculations are performed in advance and look-up tables (LUT) are 
generated for atmospheric single- and multiple-scattering components of reflectance, 
unidirectional transmittance, and spherical albedo. Based on this, the effect of 
atmospheric molecular scattering is removed from the minimum reflectance data for 
different combinations of satellite-solar geometry. Following this, the surface albedo 
(Ag) is estimated from the atmospherically corrected minimum reflectance data using 
equations (1) and (2): 

𝑨𝒈 =
𝟏

𝑪+ 𝒓𝑩𝒂𝒏𝒅(𝒊)(𝝉)
   (1) 

𝑪 =  
𝒕𝑩𝒂𝒏𝒅(𝒊)(𝝉; 𝝁𝒐)𝒕𝑩𝒂𝒏𝒅(𝒊)(𝝉; 𝝁𝟏)

𝑹𝑩𝒂𝒏𝒅(𝒊)(𝝁𝟏,𝝁𝒐,𝝋)/𝑻𝒈𝒂𝒔,𝑩𝒂𝒏𝒅(𝒊)
𝟐 −𝑹𝑨𝒕𝒎𝒐𝒔(𝒊)(𝝁𝟏,𝝁𝒐,𝝋)

   (2) 

Where μ1, μo,  are satellite zenith angle, solar zenith angle and relative azimuth angle 
respectively. R and Tgas denote apparent reflectance and transmission of light 
absorbing gas. The subscript “i” denotes observation band number from 1 to 10, 
Ratmos = Rsingle + Rmultiple. τ is the optical thickness of the atmosphere, t(τ; μo) and t(τ; μ1) 
are unidirectional transmittance, r(τ) is spherical albedo. t, r, and Tgas are obtained by 
LUTs (details in GOSAT-2 TANSO-CAI-2 L2 Pre-processing ATBD). 

 

Figure S1: Flowchart of CAI-2 L2 pre-processing algorithm (GOSAT-2 project: GOSAT-
2/CAI-2 Level-2 Preprocessing Theoretical Basis Document - ATBD). 

 

Retrieval of AOD and SSA 

For the retrieval of columnar aerosol optical depth (AOD) and aerosol single 
scattering albedo (SSA) from the satellite received path radiances, a multiple-
wavelength multiple-pixel (MWPM) inversion algorithm (Hashimoto and Nakajima, 
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2017) is used. This algorithm utilizes information contained in different pixels with 
different surface reflectance and it is assumed that aerosol properties vary slowly or 
almost negligibly in the horizontal direction (over different pixels) where the 
variations in surface properties are significant. Thus, the variations in the upward 
radiances over different pixels are assumed to be varying due to variations in surface 
reflectance at the respective pixels. Under this assumption, when there is an 
increasing aerosol load over all the pixels under consideration, the satellite reaching 
upward (backscattered) radiance increases over a dark surface. In compared to that, 
the change in the magnitude of upward radiance with increasing aerosols load over 
brighter surface reflectance is lower. Because, as the surface reflectance increases, 
the absorption of light in the atmosphere and the backscattering of radiance to the 
surface increase which results in decrease in net upward radiance. At some specific 
surface reflectance, the net upward radiance does not change with increasing aerosol 
load in the atmosphere, as the increasing absorption and backscattering of light due 
to aerosol load in the atmosphere fully compensates the increasing surface 
reflectance, resulting in net zero upward radiance. This kind of surface reflectance is 
termed as neutral reflectance where the apparent reflectance is equal to surface 
reflectance. Difference between apparent reflectance and surface reflectance is the 
net reflectance. For surface reflectance beyond the neutral reflectance, the surface 
reflectance dominates over the apparent reflectance, resulting in darkening effect of 
atmosphere on the surface (Kaufman et al., 1987). It is to be noted that the balance 
between the brightening of the surface by atmospheric scattering and darkening by 
aerosol absorption (i.e., critical surface reflectance or neutral reflectance) varies with 
the values of SSA. For each value of SSA, there is a corresponding value of neutral or 
critical reflectance, for which the upward radiance is almost independent of the AOD.  

The above methodology adapted by Hashimoto and Nakajima (2017) is an extension 
of the method by Kaufman (1987), however using the information of aerosol and 
surface properties at multiple wavelength and multiple pixels of satellite images. As 
the variation in radiances take place with variation in AOD depending on aerosol light 
scattering (or single scattering albedo - SSA) and surface reflectance, this principle is 
suitable for successful retrieval of SSA value over different surface reflectance areas. 
Considering no change in the measured radiances between a clear (low AOD) and a 
hazy (high AOD) day, the critical reflectance is determined from satellite radiances. 
The spatially distributed critical surface reflectance is then used to derive AOD and 
SSA over multiple pixels by using a theoretical relation between critical reflectance, 
AOD and SSA, computed for a given aerosol scattering phase function. Radiative 
transfer equations (RTE) are solved together for information contained in radiances at 
each of the pixels with different surface reflectance (Hashimoto and Nakajima, 2017). 
The simultaneous use of short and long wavelengths in the CAI-2 bands is very 
effective for aerosol retrieval when the surface is covered by vegetation and bare soil 
depending on the location.  

The inversion method developed based on the above concept (Hashimoto and 
Nakajima, 2017) is a combination of maximum a posteriori optimal method (Rodgers, 
2000) and a special formulation of GRASP method (Dubovik et al., 2011; 2014). The 
inversion analysis is conducted over different sub-domains, where the retrieved 
values of the optimal set of AOD, SSA and surface reflectance at one domain are 
considered as Dirichlet boundary conditions for the next domain.  
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Figure-S2: The Flowchart of flow-chart of the Cloud and Aerosol Unbiased Decision 

Intellectual Algorithm (CLAUDIA3).  

4. I have a few doubts about the algorithm itself. Does the minimum reflectance 

strategy of surface reflectance correction in this MS consistent with that 

described in lines 81-85? What is the role of NDVI in this decision? In addition, 

if this strategy is used, it should be explained in detail in the flowchart (Fig. 

S1), as using ‘minimum’ may lead to misunderstandings. 

Response: We are sorry for the lack of clarity in this section. In the revised 
manuscript, we have clearly mentioned about the use of minimum reflectance 
criterion for the detection of cloud shadows. The relevant ATBD is cited. The 
information of NDVI is used for cloud discrimination over vegetated areas. The 
flowchart of the approach is revised and detail descriptions are included in the 
revised manuscript as given below.  

Lines 92-108: “The cloud detection algorithm (Ishida et al. 2009, 2018) uses 
reflectance (at the top of atmosphere) of these bands for detecting clouds from 11 
recurrences (one month before and after the observation date) (GOSAT-2 TANSO-CAI-
2 L2 Cloud Discrimination Processing ATBD). A flow-chart of the Cloud and Aerosol 
Unbiased Decision Intellectual Algorithm (CLAUDIA3; Ishida et al., 2018; Oishi et al., 
2017) employed for cloud-screening of GOSA-2 CAI-2 data is given in Supplementary 
Figure-S2. CLOUDIA3 is designed to automatically find the optimized boundary 
between clear and cloudy areas based on a supervised pattern recognition which 
uses support vector machines (SVM; Oishi et al., 2017). Before using the radiance 
(L1B) data in CLAUDIA3, a pre-processing is done to discriminate day and night, 
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saturation flag, missing flag, polar region, water and land areas and sun-glint area for 
water area except Polar Regions. Following this, solar reflection properties by clouds 
and ground surface are examined, which includes: (i) solar reflectance and 
reflectance ratio in the VIS and SWIR regions, (ii) wavelength dependence of 
reflectance in the VIS and NIR region, (iii) NDVI test for cloud discrimination over 
vegetated areas, and (iv) reflectance ratio between NIR and SWIR bands for cloud 
discrimination over desert areas (details in Cloud Discrimination Processing ATBD). 
Subsequently, this information is used in the CLOUDIA3 algorithm, which performs 
the cloud discrimination by Support Vector Machine (SVM; Ishida et al., 2018) in order 
to objectively determine thresholds using multivariate analysis. SVM is one of the 
supervised pattern recognition methods, which first determines a decision function 
(called separating hyperplane) that defines clear or cloudy conditions according to 
the features of training samples (support vectors) in combination with a decision 
function.” 

5. In addition, the authors mentioned an internal mixing model to describe the 

proportion of BC in the aerosol. But it is not clear which internal mixing 

model are used. It is necessary to state and state the formula. How is the 

change in absorption of BC at different wavelengths considered? How is the 

absorption of other non-BC particles considered? The author defines: 

fbc=Vsoot/Vfine. It is also necessary to discuss the reasonableness of ignoring 

coarse particle aerosols. As far as I know, the spectral absorption of mixing 

aerosol is greatly influenced by some coarse particle (like DUST), which also 

show significant absorption in the near UV spectrum. These seemingly 

unreasonable assumptions can also have a very huge impact on later 

application studies. 

Response: We sincerely thank the reviewer for suggesting many important points to 
include in our discussions. Following this, we have elaborated the discussion on the 
estimation of soot volume fraction (SVF) as detailed below: 

Lines 187-202: “For the estimation fBC, an internal mixture of fine-mode aerosols 
(composed of 75% sulfuric acid and soot; mode radius ~ 0.175 µm and dispersion of 
the lognormal volume size distribution ~ 0.8) is considered and the volume fraction of 
soot particles (indicated as soot volume fraction, SF) is considered representative of 
aerosol light absorption by the fine-mode particles. Thus, fBC = Vsoot/Vfine, where Vsoot is 
the soot volume in the fine mode only. In the beginning, a-priori value of soot is 
assumed as 0.01 and the retrieval parameter ‘u’ is investigated based on its’ a-priori 
state ‘ua’. Several a-priori values around the true-states ‘ut’ are considered in the 
experiment; such as ut ± 1.0ut for AOT500fine, AOT500coarse, and SF, and ut ± 0.01ut for 
surface reflectance. The a-priori values of AOD500fine and AOD500coarse are considered as 
0.2. The iteration in the solution search is stopped when the threshold is < 0.02.   

In this simple approximation, various other mixing states of aerosols such as half 
internal and half external, core shell, and aggregated ones (Hashimoto et al., 2017 and 
references therein) are ignored. Thus, SF should be regarded as an equivalent value 
of soot in the fine mode particles, where the absorption property of aerosol is 
attributed only to the BC particles in the fine mode regime. As the BC mass 
distribution shows a mode of 100 – 300 nm (Kompalli et al., 2021) having stronger 
absorption in the NIR region, the light absorption by BC is significant mostly in the 
fine mode regime. The light absorption by other light-absorbing aerosols such as 
brown carbon and dust (coarse particles) responds strongly to radiation perturbation 
in the near-UV region (Mahowald et al., 2013). For the wavelength dependence of light 
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absorption by BC, the complex refractive index of soot particles (d’Almeida et al., 
1991) is considered in the retrieval process. However, the aerosol light absorption in 
the coarse mode domain is not considered in this assumption. The complex refractive 
indices used as aerosol models for CAI-2 aerosol retrieval is shown in the figure 
below: 

 

Figure: Complex refractive indices used as aerosol models for CAI-2 aerosol retrieval: 
(Fine mode: Sulfate + Soot, Coarse mode: Dust (Yello sand) and Sea-salt). Real part 
(top) and Imaginary part (bottom). 

6. In the validation section I note that the authors assume a uniformly columnar 

distributed BC, using a simple equation for the columnar concentration and 

near-surface conversion, but the ideal conditions are quite different from the 

actual observations. I would like to see a more reasonable solution. If not, I 

would like to see more validation, such as SSA, BCAOD, which makes the 

accuracy of the product more intuitive. 

Response: We fully agree with the reviewer that the columnar distribution of BC is not 
uniform in the real scenario. In this context, the uncertainty arising out of the 
consideration of uniform columnar distribution of BC from that of real BC variation 
with height is discussed in the revised manuscript. Further, it is clearly mentioned in 
the revised manuscript that the vertical distribution of BC is considered uniform in the 
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well mixed layer, both in the retrieval algorithm as well as in the conversion of near 
surface BC to column concentration.  

Lines 425-439: “With a view to understanding the uncertainty arising out of the 
consideration of uniform distribution of BC within the PBL, the vertical profiles of BC 
obtained during two distinct periods of winter (December) and spring (May) over two 
distinct geographic locations (Hyderabad – HYD and Lucknow - LKN) of central and 
northern India are considered based on data collected on-board an instrumented 
aircraft as part of Regional Aerosol Warming Experiment - RAWEX (Babu et al., 2016; 
Gogoi et al., 2019). As the vertical distribution of BC is not uniform in the real 
scenario, the uncertainty arises in the estimated column BC amount from surface BC 
measurements as well as in the derivation of BC from satellite based measurements, 
which also assumes uniform vertical distribution of BC within the well mixed 
boundary layer. The supplementary Fig-S7 clearly shows that the vertical profiles of 
BC possess significant seasonality, in addition to their spatial variability. Up to the 
ceiling height of 1 km, it appears that the average BC concentrations within this 
column vary as high as 28% (HYD) to 58% (LKN) from that of the surface BC 
concentrations in winter. Compared to this, columnar variability in spring is relatively 
less (32%) at LKN. On the other hand, columnar distribution of BC at HYD continued 
to show a sharp reduction with height till 1 km altitude, but with subsequent 
enhancement in BC concentrations at higher heights. Based on Model for Ozone and 
Related chemical Tracers, version 4 (MOZART-4) simulation studies, Bao et al., (2019) 
have also reported that BC above the PBL contributes by 5%-80% to the column 
concentrations, even though the distribution of BC within the PBL is nearly uniform.” 

 

Supplementary Fig-S7: Vertical profiles of BC (right panels) during two distinct 
periods of winter (December) and spring (May) over Hyderabad (central India) and 
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Lucknow (Indo-Gangetic Plains). The horizontal bars show the standard deviations of 
the mean. The foot prints of data acquisition along the flight tracks are also shown in 
the left panels.  

Intercomparison of SSA: 

Lines 462-476: 

The values of SSA in our study are also in close agreement with those reported by 
Babu et al., (2016). In another study by Vaishya et al., (2018), it is reported that there is 
a significant reduction in the SSA over the Himalayan foothills, the IGP regions and 
central India in pre-monsoon as compared to the winter season; while the peninsular 
India and adjoining oceanic regions show an increase. Just prior to the onset of 
monsoon, Vaishya et al., (2018) have also reported a decreasing gradient in SSA from 
the west to the east of IGP (~ 0.84 at west IGP, 0.73 at central IGP and 0.79 at eastern 
IGP; all at 530 nm). Over the oceanic regions, the values of SSA are generally high (> 
0.95) and comparable to the surface values reported over the entire BoB (~ 0.93 
during March-April) by Nair et al., (2008); Arabian sea (~ 0.9 in March) by Jayaraman et 
al., (2001).  

In contrast to the above, the spatial distribution of SSA in our study is found to be 
different from that of the SSA derived from Ozone Monitoring Instrument (OMI) 
onboard Aura satellite. The monthly maps of the regional distribution of SSA (at 550 
nm) from OMI (Level-3 daily 1 deg Lat/Lon global gridded product OMAERUVd; 
https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/summary) are shown in 
Supplementary Fig. S10. The difference between the regional distribution of SSA from 
CAI-2 and OMI is higher during DJF, as compared to that during the other months. 
During DJF, CAI-2 retrievals show lower values of SSA over the Indian mainland as 
compared to the OMEAUVd SSA. During JJA, the spatial patterns of SSA are similar in 
both CAI-2 and OMEAUVd retrievals.     

 

Fig.S10: Regional map (monthly average) of aerosol single scattering albedo (SSA) at 
550 nm during DJF, JJA and MAM from OMEAUVd. 

https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/summary
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7. In the comparison of Satellite retrievals vs climatological surface BC 

concentrations, do Satellite retrievals convert to near-ground magnitudes? If 

so, we need to move equation 3 here, but if not, the metrics RMSE in the 

validation needs to be removed, because they are two parameters with 

different magnitudes.  

Response: Thanks for the suggestion. The metrics RMSE in the validation of satellite 
retrievals with the climatological surface BC concentrations is removed from Table-T2 
as satellite retrievals are not converted to ground-magnitude for this inter-
comparison.  

8. The uncertainty analyses is missing in the MS. i.e., the uncertainty of the 

algorithm itself; The uncertainty of interpolation; The uncertainty of internal 

mixing; The uncertainty of switching columnar concentration to near ground; 

The uncertainty of ignoring coarse particle aerosols. The uncertainty analyses 

are very important for those who use the product in the future. 

Response: We are very much thankful to the reviewer for the valuable comment. 
Following details on uncertainty are included in the revised manuscript. Since, the 
core algorithm of retrieving AOD from CAI-2 measurements is based on Hashimoto et 
al., 2007, several inferences regarding the uncertainty and error analysis is cited from 
this article. 

Uncertainty analysis of the algorithm: 

 
(Lines 171-177): Uncertainty of AOD and SSA retrieval  

The uncertainty in the retrieval of AOD using MWPM inversion algorithm over 
heterogeneous surfaces is found to be within ±0.062, ±0.048 and ±0.077 for 
AOD500fine, AOD500coarse and AOD500total respectively (Hashimoto and Nakajima, 
2017). These results are based on the comparison of AOD retrieval from CAI 
measurements of radiances with AOD data obtained from AERONET (Holben et al., 
1998) and SKYNET (Nakajima et al., 2007). Comparison of the CAI-retrieved SSA (at 
674 nm) with that of the AERONET observed values (SSA at 675 nm) revealed the 
retrieval accuracy of SSA within 0.05. Over the homogeneous surface, the random 
measurements error of the retrieval parameters is below 2%. 

The uncertainty of internal mixing and the uncertainty of ignoring coarse particle 

Lines 203-220: With a view to understanding the uncertainty of satellite received 
radiances due to different mixing states of aerosols with varying BC fractions, a 
sensitivity study is carried out using 6S radiative transfer code (Vermote et al., 1997). 
6S code is widely used for the simulation of satellite reaching radiation for different 
combinations of sun-satellite geometry under various conditions of aerosol load in 
the atmosphere. The surface is considered as homogeneous Lambertian surface in 
the simulations. It is observed (Supplementary Figure-S3) that the sensitivity of BC-
fraction (at 880 nm) to satellite reaching radiation is significantly improved under 
higher aerosol loadings (AOD > 0.5) as well as under higher surface reflectance 
conditions, while there is no marginal distinction between BC and non-BC conditions 
for AOD < 0.5. The sensitivity study also clearly indicates that the satellite reaching 
radiation for 1% BC in the aerosol mixture are affected by as low as 5% for variation in 
dust fraction from 1% to 10% during low aerosol loading conditions (AOD ~ 0.1). For 
higher BC fraction (~ 10%) in the aerosol mixture under heavy aerosol loading 
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conditions (AOD ~ 2.0), the variation in dust fraction from 1% to 10% is found to 
change the apparent reflectance by ~10% for surface conditions of higher reflectance 
(~ 0.5), while the variability is much larger (~ 15%) for low surface reflectance 
conditions (~ 0.1). This exercise clearly indicates that the uncertainty in satellite 
retrieval of BC arising out of ignoring the contribution of dust in the aerosol mixture is 
less over dark surfaces when the aerosol load is low. Similarly, the retrieval 
uncertainty is lower over brighter surface when the aerosol load is high. Overall, it is 
to be noted that consideration of the accurate mixing state (internal and external) of 
aerosols is important for accurate computation of effective refractive index and size 
distribution of aerosols. Lesins et al., (2002) have reported that the optical properties 
of the internal mixture of BC and ammonium sulfate can differ by as high as 25% (for 
the dry case) and 50% (for the wet case) from that of its external mixture. 
 

       

Supplementary Figure-S3: Variability of apparent reflectance of satellite observation 
at 0.880 μm wavelength with surface reflectance for different fractions of BC (1%, 5%, 
10% and 20%), dust (1% and 10%) under different conditions of AOD (0.1, 0.5, 1.0, 2.0). 
The fraction of water-soluble species is kept constant (50%). The solar zenith and 
azimuth angles are 40° and 100°, and satellite viewing angle and azimuth angle are 45° 
and 50° respectively. The surface reflectance is considered for homogeneous 
Lambertian surface. 

Within the above-mentioned uncertainties, the sensitivity study has shown that SF is 
underestimated under low aerosol loading conditions (AOD < 0.2) over highly-
reflective surface. This is because the retrieval uncertainty of AOD is higher over the 
high-reflectance surface which leads to the overestimation of AOD500fine. For higher 
aerosol loading condition (AOT500total > 0.4), the MWPM algorithm simultaneously 
determines AOT500fine, AOT500coarse, and SF within error of ±0.06, ±0.05, and ±0.05 
respectively. 
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The uncertainty of switching columnar concentration to near ground 

Lines 425-440: “With a view to understanding the uncertainty arising out of the 
consideration of uniform distribution of BC within the PBL, the vertical profiles of BC 
obtained during two distinct periods of winter (December) and spring (May) over two 
distinct geographic locations (Hyderabad – HYD and Lucknow - LKN) of central and 
northern India are considered based on data collected on-board an instrumented 
aircraft as part of Regional Aerosol Warming Experiment - RAWEX (Babu et al., 2016; 
Gogoi et al., 2019). As the vertical distribution of BC is not uniform in the real 
scenario, the uncertainty arises in the estimated column BC amount from surface BC 
measurements as well as in the derivation of BC from satellite based measurements, 
which also assumes uniform vertical distribution of BC within the well mixed 
boundary layer. The supplementary Fig-S7 clearly shows that the vertical profiles of 
BC possess significant seasonality, in addition to their spatial variability. Up to the 
ceiling height of 1 km, it appears that the average BC concentrations within this 
column vary as high as 28% (HYD) to 58% (LKN) from that of the surface BC 
concentrations in winter. Compared to this, columnar variability in spring is relatively 
less (32%) at LKN. On the other hand, columnar distribution of BC at HYD continued 
to show a sharp reduction with height till 1 km altitude, but with subsequent 
enhancement in BC concentrations at higher heights. Based on Model for Ozone and 
Related chemical Tracers, version 4 (MOZART-4) simulation studies, Bao et al., (2019) 
have also reported that BC above the PBL contributes by 5%-80% to the column 
concentrations, even though the distribution of BC within the PBL is nearly uniform.” 

 

Supplementary Fig-S7: Vertical profiles of BC during two distinct periods of winter 
(December) and spring (May) over Hyderabad (central India) and Lucknow (Indo-
Gangetic Plains). The foot prints of the data acquisition along the flight tracks are also 
shown in the left panels. The horizontal bars show the standard deviations of the 
mean. 
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9. How are SSA and FRP calculated in the section2-3.3? It is not reasonable to 

extrapolate Indian retrievals to global FRP without extended validation and 

uncertainty analyses, and it may be more convincing to state Indian only. 

Response: The retrieval of SSA and FRP is elaborated in the revised version of the 

manuscript as given below. Reviewer may also kindly note that the FRP used in this 

study is MODIS Collection 6 Active Fire Products (MCD14ML), which are extensively 

validated (e.g., Giglio et al., 2016) and used by many investigators to estimate the 

contribution of biomass burning to local and global carbon budgets. Considering this, 

we have also retained the global distribution of FRP in the revised manuscript, even 

though MODIS FRP has an uncertainty of ~ 26% at the 1 sigma level.  

Reference: 

Giglio, L., W. Schroeder, and C. O. Justice, The collection 6 MODIS active fire 

detection algorithm and fire products, Remote Sens Environ., 178: 31–41, 2016. 

Retrieval of AOD and SSA: 

“For the retrieval of columnar aerosol optical depth (AOD) and aerosol single 
scattering albedo (SSA) from the satellite received path radiances, a multiple-
wavelength multiple-pixel (MWPM) inversion algorithm (Hashimoto and Nakajima, 
2017) is used. This algorithm utilizes information contained in different pixels with 
different surface reflectance and it is assumed that aerosol properties vary slowly or 
are almost negligibly in the horizontal direction (over different pixels) where the 
variations in surface properties are significant. Thus, the variations in the upward 
radiances over different pixels are assumed to be varying due to variations in surface 
reflectance at the respective pixels. Under this assumption, when there is an 
increasing aerosol load over all the pixels under consideration, the satellite reaching 
upward (backscattered) radiance increases over a dark surface. In compared to that, 
the change in the magnitude of upward radiance with increasing aerosols load over 
brighter surface reflectance is lower. As the surface reflectance increases, the 
absorption of light in the atmosphere and the backscattering of radiance to the 
surface increase which results in decrease in net upward radiance. At some specific 
surface reflectance, the net upward radiance does not change with increasing aerosol 
load in the atmosphere, as the increasing absorption and backscattering of light due 
to aerosol load in the atmosphere fully compensates the increasing surface 
reflectance, resulting in net zero upward radiance. This is termed as neutral 
reflectance where the apparent reflectance is equal to surface reflectance. Difference 
between apparent reflectance and surface reflectance is the net reflectance. For 
surface reflectance beyond the neutral reflectance, the surface reflectance dominates 
over the apparent reflectance, resulting in darkening effect of atmosphere on the 
surface (Kaufman et al., 1987). The balance between the brightening of the surface by 
atmospheric scattering and darkening by aerosol absorption (i.e., critical surface 
reflectance or neutral reflectance) varies with the values of SSA. For each value of 
SSA, there is a corresponding value of neutral or critical reflectance, for which the 
upward radiance is almost independent of the AOD.  

The above methodology adapted by Hashimoto and Nakajima (2017) is an extension 
of the method by Kaufman (1987), however using the information of aerosol and 
surface properties at multiple wavelength and multiple pixels of satellite image. As the 
variation in radiances take place with variation in AOD depending on aerosol light 
scattering (or single scattering albedo - SSA) and surface reflectance, this principle is 
suitable for successful retrieval of SSA value over different surface reflectance areas. 
Considering no change in the measured radiances between a clear (low AOD) and a 
hazy (high AOD) day, the critical reflectance is determined from satellite radiances. 
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Once determined, the spatial critical surface reflectance is used to derive AOD and 
SSA over multiple pixels by using a theoretical relation between critical reflectance, 
AOD and SSA, computed for a given aerosol scattering phase function. Radiative 
transfer equations (RTE) are solved together for information contained in radiances at 
each of the pixels with different surface reflectance (Hashimoto and Nakajima, 2017). 
The simultaneous use of short and long wavelengths in the CAI-2 bands is very 
effective for aerosol retrieval when the surface is covered by vegetation and bare soil 
depending on the location.  

The inversion method developed based on the above concept (Hashimoto and 
Nakajima, 2017) is a combination of maximum a posteriori optimal method (Rodgers, 
2000) and a special formulation of GRASP method (Dubovik et al., 2011; 2014). The 
inversion analysis is conducted over different sub-domains, where the retrieved 
values of the optimal set of AOD, SSA and surface reflectance at one domain are 
considered as Dirichlet boundary conditions for the next domain.” 

2.4 Fire Radiative Power 

“To understand the spatio-temporal distribution of BC with reference to the 
occurrences of biomass burning events across the globe, MODIS Collection 6 Active 
Fire Products (MCD14ML), viz., fire radiative power (FRP) and fire types are also used 
in this study. MCD14ML (global fire location products) contains the geographic 
coordinates of individual fire pixels from both Terra and Aqua satellites. The FRP or 
fire radiative energy (FRE) is the emitted radiant energy released during biomass 
combustion episodes, which is a suitable parameter to determine the biomass 
combustion rates and the rate of production of atmospheric pollutants. The detailed 
principle behind the remote determination of FRP products used in this study is 
available in Wooster et al., (2003). This technique, called MIR radiance method, uses 
data from MIR spectral channel to estimate FRP. The principle behind this technique 
is that the ratio of the total power emitted over the entire MIR wavelength range to the 
power emitted at 4 µm is approximately constant within a temperature range (~ 600 – 
1500 K) appropriate to most wildfires. Following this, the MIR radiance ‘LMIR,h’ of a fire 
hotspot pixel containing ‘n’ sub-pixel thermal components is expressed as 

𝑳𝑴𝑰𝑹,𝒉 = 𝒂𝜺𝑴𝑰𝑹 ∑ 𝑨𝒏𝑻𝒏
𝟒

𝒏

𝒊=𝟏

 

Here, εMIR is surface spectral emissivity in the appropriate MIR spectral band, An = 
fractional area of nth surface thermal component within the individual ground pixel, 
and Tn = temperature of nth thermal component (K). The constant ‘a (W m-4 sr-1 µm-1)’ 
is determined from empirical best fits relationship between blackbody temperature 
and emitted spectral radiance at single wavelength. The above equation when 
combined to the spectral radiance L(λ) emitted by a blackbody at wavelength λ, it 
relates FRP to the MIR spectral radiance of the hot pixel. Thus, 

𝑭𝑹𝑷𝑴𝑰𝑹 =
𝑨𝒔𝒂𝒎𝒑𝒍𝝈𝜺

𝒂𝜺𝑴𝑰𝑹
𝑳𝑴𝑰𝑹,𝒉 

Where, Asampl is ground sampling area (m2), σ is Stefan-Boltzmann constant. With 
Asampl = 1.0 x 106 m2, the FRP for MODIS pixels are derived as 

FRPMIR = 1.89 x 107(LMIR – LMIR,bg) 

Here, LMIR,bg is background MIR radiance estimated from neighbouring non-fire 
ambient pixels. All radiances are in units of Wm-2 sr-1 µm-1 and FRP in units of Js-1 of 
Watts.”  
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Minor Comments 

1. Some paragraphs are too long, need to split and simplified. 

Response: Complied with. Sub-sections with new headings are also included in the 
revised manuscript. 

2. The data in T2 and S2 for January are not matched, need double-check 

Response: Sorry for the typo error. The statistical parameters are corrected (for 
January) in Figure-S2 (Figure-S4 in the revised manuscript). 

 

 

-END- 


