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Abstract 
 
In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies can assist with 

verification and improvement of UNFCCC National Inventory reported CH4 emissions. In the Surat Basin gas fields, 

Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the major sources of CH4 emissions into 20 
the atmosphere. Because of the rapid mixing of adjacent plumes within the convective boundary layer, spatially attributing 

CH4(a) mole fraction readings to one or more emission sources is difficult.  

 

The primary aims of this study were to use the CH4(a) isotopic composition (d13CCH4(a)) of in-flight atmospheric air (IFAA) 

samples to assess where the bottom-up (BU) inventory developed specifically for the region was well characterised, and to 25 
identify gaps in the BU inventory (missing sources, or over- and underestimated source categories). Secondary aims were to 

investigate whether IFAA samples collected downwind of predominantly similar inventory sources were useable for 

characterising the isotopic signature of CH4 sources (d13CCH4(s)) and to identify mitigation opportunities. 

 

IFAA samples were collected between 100–350 m above ground level (mAGL) over a 2-week period in September 2018. For 30 
each IFAA sample the 2-hour back trajectory footprint area was determined using the NOAA HYSPLIT atmospheric trajectory 

modelling application. IFAA samples were gathered into sets, where the 2-hour upwind BU inventory had >50 % attributable 

to a single predominant CH4 source (CSG, grazing cattle, or cattle feedlots). Keeling models were globally fitted to these sets 

using multiple regression with shared parameters (background air CH4(b) and d13CCH4(b)).  

 35 
For IFAA samples collected from 250–350 mAGL altitude, the best-fit d13CCH4(s) signatures compare well with the ground 

observation: CSG d13CCH4(s) −55.4 ‰ (CI 95 % ± 13.7 ‰) versus d13CCH4(s) −56.7 ‰ to −45.6 ‰; grazing cattle d13CCH4(s) −60.5 

‰ (CI 95 % ± 15.6 ‰) versus −61.7 ‰ to −57.5 ‰. For cattle feedlots, the derived d13CCH4(s), −69.6 ‰ (CI 95 % ± 22.6 ‰), 

was isotopically lighter than the ground-based study (d13CCH4(s) from −65.2 ‰ to −60.3 ‰), but within agreement given the 

large uncertainty for this source. For IFAA samples collected between 100–200 mAGL the d13CCH4(s) signature for the CSG 40 
set, −65.4 ‰ (CI 95 % ±13.3 ‰), was isotopically lighter than expected, suggesting a BU inventory knowledge gap or the 

need to extend the population statistics for CSG d13CCH4(s) signatures. For the 100–200 mAGL set collected over grazing cattle 

districts the d13CCH4(s) signature, −53.8 ‰ (CI 95 % ± 17.4 ‰), was heavier than expected from the BU inventory. An 

isotopically light set had a low d13CCH4(s) signature of −80.2 ‰ (CI 95 % ± 4.7 ‰). A CH4 source with this low d13CCH4(s) 

signature has not been incorporated into existing BU inventories for the region. Possible sources include termites and CSG 45 
brine ponds. If the excess emissions are from the brine ponds, they can potentially be mitigated. It is concluded that in-flight 

atmospheric d13CCH4(a) measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful 

tools for BU inventory verification. 

 

1 Introduction 50 

There is considerable international interest in mapping and mitigating sources of methane (CH4) because it is a potent 

greenhouse gas. This is reflected by the fact that over 100 countries signed the international CH4 pledge launched at COP26 

in November 2021, which aims to strengthen support for CH4 emission reduction initiatives 

(https://www.globalmethanepledge.org/). Currently there are plans to expand coal seam gas (CSG; refer to Appendix A, Table 

A1 for a listing of abbreviations) and shale gas productions throughout many regions of Australia (Australian Government, 55 
2021); thus it is critical to understand how this expansion will contribute to regional, national and global emissions. We also 

need to improve our knowledge of greenhouse gas emissions from agricultural districts. This study uses CH4 carbon isotopic 
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composition (d13CCH4) to gain additional insights into CSG, coal mining and agricultural contributions to regional and global 

atmospheric emissions. We also demonstrate how atmospheric isotope studies can identify mitigation opportunities. 

 60 
The southeast portion of the Surat Basin, Queensland, Australia is an area of approximately 200 km by 200 km, where there 

are over 4,000 producing CSG wells, active and inactive open-pit coal mines, piggeries, and millions of beef cattle in feedlots 

(called feedlots below) and grazing throughout the mixed agricultural districts. The study area covers approximately 0.5 % of 

Australia yet produces 3–4 % of Australia’s CH4 emissions (Australian Government, 2020a, 2020b; Neininger et al. 2021). 

Other CH4 sources close to CSG production in the Surat Basin include domestic wood heaters, landfills, wastewater treatment 65 
plants, and natural seeps from the Condamine River. The rapid expansion of CSG in the south-eastern region of the Surat 

Basin has resulted in considerable research interest in quantifying the emissions from the CSG sector. A review of all past 

ground-based CH4 surveys in the region is presented in Lu et al. (2021).  

 

The Australian Government has developed its own methods for estimating emissions from CSG facilities (Australian 70 
Government, 2020b, Neininger et al. 2021). Because of Australia’s unique climate and farming practices there are many locally 

approved emission factors for agricultural sources and methods for determining regional emissions (Australian Government, 

2020b; EFDB, 2006; IPCC, 2006, 2019). Inventories prepared using the national and IPCC emission factors are commonly 

called bottom-up (BU) emission estimates (Neininger et al. 2021), and an emission factor is a coefficient that quantifies the 

emissions or removals of a gas per unit activity (IPCC, 2006, 2019). To support the CH4 studies in the Surat Basin a BU 75 
inventory was calculated for the region using the methods outlined in Australia’s 2018 National Inventory submission to the 

UNFCCC (Australian Government, 2020a). The comprehensive details about that inventory and the data sets used are 

discussed at length in Neininger et al. (2021). In the past decade there has been increased use of top-down (TD) airborne and 

satellite measurements to verify BU inventories (Barkley et al., 2017; Gorchov Negron et al., 2020; Karion et al., 2013, 2015; 

Neininger et al., 2021; Peischl et al., 2015, 2016, 2018; Pétron et al., 2014; Schwietzke et al., 2017; Turner et al., 2015; 80 
Yacovitch et al., 2018; Zhang et al., 2020, 2021). Previous studies have shown that it is not uncommon to find a large difference 

between BU inventory versus TD estimates of emissions (Kirschke et al., 2013; Desjardins et al. 2018; Saunois et al., 2020). 

Much of this uncertainty is due to the quality and resolution of the base data sets used for calculating the emissions (Han et 

al., 2020; Verhulst et al., 2017). 

 85 
In 2018 and 2019 CH4 emissions from many facilities were mapped using a car-mounted Los Gatos Research ultraportable 

greenhouse gas analyser (Los Gatos Research, Inc., USA). Where CH4 plumes were detected and the source identifiable, the 

air was sampled and analysed to determine the isotopic signature for the CH4 source (d13CCH4(s); Lu et al. 2021; Table A2). In 

conjunction with the ground surveying, in September 2018 an airborne survey of CH4 emissions was undertaken (Neininger 

et al. 2021), the focus of which was regional and sub-regional CH4 mass balance analyses. An exploratory component of the 90 
study was to collect in-flight atmospheric air (IFAA) samples to assess whether additional insights about CH4 sources could 

be obtained from analysing d13CCH4. It was also envisaged that the d13CCH4 measurements would yield additional insights into 

over- and underestimated sources of CH4 in the bottom-up (BU) inventory developed for the mass balance study (Neininger et 

al. 2021). The focus of the investigation was primarily to improve our understanding of CH4 emissions from CSG production. 

However, many of the CSG facilities are co-located with feedlots, piggeries, and grazing cattle, thus we investigated all sources 95 
(Lu et al. 2021, Neininger et al. 2021). 

 

The aims of this study were to use the measurement of CH4(a) mole fraction and d13CCH4(a) in 49 IFAA samples and endmember 

mixing modelling to assess the quality of the regional BU inventory (missing sources, or over- and underestimated source 

categories). An additional aim was to investigate whether we could extend our knowledge of the d13CCH4(s) population statistics 100 
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of CH4 sources in the region for CH4 sources that were inaccessible during ground surveys. We also used the measurements 

to identify mitigation opportunities and to identify where more detailed CH4 emission source studies are required.  

For CH4 emission studies both carbon (d13C) and hydrogen (dD) isotopic composition can help with determining CH4 sources 

and the extent of mixing of various sources (Lowry et al., 2020; Menoud et al., 2020; Menoud et al., 2021; Röckmann et al., 

2016; Townsend-Small et al., 2015), but in this study only d13C is used. Due to the population range of d13CCH4 values for each 105 
source, d13CCH4 may or may not be useful for source attribution (Lan et al., 2021; Lu et al., 2021; Milkov and Etiope, 2018; 

Menoud et al. 2022a; Quay et al., 1999; Sherwood et al., 2017, 2020). Thus, the interpretation of IFAA sample d13CCH4(a) must 

be examined critically in the context of likely sources documented in the BU inventory upwind of a sample collection point. 

In other CH4 emission studies focused on the gas sector, ethane has been used for fossil fuel attribution (Smith et al. 2015; 

Johnson et al. 2017; Mielke-Maday et al. 2019). However, in the Surat Basin ethane is not a useful tracer because the ethane 110 
content of the produced gas is less than 1 % (Hamilton et al. 2012; Sherwood et al. 2017). 

The mixed source d13CCH4(a) value of an IFAA sample can be used to provide insights into what CH4 sources should be in an 

upwind inventory (Lowry et al., 2020; Menoud et al., 2022b; Townsend-Small et al., 2015; Worden et al., 2017; Zazzeri et al., 

2017). When used together, TD airborne measurements and source tracers provide constrained estimates for each source of 

CH4 and its contribution to the overall emissions (Beck et al., 2012; Fisher et al., 2017; France et al., 2016; Tarasova et al., 115 
2006). Using IFAA sampling to characterise the d13CCH4(s) signatures of CH4 sources has many challenges. To reduce the 

uncertainty in the derived d13CCH4(s) signatures, ideally many samples would be collected in a plume from a known source, and 

these discrete samples would be rapidly collected (as fast as possible). However, when collecting IFAA samples there are often 

numerous CH4 sources upwind; it takes time to fill the sample collection bags (resulting in a sampling window in the order of 

kilometres); assumptions must be made about the mixing of air parcels within the convective boundary layer; and it is often 120 
not possible to sample enough points to minimise the uncertainty of d13CCH4(s) signature estimates.  

 

Assumptions must also be made about the uniformity of emissions from all CH4 sources. A good BU inventory can help to 

minimise some of these issues. However, BU inventories can contain errors. Sources of CH4 may have been overlooked when 

collating the inventory, or individual CH4 sources may have been over- or underestimated. Thus, there is two-way feedback. 125 
The IFAA samples provide insights into what is expected in the upwind BU inventory, and the BU inventory guides what is 

expected in the IFAA samples.  

 

On warm days the plumes for each CH4 source rise rapidly and mix within the convective boundary layer with incoming 

regional background air. Sampling flights were restricted to when the convective boundary layer was greater than 1000 mAGL 130 
and before the vertical mixing was suppressed and the top of the convective boundary layer not definable (Neininger et al. 

2021). This mixing of both the relatively small CH4 point and diffuse sources with incoming low mole fraction CH4 background 

air within the large volume of the convective boundary layer reduces the CH4 enhancement over background to less than 0.1 

ppm, often to the order of 0.01 ppm. The low CH4 enhancement also makes it difficult to distinguish CH4 sources with isotope 

techniques where air samples are collected over regions with multiple source categories. Given these challenges, and the spatial 135 
and temporal variability of CH4 emissions in regions of complex industrial and agricultural production, it is improbable that 

BU inventories will exactly match TD estimates of CH4 emissions. An IFAA sample should contain a blend of all sources of 

CH4 immediately upwind of the sample in proportion to the source strength and rate of mixing with incoming background air 

(the well-mixed air within the convective boundary layer entering a region).  

  140 
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A well-established method to determine the d13CCH4(s) signature is to collect air samples within the plume downwind of the 

source and analyse the data using a two-endmember mixing model (Keeling, 1961; Pataki et al., 2003; Miller and Tans 2003).  

However, the airborne surveys were not designed to track individual plumes; the flight tracks were designed to optimise the 

results for regional mass balance estimates of CH4 emissions (Neininger et al. 2021). For aircraft surveys that intersect multiple 

plumes we present an alternative method. Multiple IFAA samples were collected downwind of a predominant inventory source 145 
category, for example CSG or feedlots, and these samples were analysed in sets, which is analogous to multiple samples in a 

plume. We demonstrate how to analyse these IFAA samples using a detailed BU inventory (presented in Neininger et al. 

(2021)), hybrid single particle Lagrangian integrated trajectory (HYSPLIT) modelling (Draxler et al., 1998) and multi-Keeling-

model regression with shared parameters (background air CH4(b) and d13CCH4(b)). 

 150 

2 Materials and methods 

2.1 Overview of the study area 

The study area is in the Condamine natural resource management region of southeast Surat Basin, Queensland (Fig. 1 (a)). It 

includes the southeast portion of the Surat Basin CSG field, which is the largest CSG producing field in Australia with more 

than 60 % of Australia’s total proven gas reserves (Australian Competition and Consumer Commission, 2020). The CSG is 155 
primarily produced from coals with high permeability in the middle Walloon Coal Measures (Baublys et al., 2015; Draper and 

Boreham, 2006; Scott et al., 2007). In the CSG field there are numerous CH4 emission sources including CSG wells 

(exploration, appraisal, production and abandoned), field compression stations, central processing plants, gas and water 

transmission pipelines and raw water ponds (CSG co-produced water storage) (Fig. 1 (b)). CH4 emitted from agricultural 

activities is another major source of atmospheric emissions. Grazing cattle herds, feedlots and dairies are spread throughout 160 
the study area, and grazing cattle and feedlots are often adjacent to CSG infrastructure (Fig. 1 (b)). There is also stored animal 

waste associated with the cattle feedlots and piggeries. Known but poorly quantified sources of CH4 in the study area include 

bush fires, wetlands, termites, on-farm biosolid fertilisers, emissions from un-capped coal and gas exploration wells, and 

emissions from an abandoned coal gasification development (Lu et al., 2021).  

 165 
To support the airborne mass balance estimate of CH4 emissions presented in Neininger et al. (2021), the University of New 

South Wales (UNSW) prepared a BU inventory for 2018, and comprehensive details of this inventory are provided in Neininger 

et al. (2021). The UNSW BU inventory is larger than the region within which the IFAA samples were collected (Fig. 1) to 

allow comparison between the IFAA sample and the upwind BU inventory. The IFAA samples are referenced using a four-

number string: the first two numbers are the day in September 2018, and the second two numbers are the sample reference for 170 
the day. A full listing of the IFAA samples and their sample location details are presented in Table A3. 

 

2.2 BU and TD CH4 emission estimates in the Surat Basin 

The UNSW BU inventory closely followed the methods outlined in Australia’s 2018 National Greenhouse Gas Inventory 

(Australian Government, 2020a). The UNSW inventory covers known sources such as those from the CSG industry and 175 
agriculture as well as sources discovered during the 2018 ground campaign in the study area (Lu et al., 2021). The inventory 

was collated using publicly available data. These data were supplemented with information from environmental impact 

approval reports, government and industry documents, close inspection of the satellite imagery in Google Earth, and airborne 

and ground survey observations (discussed in Lu et al., 2021 and Neininger et al., 2021). The locations of the sources contained 

in the UNSW inventory are shown in Fig. 1 (b). 180 
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Figure 1. Map of the study area with flight tracks and in-flight atmospheric air (IFAA) sample locations (a) (inset map shows the location 
in south-eastern Queensland) and map of the CH4 sources in the area (b). (Inset map data: Australian Government (2020), Administrative 
Boundaries © Geoscape Australia. Base map and data from OpenStreetMap and OpenStreetMap Foundation). The black dashed polygon 185 
shows the extent of the TD domain, where the strong correlation between the UNSW BU inventory and the TD mass balance emission 
estimate was established in Neininger et al. (2021). The diffuse CH4 emissions were determined for each Australian Bureau of Statistics 
district (Condamine, Burnett-Mary, and Queensland Murray-Darling Basin) and land use (mixed cropping and grazing, irrigated agriculture, 
and forest) using annual agricultural production data.  

 190 
In Fig. 2 (a) all point sources (CSG facilities, feedlots, coal mines etc) are presented as an emission intensity map, and in Fig. 

2 (b) the distributed sources are shown. Distributed sources are multiple small sources spread evenly over a subregion. For 

example, we know the total number of cattle within a statistical district (Condamine, Burnett-Mary, and Queensland Murray-

Darling Basin) but not their locations, so the emissions are spread evenly using the population density. Comprehensive details 

about how the emissions from distributed sources were determined are discussed in Neininger et al. (2021) supplementary 195 
material Sect. S.  CSG sources are concentrated in a northwest to southeast zone, with agricultural sources on either side. The 

UNSW inventory estimate for the CH4 emissions in the southeast portion of the Surat Basin CSG fields for 2018 is 20,900 kg 

h−1 (183 Gg yr−1). In the UNSW inventory most of the emissions come from cattle, which contribute 50.3 % (29.9 % from 

grazing cattle, 19.1 % from feedlots, and 1.3 % from dairy cattle); all CSG sources contribute 30.5 %, piggeries 8.7 %, coal 

mines 7.6 %, and all other sources contribute only 2.9 %. Within the airborne measurement TD domain, the UNSW inventory 200 
estimate for CH4 emissions is 11,500 kg h−1 (101 Gg y-1), and the percentage contribution order within the TD domain is 

different: CSG 53.7 %, feedlots 19.0 %, grazing cattle 14.1 %, piggeries 7.3 %, coal 3.5 %, and all other sources 2.4 %. The 

heterogeneity of the point source emission rate is visually apparent in Fig. 2 (a). Within the UNSW inventory domain, 50 % 

of point sources have an emission rate of less than 4.5 kg h−1. These point sources account for 59 % of the UNSW inventory 

total. The top 10 % have an emission rate exceeding 113 kg h−1. The 42 sources in the top 10 % account for 37.7 % of the 205 
UNSW inventory total. The largest individual source is an open-pit coal mine (27.28° S, 151.71° E, red square), which emits 

843 kg h−1 (4.1 % of the UNSW inventory total). The second largest source is a feedlot (27.42° S, long. 151.14° E, orange 
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square), which emits 563 kg h−1 (2.7 % of the UNSW inventory total). The largest CSG source is a raw water pond (26.96° S, 

150.49° E, light green square), which emits 221 kg h−1 (1.1 % of the UNSW inventory total). 

 210 
The distributed sources of CH4 are dominated by grazing cattle (dark red in Fig. 2 (b), 6.54 kg h−1 per 25 km2), followed by 

the irrigation farming district (light blue, 0.64 kg h−1 per 25 km2), and then the forested areas with kangaroos (purple, 0.09 kg 

h−1 per 25 km2). There may also be some termite emissions from the forest and agricultural areas, but these have not been 

quantified. Grazing cattle account for 29.9 % of the UNSW inventory total CH4 emissions, and the position of this large source 

of CH4 emissions is one of the largest uncertainties in the calculations below. To maintain soil health and grass cover the 215 
grazing cattle are rotated through various fields, and at times the cattle also graze along the roadside. The forested areas with 

large kangaroo populations were estimated to contribute only 0.2 % of all CH4 emissions. The irrigated agricultural district 

was estimated to have diffuse CH4 emission sources contributing only 0.7 % towards the UNSW inventory total. 

 

Using airborne measurement techniques, Neininger et al. (2021) quantified the CH4 emissions in the south-eastern portion of 220 
the Surat Basin CSG fields and surrounding agricultural districts. In the September 2018 campaign, there were 10 flights (∼ 

45 h) using a research motorglider operated by Airborne Research Australia (ARA). Neininger et al. (2021) showed that there 

was strong correlation between the TD CH4 flux estimate and the UNSW inventory. Within the airborne survey domain, the 

TD estimate was 13,500 kg h−1 (118 Gg yr−1), which is 1,940 kg h−1 (17 Gg yr−1) higher than the UNSW inventory. 

 225 

 

Figure 2. Maps of the UNSW BU inventory (5 × 5 km for each grid cell) in the southeast portion of the Surat Basin CSG fields showing the 
estimated CH4(s) emissions for point (a) and distributed (b) sources and assigned δ13CCH4(s) for point (c) and distributed (d) sources. 
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2.3 d13CCH4(s) signatures for each inventory category 

The d13CCH4(s) signatures of 16 primary sources in the Surat Basin were characterised in Lu et al. (2021) using air samples 230 
collected during ground-based surveys. These values are listed in Table A2 and were assigned to the different source categories 

in the inventory to create isotopic source signature maps. The spatial locations of the CH4 point sources and their corresponding 

d13CCH4(s) values are shown in Figs 2 (a) and 2 (c). The distribution of the CH4 diffuse sources and corresponding d13CCH4(s) 

values are shown in Figs. 2 (b) and 2 (d). For many source types only one δ13CCH4(s) signature was determined in Lu et al. 

(2021). Gaining access to a wide range of farms and CSG facilities is difficult due to operational procedures, and health and 235 
safety concerns. Therefore, an aim of this study was to examine if IFAA samples can be used to extend our knowledge of the 

CH4(s) signatures from various sources in the Surat Basin. 

 

From the ground-based studies, the d13CCH4(s) signatures from CSG processing and production facilities and CSG raw water 

ponds ranged from −56.7 ‰ to −45.6 ‰ (Bayesian 95 % credible interval (Crl); Lu et al. 2021). CSG is extracted from a range 240 
of depths in the Surat Basin gas fields. The shallowest coal measures tend to have a lighter isotopic signature and the deeper 

coal measures a heavier signature. This is due to the displacement of the original CH4 in coal seams nearest the ground surface 

with biologically derived CH4 (Iverach et al. 2015, 2017). The reported range for δ13CCH4(s) from gas from the Walloon Coal 

Measures is −64.1 ‰ to −44.5 ‰ (Baublys et al., 2015; Draper and Boreham, 2006; Hamilton et al., 2014, 2015; Iverach et al. 

2015, 2017). The difference between the ground-based studies and well observations highlights the need to better characterise 245 
d13CCH4(s) population statistics of CSG and other CH4 sources.  

 

In addition to CSG sources of CH4 there are four major sources of CH4: feedlots, grazing cattle, piggeries, and coal mines 

(Neininger et al. 2021). For each of these sources only a single plume has been sampled to estimate δ13CCH4(s), thus many more 

data sets need to be collected to robustly define the population statistics. A useful measure for the likely range of δ13CCH4(s) for 250 
each source category is summarised by the δ13CCH4(s) Bayesian Crls, which for the limited sampling to date are: feedlots, −65.2 

‰ to −60.3 ‰; grazing cattle, −61.7 ‰ to −57.5 ‰; piggeries −48.0 ‰ to −47.1 ‰, and coal mines, −61.1 ‰ to −58.9 ‰. 

Refer to Lu et al. (2021) for comprehensive details about how these d13CCH4(s) signatures were determined and details about 

Bayesian regression.  

 255 
For CH4 source categories listed in the BU inventories that were not sampled during the mobile survey, δ13CCH4(s) signatures 

were obtained from the literature. These include the δ13CCH4(s) signatures for kangaroos (−80 ‰, Godwin et al., 2014), on-farm 

water bodies (dams) (−51.2 ‰, Day et al., 2016), and domestic wood heaters and native vegetation wildfires (−22.2 ‰, Ginty, 

2016). There are also numerous termite mounds in the region, but there have been no studies on the rate of CH4 emissions 

from these mounds, nor has δ13CCH4(s) been characterised for termites in the region. For worker termites collected from mounds 260 
near Darwin, Australia, Sugimoto et al. (1998) reported δ13CCH4(s) values ranging from −88.2 ‰ to −77.6 ‰. A major gas 

distribution line passes through the region; this transports conventional gas from the fields to the west of the study area to the 

LNG terminals on the coast and for the domestic market at Brisbane (Jemena, 2021). The δ13CCH4(s) population statistics for 

this gas are not known.  

 265 

2.4 Research aircraft instrumentation and collection of the IFAA samples 

Collecting IFAA samples in FlexFoil or similar bags is a comparatively fast and cost-effective method and has been used in 

numerous airborne and ground-based CH4 studies (Fisher et al., 2017; France et al., 2021; Lowry et al., 2020, Menoud et al., 

2022). During the campaign in September 2018, 92 IFAA samples were collected on board a Diamond Aircraft HK36TTC 
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ECO-Dimona, equipped with underwing pods that housed the Los Gatos Research ultraportable greenhouse gas analyser, and 270 
the modified LiCOR Li-7500 open path gas analyser for fast CO2 and H2O measurements, and meteorological sensors for wind 

and thermodynamic parameters. Specifications of the airborne platform and instruments are described in Neininger et al. 

(2021). Sample bags were manually filled in the cockpit by connecting them to an air sampling tube, which had an inlet 

mounted far outside of the fuselage under the wing. Air was drawn into 3 L SKC FlexFoil PLUS (SKC Inc., USA) sample 

bags with polypropylene fittings. Ambient air was drawn from the intake with the assistance of a Viton membrane pump via 275 
polyurethane tubing. Before opening the valve of the sampling bags, the fitting was carefully flushed to avoid sampling cockpit 

air. The duration of bag filling was ~ 1 min, which covers a track length of about 3 km at the flying speed of ~ 170 km/h. All 

IFAA samples presented in this study were collected within the convective boundary layer. During each flight, the top of the 

convective boundary layer was established several times by ascending and descending between the lower transects. During the 

surveying period, the convective boundary layer typically had an upper altitude limit ranging from 1,700 to 2,700 mAGL 280 
(Neininger et al., 2021). Most of the airborne measurement surveying for the mass balance surveying and IFAA sampling was 

flown at altitudes of approximately 150 mAGL and 300 mAGL (Fig. 3 (a)). IFAA samples were collected on each transect, 

with up to 25 samples being collected in a day. When CH4 plumes were identified from the onboard real-time display, 

additional samples were collected. The IFAA sample locations for the four days analysed below are shown in Fig. 1 (a). 

 285 
When collecting IFAA samples there are many sampling and logistical challenges. We collected 3 L samples of air to enable 

both on-site testing and accurate laboratory measurements, and we used SKC FlexFoil PLUS bags to reduce the cost of the 

project. Also, because the air samples were collected manually and stored in the cockpit, the number of samples collected in 

each sampling run was limited to a maximum of ~15.  A purpose-built sampling system that rapidly fills 1 L canisters would 

potentially enable in-plume higher mole fraction IFAA samples to be collected. The smaller canisters would also allow for 290 
more samples to be collected each flight. More in-plume samples with higher CH4 mole fraction values would reduce the 

uncertainty in the derived δ13CCH4(s) signatures. However, if the plume is heterogenous there is also a risk that rapidly filling 

the canisters will not sample the highest mole fraction portions of the plume. 

 

2.5 Calculation of the 2-hour BTF BU inventory emissions 295 

For each IFAA sample the BTF was calculated using the NOAA Air Resources Laboratory’s (ARL) HYSPLIT model (Draxler 

et al., 1998) (Fig A1). HYSPLIT was used for this study because it is publicly available, enabling the methods presented here 

to be replicated by others. The HYSPLIT model is designed and widely used for tracking air parcel trajectories as well as 

calculating transport, dispersion and deposition of pollutants and hazardous materials (Stein et al., 2015). In this study, we 

determine the contributing CH4 sources (from the UNSW BU inventory in Neininger et al. 2021) of an IFAA sample within a 300 
BTF based on the 2-hour HYSPLIT back-trajectory starting at the IFAA sampling height, and at the mid-point of the IFAA 

sampling interval. The HYSPLIT back trajectory calculations were done using the global data assimilation system (GDAS) 

0.5-degree meteorology option (GDAS 0.5 degree, global 09/2007-06/2019, using the normal trajectory, and for the vertical 

motion we selected model the vertical velocity). The 2-hour period was based on the forward and inverse plume modelling in 

Neininger et al. (2021), which established that most of the CH4 enhancement along a flight line could be attributed to a CH4 305 
source located within 2 hours, and within 0.025, 0.05 and 0.1 degrees longitude/latitude on each side of the IFAA sample 

collection mid-point, 1-hour and 2-hour back-trajectory locations (refer to Fig. A1 for the HYSPLIT back trajectories, and Fig. 

A2 for a representative BTF inventory polygon. Also refer to Neininger et al. (2021) supplementary material Figure SF26 for 

an example of the more detailed back trajectory modelling, used to guide the HYSPLIT settings). Using the HYSPLIT BTF to 

determine contributing sources is an easy-to-replicate method. A more rigorous method would involve forward modelling the 310 
mixing of plumes for the prevailing meteorological conditions. Given that there are over 6,000 point and distributed CH4 
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sources in the region, it is beyond the scope of this project to model the plume extending from each source and d13CCH4(s) 

mixing. For the goal of identifying major upwind sources of CH4, the HYSPLIT BTF results compared favourably when 

checked against the higher resolution local scale modelling in Neininger et al. (2021). As the wind speeds changed throughout 

the sampling campaign this results in a different BTF for each sample. However, as will be shown below, for the purpose of 315 
identifying inventory knowledge gaps and mitigation opportunities, the variations in the BTF land surface area analysed are 

not critical for this study.  

 

2.6 IFAA sample CH4(a) mole fraction and δ13CCH4(a) measurements 

All CH4 mole fractions and δ13CCH4 values reported below were measured in the greenhouse gas laboratory at Royal Holloway, 320 
University of London (RHUL) (Fisher et al. 2006). For quality control, the IFAA samples were analysed on-site prior to 

shipping to the UK using a Picarro G2201-i cavity ring-down spectrometer (CRDS) (Picarro, Inc., USA). This was done to 

check for contamination during transportation to RHUL. If the UNSW and RHUL CH4 mole fraction values had a relative 

difference of greater than 1 % the samples were removed and not analysed further. Forty-nine useable IFAA samples were 

collected. These samples had a median CH4 mole fraction difference of 0.4 % between the UNSW and RHUL measurements. 325 
The Picarro G2201-i used for this quality control step had been previously calibrated via an interlaboratory comparison 

between Commonwealth Scientific and Industrial Research Organisation (CSIRO), UNSW and RHUL. This calibration used 

Southern Ocean air from 2014 and 2016. Comprehensive details of the Picarro G2201-i performance are discussed in Lu et al. 

(2021). To control for any potential instrument drift, standardised Southern Ocean air was analysed at regular intervals, 

typically every 120 minutes, and if required a drift correction was applied. 330 
 

At RHUL, a Picarro G1301 CRDS (Picarro, Inc., USA) and a modified gas chromatography isotope ratio mass spectrometry 

(GC‐IRMS) system (Trace Gas and Isoprime mass spectrometer, Elementar UK Ltd., UK) (Fisher et al., 2006) were used for 

the measurement of CH4 mole fraction and δ13CCH4 respectively. The Picarro G1301 CRDS has a reproducibility of ± 0.0003 

ppm. Air standards from National Oceanic and Atmospheric Administration (NOAA) were used to calibrate the CRDS to the 335 
WMO X2004A scale (Dlugokencky et al., 2005; WMO, 2020). The CH4(a) mole fraction of each IFAA sample was determined 

by analysing the sample for 210 seconds on the Picarro G1301, and the average value of the last 90 seconds was recorded. All 

IFAA samples were measured in triplicate to obtain δ13CCH4(a) on the Vienna Pee Dee Belemnite (VPDB) scale using GC‐

IRMS. When the standard deviation of the first three analyses was greater than the target instrument precision of 0.05 ‰, a 

fourth analysis was performed. For more detailed information about the instrumentation and measurement procedure, see 340 
Fisher et al. (2006) and Lu et al. (2021). 

 

2.7 Points of interest identification and application of multi-Keeling-model regression 

Different CH4 formation processes result in each CH4 source having different δ13CCH4 population statistics for both the range 

and distribution shape (Whiticar, 1999; Sherwood et al., 2017, 2020; Menoud et al. 2022a). Thus, the isotopic composition of 345 
air samples can be used to identify inputs from similar sources, the extent of mixing of two or more sources, and to identify 

samples that are offset to the isotopic composition expected from the BU inventory. IFAA samples of interest are those that 

have relatively high CH4(a) or different than expected δ13CCH4(a) (below called points of interest) because these samples may 

indicate over- or underestimation of CH4 emissions in the BU inventory. The points of interest can also indicate that a source 

of CH4 has been missed in the BU inventory. A point of interest may also indicate sampling or measurement errors, but this is 350 
unlikely for the samples analysed, due to the quality assurance measures at all stages of sampling and measurement. 
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Figure 3. IFAA sample observations between altitudes 100–350 mAGL. (a) IFAA sample altitude (mAGL) versus IFAA sample CH4(a) 

(ppm). This plot highlights the sampling at altitudes of approximately 150 m and 300 m. (b) Back trajectory footprint bottom-up (BTF BU) 355 
inventory CH4 (kg h–1) versus IFAA sample CH4(a) (ppm). The linear regression fit highlights the moderate correlation (R2 = 0.59) between 

the two variables. The grey zone is the 95% confidence level. (c) A Keeling plot: IFAA samples δ13CCH4(a) versus IFAA sample 1/CH4(a) 

(ppm) (The error bars are one standard deviation. For 1/CH4(a) the errors are too small to be observable; IFAA samples 1604, 1817, 1906, 

2103, 2105 are discussed in detail in the main text). 
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 360 
Subsets of samples were collated based on altitude (Fig. 3 (a)) and the dominant CH4 source in the BTF BU inventory (Tables 

A3, A4 and A5). Before sorting the data into subsets, points of interest were identified by visual inspection using two graphs: 

BTF BU Inventory vs IFAA Sample CH4 (Fig. 3 (b)), and a Keeling plot (δ13CCH4(a) vs 1/CH4(a)) (Fig. 3 (c)). Although the 

points of interest were removed for the Keeling model regression analysis, they are still analysed in the context of their position 

within the Keeling plot (Fig. 3 (c)). After the points of interest were identified, the IFAA samples that had a single source that 365 
represented over 50 % of the 2-hour back-trajectory inventory were combined into sets for the multi-Keeling-model regression 

with shared parameters analysis. Keeling analysis sets for the following categories were collated: 

• CSG >50 % BTF BU inventory, 100–200 mAGL 

• CSG >50 % BTF BU inventory, 250–350 mAGL 

• Grazing Cattle >50 % BTF BU inventory, 100–200 mAGL 370 
• Grazing Cattle >50 % BTF BU inventory, 250–350 mAGL 

• Feedlots >50 % BTF BU inventory, 100–350 mAGL. 

 

The >50 % threshold was set to achieve a balance between reducing the uncertainty in the regression and having a predominant 

CH4 source type in the upwind inventory. Ideally a higher threshold would be used, but this would require the collection of a 375 
greater number of IFAA samples than done in this study. The derived δ13CCH4(s) signatures for each category will be affected 

by the threshold, but the relative insights about a category being isotopically heavier or lighter will not.  

 

For coal mines and piggeries there are only 2 BTF BU inventories with >50 % emissions from these sources (Tables A4 and 

A5). As a result, these categories could not be analysed using the modelling methods below. There is only one category for 380 
feedlots, because there are too few points for the Keeling analysis in the 100–200 mAGL and 250–350 mAGL data sets.  

 

For two-endmember mixing (a source of CH4 mixed in background air), the d13CCH4(s) signature of the source mixing in 

background air is calculated using the Keeling model method (Keeling, 1961; Pataki et al., 2003). The Keeling model is:  

δ13CCH4(a) = CH4(b) (δ13CCH4(b) − δ13CCH4(s)) ·1/ CH4(a) + δ13CCH4(s)       (1) 385 

where CH4(a) and δ13CCH4(a) are the IFAA sample values, CH4(b) and δ13CCH4(b) are the background air values, and δ13CCH4(s) is 

the isotopic composition of the source.  

 

In this study, for each source category 4 to 10 IFAA samples were collected where a single source category contributed >50 

% of the BTF BU inventory emissions. For each category the samples were collected on different days and each day would 390 
have subtly different CH4(b) and δ13CCH4(b). Regression of a single source data set is poorly constrained, resulting in large 

uncertainties in the derived δ13CCH4(s) due to the low enhancement above background, less than 0.040 ppm, and the small 

number of samples in each category (Appendix B). To improve the confidence in the derived δ13CCH4(s), δ13CCH4(b) and CH4(b), 

the Keeling model (Eq. 1) was fitted simultaneously to all source category data sets using multi-Keeling-model regression 

with shared parameters (CH4(b) and δ13CCH4(b)), calculated using the MultiNonlinearModelFit function in Mathematica (Version 395 
12.0) (Wolfram Research Inc, 2019). This algorithm globally optimises δ13CCH4(s) for each category and returns the shared 

values for CH4(b) and δ13CCH4(b). Comprehensive details about the Mathematica MultiNonlinearModelFit function for fitting 

multiple data sets to multiple expressions that share parameters are available from the Wolfram function repository (Smit, 

1986). 

 400 
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When the multi-Keeling-model regression with shared parameters is applied globally to all category data sets the values for 

δ13CCH4(CSG-100to200), δ13CCH4(CSG-250to350), δ13C(Grazing-100to200), δ13CCH4(Grazing-250to350) and δ13CCH4(Feedlots-100to350) are unconstrained 

(allowed to vary during the regression). Background air CH4(b) and δ13CCH4(b). are also unconstrained and a single optimal set 

determined. This assumes that CH4(b) and δ13CCH4(b) are similar on all days, which both the continuous ground surveying and 

airborne measurements results support (Lu et al. 2021; Neininger et al. 2021). This assumption is discussed further in Sect. 405 
3.3.1. Because there are subtle changes in CH4(b) and δ13CCH4(b) throughout the campaign the multi-Keeling-model regression 

determined values for CH4(b) and δ13CCH4(b) represent the background air centroid for all days of measurements.  

 

Miller and Tans (2003) discussed rearranging Eq. 1 for different data collection scenarios and regression aims. One algebraic 

expression rearrangement enables the source signature to be determined when CH4(b) and δ13CCH4(b). are unknown: 410 

δ13CCH4(a) CH4(a) = δ13CCH4(s) CH4(a) + CH4(b) (δ13CCH4(b) − δ13CCH4(s)).       (2) 

Like Eq. 1, when Eq. 2 is fitted to individual categories it is poorly constrained for the dimensions of the data sets analysed.  

A second algebraic expression rearrangement by Miller and Tans (2003) requires δ13CCH4(b) and CH4(b) to be specified: 

δ13CCH4(a) CH4(a) - δ13CCH4(b) CH4(b) = δ13CCH4(s) (CH4(a) - CH4(b)).       (3) 

For Eq. 3 CH4(b) and δ13CCH4(b) can be either constant or varying in time. A multi-Miller-Tans model regression is equivalent 415 
to assuming constant CH4(b) and δ13CCH4(b), and under this assumption fitting either Eq. 1 or Eq. 3 using multiple regression 

with shared CH4(b) and δ13CCH4(b) will result in the same values being determined for the shared CH4(b) and δ13CCH4(b). Similarly, 

for each category almost identical values for CH4(b) and δ13CCH4(b) are determined within the precision of the simultaneous 

multiple regression calculations.  

 420 
In Lu et al. (2021) Bayesian regression was used, and the credible interval (CrI) reported. The frequentist 95 % confidence 

interval (CI) is analogous to the Bayesian Crl (Lu et al. 2012; Albers et al. 2018). To allow direct comparison between this 

study and Lu et al. (2021) the 95 % confidence interval is reported below for δ13CCH4(s).  

 

A subset of visually identified points of interest (1604, 1906, and 2103), all with low δ13CCH4(a) values, is analysed using the 425 
results of the multi-Keeling-model regression. Using the values for CH4(b) and δ13CCH4(b) derived from the multi-Keeling-

model regression, the Keeling model (Eq. 1) is fitted to this subset to determine its δ13CCH4(s). For this subset a similar result 

could be obtained using Eq. 2.  

 

3 Results and Discussion 430 

3.1 IFAA sample locations and CH4 enhancement relationships 

In Fig. 1 the location of the IFAA samples is shown. Most of the samples were collected near or above the CSG fields. As part 

of the surveying on both the 16th and 18th, IFAA samples were collected remote from CSG production above the agricultural 

districts. Fig. 3 (a) shows that the IFAA samples were collected at two focused-altitude intervals, between 100 mAGL and 200 

mAGL, with most IFAA samples collected at approximately 150 mAGL, and between 250 mAGL and 350 mAGL, with most 435 
samples collected at approximately 300 mAGL.  

 

A plot of the BTF BU inventory emissions (kg h–1) versus IFAA sample CH4(a) (ppm) shows that there is a moderate correlation 

(R2 = 0.59) (Fig. 3 (b)). This moderate correlation is expected because the mixing of multiple CH4 sources under turbulent 

atmospheric conditions is not a linear process, the inventory is calculated using annual data, and the rate of emissions for many 440 
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CH4 sources in the inventory will vary either throughout the seasons (agriculture) or daily (for example, CSG production or 

grazing cattle location). In Fig. 3 (c) three samples have relatively high CH4(a) values (IFAA samples 2103, 2105, and 2111) 

and these points are discussed in detail below. IFAA sample 1817 is highlighted, as it is discussed in Sect. 3.4. 

 

The IFAA samples are shown in a Keeling plot (Fig. 3 (c)). In this graph three points with relatively low d13CCH4(a) 445 
measurements are highlighted: 1604, 1906 and 2103. These three points were not included in the initial Keeling analysis but 

are analysed using insights from the multi-Keeling-model regression. 

 

3.2 IFAA samples δ13CCH4(a) versus BTF BU inventory source category contribution 

The 2-hour back trajectories calculated using HYSPLIT for each day are shown in Fig. A1 and for each category set in Figs. 450 
A3, A4 and A5. The total emissions from each IFAA sample’s HYSPLIT BTF were determined based on the UNSW BU 

inventory (Neininger et al. 2021, supplementary material document) and listed in column 8, Table A3. The total CH4 emissions 

in each IFAA sample’s BTF range from 2.7 kg h−1 to 2209.1 kg h−1 (each BTF BU inventory is a subset of the UNSW inventory). 

Five source categories account for most of the CH4 emissions in the Surat Basin: CSG, feedlots, grazing cattle, piggeries, and 

coal mine emissions (Neininger et al., 2021). The contribution of the individual source categories to the total emissions in the 455 
BTF were calculated as outlined in Neininger et al., (2021) and are expressed as percentages of the total emissions in Fig. 4. 
 

There are three unknown parameters in the Keeling model (Eq. 1) (δ13CCH4(s), CH4(b) and δ13CCH4(b)) and one independent 

variable (CH4(a) (x-axis 1/CH4(a) in the Keeling plot)). To fit the Keeling model (Eq. 1) using the NonLinearModelFit and 

MultiNonLinearModelFit functions in Mathematica, a minimum of four IFAA samples is required (four CH4(a) and δ13CCH4(a) 460 
pairs).  

 

For inclusion in the Keeling analysis input set for each CH4 source category, an individual source (CSG, grazing cattle or 

feedlots) had to contribute >50 % of the BTF CH4 emissions (Tables A4 and A5). The 50 % threshold was set to have enough 

points in each Keeling modelling set, and still have one source potentially dominate the emissions. For each source category 465 
the set of samples that matched the threshold criteria is highlighted in colour in Fig. 4 and Tables A3, A4 and A5. IFAA 

samples excluded from the initial Keeling analysis are labelled in Figs. 4 (a) and 4 (b). The HYSPLIT back trajectories for 

each IFAA sample are shown in Figs. A3, A4 and A5. These trajectories highlight that neither a single point source nor plume 

was sampled. Rather multiple plumes, where one source category dominated emissions, were analysed as a set (Fig. 4). 
 470 

3.3 Multi-Keeling-model regression using shared parameters 

In Fig. 5 (a) the result of using multi-Keeling-model regression with shared background CH4(b) and δ13CCH4(b) is shown, and 

the regression statistics are summarised in Table A6. Because CH4(b) and δ13CCH4(b) are shared parameters all Keeling lines 

converge to a common point for background air. The resulting values of this regression for the mole fraction and isotopic 

composition of the background are discussed below.  475 
 

In Fig. 5 (b) the result of using multi-Miller-Tans model regression with shared background CH4(b) and δ13CCH4(b) is shown, 

and the regression statistics are summarised in Table A6. As expected, these are within measurement error identical to the 

Keeling model results. For this reason, the results below are discussed with reference only to the Keeling model algebraic 

expression representation of the two-endmember mixing model. For the reader interested in seeing the results of fitting the 480 
Keeling (Eq. 1) and Miller Tans (Eq. 2) models to the individual categories they are presented in Appendix B. 
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Figure 4. IFAA sample δ13CCH4(a) (‰) versus percentage of BTF BU inventory emissions of the source categories indicated in the figure 

titles (%). a) BTF BU inventories with CSG CH4 contributions; IFAA sample 2103 was excluded from the Keeling modelling set. B) BTF 485 
BU inventories with grazing cattle CH4 contributions; IFAA samples 1604, 1906 and 2103 were excluded from the Keeling modelling sets. 

(c) BTF BU inventories with feedlot CH4 contributions. Category sets used in the Keeling plot modelling are each indicated by a separate 

colour, as shown in the colour keys. Samples below the 50 % BTF BU inventory threshold were excluded from the Keeling modelling. 

 

 490 
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3.3.1 Background air (CH4(b) and δ13CCH4(b))  

In a region with so many sources (Figs. 1 and 2), collecting IFAA samples to define both background CH4(b) and δ13CCH4(b) 

was not successful. Each day IFAA samples were collected remote from sources (Fig. 1 (a)) with the aim of providing data to 

define background CH4(b) and δ13CCH4(b). Subsequent analysis of all the IFAA samples indicated that none of the IFAA samples 

matched the low CH4 mole fractions recorded in Neininger et al. (2021). The background CH4 mole fraction recorded in 495 
continuous airborne surveys in Neininger et al. (2021) was stable between days and varied between 1.822 ppm and 1.827 ppm. 

This range was established over two weeks with varying wind directions. For the period analysed in this study the wind 

directions were from: 16th, southwest averaging 8.6 m s−1; 18th, north averaging 4.1 m s−1; 19th, northwest averaging 6.8 m s−1; 

and 21st, southeast averaging 5.4 m s−1 (Fig. A1). How the background CH4 mole fraction was defined each day is discussed 

at length in the supporting information of Neininger et al. (2021). 500 
 

There is no official atmospheric greenhouse gas monitoring station in the Surat Basin, or anywhere in Queensland. The closest 

monitoring station is at Cape Grim, 1,500 km south, which for September 2018 recorded averages of 1.8300 ppm and −47.3 

‰ (https://capegrim.csiro.au/).  

 505 
During the multi-Keeling-model regression calculation, the values for CH4(b) and δ13CCH4(b) were allowed to vary. The resulting 

values for background air are CH4(b) = 1.826 ppm (CI 95 % ± 0.037 ppm) and δ13CCH4(b) = −47.3 ‰ (CI 95 % ± 0.3 ‰). This 

result falls within the CH4(b) range reported in Neininger et al. (2021) (between 1.822 ppm and 1.827 ppm), and δ13CCH4(b) 

matches the Cape Grim value for the corresponding month (−47.3 ‰). The good match of the regression-derived CH4(b) and 

δ13CCH4(b) with the independent measurements of CH4(b) and δ13CCH4(b) demonstrates that multi-Keeling-model regression is a 510 
useful methodology for obtaining insights about the isotopic composition of the atmosphere.  

 

3.3.2 CSG >50 % BTF BU inventory, 250–350 mAGL 

IFAA samples included in this set were collected on all days (16th, 18th, 19th and 21st, September 2018) and under different 

prevailing wind directions (Fig. A3 (a)). These samples were collected either directly over or immediately adjacent to the CSG 515 
fields and the resulting δ13CCH4(s) signature can be considered representative for blended CSG CH4 sources. The IFAA sample-

derived d13CCH4(s) signature for CSG >50 % BTF inventory, 250–350 mAGL, was −55.4 ‰ (CI 95 % ± 13.7 ‰, black line Figs. 

5 (a) and 6 (a)), which is within the range listed in Table A2 (CrI: −56.7 ‰ to −45.6 ‰, grey band Fig. 6 (a)) for CSG sources 

measured in Lu et al. (2021). The large uncertainties are due to the small CH4 enhancement, the small number of samples in 

each category data set, and the fact that in most cases there will be some small measure of input from multiple endmembers, 520 
although everything is modelled as if there is two endmember mixing (one source and background air). The overlap between 

the calculated and expected δ13CCH4(s) is shown graphically in Fig. 6 (a). Fig. 4 (a) shows that 5 of the 10 sample points had 

greater than 90 % of the emissions in the BTF BU inventory derived from CSG sources, and in each case most of the CH4 

emissions were from CSG compression stations. This result further validates both the methodology used in this study and the 

results in Lu et al. (2021).  525 
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Figure 5. Multiple regression with shared CH4(b) and d13CCH4(b) for the Keeling model ((a), solid lines, Eq. 1) and the Miller-Tans model 

((b), solid lines, Eq. 3) for the category subsets listed in the colour key. Refer to Table A6 for all regression results and their error statistics. 530 
The d13CCH4(s) signature for each category is listed near the lines of best fit for each category. The dashed purple line in (a) shows a Keeling 

model (Eq. 1) fitted to IFAA samples 1604, 1906, and 2103 (for this regression CH4(b) and d13CCH4(b) were fixed to match the results of the 

multi-Keeling-model regression with shared CH4(b) and d13CCH4(b). To highlight the subtle differences in the multiple regression best fit 

parameters, the derived CH4(b) and d13CCH4(b) values are given to an extra significant figure in (a) and (b) compared to the measurement 

precision. All error bars are one standard deviation. 535 
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 540 
Figure 6. Expected versus measured d13CCH4(a) for each CH4 source category. The expected source category d13CCH4(s) values from Lu et al. 

(2021), Table A2, are shown as thin continuous Keeling lines (without number values) for the upper and lower Bayesian credible interval 

for the category (where the credible interval is analogous to the 95 % confidence interval). The thick lines represent Keeling lines based on 

the IFAA samples (including derived source signatures). The IFAA sample point and measurement uncertainty are also shown for each 

category data set. The categories are: (a) CSG >50 % BTF inventory,100–200 mAGL (blue) and CSG >50 % BTF inventory, 250–350 mAGL 545 
(black); (b) Grazing Cattle >50 % BTF inventory, 100–200 mAGL (red) and Grazing Cattle >50 % BTF inventory, 250–350 mAGL (green); 

(c) Feedlots >50 % BTF inventory, 100–350 mAGL (yellow points (100–200 mAGL) and orange points (250–350 mAGL)). All error bars 

are one standard deviation. 
 

3.3.3 CSG >50 % BTF BU inventory, 100–200 mAGL 550 

For the CSG >50 % BTF BU inventory, 100–200 mAGL set the d13CCH4(s) signature was −65.4 ‰ (CI 95 % ± 13.3 ‰, blue 

line Figs 5 (a), and 6 (a), also see Fig A3 (b)). This is considerably isotopically lighter than the higher-altitude CSG set 

discussed above and lower in value compared to all previous CSG measurements from Lu et al. (2021). The 100–200 mAGL 

CSG δ13CCH4(s) signature is within the δ13CCH4(s) signature range reported in the literature for the Walloon Coal Measures, −64.1 

‰ to −44.5 ‰ (Baublys et al., 2015; Draper and Boreham, 2006; Hamilton et al., 2014, 2015; Iverach et al. 2015, 2017), but 555 
is isotopically lighter than the range reported in Lu et al. (2021). In Fig. 6 (a) all 100–200 mAGL samples (blue points) are 

systematically isotopically lighter than the high altitude 250–350 mAGL IFAA samples (black points). This offset is difficult 

to explain from the data collected.  

 

With reference to the results in Tables A3, A4 and A5, the lower 100–200 mAGL CSG set had no significant difference in the 560 
median CH4 compared to the higher 250–350 mAGL set (1.849 ppm to 1.847 ppm, respectively). However, there are two 

noticeable differences between the high and low altitude CSG sets: the median BTF BU inventory emission rate is 380 kg h–1 

lower for the 100–200 mAGL altitude set; and CSG sources for the 100–200 mAGL set tally to a median emission rate that is 

187 kg h –1 less than the 250–350 mAGL CSG set. But these differences do not account for the lighter δ13CCH4(s) signature for 

the 100–200 mAGL CSG set. There was also no significant difference between the low and high CSG BTF BU inventories 565 
with respect to either the grazing cattle or feedlot percentage inputs. Both CSG sets have samples collected on the 18th, 19th 

and 21st; both sets cover a range of CSG areas (Fig A3). In Fig 6 (a) all these lower altitude samples where the upwind inventory 

is dominated by CSG sources are isotopically lighter than expected.  

 

For three samples in the 100–200 mAGL CSG set (1821, 1823 and 1911), greater than 88 % of the BU inventory emissions 570 
are due to CSG sources (Table A4), thus a δ13CCH4(s) value of −56.7 ‰ to −45.6 ‰ would be expected (Table A2). However, 
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these samples are part of a category set that had a best fit value of −65.4 ‰. Assuming that there are no major issues with the 

inventory, it would suggest that the ground-based study (Lu et al. 2021) did not capture the full δ13CCH4(s) population range for 

CSG sources. The low −65.4 ‰ value could also be explained by a higher proportional contribution from cattle emissions on 

the day of sampling, or unaccounted emissions from termites. An additional possibility is that the air upwind of the 2-hour 575 
limit is really a blend of background and other upwind sources, and that the extent of enhancement of the air entering the 2-

hour limit was enough to invalidate the assumption of predominantly two-endmember mixing. Thus, an apparent source 

signature has been determined (Vardarg et al. 2016). This possibility could be examined using a multisource transport model. 

Ideally future chemical analysis of airborne collected air samples should include the measurement of dD to assist with 

constraining source attribution.  580 
 

3.3.4 Grazing Cattle >50 % BTF BU inventory, 250–350 mAGL 

There were only four 250–350 mAGL IFAA samples where grazing cattle contributed >50 % of the BTF BU inventory 

emissions. These four points were clear of most other sources of emissions (Fig A4 (a)). The prevailing wind was from the 

southwest for sample 1603, and from the northeast for samples 1803, 1804, and 1805. Prior to sample collection the air had 585 
travelled over regions dominated by agriculture, mostly grazing cattle and mixed cropping. The multi-Keeling-model 

regression δ13CCH4(s) signature for the category Grazing Cattle >50 % BTF BU inventory, 250–350 mAGL was −60.5 ‰ (CI 

95 % ± 15.6 ‰, Figs 5 (a) and 6 (b) green line). This matches the grazing cattle result in Lu et al. (2021) (Fig 6 (b) grey band). 

This result indicates that in mixed cropping districts where grazing cattle are the dominant source of CH4 emissions, the 

expected and measured δ13CCH4(s) align. 590 
 

3.3.5 Grazing Cattle >50 % BTF BU inventory, 100–200 mAGL 

The multi-Keeling-model regression δ13CCH4(s) signature for the category Grazing Cattle >50 % BTF BU inventory, 100–200 

mAGL was −53.8 ‰ (CI 95 % ± 17.4 ‰, Figs. 5 (a) and 6 (b) red line). This is too isotopically heavy for cattle and is closer 

to the expected value for CH4 emissions from CSG.  Referring to Figs. 1 (a) and A4 (b) there are three possibilities that need 595 
further investigation.  

 

The most likely explanation consistent with the source being within the 2-hour BTF area is that there are numerous CSG 

production wells and associated gas pipelines and co-produced water pipelines (which have many high-point vents), 

immediately upwind of IFAA samples 1903, 1904, 1908, 1910 and 1912. Thus, there are numerous locations where venting 600 
could have been occurring on the day. In support of local CSG production causing the heavier than expected signature, IFAA 

sample 1808 plots on the grazing cattle line in Figs 5 (a) and 6 (b) and it has no CSG wells upwind (refer to the upper right 

inset Fig. A4 (b)).  

 

The second potential explanation is larger than expected urban CH4 emissions. IFAA sample 1910 is downwind of Chinchilla 605 
(population ~6000), and 1912 is downwind of the towns of Condamine (population ~400), and Drillham (population ~130). 

In Table 2 there are four domestic sources of CH4 that could be contributing to the heavier than expected δ13CCH4(s) signature.  

 

The third possible explanation is that CH4 emissions from the north-western Surat Basin CSG facilities have been sampled in 

the north of the study area on 19th Sept 2018. Just beyond the 2-hour back trajectories shown in Fig. A4 (b) the air parcels 610 
would have travelled over the largest northwest Surat Basin gas fields near Woleebee Creek, which contains CSG plants, 
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distribution hubs, and water treatment facilities. However, with reference to the modelling in Neininger et al. (2021) this is 

less likely compared to the first explanation that there are greater local CSG emissions than estimated in the inventory.  

 

3.3.6 Feedlots >50 % BTF inventory, 100–350 mAGL 615 

Due to too few points meeting the threshold requirement for the 100–200 mAGL and 250–350 mAGL categories the feedlot 

set was obtained by combining both altitude sets (Figs 6 (c) and A5). The derived multi-Keeling-model regression δ13CCH4(s) 

signature for the category Feedlots >50 % BTF inventory, 100–350 mAGL was −69.6 ‰ (CI 95 % ± 22.6 ‰, Fig. 6 (c) orange 

line), which is isotopically lighter than the −65.2 ‰ to −60.3 ‰ (CrI) listed for feedlots in Table A2 and shown in Fig. 6 (c) 

(grey band), but still compatible within the derived 95 % confidence intervals. There are also too few values in the literature 620 
to fully characterise the population statistics for the δ13CCH4(s) signature of feedlot emissions in Australia, and this result may 

be simply better characterising the δ13CCH4(s) signature population range for feedlots. Another option to be explored as part of 

further ground studies is that there may be other isotopically lighter biological sources associated with the feedlots. For 

example, one of the feedlots sampled was Australia’s largest feedlot (Grassdale), which has commercial scale fertiliser 

production on-site (https://www.grassdalefert.com.au/), and this potential source of CH4 is not incorporated into any of the BU 625 
inventories for the region. This may be a biological source of CH4 with a lighter d13CCH4(s) signature.  

 

3.3.7 Analysis of the isotopically light IFAA samples 

IFAA samples 1604, 1906 and 2103 are identified as being isotopically lighter compared to the other samples and were not 

used in any of the source category data sets. Using the multi-Keeling-model regression derived background air values (1.8258 630 
ppm and –47.33‰) the Keeling model was fitted to 1604, 1906 and 2103 (Fig 5(a) purple dashed Keeling line). The fitted 

model has a d13CCH4(s) signature of –80.2 ‰ (CI 95 % ± 4.7 ‰). The only source listed in Table A2 that has this d13CCH4(s) 

signature is Kangaroos, but this would not be a significant CH4 source for these samples. There is another biological source of 

CH4 in the grazing cattle and mixed cropping districts that could be a contributor, upwind of IFAA samples 1604 and 1906. 

There are three sources of CH4 listed in Sherwood et al. (2017, 2020) and Menoud et al. (2022) with δ13CCH4(s) signatures of 635 
−80 ‰: wetlands, waste, and termites. Of these three sources termites is the most likely, as termite mounds were observed 

during the field campaign in many of the forested and dryland farming regions. For IFAA sample 2103 both the brine water 

ponds and termites could be the missing biological source with a low δ13CCH4(s) signature. However, the relatively high CH4(a) 

measured for this sample (Figs. 3 and 5) suggests that the brine ponds, or another CSG source, are likely. Below these 

isotopically light samples are discussed in detail with reference to satellite imagery.  640 
 

3.4 Keeling Plot Points of Interest  

In Figs 3 and 4 IFAA samples 1604, 1906 and 2103 are identified as points of interest because they are isotopically light. 

These points provide unique insights into overlooked sources of CH4 in the inventory and guide where further measurements 

are required. 645 
 

IFAA sample 1604 was collected on the western margin of the CSG field (Fig. 7). It was initially anticipated to provide a 

background air reference sample, but the δ13CCH4(a) of the air sample is −47.7 ‰, which is isotopically too light for fresh air in 

the Surat Basin. This sample sits on a Keeling regression line with a δ13CCH4(s) of −80.2 ‰. From our current knowledge of the 

region this cannot be assigned to a source. The back trajectory passes over regions of mixed cropping and cattle, and −80.2 ‰ 650 
is 20 ‰ lighter than expected for cattle in the region. There is a cluster of piggeries with a holding capacity of 10,000 just 
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outside the near distance BTF and another piggery cluster with a holding capacity of up to 25,000 pigs immediately upwind 

of the 2-hour BTF. However, the one reported δ13CCH4(s) signature for piggeries in Lu et al. (2021) had a value of −47.6 ‰, so 

piggeries are highly unlikely to be the source. There are also a few CSG production wells in the area, but this source of CH4 is 

isotopically too heavy. A potential source that could explain the −80.2 ‰ signature in this farming district is termites.  655 
 

 
Figure 7. Two-hour back-trajectory path lines (red) for IFAA samples 1604, 1906 and 2105. Refer to Fig. A1 for the point source colour 
key. Yellow arrows show the wind direction. The Condamine River flows from south-east to north-west (blue arrow) (image © Google 
Earth). 660 
 
 

Upwind of IFAA sample 1906 no CH4 point source is recorded in the BU inventory (Fig. 7). There is a gravel quarry that has 

a small pond (200 m by 50 m) that could be a source of CH4 emissions with a biological signature. The only other known 

significant CH4 sources in this region are natural CH4 seeps and abandoned exploration well seeps (Lu et al. 2021). Many of 665 
these are coal exploration wells that intersect seams with a biological signature (Iverach et al. 2015, Lu et al. 2021), but these 

sources would be expected to have a δ13CCH4(s) signature of approximately −60 ‰, not the observed −80.2 ‰. Like sample 

1604, the δ13CCH4(s) signature of −80.2 ‰ for sample 1906 could be explained by termites. 

 

Sample 2105 (Figs 3 (b) and Fig. 7) is dominated by piggery emissions (56 %), which have a d13CCH4(s) signature of −48.0 ‰ 670 
to −47.1 ‰ (CrI), with significant CSG emissions (36%) and other minor sources (Tables A4 and A5). In Fig. 3 (b) this point 

plots in a position suggesting that the inventory has underestimated emissions (Neininger et al. 2021). In Fig. 5 (a) this point 

plots just above the CSG Keeling lines. A blend of piggery and CSG emissions accounts for both the relatively high CH4(a) 

and d13CCH4(a). A plausible explanation for this IFAA sample is that on the day of sampling CSG emissions were higher than 

indicated by the BTF BU inventory. Another possibility is that the emissions arise from a closed open-pit coal mine over which 675 
the back trajectory passes. Because this coal mine is closed it is not counted in the BU inventories. Large plumes were 

intersected near this coal mine during the ground surveying presented in Lu et al. (2021), and emissions from this recently 

closed coal mine may have been captured in IFAA sample 2105. An additional possibility to be explored as part of new ground 

surveys are the emissions from natural seeps along the Condamine River.  
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 680 
The two IFAA samples with the highest CH4(a) mole fraction readings were downwind of the major CSG facilities (samples 

2111 and 2103, Figs. 3, 4 and 8). Sample 2103 is of particular interest because it has the lowest d13CCH4(a) of any sample 

collected and it plots on the −80.2 ‰ Keeling line in Fig. 5 (a). The wind was moving from south-east to north-west when 

samples 2103 and 2111 were collected about 20 km west-north-west of the Kenya water management ponds (Fig. 8). The 

back-trajectory centre line for sample 2111 passes directly over the Berwyndale South / Windbri central processing plant and 685 
Talinga plant (Fig. 8 (b)), and immediately to the north of the Kenya water management ponds (Fig. 8 (c)). Sample 2111 is a 

blended input from all these facilities. CSG sources contributed 93 % towards the CH4 emissions in the BTF BU inventory: 

CSG wells 245 kg h–1, CSG raw water ponds 787 kg h–1, CSG compressor stations 811 kg h–1, and CSG plants 210 kg h–1 

(Table A4). Feedlot cattle contributed 4 %, 88 kg h–1, and grazing cattle 3 %, 64 kg h–1(Table A5). 

 690 
The back-trajectory centre line for 2103 passes over two sets of ponds: ponds near Wieambilla in the proximal BTF and further 

east at the Kenya water treatment complex (Fig. 8 (a) and 8 (c)). Kenya pond holds treated water suitable for adding to the 

Condamine River (Fig. 7). Orana 4 holds brine produced from the filtering of the raw water before being sent to the brine 

concentrator. Orana 2 and 3 hold water output from the brine concentrator (QGC 2013). No plumes were sampled near this 

complex in Lu et al. (2021), so the δ13CCH4(s) of any emissions from these ponds is not known. CSG sources contributed 96 % 695 
towards the emissions in the BTF BU inventory for sample 2103: CSG wells 251 kg h–1, CSG raw water ponds 586 kg h–1, 

CSG compressor stations 714 kg h–1, and CSG plants 338 kg h–1 (Table A4).  

 

Sample 1817 (Figs 3 (c), 5 (a), and 8) also has a back-trajectory line that passes over the Kenya water management ponds. It 

was collected 35 km south of the ponds and other major CSG facilities, which accounts for its lower CH4 mole fraction. The 700 
back-trajectory centre line for 1817 passes over the eastern-most Kenya water management pond, Orana 1, which is a raw 

water pond. CH4 emitted from this pond is likely to have a similar composition to the produced gas. CSG source contributed 

97 % of the CH4 emissions in the BTF: CSG wells 136 kg h–1, CSG raw water ponds 582 kg h–1, CSG compressor stations 459 

kg h–1, and CSG plants 78 kg h–1 (Table A4). For sample 1817 there was also a minor input from grazing cattle (2.5 %; 32.7 

kg h–1; Table A5). This sample does not plot as an outlier (Figs. 3 (c) and 5 (a)). 705 
 
Samples 1817 and 2111 plot in the Keeling plot (Fig. 5 (a)) in positions consistent with our knowledge of the d13CCH4(s) 

signatures of sources in the BTF BU inventory. To explain the position of sample 2103 in Fig. 5 (a) a source of CH4 with a 

d13CCH4(s) signature of approximately −80 ‰ is required. The size and position of the Kenya water management treatment 

complexes associated with the water treatment, the presence of brine ponds and other waste together make this facility a 710 
potential location for the missing source of CH4 with an d13CCH4(s) signature of approximately −80 ‰. The back trajectory also 

passes over forested areas where there are termites. Further fieldwork is required to answer why sample 2103 indicates a 

missing biological source of CH4 in the inventories.  
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 715 
Figure 8. a) Two-hour back-trajectory path lines for IFAA samples 1817, 2103, and 2111. b) Back-trajectory paths for 2103 and 2111 
relative to the Berwyndale South / Windbri Central Processing Plant and the Talinga processing plant. c) Kenya water management ponds 
relative to 1817, 2103 and 2111 back-trajectory centre lines. The yellow arrows show the wind direction for each trajectory. Refer to Fig. 
A1 for the point source colour key (image ©Google Earth).  
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5 Summary 720 

An objective of this study was to use IFAA samples to investigate whether we could characterise the δ13CCH4 source signature 

of emissions from facilities that could not be sampled during the ground campaign (Lu et al. 2021), especially the CSG regions 

that are remote from public roads. To achieve this objective, we had to produce a BU inventory of both point and diffuse CH4 

sources for the region. This inventory enabled us to sort the IFAA samples into sets based on the predominant 2-hour upwind 

inventory source of CH4 (e.g., one sample per feedlot, for multiple feedlots). We were then able to determine the δ13CCH4(s) 725 
signature for a single source category. The method worked with mixed results.  

 

A concern after the measurements of the IFAA samples in the laboratory was that the lack of CH4(a) enhancement above CH4(b) 

(less than 0.04 ppm) would not allow for the interpretation of these data using the Keeling plot method. Establishing CH4(b) 

and δ13CCH4(b), as traditionally done from the collated data sets, was not possible by fitting the Keeling model (Eq. 1) or the 730 
Miller-Tans model (Eq. 2) to individual data sets (this is demonstrated in Appendix B). We overcame this challenge with 

careful sample quality control and by using multi-Keeling-model regression with shared CH4(b) and δ13CCH4(b). An interpretation 

in alignment with other ground and continuous airborne observations was possible only after applying this regression 

algorithm. Importantly, despite the low CH4(a) enhancement of less than 0.04 ppm the derived values for background air CH4(b) 

= 1.826 ppm (CI 95 % ± 0.037 ppm) and δ13CCH4(b) = −47.3 ‰ (CI 95 % ± 0.3 ‰) match independent observations. Being able 735 
to assign a well-constrained value to CH4(b) and δ13CCH4(b). was central to the interpretation of all IFAA samples.   

 

The derived δ13CCH4(s) values for the 250–350 mAGL IFAA sample sets (Figs 5 (a), 6 (a) and 6 (b); Table A6) where the 

inventory was dominated by CSG facilities or grazing cattle were close to those determined from the ground-based analysis of 

plumes (Lu et al. 2021). It can be concluded that the upwind inventory for these samples was reasonably well characterised.  740 
 

For IFAA samples collected downwind of the feedlots the derived multi-Keeling-model regression δ13CCH4(s) signature was 

isotopically lighter than expected by approximately 5 ‰. However, this category was poorly constrained and had a large 95 

% confidence interval ranging from −92.2 ‰ to −47.0 ‰. A better data set is required to characterise the population statistics 

for feedlot CH4 emissions, especially since there are no uniform procedures for feedlot design and waste management.  745 
 

The results for the 100–200 mAGL altitude IFAA samples where the inventory was dominated by CSG facilities or grazing 

cattle did not match expectations and were isotopically lighter than expected (Figs 5 (a), 6 (a) and 6 (b); Table A6). There are 

many possible explanations that cannot be resolved using currently available data. The mismatch could be due to there being 

more than one dominant source category in the upwind region (with potential inputs from beyond the 2-hour back trajectory), 750 
incomplete mixing of all sources, sources missing from the BU inventory, the applied emission factors used for source 

apportionment not being precise for the individual source, or the δ13CCH4(s) signatures from the few plumes sampled as part of 

the ground-based studies not being representative of the complete population statistics.  

 

To constrain the interpretation, for each CH4 source the population distribution for both δ13CCH4 and dDCH4 needs to be better 755 
characterised. These data would enable the statistical modelling of inventories for better comparison with IFAA sample CH4(a) 

and δ13CCH4(a) data and be useful for atmospheric transport isotope mixing model studies, which have the potential to yield 

more insights about inventory knowledge gaps compared to the pragmatic methods used in this study. Due to the low 

enhancement in the mole fraction and the small number of samples collected with predominantly one inventory source category 

upwind, the derived δ13CCH4(s) signatures have large uncertainties. For the methods presented in this study to work more 760 
effectively, more samples are needed downwind of each source category, and the sampling containers should be filled as 

rapidly as possible. 
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A primary aim of the study was to see if the IFAA samples would be useful for identifying overlooked sources of CH4 and this 

was achieved. In Fig. 3 (c) three points of interest were identified for their relatively low δ13CCH4(a) values: IFAA samples 1604, 765 
1906 and 2103. Although this is a small subset, the insights obtained are important. The application of multi-Keeling-model 

regression with shared CH4(b) and δ13CCH4(b) constrained the δ13CCH4(s) signature for these samples to be approximately –80 ‰. 

For all three samples, termite emissions may have been sampled. For sample 2103, the upwind CSG brine ponds, or another 

CSG source close to these ponds, also needs to be investigated as a potential source of CH4 that has not been incorporated into 

the BU inventories. The relatively high enhancement of atmospheric CH4 downwind of the CSG water management ponds 770 
indicates a potentially large CH4 source, which could be quantified in the future using a different sampling design (e.g., mass 

balance flight pattern or ground-based plume studies). CSG water management ponds may also represent a mitigation 

opportunity. Improved separation of the methane from the water at the production well head or before placing the water into 

the ponds would increase the resource produced and minimise fugitive CH4 emission. 

 775 
The measurement of d13CCH4 in this study has identified that termites are potentially contributing significant quantities of 

CH4 to the regional CH4 budget. Quantifying termite CH4 emissions from both natural and agricultural landscapes may help 

with closing the gap between the top-down and bottom-up CH4 emission estimates reported in Neininger et al. (2021). More 

generally, atmospheric measurements of greenhouse gas emissions using satellite-, aircraft- and drone-based analysers are 

increasingly being used for inventory verification. The results presented in this study and in Basu et al. (2022) demonstrate 780 
that isotope studies are required to constrain source attribution. To further enhance our capacity to interpret atmospheric 

CH4 measurements, ideally both d13CCH4 and dDCH4 should be measured (Lu et al. 2021).  

 
The application of the multi-Keeling-model regression with shared CH4(b) and d13CCH4(b) enables: the characterisation of the 

d13CCH4(s) signatures for sources not accessible during ground campaigns assuming accurate source attribution in the inventory; 785 
the identification of coal seam gas subregions where there is poor agreement between the IFAA sample d13CCH4(a) measurement 

and the d13CCH4 value expected from BU inventory; the identification of subregions where there must be a strong source of 

CH4 with a d13CCH4(s) signature of approximately –80 ‰ not recorded in the BU inventories; and the identification of mitigation 

opportunities. The isotopic analysis methods presented in this study could be applied in any setting where there are many co-

located sources of CH4 and be used to identify CH4 source knowledge gaps in national inventories. 790 
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Appendix A 

 

Table A1. Abbreviations. 
  
BTF  Back-Trajectory Footprint 825 
BU  Bottom-Up 
CI   Confidence Interval 
Crl  Credible Interval 
CSG  Coal Seam Gas 
CSIRO  Commonwealth Scientific and Industrial Research Organisation 830 
CRDS  Cavity Ring-Down Spectrometer 
GC‐IRMS Gas Chromatography Isotope Ratio Mass Spectrometry 
HYSPLIT Hybrid Single Particle Lagrangian Integrated Trajectory 
IFAA  In-Flight Atmospheric Air 
mAGL  Metres Above Ground Level 835 
NOAA  National Oceanic and Atmospheric Administration 
RHUL  Royal Holloway, University of London 
TD  Top-Down 
UNFCCC United Nations Framework Convention on Climate Change 
UNSW  University of New South Wales 840 
VPDB  Vienna Pee Dee Belemnite 
 

Table A2. Surat Basin ground-based campaign (Lu et al. 2021) and literature δ13CCH4 values for each source category within the study area. 

UNSW Sources δ13CCH4 (‰) (Mean ±1 σ) Bayesian  
95 % Credible Interval (‰) δ13CCH4 (‰) Reference 

CSG wells, venting water lines, 
and distributed CSG sources −54.5 ± 0.1 −54.8 to −54.8 Lu et al. (2021) 

CSG water ponds −50.9 ± 2.8 
−51.9 ± 2.3 

−56.6 to −45.6 
−56.7 to −47.2 Lu et al. (2021) 

CSG gathering and boosting 
stations −53.7 ± 0.4 −54.5 to −53.0 Lu et al. (2021) 

CSG processing plants −55.6 ± 0.4 −56.4 to −54.7 Lu et al. (2021) 

Coal mines −60.0 ± 0.6 −61.1 to −58.9 Lu et al. (2021) 

Ground seeps 
−59.9 ± 0.3 
−60.5 ± 0.2 

−60.5 to −59.2 
−60.9 to −60.1 Lu et al. (2021) 

Condamine river seeps −61.2 ± 1.4 −63.9 to −58.4 Lu et al. (2021) 

Feedlot cattle −62.9 ± 1.3 −65.2 to −60.3 Lu et al. (2021) 

Grazing cattle −59.7 ± 1.0 −61.7 to −57.5 Lu et al. (2021) 

Dairy cattle 
(Assumed similar to feedlots) −62.9 ± 1.3 −65.2 to −60.3 Lu et al. (2021) 

Piggeries −47.6 ± 0.2 −48.0 to −47.1 Lu et al. (2021) 

On-farm water bodies (dams) −51.2 Not Measured Day et al. (2016) 

Forest nodes - kangaroos −80 Not Measured Godwin et al. (2014) 

Domestic wood heaters and 
native vegetation wildfire −22.2 ± 2.8 Not Measured Ginty (2016) 

Energy – road transport and 
residential −43.4 ± 3.4 Not Measured Lu et al. (2021) 

Solid waste disposal −52.1 ± 3.6 −59.0 to −45.3 Lu et al. (2021) 

Domestic wastewater −47.6 ± 0.2 −47.9 to −47.2 Lu et al. (2021) 

 
  845 
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Table A3. In-flight atmospheric air sample location details and UNSW bottom-up inventory CH4 emissions estimates within the 2-hour 
back-trajectory footprint.  

 
Airborne Sample 

ID  
(Date: Bag #) 

Latitude  
South  

(degrees) 

Longitude 
East 

(degrees) 

Local 
Time 

Height 
Above 

Ground  
(m) 

CH4  
(ppm) 

d13CCH4 

 (‰) 
Back 

Trajectory 
Footprint 

Sum 
(kg h-1) 

1603 27.082980 150.194540 11:13:07 310 1.842 −47.5 249.9 
1604 27.157190 150.629500 11:28:00 306 1.844 −47.7 204.0 
1605 27.195490 150.858810 11:35:42 277 1.839 −47.5 505.3 
1607 27.272720 151.303290 11:50:15 321 1.850 −47.6 1041.4 
1608 27.290710 151.399020 11:53:18 288 1.843 −47.5 354.9 
1611 26.669657 151.200226 14:00:18 301 1.845 −47.4 1176.4 
1617 26.958687 151.393040 15:34:41 316 1.846 −47.5 717.4 
1803 26.913595 150.988028 10:39:22 335 1.842 −47.4 83.6 
1804 26.777345 150.728169 10:50:02 309 1.841 −47.4 61.0 
1805 -26.674329 150.462714 11:00:57 289 1.845 −47.5 28.1 
1806 -26.631331 150.296620 11:07:21 279 1.839 −47.5 2.7 
1808 -26.849174 150.720908 11:39:13 155 1.846 −47.5 62.0 
1809 -27.013423 150.968222 11:49:35 149 1.850 −47.5 31.4 
1810 -27.159376 151.171367 11:58:21 137 1.842 −47.4 67.4 
1811 -27.252709 151.290522 12:03:32 149 1.843 −47.5 220.6 
1814 -27.477124 151.346706 13:57:52 280 1.846 −47.5 6.5 
1815 -27.362967 151.053722 14:10:10 287 1.843 −47.5 430.8 
1816 -27.270302 150.861734 14:18:00 302 1.847 −47.3 971.3 
1817 -27.277108 150.523147 14:30:02 293 1.844 −47.4 1291.6 
1818 -27.300287 150.255494 14:38:58 288 1.851 −47.4 320.3 
1819 -27.309964 150.085653 14:56:06 134 1.838 −47.5 326.1 
1820 -27.318757 150.296830 15:03:46 131 1.850 −47.6 336.0 
1821 -27.329988 150.549739 15:13:02 152 1.854 −47.7 352.2 
1822 -27.355856 150.895895 15:25:37 145 1.848 −47.6 918.9 
1823 -27.413887 151.002427 15:29:53 150 1.844 −47.6 367.1 
1825 -27.488623 151.315303 15:41:09 134 1.844 −47.5 6.9 
1903 -26.601911 150.209547 11:28:42 143 1.847 −47.4 172.2 
1904 -26.666918 150.087434 11:33:30 153 1.847 −47.4 157.7 
1905 -26.812782 150.387755 11:59:39 298 1.843 −47.4 336.8 
1906 -26.736473 150.531985 12:08:28 145 1.851 −47.8 42.1 
1907 -26.849103 150.322508 12:16:45 128 1.847 −47.5 626.0 
1908 -26.929175 150.172493 12:22:54 150 1.848 −47.4 119.9 
1909 -27.058387 150.472602 12:46:44 286 1.850 −47.3 1740.0 
1910 -26.904910 150.697134 12:59:31 169 1.843 −47.4 96.4 
1911 -27.082716 150.444703 13:10:43 110 1.846 −47.5 2057.4 
1912 -27.172024 150.324018 13:16:03 142 1.845 −47.4 221.4 
1914 -27.389992 151.211960 14:54:55 321 1.847 −47.4 1325.4 
1915 -27.306893 151.290365 15:01:45 155 1.849 −47.5 313.3 
1917 -27.573146 151.046142 15:15:34 140 1.845 −47.5 198.3 
1918 -27.481054 151.127999 15:22:42 300 1.848 −47.4 897.7 
2101 -27.413731 151.121276 9:44:45 280 1.848 −47.6 713.0 
2102 -27.410985 151.117254 9:49:40 155 1.844 −47.6 690.9 
2103 -26.883722 150.264342 11:00:58 282 1.863 −48.0 1971.2 
2105 -27.001783 150.808471 12:04:27 200 1.864 −47.4 608.7 
2107 -26.602870 150.306461 14:06:26 157 1.850 −47.5 365.3 
2108 -26.633661 150.225549 14:09:23 137 1.852 −47.6 487.0 
2110 -26.593793 150.350332 14:44:23 280 1.848 −47.6 363.1 
2111 -26.868780 150.297704 15:00:41 290 1.859 −47.6 2209.1 
2112 -26.930582 150.496868 15:14:29 299 1.844 −47.5 514.1 

 
  Coal Seam Gas  

>50% BTF BU inventory, 250 m to 350 m    Grazing Cattle  
>50% BTF BU inventory, 250 m to 350 m  

 Feedlots  
>50% BTF BU inventory, 250 m to 350 m 

  Coal Seam Gas  
>50% BTF BU inventory, 100 m to 200 m    Grazing Cattle  

>50% BTF BU inventory, 100 m to 200 m  
 Feedlots 

 >50% BTF BU inventory, 100 m to 200 m 

  Coal Mines  
> 50% BTF BU Inventory 

 Mixed Sources   

  Piggeries  
> 50% BTF BU Inventory 

 Points of Interest with Low d13CCH4 
Readings 

  

 850 
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Table A4. In-flight atmospheric air sample location details and UNSW bottom-up inventory CH4 emissions estimates for fossil fuel and 
minor mixed sources within the 2-hour back-trajectory footprint. 

Airborne 
Sample ID  

(Date: Bag #) 

Back 
Trajectory 
Footprint 

Sum  
(kg h-1) 

CSG 
Wells  

(kg h-1) 

CSG  
Raw  

Water 
Ponds 

 (kg h-1) 

Compressor 
Stations 
 (kg h-1) 

CSG 
Gas 

Plants  
(kg h-1) 

Sum All 
CSG  

(kg h-1) 

CSG  
(%) 

Coal  
Mines 
(kg h-1) 

Coal 
Mines 

 (%) 

All Waste 
and 

 Energy 
Sources, 
Water 

Bodies and 
Kangaroos 

(kg h-1) 

All Waste 
and 

 Energy 
Sources, 
Water 

Bodies and 
Kangaroos 

(%) 
1603 249.9 1.2 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 
1604 204.0 0.8 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.3 0.2 
1605 505.3 24.8 0.0 125.8 148.5 299.1 59.0 0.0 0.0 1.3 0.3 
1607 1041.4 73.3 46.0 0.0 34.7 154.0 15.0 0.0 0.0 5.2 0.5 
1608 354.9 25.2 0.0 0.0 0.0 25.2 7.0 0.0 0.0 2.0 0.6 
1611 1176.4 140.3 22.4 220.2 128.3 511.1 43.0 0.0 0.0 24.9 2.1 
1617 717.4 147.3 36.4 314.6 0.0 498.2 69.0 0.0 0.0 8.2 1.1 
1803 83.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 11.1 
1804 61.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 3.4 
1805 28.1 0.4 0.0 0.0 0.0 0.4 1.0 0.0 0.0 1.5 5.5 
1806 2.7 0.8 0.0 0.0 0.0 0.8 28.0 0.0 0.0 2.0 71.8 
1808 62.0 0.4 0.0 0.0 0.0 0.4 1.0 0.0 0.0 2.7 4.4 
1809 31.4 0.4 0.0 0.0 0.0 0.4 1.0 0.0 0.0 10.6 33.6 
1810 67.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 10.5 
1811 220.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 5.2 
1814 6.5 0.8 0.0 0.0 0.0 0.8 12.0 0.0 0.0 5.8 88.2 
1815 430.8 122.1 15.8 251.6 0.0 389.6 90.0 0.0 0.0 2.0 0.5 
1816 971.3 89.1 54.9 251.6 148.5 544.1 56.0 0.0 0.0 5.9 0.6 
1817 1291.6 136.4 581.9 459.2 77.9 1255.5 97.0 0.0 0.0 0.9 0.1 
1818 320.3 141.5 0.0 0.0 99.8 241.3 75.0 0.0 0.0 0.4 0.1 
1819 326.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.2 
1820 336.0 123.2 0.0 125.8 0.0 249.1 74.0 0.0 0.0 0.3 0.1 
1821 352.2 58.5 25.5 251.6 0.0 335.7 95.0 0.0 0.0 0.9 0.3 
1822 918.9 143.8 73.2 251.6 223.5 692.1 75.0 0.0 0.0 15.3 1.7 
1823 367.1 159.7 47.9 125.8 0.0 333.4 91.0 0.0 0.0 1.0 0.3 
1825 6.9 1.2 0.0 0.0 0.0 1.2 17.0 0.0 0.0 5.8 83.2 
1903 172.2 24.8 0.0 0.0 0.0 24.8 14.0 0.0 0.0 1.9 1.1 
1904 157.7 18.2 0.0 0.0 0.0 18.2 12.0 0.0 0.0 2.0 1.3 
1905 336.8 61.2 8.6 125.8 0.0 195.6 58.0 0.0 0.0 1.5 0.4 
1906 42.1 1.2 0.0 0.0 0.0 1.2 3.0 0.0 0.0 1.7 4.1 
1907 626.0 122.9 0.0 188.7 178.5 490.1 78.0 0.0 0.0 4.1 0.7 
1908 119.9 14.0 0.0 0.0 0.0 14.0 12.0 0.0 0.0 1.2 1.0 
1909 1740.0 305.0 214.9 761.2 311.3 1592.4 92.0 0.0 0.0 7.7 0.4 
1910 96.4 5.0 0.0 0.0 0.0 5.0 5.0 0.0 0.0 19.4 20.1 
1911 2057.4 320.9 210.0 905.9 380.0 1816.9 88.0 0.0 0.0 8.0 0.4 
1912 221.4 61.2 0.0 0.0 0.0 61.2 28.0 0.0 0.0 1.6 0.7 
1914 1325.4 286.4 32.6 251.6 75.0 645.7 49.0 0.0 0.0 19.8 1.5 
1915 313.3 65.1 18.3 62.9 21.4 167.8 54.0 0.0 0.0 14.9 4.8 
1917 198.3 57.0 13.3 0.0 0.0 70.2 35.0 0.0 0.0 1.6 0.8 
1918 897.7 225.2 101.8 220.2 276.8 823.9 92.0 0.0 0.0 1.6 0.2 
2101 713.0 19.4 0.0 0.0 0.0 19.4 3.0 0.0 0.0 47.1 6.6 
2102 690.9 22.9 0.0 0.0 0.0 22.9 3.0 0.0 0.0 39.7 5.7 
2103 1971.2 251.9 586.3 714.0 339.0 1891.3 96.0 0.0 0.0 1.4 0.1 
2105 608.7 60.5 18.3 62.9 75.0 216.7 36.0 0.0 0.0 40.3 6.6 
2107 365.3 25.6 0.0 0.0 0.0 25.6 7.0 237.6 65.0 17.1 4.7 
2108 487.0 109.3 8.6 188.7 0.0 306.6 63.0 0.0 0.0 75.7 15.5 
2110 363.1 9.7 0.0 0.0 0.0 9.7 3.0 237.6 65.4 17.6 4.9 
2111 2209.1 244.9 787.5 811.5 210.7 2054.6 93.0 0.0 0.0 0.8 0.0 
2112 514.1 120.5 22.4 15.7 0.0 158.6 31.0 0.0 0.0 2.1 0.4 

 
  Coal Seam Gas  

>50% BTF BU inventory, 250 m to 350 m    Grazing Cattle  
>50% BTF BU inventory, 250 m to 350 m  

 Feedlots  
>50% BTF BU inventory, 250 m to 350 m 

  Coal Seam Gas  
>50% BTF BU inventory, 100 m to 200 m    Grazing Cattle  

>50% BTF BU inventory, 100 m to 200 m  
 Feedlots 

 >50% BTF BU inventory, 100 m to 200 m 

  Coal Mines  
> 50% BTF BU Inventory 

 Mixed Sources   

  Piggeries  
> 50% BTF BU Inventory 

 Points of Interest with Low d13CCH4 
Readings 

  

  855 
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Table A5. In-flight atmospheric air sample location details and UNSW bottom-up inventory CH4 emissions estimates for major agricultural 
sources within the 2-hour back-trajectory footprint. 

Airborne 
Sample ID  

(Date: Bag #) 

Back 
Trajectory 
Footprint 

Sum 
(kg h-1) 

Cattle 
Feedlots 
(kg h-1) 

Cattle 
Feedlots 

(%) 

Condamine 
NRM 
Cattle 

Grazing 
or Crops  
(kg h-1) 

Condamine 
NRM 
Cattle 

Grazing 
or Crops 

(%) 

Qld 
MDB 
NRM 
Cattle 

Grazing 
or 

Crops 
(kg h-1) 

Qld 
MDB 
NRM  
Cattle 

Grazing  
or 

Crops 
(%) 

All 
Grazing 
Cattle 
(kg h-1) 

All 
Grazing 
Cattle 

(%) 

Piggeries 
(kg h-1) 

Piggeries 
(%) 

1603 249.9 0.0 0.0 0.0 0.0 248.7 99.5 248.7 99.5 0.0 0.0 
1604 204.0 0.0 0.0 0.0 0.0 202.9 99.5 202.9 99.5 0.0 0.0 
1605 505.3 67.5 13.4 0.0 0.0 137.4 27.2 137.4 27.2 0.0 0.0 
1607 1041.4 803.7 77.2 6.5 0.6 72.0 6.9 78.5 7.5 0.0 0.0 
1608 354.9 249.1 70.2 39.3 11.1 39.3 11.1 78.5 22.1 0.0 0.0 
1611 1176.4 192.9 16.4 19.6 1.7 19.6 1.7 39.3 3.3 408.2 34.7 
1617 717.4 126.2 17.6 72.0 10.0 0.0 0.0 72.0 10.0 12.8 1.8 
1803 83.6 8.0 9.6 58.9 70.4 0.0 0.0 58.9 70.4 7.4 8.8 
1804 61.0 0.0 0.0 58.9 96.6 0.0 0.0 58.9 96.6 0.0 0.0 
1805 28.1 0.0 0.0 19.6 69.9 6.5 23.3 26.2 93.1 0.0 0.0 
1806 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1808 62.0 0.0 0.0 58.9 95.0 0.0 0.0 58.9 95.0 0.0 0.0 
1809 31.4 0.0 0.0 13.1 41.7 0.0 0.0 13.1 41.7 7.4 23.5 
1810 67.4 5.6 8.3 32.7 48.5 0.0 0.0 32.7 48.5 22.0 32.7 
1811 220.6 120.5 54.7 32.7 14.8 0.0 0.0 32.7 14.8 55.9 25.3 
1814 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1815 430.8 0.0 0.0 39.3 9.1 0.0 0.0 39.3 9.1 0.0 0.0 
1816 971.3 0.0 0.0 0.0 0.0 13.1 1.3 13.1 1.3 408.2 42.0 
1817 1291.6 0.0 0.0 0.0 0.0 32.7 2.5 32.7 2.5 2.5 0.2 
1818 320.3 0.0 0.0 0.0 0.0 78.5 24.5 78.5 24.5 0.0 0.0 
1819 326.1 200.9 61.6 0.0 0.0 124.4 38.1 124.4 38.1 0.0 0.0 
1820 336.0 8.0 2.4 0.0 0.0 78.5 23.4 78.5 23.4 0.0 0.0 
1821 352.2 0.0 0.0 0.0 0.0 13.1 3.7 13.1 3.7 2.5 0.7 
1822 918.9 192.9 21.0 0.0 0.0 13.1 1.4 13.1 1.4 5.6 0.6 
1823 367.1 0.0 0.0 32.7 8.9 0.0 0.0 32.7 8.9 0.0 0.0 
1825 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1903 172.2 8.0 4.7 0.0 0.0 137.4 79.8 137.4 79.8 0.0 0.0 
1904 157.7 0.0 0.0 0.0 0.0 137.4 87.2 137.4 87.2 0.0 0.0 
1905 336.8 48.1 14.3 0.0 0.0 91.6 27.2 91.6 27.2 0.0 0.0 
1906 42.1 0.0 0.0 39.3 93.2 0.0 0.0 39.3 93.2 0.0 0.0 
1907 626.0 40.2 6.4 0.0 0.0 91.6 14.6 91.6 14.6 0.0 0.0 
1908 119.9 0.0 0.0 0.0 0.0 104.7 87.4 104.7 87.4 0.0 0.0 
1909 1740.0 48.2 2.8 0.0 0.0 91.6 5.3 91.6 5.3 0.0 0.0 
1910 96.4 0.0 0.0 72.0 74.7 0.0 0.0 72.0 74.7 0.0 0.0 
1911 2057.4 167.1 8.1 0.0 0.0 65.4 3.2 65.4 3.2 0.0 0.0 
1912 221.4 8.0 3.6 0.0 0.0 150.5 68.0 150.5 68.0 0.0 0.0 
1914 1325.4 192.9 14.6 45.8 3.5 13.1 1.0 58.9 4.4 408.2 30.8 
1915 313.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 130.5 41.7 
1917 198.3 67.5 34.0 0.0 0.0 58.9 29.7 58.9 29.7 0.0 0.0 
1918 897.7 27.3 3.0 13.1 1.5 26.2 2.9 39.3 4.4 5.6 0.6 
2101 713.0 574.6 80.6 45.8 6.4 0.0 0.0 45.8 6.4 26.1 3.7 
2102 690.9 570.6 82.6 39.3 5.7 0.0 0.0 39.3 5.7 18.4 2.7 
2103 1971.2 0.0 0.0 26.2 1.3 52.4 2.7 78.5 4.0 0.0 0.0 
2105 608.7 5.6 0.9 0.0 0.0 0.0 0.0 0.0 0.0 346.0 56.8 
2107 365.3 0.0 0.0 58.9 16.1 26.2 7.2 85.1 23.3 0.0 0.0 
2108 487.0 0.0 0.0 52.4 10.8 52.4 10.8 104.7 21.5 0.0 0.0 
2110 363.1 0.0 0.0 78.5 21.6 19.6 5.4 98.2 27.0 0.0 0.0 
2111 2209.1 88.2 4.0 26.2 1.2 39.3 1.8 65.4 3.0 0.0 0.0 
2112 514.1 0.0 0.0 19.6 3.8 26.2 5.1 45.8 8.9 307.6 59.8 

 
  Coal Seam Gas  

>50% BTF BU inventory, 250 m to 350 m    Grazing Cattle  
>50% BTF BU inventory, 250 m to 350 m  

 Feedlots  
>50% BTF BU inventory, 250 m to 350 m 

  Coal Seam Gas  
>50% BTF BU inventory, 100 m to 200 m    Grazing Cattle  

>50% BTF BU inventory, 100 m to 200 m  
 Feedlots 

 >50% BTF BU inventory, 100 m to 200 m 

  Coal Mines  
> 50% BTF BU Inventory 

 Mixed Sources   

  Piggeries  
> 50% BTF BU Inventory 

 Points of Interest with Low d13CCH4 
Readings 
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Table A6. Calculated d13CCH4(s) values using multi-Keeling-model regression with shared CH4(b) and d13CCH4(b) and using multi-Miller-860 
Tans-model regression with shared CH4(b) and d13CCH4(b).  

 

Category  
Data Set 

and 
Parameter 

Multi-Keeling-Model Shared CH4(b) and d13CCH4(b)  
(Eq. 1) 

Multi-Miller-Tans-Model with Shared CH4(b) and 
d13CCH4(b)  

(Eq. 3) 

Estimate 

Confidence 
Interval  
(95 %) 

Lower Bound 

Confidence 
Interval  
(95 %) 

 Upper Bound 

Estimate 

Confidence  
Interval  
(95 %)  

Lower Bound 

Confidence 
Interval  
(95 %) 

Upper Bound 

Background Air 
CH4(b) (ppm) 1.826 1.789 1.863 1.826 1.788 1.863 

Background Air 
d13CCH4(b) (‰) 

–47.3 –47.6 –47.0 –47.3 –47.6 –47.0 

Coal Seam Gas 
 >50 % BTF BU Inventory 

100–200 mAGL 
d13CCH4(s) (‰) 

–65.4 –78.7 –52.0 –65.4 –78.8 –52.1 

Coal Seam Gas  
>50 % BTF BU Inventory 

250–350 mAGL 
d13CCH4(s) (‰) 

–55.4 –69.1 –41.7 –55.5 –69.2 –41.8 

Grazing Cattle  
>50 % BTF BU Inventory 

100–200 mAGL 
d13CCH4(s) (‰) 

–53.8 –71.1 –36.4 –53.9 –71.2 –36.5 

Grazing Cattle  
>50 % BTF BU Inventory  

250–350 mAGL 
d13CCH4(s) (‰) 

–60.5 –76.1 –44.9 –60.6 –76.2 –45.1 

Feedlots  
>50 % BTF BU Inventory  

100–350 mAGL 
d13CCH4(s) (‰) 

–69.6 –92.2 –47.0 –69.7 –92.3 –47.0 

 
  

 865 
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Figure A1. Two-hour HYSPLIT back-trajectory path lines (red) for each day of IFAA sampling. The back-trajectory starts at the mid-point 
of the air sample collection interval (circled end of the red line). Refer to Fig. A1 for the point source colour key (image ©Google Earth). 870 
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Figure A2. A representative BTF inventory polygon for IFAA sample 1817. The red line shows the 2-hour back trajectory determined using 
HYSPLIT. Refer to Fig. A1 for the point source colour key (image ©Google Earth).  875 
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Figure A3. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the coal seam gas Keeling-model regression analysis. 
(a) HYSPLIT back trajectories CSG >50 % BU inventory, altitude 250–350 mAGL. (b) HYSPLIT back trajectories CSG >50 % BU 
inventory, altitude 100–200 mAGL. Refer to Fig. A1 for the point source colour key (image ©Google Earth). 880 
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Figure A4. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the grazing cattle Keeling-model regression analysis. 
(a) HYSPLIT back trajectories Grazing Cattle >50 % BU inventory, altitude 250–350 mAGL. (b) HYSPLIT back trajectories Grazing Cattle 
>50 % BU inventory, altitude 100–200 mAGL.Refer to Fig. A1 for the point source colour key (image ©Google Earth). 
 885 
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Figure A5. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the feedlot Keeling-model regression analysis. Each 
green dot indicates the position of a feedlot (image ©Google Earth).  890 
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Appendix B 
 895 
A commonly used method to determine δ13CCH4(s) is to fit the Keeling model (Eq. 1) or Miller-Tans model (Eq. 2) to a set of 

air samples collected within a single plume. For the IFAA samples collected as part of this study the combination of the low 

level of CH4 enhancement (< 0.040 ppm) and the small number of samples in each category (< 10 IFAA samples) results in 

poorly constrained regressions with large uncertainties (Table B1). 
 900 
Table B1. Calculated d13CCH4(s) values for Keeling model (Eq. 1) and Miller-Tans model (Eq. 2) fitted to the individual source category data 
sets. 

Category Data Set 
and 

Parameter 

Individual Keeling-Model Regression  
(Eq. 1) 

Individual Miller-Tans-Model Regression  
(Eq..2) 

Estimate 

 
Confidence Interval  

(95 %) 
Lower Bound 

Confidence  
Interval  
(95 %) 
 Upper 
Bound 

Estimate 

 
Confidence Interval  

(95 %) 
Lower Bound 

Confidence 
Interval  
(95 %) 
 Upper 
Bound 

Coal Seam Gas  
>50 % BTF BU inventory,  

100–200 mAGL 
d13CCH4(s) (‰) 

–66.8 –105.0 –28.6 –66.9 –105.0 –28.7 

Coal Seam Gas  
>50 % BTF BU inventory,  

250–350 mAGL 
d13CCH4(s) (‰) 

–54.6 –78.4 –30.7 –54.7 –78.5 –30.9 

Grazing Cattle  
>50 % BTF BU inventory,  

100–200 mAGL 
d13CCH4(s) (‰) 

–60.7 146.0 24.7 –60.6 –146.1 24.7 

Grazing Cattle  
>50 % BTF BU inventory,  

250–350 mAGL 
d13CCH4(s) (‰) 

–65.3 –211.5 80.8 –65.3 –211.4 80.7 

Feedlots  
>50 % BTF BU inventory,  

100–350 mAGL 
d13CCH4(s) (‰) 

–68.9 –113.8 –24.0 –69.0 –113.8 –24.1 

 

The single category Keeling model (Eq. 1) results are presented in Fig. B1 (a) to highlight the issue of fitting the Keeling 

model to small data sets with low CH4 enhancement above background CH4(b). The Keeling regression lines in Fig. B1 (a) do 905 
not converge to a common point for CH4(b) and δ13CCH4(b) as would be expected given the stability of CH4(b) established during 

the continuous measurement airborne campaign (Neininger et al. 2021). Many of the regression lines converge far to the right 

of the CH4(b) and δ13CCH4(b) values determined from the simultaneous multiple regression. In addition, the uncertainty bars for 

the source signatures derived from the unconstrained fits are so large that no meaningful source attribution is possible (Table 

B1). The resulting δ13CCH4(s) signatures of the individual regressions for each category are: CSG >50% BTF BU inventory, 910 
100–200 mAGL, −66.8 ‰ (CI 95 % ± 38.2 ‰); CSG >50% BTF BU inventory, 250–350 mAGL, −54.6 ‰ (CI 95 % ± 23.9 

‰); Grazing Cattle >50% BTF BU inventory, 100–200 mAGL, −60.7 ‰ (CI 95 % ± 60..7 ‰); Grazing Cattle >50% BTF BU 

inventory, 250–350 mAGL, −65.3 ‰ (CI 95 % ± 146.1 ‰); and Feedlots >50 % BTF BU inventory, 100–350 mAGL, −68.9 

‰ (CI 95 % ± 44.9 ‰). 

 915 
When CH4(b) and δ13CCH4(b) are unknown, it is common to use the Miller-Tans model (Eq. 2) to determine δ13CCH4(s). The results 

of fitting this model separately to the five category data sets are presented in Fig. B1 (b). Like the Keeling model, the regression 

lines of best fit do not converge to a common point for CH4(b) and δ13CCH4(b). The 95 % confidence intervals are also large 

(Table B1). The resulting δ13CCH4(s) signatures of the individual regressions for each category are: CSG >50 % BTF BU 

inventory, 100–200 mAGL, −66.9 ‰ (CI 95 % ± 38.1 ‰); CSG >50 % BTF BU inventory, 250–350 mAGL, −54.7 ‰ (CI 95 920 
% ± 23.8 ‰); Grazing Cattle >50 % BTF BU inventory, 100–200 mAGL, −60.6 ‰ (CI 95 % ± 60.7 ‰); Grazing Cattle >50% 
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BTF BU inventory, 250–350 mAGL, −65.3 ‰ (CI 95 % ± 146.1 ‰); and Feedlots >50 % BTF BU inventory, 100–350 mAGL, 

−69.0 ‰ (CI 95 % ± 44.9 ‰). 

 

These poorly constrained results highlight why multi-Keeling-model regression was used for this study to better constrain the 925 
interpretation of the IFAA samples. As previously stated in the main text, the multi-Keeling-model regression determined 

values for CH4(b) and δ13CCH4(b) represent the background air centroid for all days of measurements, which is useful knowledge, 

as it highlights that none of the IFAA samples represented background air. Comparing the derived δ13CCH4(s) values in Tables 

A6 and B1 there is little variation in δ13CCH4(s) signatures for each category regardless of which two-endmember mixing model 

was used or regression method applied.  930 

  
Figure B1. Least squares regression for two-endmember mixing models fitted to individual source category data sets using (a) the Keeling 
model (Eq. 1) and (b) the Miller-Tans model (Eq. 2). For reference the background air values for CH4(b) and d13CCH4(b) determined from the 
multi-Keeling and multi-Miller-Tans model regressions are displayed in plots (a) and (b), respectively. The regression statistics for each 
category are listed in Table B1. Both graphs highlight that when the models are fitted to the individual source category data sets the lines of 935 
best fit do not converge to a common value for background air. All error bars are one standard deviation.  
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