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Abstract 20 

Ozone (O3) is a secondary pollutant in the atmosphere formed by 21 

photochemical reactions that endangers human health and ecosystems. O3 has 22 

aggravated in Asia in recent decades and will vary in the future. In this study, to 23 

quantify the impacts of future climate change on O3 pollution, near-surface O3 24 

concentrations over Asia in 2020–2100 are projected using a machine learning 25 

(ML) method along with multisource data. The ML model is trained with 26 

combined O3 data from a global atmospheric chemical transport model and real-27 

time observations. The ML model is then used to estimate future O3 with 28 

meteorological fields from multi-model simulations under various climate 29 

scenarios. The near-surface O3 concentrations are projected to increase by 5–30 

20% over South China, Southeast Asia, and South India and less than 10% 31 

over North China and Gangetic Plains under the high forcing scenarios in the 32 

last decade of 21st century, compared to the first decade of 2020–2100. The O3 33 

increases are primarily owing to the favorable meteorological conditions for O3 34 

photochemical formation in most Asian regions. We also find that the 35 

summertime O3 pollution over eastern China will expand from North China to 36 

South China and extend into the cold season in a warmer future. Our results 37 

demonstrate the important role of climate change penalty on Asian O3 in the 38 

future, which provides implications for environmental and climate strategies of 39 

adaptation and mitigation.  40 
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1. Introduction 41 

Tropospheric ozone (O3) is a primarysecondary air pollutant, formed by 42 

photochemical oxidation of nonmethane volatile organic compounds (NMVOCs) 43 

and carbon monoxide (CO) in the presence of nitrogen oxides (NOx = NO + 44 

NO2) and sunlight. It has adverse effects on human health (Malley et al., 2017; 45 

Cakmak et al., 2018), vegetation growth (Yue et al. 2017; Mills et al., 2018) and 46 

climate change (Checa-Garcia et al., 2018; Gaudel et al., 2018). A better 47 

understanding of the causes of changes in O3 concentrations is useful for 48 

developing effective environment and climate strategies. 49 

Since mid-1990s, Asian regions, including South Asia, East Asia and 50 

Southeast Asia, have experienced the fastest O3 increase rate of 2–8 51 

ppb/decade at remote surface sites and in the lower free troposphere across 52 

the world (IPCC, 2021). A number of air quality monitoring stations administered 53 

by China National Environmental Monitoring Center (CNEMC) have been 54 

established in China since 2013 to measure real-time near-surface particulate 55 

matter, O3, and other air pollutants. The measurements showed an increasing 56 

trend of urban warm-season daily maximum 8-hour average (MDA8) O3 57 

concentrations of 2.4 ppb (5%) yr-1 that is faster than any other regions 58 

worldwide during 2013–2019 (Lu et al., 2020). However, many regions in Asia 59 

lack O3 observations with sufficient spatial and temporal coverage. Also, most 60 

of the present regional observations are collected only near population clusters, 61 

which are not representative of the entire region (Zhou et al., 2022). 62 
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To supplement the limited near-surface O3 measurements, many studies 63 

utilized global and regional models with comprehensive physical and chemical 64 

processes to simulate O3 concentrations (Zhu et al., 2017; Gao et al., 2020; 65 

Yang et al., 2022). Moreover, statistical models have also been used to estimate 66 

O3 concentrations (Chen et al., 2020; Zhang et al., 2020). In recent years, 67 

machine learning (ML) approaches, such as random forest (Xue et al., 2020; 68 

Wei et al., 2022), neural network (Di et al., 2017), support vector machine (Su 69 

et al., 2020), extreme gradient boosting (LiLiu et al., 2020), and ensemble 70 

learning (Liu et al., 2022), were widely applied to estimate O3 levels based on 71 

potential influential factors (e.g., precursor emissions, meteorological 72 

conditions, land use, surface elevation, gross domestic product, population 73 

density, and geographical variables). The abovementioned previous studies 74 

utilizing the ML methods showed high computational efficiency and accuracy, 75 

with an overall R2 between the observed and predicted O3 concentrations in the 76 

range of 0.7–0.9. 77 

Meteorological factors and synoptic conditions play important roles in 78 

affecting O3 pollution (Fu and Tai, 2015; Gong and Liao, 2019; Yin et al., 2019; 79 

Liu et al., 2020; Dang et al., 2021). Gong et aland Liao. (2019) illustrated that 80 

hot, dry, and stagnant weather conditions are favorable for the formation and 81 

persistence of severe O3 pollution over northern China. High air temperature 82 

along with intense incoming shortwave radiation accelerates both 83 

photochemical reaction rates and natural precursor emissions for O3 production 84 
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(Jacob and Winner, 2009). Under high relative humidity conditions, O3 85 

concentrations decrease due to many complex physical and chemical 86 

mechanisms (Jeong and Park, 2013; Kavassalis and Murphy., 2017; Lu et al., 87 

2019; Li M. et al., 20212021a). Cloud and precipitation impact O3 levels through 88 

reducing the downwelling solar radiation and washout of pollutants (Toh et al., 89 

2013). Anomalous sea level pressure patterns can affect the long-range 90 

transport of O3 by influencing atmospheric circulation (Santurtún et al., 2015). 91 

By changing the air stagnant condition and transport of pollutants, wind fields 92 

can also affect O3 concentrations in local and downwind areas of emission 93 

sources (Doherty et al., 2013). 94 

Future climate change corresponding to the different climate scenarios can 95 

impact O3 through altering meteorological conditions (Wang et al., 2013, Fu and 96 

Tian et al., 2019). Using regional climate fields downscaled from general 97 

circulation models to investigate potential O3 variations in the U.S. due to 98 

changing climate, Fann et al. (2015) projected the MDA8 O3 to increase by 1–99 

5 ppb as daily maximum average temperature increases by 1–4°C in 2030 100 

relative to 2000. Colette et al. (2015) estimated that the climate penalty for 101 

future summertime near-surface O3 reaches 0.99–1.5 ppb by the end of the 21st 102 

century (2071–2100) in Europe compared to present-day levels using an 103 

ensemble of eight global coupled climate-chemistry models under the RCP 104 

(Representative Concentration Pathway) 8.5 scenario. Through fixing sea 105 

surface temperature at present-day and future conditions in five atmospheric-106 
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only models as part of the AerChemMIP (Aerosol Chemistry Model 107 

Intercomparison Project), Zanis et al. (2022) projected the climate change 108 

penalties and benefits on global near-surface O3 concentrations from 2015 to 109 

2100 under the SSP3scenarios of Shared Socioeconomic Pathways (SSPs) 3-110 

7.0 scenario. They found O3 reductions in most regions of the globe, except a 111 

robust O3 climate penalty of 1–2 ppb °C-1 in South and East Asia under global 112 

warming following the SSP3-7.0 pathway. However, SSP3-7.0 is not a good 113 

representative scenario for both air quality and climate in Asia. The emissions 114 

of greenhouse gases (GHGs) and air pollutants over East Asia in SSP3-7.0 are 115 

assumed to significantly increase in the near future and keep at high levels in 116 

the middle of the 21st century among all SSPs (Li et al., 2022), while the 117 

emissions of air pollutants have been cut by a lot since 2010s in the real world 118 

(Wang et al., 2021). The GHGs and pollutant emissions are very likely to 119 

continually decline in the future related to the carbon neutrality commitment 120 

(Cheng et al., 2021). 121 

In this study, we aim to better characterize the impact from future climate 122 

change on Asian O3 pollution using multiple state-of-the-art modeling tools and 123 

data. It is important for policy-makers that mitigating global climate change 124 

potentially has positive benefits to surface air quality through meteorological 125 

factors, not only the reduction in fossil fuel co-emissions. The near-surface O3 126 

concentrations covering 2020–2100 in Asia are projected using a ML method 127 

integrated with multisource data, including assimilated O3 data that combine 128 
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ground observations across China and simulations from a global 3-D chemical 129 

transport model (GEOS-Chem), meteorological fields under various climate 130 

scenarios from the latest Coupled Model Intercomparison Project Phase 6 131 

(CMIP6) multi-model simulations, and other auxiliary data (e.g., emissions, land 132 

use, topography, population density, and spatiotemporal information). ML 133 

approach gives the capacity to explore many scenarios more rapidly and for 134 

longer time periods than the chemical transport model process-based modeling. 135 

Details of the data and methodology used in this study are described in section 136 

2. Section 3 analyzes the results of climate-driven O3 variations over different 137 

key regions of Asia. Section 4 summarizes the main conclusions and discusses 138 

potential uncertainties in this study. 139 

2. Materials and Methods 140 

2.1 GEOS-Chem model description 141 

Figure 1 illustrates the procedures for predicting future near-surface O3 142 

over Asia under four scenarios. To assimilate O3 data for the ML model training, 143 

the near-surface O3 concentrations over Asia from 2014 to 2019 are firstly 144 

simulated using the nested-grid version of the 3-D GEOS-Chem model (version 145 

12.9.3), driven by the Modern-Era Retrospective analysis for Research and 146 

Applications, Version 2 (MERRA-2) reanalysis meteorological data (Gelaro et 147 

al., 2017). The nested GEOS-Chem has 47 vertical layers from the surface up 148 

to 0.01 hPa, with a horizontal resolution of 0.5° latitude × 0.625° longitude over 149 

the Asia domain (11°S–55°N, 60–150°E). The lateral boundaries of chemical 150 
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tracer concentrations are provided by global simulations at 2° latitude × 2.5° 151 

longitude horizontal resolution. The model includes fully coupled aerosol-O3-152 

NOx-hydrocarbon chemical mechanisms (Park et al., 2004; Pye et al., 2009; 153 

Mao et al., 2013), with about 300 species participated in over 400 kinetic and 154 

photochemical reactions (Bey et al., 2001). The stratospheric O3 chemistry is 155 

simulated through linearized O3 parameterization scheme (LINOZ; Mclinden et 156 

al., 2000), and the planetary boundary layer mixing is calculated by a nonlocal 157 

scheme (Lin and McElroy, 2010). GEOS-Chem has shown a good performance 158 

in reproducing spatiotemporal distributions of O3 concentrations (e.g., Ni et al., 159 

2018; Li et al., 2019). 160 

The historical (2014–2019) anthropogenic emissions of O3 precursor 161 

gases, including NOx, NMVOCs, and CO, utilized in the nested domain are 162 

obtained from the Community Emissions Data System (CEDS; Hoesly et al., 163 

2018) version 2021_04_21, which fully considered the recent emission 164 

reductions in China related to clean air measures. The biomass burning 165 

emissions are acquired from the Global Fire Emissions Database version 4 166 

(GFED4; van der Werf et al., 2017). Biogenic emissions of NMVOCs from the 167 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 168 

are employed, with updates from Guenther et al. (2012). Soil NOx sources are 169 

calculated with an updated version of the Berkeley-Dalhousie Soil NOx 170 

Parameterization scheme (Hudman et al., 2012). NOx emissions from lightning 171 

are as described by Murray et al. (2012), and the vertical distribution of 172 
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emissions follows Ott et al. (2010). 173 

2.2 Ground O3 observations 174 

To improve the performance of the ML model in predicting O3 175 

concentrations, the nationwide hourly near-surface O3 concentrations in China 176 

during 2014–2019 are obtained from the CNEMCChina Ministry of Ecology and 177 

Environment (MEE) and used for O3 data assimilation., which has been widely 178 

used to examine pollution over China in previous studies (Li K. et al., 2020, 179 

2021; Qian et al., 2022). The observational network had about 500 monitoring 180 

sites in 2013, and expanded to more than 1500 sites after 2019, covering 360 181 

cities in mainland China. TheIn this study, the quality controlled hourly O3 182 

observations in 360 cities are averaged within each 0.5° latitude × 0.625° 183 

longitude grid of the GEOS-Chem model. 184 

2.3 Data assimilation 185 

The assimilation system, which is used to combine the O3 observations 186 

across China with results from GEOS-Chem simulations, is based on a three-187 

dimensional variational (3DVar) data assimilation. (Kalnay, 2003; Evensen et 188 

al., 2022). The goal of the 3DVar is to find the maximum likelihood estimation 189 

of a state vector x, which is the O3 concentrations here in this study, given the 190 

available observations y through minimizing the cost function: 191 

𝐽𝐽(𝑥𝑥) =
1
2

(𝒙𝒙 − 𝒙𝒙𝑏𝑏)T 𝐁𝐁−𝟏𝟏 (𝒙𝒙 − 𝒙𝒙𝑏𝑏)  +  
1
2

(𝒚𝒚 − H(𝒙𝒙))T 𝐎𝐎−𝟏𝟏 (𝒚𝒚 − H(𝒙𝒙) ) 192 

Here 𝒙𝒙𝑏𝑏 represents the priori simulation,. B is the empirical background 193 

covariance matrix representingformulated as a product of the uncertainty.  in 194 
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the simulated value and a distance-based correlation matrix C, and the 195 

individual element is calculated as: 196 

𝐁𝐁𝑖𝑖,𝑗𝑗 = 0.2 ∗ 𝒙𝒙𝑖𝑖𝑏𝑏 ∗ 0.2 ∗ 𝒙𝒙𝑗𝑗𝑏𝑏 ∗ 𝐂𝐂𝑖𝑖,𝑗𝑗 197 

Here we have used 20% choice to characterize uncertainty of the O3 198 

simulation, the correlation matrix is empirically set as: 199 

𝐂𝐂𝑖𝑖,𝑗𝑗 = 𝑒𝑒−(
𝑑𝑑𝑖𝑖,𝑗𝑗

200𝑘𝑘𝑘𝑘)2/2 200 

Here 𝑑𝑑𝑖𝑖,𝑗𝑗 represents the spatial distance between the grid cell i and j. 201 

H denotes the linear observation operator that converts the simulation 202 

results into the observation observational space, and . Here all observations 203 

are assumed to be independent, and therefore O is a diagonal covariance 204 

matrix storing the square of the observation uncertainty of the measurements 205 

used, which is also set as 20% similarly.  206 

Comparisons between observed and assimilated O3 concentrations over 207 

2014–2019 are shown in Figure 12. The overall correlation coefficient (R) is 208 

0.94, and the normalized mean bias (NMB) is –0.1%, suggesting that the 209 

assimilated data have an excellent representation of O3 observations and 210 

minimize the uncertainties of GEOS-Chem simulations in China. 211 

2.4 Predicting O3 using a machine learning method 212 

In this study, a random forest (RF) model is used to predict O3 213 

concentrations, similar to our previous studies (Li H. et al., 2021, 2022), with 214 

input data of assimilated O3 concentrations in China that combine observations 215 

and results from GEOS-Chem model simulations, GEOS-Chem simulated O3 216 



 

11 
 

concentrations outside of China, MERRA-2 meteorological variables, O3 217 

precursor emissions, land cover (LC), normalized difference vegetation index 218 

(NDVI), topography (TOPO), population density (POP), and the month of the 219 

year (MOY) and geographic location of each model grid as spatiotemporal 220 

information. Details of the datasets are summarized in Table 1. 221 

For predicting future climate-driven near-surface O3 concentrations, the ML 222 

model is trained with samples over 2014–2018 and the remaining 2019 data 223 

are used for model validation. To obtain an optimal ML model, hyperparameters 224 

are firstly tuned using the 10-fold cross-validation (Rodroguez et al., 225 

2010).Rodriguez et al., 2010). The best hyperparameters (n_estimators=200, 226 

min_samples_split=2, max_features= "sqrt", bootstrap= "True") of the ML 227 

model are utilized. Several statistical metrics, including coefficient of 228 

determination (R2), mean absolute error (MAE), root mean square error (RMSE) 229 

and mean relative error (MRE) are used to evaluate the performance of ML 230 

model. Then the climate-driven near-surface O3 concentrations during 2020–231 

2100 under four SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) in Asia 232 

can be estimated using the trained ML model with varying meteorological 233 

factors under the climate change scenarios. Both anthropogenic and natural 234 

emissions of O3 precursors are fixed at the present-day levels for the prediction. 235 

2.5 Meteorological fields from CMIP6 multi-model simulations 236 

Monthly meteorological parameters under four different future climate 237 

scenarios, including SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, (a 238 
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representation of low, intermediate, medium to high, and high forcing levels, 239 

respectively), are fed to a ML model to predict ground-levelnear-surface O3 240 

concentrations. The Scenario Model Intercomparison Project (ScenarioMIP) as 241 

part of CMIP6 provides multi-model projections of climate variables driven by 242 

future emission and land use changes under different SSPs (O’Neill et al., 2016). 243 

In our study, meteorological fields, such as air temperature (at 2m, 850 hPa, 244 

and 500 hPa), wind fields (at 850 and 500 hPa), surface relative humidity, 245 

incoming shortwave radiation at the surface, total cloud cover, precipitation rate, 246 

and sea level pressure, are chosen as the key meteorological predictors for 247 

ground-levelnear-surface O3 concentrations, which are obtained from 18 global 248 

climate models, i.e., ACCESS-CM2, ACCESS-ESM1-5, CanESM5, CESM2-249 

WACCM, CMCC-CM2-SR5, EC-Earth3-Veg, EC-Earth3, FGOALS-f3-L, 250 

FGOALS-g3, GFDL-ESM4, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-251 

ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, and NorESM2-252 

MM. Before being applied to the ML model, future meteorological fields from 253 

ScenarioMIP are adjusted to minimizeby their potential bias, characterized as 254 

the difference in their historical climatological mean (2014–2019) and MERRA-255 

2 following Li et al. (2022). It minimizes the inconsistencies in the initial 256 

conditions in models and reanalysis data following Li et al. (2022)..  257 

3. Results 258 

3.1 Predictive capability of the machine learning model 259 

The ML predicted monthly O3 concentrations over Asia in 2019 by the ML 260 
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model are in good agreement with the assimilated O3 data constructed with 261 

observations and GEOS-Chem model results (Fig. 23). The overall R2 between 262 

the predicted and assimilated O3 concentrations is as high as 0.92 and the ML 263 

model has a low MRE of 9% in predicting O3 concentrations over the Asia 264 

domain. Overall, these statistical indices indicate that the RF model is promising 265 

for predicting the spatial distributions and temporal variations of near-surface 266 

O3 concentrations over Asia, which can provide a practical means for studying 267 

long-term variations in O3 under the future climate change. 268 

Meanwhile, the ML model predictive capability for each grid cell over the 269 

entire domain during 2014–2019 is further evaluated and demonstrated in 270 

Figure 34. Regarding the spatial performance, the estimated O3 concentrations 271 

are highly correlated to the assimilated data in most regions of Asia with small 272 

biases, indicating a strong spatial predictive ability of the RF model. More than 273 

80% of land areas have a R2 greater than 0.9. In terms of model uncertainties, 274 

about 95% of land areas have a RMSE (MAE) less than 3 (2) parts per billion 275 

(ppb). Furthermore, approximately 86% of land areas show small modeling bias 276 

with MRE below 5%. Note that several grid cells show MRE over 5% but still 277 

below 15%, which is related to the data assimilation using monitored and 278 

simulated O3 concentrations in China and the coarse resolution for coastal 279 

areas and islands over Southeast Asia. 280 

Figure 45 shows the importance score of independent variables that 281 

contribute to the prediction of trained ML model., which called Gini importance 282 
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and implies the influence of input features on the target variable in the ML model. 283 

The results suggest that among all the input predictors, relative humidity, 284 

incoming solar radiation at the surface, and topography are the top-three most 285 

influential variables for the model construction of near-surface O3 in Asia, with 286 

importance scores of 15%, 12% and 10%, respectively. The primary importance 287 

of relative humidity has also been reported in previous studies (e.g., Han et al., 288 

2020; Qian et al., 2022). Other meteorological parameters, such as cloud cover, 289 

sea level pressure, air temperature, precipitation, also have a substantial 290 

impact on the O3 estimates, with importance scores ranging from 4% to 8%. In 291 

the ML model, the emissions of three primary O3 precursors, including NMVOCs, 292 

NOx, and CO, have a relatively low importance score of 4–5% individually due 293 

to the spatiotemporal diversity of O3 production regimes. However, it is noted 294 

that the O3 variations in different regions are dominated by different 295 

meteorological factors (Weng et al., 2022). The importance score of each 296 

independent feature quantified in this study can only reflect the overall 297 

importance across Asia, which is less representative of any specific regions. 298 

3.2 Predicted future climate-driven O3 variations 299 

Figure 56 shows the predicted absolute and percentage changes in annual 300 

mean near-surface O3 concentrations in response to climate change between 301 

the first and last decades of 2020–2100 based on the future meteorological 302 

fields from the 18 CMIP6 models. Fig. 67 shows the time series of the regional 303 

averaged values over six sub-regions of Asia during 2020–2100. Under the 304 
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global warming trends of all future scenarios, the climate-driven near-surface 305 

O3 concentrations increase constantly from 2020 to 2100 over many key 306 

regions in Asia, such as North China (NC), South China (SC), Southeast Asia 307 

(SEA), South India (SI) and Gangetic Plains (GP), except the Tibetan Plateau 308 

(TP). The O3 concentrations over SC, SEA, and SI are projected to increase 309 

considerably with the maximum increase up to 5 ppb (20%) in 2095 (2091–310 

2100 mean) compared to 2025 (2020–2029 mean) under the SSP5-8.5 311 

scenario, revealing a strong O3-climate penalty in most Asian regions. The 312 

climate-driven changes in O3 concentrations are smaller under the less warming 313 

scenarios, especially in SSP1-2.6 that has O3 changes less than 5% across 314 

Asia. These suggest that future climate following low emissions and sustainable 315 

pathways is more favorable for the mitigation of O3 pollution in Asia than high 316 

forcing scenarios. 317 

The strong O3-climate penalty over eastern China can be attributed to the 318 

particularly high O3 precursor emissions (Fig. S1), relative to western China, 319 

which lead to a positive local net O3 production close to sources in a warming 320 

climate (Fig. S2) (Zanis et al., 2022). The absolute and percentage changes in 321 

regional averaged near-surface O3 concentrations between 2025 and 2095 322 

under the four scenarios are shown in Figure 78. The climate-driven changes 323 

in O3 concentrations are gradually stronger from north (2–3%) to south (3–8%) 324 

of China, which demonstrates that the changes in meteorology exert a greater 325 

impact on ground-levelnear-surface O3 concentrations over SC than NC under 326 
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future climate change. By the end of the 21st century, the relative humidity will 327 

decrease (Fig. S3) and downward solar radiation will increase (Fig. S4) over 328 

SC compared to those in 2025, which are conducive to the O3 productions, 329 

while NC has the opposite changes. Moreover, cloud cover will decrease more 330 

over SC than NC (Fig. S5), contributing to the larger increase in O3 productions 331 

and concentrations over SC than NC in a warming climate. 332 

In South Asia, climate change also enhances O3 concentrations by <5% 333 

over GP and SI (Fig. 78), due to the massive precursor emissions (Fig. S1) and 334 

O3 productions. Over SI, the decreases in relative humidity (Fig. S3) and cloud 335 

amount (Fig. S5), and increases in downward solar radiation at the surface (Fig. 336 

S4) favor photochemical production of O3 and induce the large increases in O3 337 

concentrations in this region. Averaged over SEA, O3 concentrations driven by 338 

higher temperature (Fig. S2), more downward solar radiation (Fig. S4)), and 339 

lower relative humidity (Fig. S3) and cloud cover (Fig. S5) in 2095 are projected 340 

to increase O3 concentrations by 5–7% in SSP3-7.0 and SSP5-8.5 and 0–3% 341 

in SSP1-2.6 and SSP2-4.5 scenarios, relative to 2025 (Fig. 78). 342 

The Tibetan Plateau (TP), known as the highest topography in China with 343 

more solar radiation at the surface, has strong stratosphere-troposphere 344 

exchanges of O3 compared with other regions leading to high O3 concentrations 345 

over this region (Fig. S6). Climate-driven O3 concentrations are projected to 346 

decline by less than 2% over TP from 2025 to 2095 (Fig. 78). It is likely because 347 

less solar radiation (Fig. S4) and more frequent occurrence of rainy weather 348 
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(Fig. S7) in the future would reduce the local chemical production of O3. 349 

3.3 The seasonality of future climate-driven O3 variations 350 

Climate over Asia has obvious seasonal variation related to the Asian 351 

monsoon system. Figure 89 shows the spatial distributions of percentage 352 

changes in projected climate-driven O3 concentrations in spring (March–April–353 

May, MAM), summer (June–July–August, JJA), autumn (September–October–354 

November, SON), and winter (December–January–February, DJF) between 355 

2025 and 2095 under the four scenarios. In general, air quality in many regions 356 

of Asia will deteriorate in all seasons associated with intensified O3 pollution 357 

under climate change. 358 

In eastern China, O3 pollution occurs most frequently in summer and is 359 

more severe in NC than SC currently (Li et al., 2019). Under future climate 360 

warming, JJA O3 concentrations will increase by 5–20% in SC under the high 361 

forcing scenarios, while the changes in NC are less than 5%. It suggests that 362 

future climate change will expand the summertime O3 pollution from NC to SC 363 

over eastern China. Another feature is the strong increases in O3 364 

concentrations by 10–20% throughout eastern China and exceeding 20% over 365 

Sichuan Basin in SON, which relate to the significant increases in temperature 366 

(Fig. S8) and solar radiation (Fig. S9) in this season over central-eastern China 367 

under the high forcing scenarios. It further indicates that future climate change 368 

will extend the O3 pollution from summer into autumn. 369 

In South Asia, the climate-driven increases in O3 concentrations vary from 370 
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JJA over SI to DJF over GP. Relative to 2025, in summer of 2095, anomalous 371 

high pressure (Fig. S10) along with anticyclone (Figs. S11 and S12) dominates 372 

South Asia, which is not conducive to O3 diffusion, leading to increases in JJA 373 

O3 concentrations over SI. The intensified O3 pollution across GP in DJF under 374 

climate change is related to the strong surface warming (Fig. S8), decreases in 375 

relative humidity (Fig. S13), cloud cover (Fig. S14) and rainfall (Fig. S15), as 376 

well as increases in solar radiation at the surface (Fig. S9), favoring the 377 

photochemical production of O3. In north part of Southeast Asia, JJA has the 378 

largest O3 rise via the same mechanism as for SI, while O3 increases by the 379 

same magnitude in all seasons in south part of Southeast Asia driven by future 380 

climate change. 381 

4. Conclusions and discussion 382 

Ground-levelThe O3 pollution has been increasing over Asia in recent 383 

decades, which harms human health and vegetations. In the future warmer 384 

climate, O3 pollution over Asia can be modulated by changes in meteorological 385 

fields. In this study, to examine the variations in O3 concentrations over Asia 386 

due to the future climate change, monthly near-surface O3 concentrations from 387 

2020 to 2100 under four climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, 388 

and SSP5-8.5) are predicted using a ML model with input data from assimilated 389 

O3 combining GEOS-Chem simulations and real-time observations, future 390 

meteorological parameters from CMIP6 multi-model simulations, emissions of 391 

O3 precursors, land use, topography, population density and spatiotemporal 392 
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information. Our results suggest that the future O3 pollution over Asia will be 393 

significantly exacerbated in a warming climate, especially under high forcing 394 

scenarios. 395 

Trained by the assimilated O3 concentrations and reanalysis data, the ML 396 

model can well predict O3 over Asia with the coefficient determination of 0.92 397 

between assimilated and predicted O3 concentrations and relative error of 9%. 398 

Then the future Asian O3 concentrations from 2020 to 2100 driven by climate 399 

change are projected in the ML model with varying meteorological fields from 400 

18 CMIP6 models under four future climate scenarios. 401 

The climate penalty on O3 is robust over most regions of Asia. The annual 402 

mean O3 levels in 2095 are projected to increase by 5–20% relative to 2025 403 

under the high forcing scenarios over South China, Southeast Asia, and South 404 

India and less than 10% over North China and Gangetic Plains, due to more 405 

favorable meteorological conditions for O3 photochemical production, while 406 

there is a decrease of <5% over the Tibetan Plateau. The climate-driven 407 

changes in O3 concentrations are smaller under the less warming scenarios, 408 

suggesting that future climate following low emissions and sustainable 409 

pathways would be more effective in the mitigation of O3 pollution in Asia than 410 

the high forcing scenarios. Seasonal variation analysis reveals that the 411 

summertime O3 pollution over eastern China will expand from North China to 412 

South China and extend into the cold season under the future climate change. 413 

In addition, South Asian O3 pollution will increase over South India in summer 414 
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and over Gangetic Plains in winter. 415 

Zanis et al. (2022) analyzed the global climate change benefit and penalty 416 

on O3 based on sensitivity simulations from five CMIP6 models under the SSP3-417 

7.0 scenario. They showed positive changes in JJA O3 concentrations by less 418 

than 1 ppb from 2010 to 2095 over East Asia and South Asia driven by climate 419 

change, but with large uncertainties due to the model diversity. The ML method 420 

in this study gives similar positive changes in O3 as Zanis et al. (2022). Pommier 421 

et al. (2018) applied the EMEP chemical transport model driven by the 422 

downscaled meteorological data from the NorESM1-M to investigate the 423 

impacts of regional climate change on near-surface O3 over India. They showed 424 

that near-surface O3 would increase by up to 4% over Northern India and 425 

decrease by 3% over Southern India from 2050 to 2100 under the RCP8.5 426 

scenario. We show that the climate-driven O3 in this study would increase over 427 

both Gangetic Plains (0.2%) and South India (3%) under the SSP5-8.5 scenario 428 

in 2050 relative to 2016 (2014–2019 mean). The discrepancies may rise from 429 

that the results of Pommier et al. (2018) were based on NorESM1-M simulated 430 

climate alone, while the climate change predicted by 18 CMIP6 models were 431 

applied in this study and the ensemble mean O3 concentrations were shown 432 

here. 433 

There are a few uncertainties and limitations in the projected near-surface 434 

O3 concentrations over Asia in terms of input data for the ML model, GEOS-435 

Chem simulations, and CMIP6 multi-model simulations, and the ML model. First, 436 
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only observational data over 2014–2019 across China were used for the O3 437 

assimilation. Longer-term measurements with broader spatial coverage are 438 

more desirable to improve the model performance. Land use data and 439 

population density are fixed at present-day conditions when predicting the 440 

future O3 since we focus on the variations in meteorological parameters under 441 

climate change, which will vary in the future. In addition, natural O3 precursor 442 

emissions such as biogenic emissions of NMVOCs, and NOx from soil and 443 

lightning sources are fixed at year-2016 levels in the future estimates, which 444 

can induce biases in the O3 projections since climate change can strongly 445 

influence natural emissions of O3 precursors (Liu et al., 2019). Although the 446 

climate influence of methane is consideredconcentrations in the future 447 

predictions,GEOS-Chem model are prescribed and its role in the O3 production 448 

is not considered in the ML model, the climate influence of methane is included 449 

in the ML model. TheCMIP6 multi-model simulations. Consequently, the impact 450 

of future changes in methane on O3 concentrations via climate change are 451 

considered in the future projections. 452 

Second, the GEOS-Chem model has been demonstrated to well capture 453 

the magnitude of and spatiotemporal variations in O3, with an average bias of 454 

about 10% over China (Lou et al., 2014) and Southeast Asia (Marvin et al., 455 

2021), and less than 20% over India (David et al., 2019). The future decrease 456 

in relative humidity will cause stomatal closure and also increase near-surface 457 

O3. The O3-vegetation interactions are not represented in the default GEOS-458 
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Chem model. A newly coupled global atmospheric chemistry-vegetation model 459 

(Lei et., 2020) could be applied in the future study. Additionally 460 

Third, the meteorological parameters characterizing future climate change 461 

from the CMIP6 multi-model simulations can also give rise to uncertainties in 462 

this study (Xu et al., 2021). Moreover, the spatial autocorrelation in random split 463 

of training data for cross-validation would lead to the overly optimistic statistics 464 

of ML model predictive power (Ploton et al., 2020). Additionally, the overall 465 

importance scores of the features in this study can only reflect that from the 466 

whole study domain. Further investigations are required to identify and quantify 467 

the importance score of each local variable contributed to the near-surface O3 468 

predictions in different specific regions. Also, the good ability of the ML model 469 

for the present-day condition may not imply a satisfactorily extrapolation under 470 

the future warming condition, which can bias our results and deserves further 471 

investigation in future studies. 472 

Last but not least, the near-surface O3 have increased rapidly in China 473 

since 2013 owing to both precursor emission changes and atmospheric 474 

warming (Li M. et al., 2021b), which significantly affect human health (Lu et al., 475 

2020) and also requires further studies. 476 

Overall, our study provides a framework of combining real-time 477 

observations, chemical transport model simulations and multi-climate model 478 

predictions with data assimilation and machine learning methods to estimate 479 

future climate driven near-surface O3 concentrations. The emphasis of this work 480 
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is to quantify the impacts of future climate change on O3 pollution in Asia, which 481 

is of great significance for the future O3 pollution mitigation strategies.  482 



 

24 
 

Author contributions 483 

YY designed the research. HL performed the model simulations, analyzed data 484 

and wrote the initial draft. JJ designed the data assimilation. YY, JJ, HW, and 485 

KL helped edit and review the manuscript. All the authors discussed the results 486 

and contributed to the final manuscript. 487 

Code and data availability 488 

The GEOS-Chem model is available at 489 

https://zenodo.org/record/3974569#.YTD81NMzagR (last access: 1 August 490 

2022). MERRA-2 reanalysis data can be downloaded at 491 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (last access: 1 August 2022). 492 

Multi-model projections of climate variables are from Scenario Model 493 

Intercomparison Project in Phase 6 of the Coupled Model Intercomparison 494 

Project https://esgf-node.llnl.gov/search/cmip6/ (last access: 1 August 2022). 495 

Land cover is derived from http://maps.elie.ucl.ac.be/CCI/viewer/download.php 496 

(last access: 1 August 2022). Hourly O3 concentrations are obtained from the 497 

public website of the China National Environmental Monitoring Centre 498 

httpMinistry of Ecology and Environment https://www.cnemcmee.gov.cn/en/ 499 

(last access: 1 August 2022). Normalized difference vegetation index is 500 

obtained from https://www.ncei.noaa.gov/data/avhrr-land-normalized-501 

difference-vegetation-index/access/ (last access: 1 August 2022). Topography 502 

is collected from https://cgiarcsi.community/data/srtm-90m-digital-elevation-503 



 

25 
 

database-v4-1/ (last access: 1 August 2022). Population density is acquired 504 

from https://landscan.ornl.gov/landscan-datasets (last access: 1 August 2022). 505 

Acknowledgments 506 

H.W. acknowledges the support by the U.S. Department of Energy (DOE), 507 

Office of Science, Office of Biological and Environmental Research (BER), as 508 

part of the Earth and Environmental System Modeling program. The Pacific 509 

Northwest National Laboratory (PNNL) is operated for DOE by the Battelle 510 

Memorial Institute under contract DE-AC05-76RLO1830. The projected O3 511 

concentrations in this study are available upon request. 512 

Competing Interest 513 

The contact author has declared that neither they nor their co-authors have any 514 

competing interests. 515 

Financial support.  516 

This study was supported by the National Key Research and Development 517 

Program of China (grant 2019YFA0606800 and 2020YFA0607803) and the 518 

National Natural Science Foundation of China (grant 41975159) and Jiangsu 519 

Science Fund for Distinguished Young Scholars (grant BK20211541).   520 



 

26 
 

Reference 521 

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, 522 
Q., Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of 523 
tropospheric chemistry with assimilated meteorology: Model description 524 
and evaluation, J. Geophys. Res. Atmos., 106, 23073–23095, 525 
https://doi.org/10.1029/2001JD000807, 2001. 526 

 527 
Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Crouse, D. L., and 528 

Tjepkema, M.: Associations between long-term PM2.5 and ozone exposure 529 
and mortality in the Canadian Census Health and Environment Cohort 530 
(CANCHEC), by spatial synoptic classification zone, Environ. Int., 111, 200–531 
211, https://doi.org/10.1016/j.envint.2017.11.030, 2018. 532 

 533 
Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plummer, D. A., and Shine, K. 534 

P.: Historical tropospheric and stratospheric ozone radiative forcing using 535 
the CMIP6 database, Geophys. Res. Lett., 45, 3264–3273, 536 
https://doi.org/10.1002/2017GL076770, 2018. 537 

 538 
Chen, L., Liang, S., Li, X., Mao, J., Gao, S., Zhang, H., Sun, Y., Vedal, S., Bai, 539 

Z., Ma, Z., Haiyu., and Azzi, M.: A hybrid approach to estimating long-term 540 
and short-term exposure levels of ozone at the national scale in China using 541 
land use regression and Bayesian maximum entropy, Sci. Total Environ., 542 
752, 141780, https://doi.org/10.1016/j.scitotenv.2020.141780, 2020. 543 

 544 
Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S., Cui, R. 545 

Y., Clarke, L., Geng, G., Zheng, B., Zhang, X., Davis, S. J., and He, K.: 546 
Pathways of China’s PM2.5 air quality 2015−2060 in the context of carbon 547 
neutrality, Natl. Sci. Rev., 8, nwab078, https://doi.org/10.1093/nsr/nwab078, 548 
2021. 549 

 550 
Colette, A., Andersson, C., Baklanov, A., Bessagnet, B., Brandt, J., Christensen, 551 

J. H., Doherty, R., Engardt, M., Geels, C., Giannakopoulos, C., Hedegaard, 552 
G. B., Katragkou, E., Langner, J., Lei, H., Manders, A., Melas, D., Meleux, 553 
F., Rouïl, L., Sofiev, M., Soares, J., Stevenson, D. S., Tombrou-Tzella, M., 554 
Varotsos, K. V., and Young, P.: Is the ozone climate penalty robust in 555 
Europe? Environ. Res. Lett., 10, 084015, http://dx.doi.org/10.1088/1748-556 
9326/10/8/084, 2015. 557 

 558 
Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and 559 

meteorological influences on summertime surface ozone in China over 560 
2012–2017, Sci. Total Environ., 754, 142394, 561 
https://doi.org/10.1016/j.scitot, 2021. 562 

 563 



 

27 
 

David, L. M., Ravishankara, A., Brewer, J. F., Sauvage, B., Thouret, V., 564 
Venkataramani, S., and Sinha, V.: Tropospheric ozone over the Indian 565 
subcontinent from 2000 to 2015: Data set and simulation using GEOS-566 
Chem chemical transport model, Atmos. Environ., 219, 117039, 567 
https://doi.org/10.1016/j.atmosenv.2019.117039, 2019. 568 

 569 
Di, Q., Rowland, S., Koutrakis, P., and Schwartz, J.: A hybrid model for spatially 570 

and temporally resolved ozone exposures in the continental United States, 571 
J. Air Waste Manage. Assoc., 67, 39–52, 572 
https://doi.org/10.1080/10962247.2016.1200159, 2017. 573 

 574 
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. 575 

J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M. G., Hess, P., 576 
Derwent, R. G., and Keating, T. J.: Impacts of climate change on surface 577 
ozone and intercontinental ozone pollution: A multi-model study, J. 578 
Geophys. Res., 118, 3744–3763, https://doi.org/10.1002/jgrd.50266, 2013. 579 

 580 
Evensen, G., Vossepoel, F. C., and van Leeuwen, P. J.: Data Assimilation 581 

Fundamentals: A Unified Formulation of the State and Parameter 582 
Estimation Problem, Springer Nature, https://doi.org/10.1007/978-3-030-583 
96709-3, 2022. 584 

 585 
Fann, N., Nolte, C. G., Dolwick, P., Spero, T. L., Brown, A. C., Phillips, S., and 586 

Anenberg, S.: The geographic distribution and economic value of climate 587 
change-related ozone health impacts in the United States in 2030, J. Air 588 
Waste Manag. Assoc., 65, 570–580, 589 
https://doi.org/10.1080/10962247.2014.996270, 2015. 590 

 591 
Fu, T.-M., and Tian, H.: Climate Change Penalty to Ozone Air Quality: Review 592 

of Current Understandings and Knowledge Gaps, Curr. Pollut. Rep., 5, 593 
159–171, https://doi.org/10.1007/s40726-019-00115-6, 2019. 594 

 595 
Fu, Y., and Tai, A. P. K.: Impact of climate and land cover changes on 596 

tropospheric ozone air quality and public health in East Asia between 1980 597 
and 2010, Atmos. Chem. Phys., 15, 10093–10106, 598 
https://doi.org/10.5194/acp-15-10093-2015, 2015. 599 

 600 
Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., Jia, B., Wang, 601 

P., Beig, G., Hu, J., Ying, Q., Zhang, H., Sherman, P., and McElroy, M. B.: 602 
Ozone pollution over China and India: seasonality and sources, Atmos. 603 
Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, 604 
2020. 605 

 606 
Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., 607 



 

28 
 

Clerbaux, C., Coheur, P. F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., 608 
Ebojie, F., Foret, G., Garcia, O., Granados-Muñoz, M. J., Hannigan, J. W., 609 
Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe, D., Jones, N., 610 
Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le 611 
Flochmoën, E., Lin, W., Liu, J., Liu, X., Mahieu, E., McClure-Begley, A., 612 
Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, 613 
R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R., 614 
Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., 615 
Thompson, A. M., Trickl, T., Weatherhead, E., Wespes, C., Worden, H. M., 616 
Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone 617 
Assessment Report: Present-day distribution and trends of tropospheric 618 
ozone relevant to climate and global atmospheric chemistry model 619 
evaluation, Elem. Sci. Anth., 6, 39, https://doi.org/10.1525/elementa.291, 620 
2018. 621 

 622 
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., 623 

Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., 624 
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da 625 
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., 626 
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., 627 
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era 628 
Retrospective Analysis for Research and Applications, Version 2 (MERRA-629 
2), J. Clim., 30, 5419−5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 630 
2017. 631 

 632 
Gong, C., and Liao, H.: A typical weather pattern for ozone pollution events in 633 

North China, Atmos. Chem. Phys., 19, 13725–13740, 634 
https://doi.org/10.5194/acp-19-13725-2019, 2019. 635 

 636 
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., 637 

Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and 638 
Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated 639 
framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–640 
1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. 641 

 642 
Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic 643 

meteorological influences on daily variability in summertime surface ozone 644 
in eastern China, Atmos. Chem. Phys., 20, 203–222, 645 
https://doi.org/10.5194/acp-20-203-2020, 2020. 646 

 647 
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., 648 

Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., 649 
Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, 650 
M. C. P., O’Rourke, P. R., and Zhang, Q.: Historical (1750–2014) 651 



 

29 
 

anthropogenic emissions of reactive gases and aerosols from the 652 
Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 653 
369−408, https://doi.org/10.5194/gmd-11-369-2018, 2018. 654 

 655 
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, 656 

L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil 657 
nitric oxide emissions: implementation and space based-constraints, Atmos. 658 
Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 659 
2012. 660 

 661 
IPCC: Climate change 2021: The physical science basis. Contribution of 662 

working group I to the sixth assessment report of the intergovernmental 663 
panel on climate change. Cambridge, UK: Cambridge University Press, 664 
2021. 665 

 666 
Jacob, D. J., and Winner, D. A.: Effect of climate change on air quality, Atmos. 667 

Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009. 668 
 669 
Jeong, J. I., and Park, R. J.: Effects of the meteorological variability on regional 670 

air quality in East Asia, Atmos. Environ., 69, 46–55, 671 
https://doi.org/10.1016/J.Atmosenv.2012.11.061, 2013. 672 

 673 
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, 674 

Cambridge University Press, Cambridge, United Kingdom, 2003. 675 
 676 
Kavassalis, S. C., and Murphy, J. G.: Understanding ozone-meteorology 677 

correlations: A role for dry deposition, Geophys. Res. Lett., 44, 2922–2931, 678 
https://doi.org/10.1002/2016gl071791, 2017. 679 

 680 
Lei, Y., Yue, X., Liao, H., Gong, C., and Zhang, L.: Implementation of Yale 681 

Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a 682 
tool for biosphere– chemistry interactions, Geosci. Model Dev., 13, 1137–683 
1153, https://doi.org/10.5194/gmd-13-1137-2020, 2020. 684 

 685 
Li, H., Yang, Y., Wang, H., Li, B., Wang, P., Li, J., and Liao, H.: Constructing a 686 

spatiotemporally coherent long-term PM2.5 concentration dataset over 687 
China during 1980–2019 using a machine learning approach, Sci. Total 688 
Environ., 765, 144263, https://doi.org/10.1016/j.scitotenv.2020.144263, 689 
2021. 690 

 691 
Li, H., Yang, Y., Wang, H., Wang, P., Yue, X., and Liao, H.: Projected Aerosol 692 

Changes Driven by Emissions and Climate Change Using a Machine 693 
Learning Method, Environ. Sci. Technol., 56, 7, 3884–3893, 694 
https://doi.org/10.1021/acs.est.1c04380, 2022. 695 



 

30 
 

 696 
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: 697 

Anthropogenic Drivers of 2013–2017 Trends in Summer Surface Ozone in 698 
China, P. Natl. Acad. Sci. USA., 116, 422–427, 699 
https://doi.org/10.1073/pnas.1812168116, 2019. 700 

 701 
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in 702 

surface ozone pollution in China from 2013 to 2019: anthropogenic and 703 
meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, 704 
https://doi.org/10.5194/acp-20-11423-2020, 2020. 705 

 706 
Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, 707 

M. P., Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. 708 
C., and Kuk, S. K.: Ozone pollution in the North China Plain spreading into 709 
the late-winter haze season, P. Natl. Acad. Sci. USA, 118, 1–7, 710 
https://doi.org/10.1073/pnas.2015797118, 2021. 711 

 712 
Li, M., Yu, S., Chen, X., Li, Z., Zhang, Y., Wang, L., Liu, W., Li, P., Lichtfouse, 713 

E., Rosenfeld, D., and Seinfeld, J. H.: Large scale control of surface ozone 714 
by relative humidity observed during warm seasons in China, Environ. 715 
Chem. Lett., 19, 3981–3989, https://doi.org/10.1007/s10311-021-01265-0, 716 
20212021a. 717 

 718 
Li, R., ZhaoM., Wang, T., Shu, L., Qu, Y., Zhou, W., Meng, Y., Zhang, ZXie, M., 719 

Liu, J., Wu, H., and Fu, H.: Developing a novel hybrid model for the 720 
estimation ofKalsoom, U.: Rising surface 8h ozone (O3) across the remote 721 
Tibetan Plateau during 2005–2018,in China from 2013 to 2017: A response 722 
to the recent atmospheric warming or pollutant controls?, Atmos. Environ., 723 
246, 118130Chem. Phys., 20, 6159–6175, https://doi.org/10.5194/acp-20-724 
6159-20, 1016/j.atmosenv.2020.118130, 2021b. 725 

 726 
Lin, J.-T., and McElroy, M. B.: Impacts of boundary layer mixing on pollutant 727 

vertical profiles in the lower troposphere: Implications to satellite remote 728 
sensing, Atmos. Environ., 44, 1726–1739, 729 
https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010. 730 

 731 
Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., and Bi, J.: Spatiotemporal 732 

distributions of surface ozone levels in China from 2005 to 2017: a machine 733 
learning approach, Environ. Int., 142, 105823, 734 
https://doi.org/10.1016/j.envint.2020.105823, 2020. 735 

 736 
Liu, S., Xing, J., Zhang, H., Ding, D., Zhang, F., Zhao, B., Sahu, S. K., and 737 

Wang, S.: Climate-driven trends of biogenic volatile organic compound 738 
emissions and their impacts on summertime ozone and secondary organic 739 



 

31 
 

aerosol in China in the 2050s, Atmos. Environ., 218, 117020, 740 
https://doi.org/10.1016/j.atmosenv.2019.117020, 2019. 741 

 742 
Liu, X., Zhu, Y., Xue, L., Desai, A. R., and Wang, H.: Cluster-enhanced 743 

ensemble learning for mapping global monthly surface ozone from 2003 to 744 
2019, Geophys. Res. Lett., 49, e2022GL097947, 745 
https://doi.org/10.1029/2022GL097947, 2022. 746 

 747 
Liu, Y., and Wang, T.: Worsening urban ozone pollution in China from 2013 to 748 

2017–Part 1: The complex and varying roles of meteorology, Atmos. Chem. 749 
Phys., 20, 6305–6321, https://doi.org/10.5194/acp-20-6305-2020, 2020. 750 

 751 
Lou, S., Liao, H., and Zhu, B.: Impacts of aerosols on surface-layer ozone 752 

concentrations in China through heterogeneous reactions and changes in 753 
photolysis rates, Atmos. Environ., 85, 123–138, 754 
http://dx.doi.org/10.1016/j.atmosenv.2013.12.004, 2014. 755 

 756 
Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-757 

M., and Zhang, Q.: Exploring 2016–2017 surface ozone pollution over 758 
China: source contributions and meteorological influences, Atmos. Chem. 759 
Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, 2019. 760 

 761 
Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., and Zhang, Y.: 762 

Rapid Increases in Warm-Season Surface Ozone and Resulting Health 763 
Impact in China since 2013, Environ. Sci. Technol. Lett., 7, 240–247, 764 
https://doi.org/10.1021/acs.estlett.0c00171, 2020. 765 

 766 
Malley, C. S., Henze, D. K., Kuylenstierna, J. C. I., Vallack, H., Davila, Y., 767 

Anenberg, S. C., Turner, M. C., and Ashmore, M.: Updated Global 768 
Estimates of Respiratory Mortality in Adults ≥ 30 Years of Age Attributable 769 
to Long-Term Ozone Exposure, Environ. Health Perspect., 125, 087021, 770 
https://doi.org/10.1289/EHP1390, 2017. 771 

 772 
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P. 773 

O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.: Ozone 774 
and organic nitrates over the eastern United States: sensitivity to isoprene 775 
chemistry, J. Geophys. Res. Atmos, 118, 11256–68, 776 
https://doi.org/10.1002/jgrd.50817, 2013. 777 

 778 
Marvin, M. R., Palmer, P. I., Latter, B. G., Siddans, R., Kerridge, B. J., Latif, M. 779 

T., and Khan, M. F.: Photochemical environment over Southeast Asia 780 
primed for hazardous ozone levels with influx of nitrogen oxides from 781 
seasonal biomass burning, Atmos. Chem. Phys., 21, 1917–1935, 782 
https://doi.org/10.5194/acp-21-1917-2021, 2021. 783 



 

32 
 

 784 
McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and 785 

Sundet, J.: Stratospheric ozone in 3-D models: A simple chemistry and the 786 
cross-tropopause flux, J. Geophys. Res. Atmos., 105, 14653–14665, 787 
https://doi.org/10.1029/2000jd900124, 2000. 788 

 789 
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., 790 

Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, 791 
H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: 792 
Tropospheric ozone assessment report: Present-day tropospheric ozone 793 
distribution and trends relevant to vegetation, Elem. Sci. Anth., 6, 794 
47, https://doi.org/10.1525/elementa.302, 2018. 795 

 796 
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: 797 

Optimized regional and interannual variability of lightning in a global 798 
chemical transport model constrained by LIS/OTD satellite data, J. 799 
Geophys. Res. Atmos., D20307, https://doi.org/10.1029/2012jd017934, 800 
2012. 801 

 802 
Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to 803 

springtime ozone over China, Atmos. Chem. Phys., 18, 11447–11469, 804 
https://doi.org/10.5194/acp-18-11447-2018, 2018. 805 

 806 
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, 807 

G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, 808 
R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison 809 
Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, 810 
https://doi.org/10.5194/gmd-9-3461-2016, 2016. 811 

 812 
Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, 813 

B., Lin, R.-F., Lang, S., and Tao, W.-K.: Production of lightning NOx and its 814 
vertical distribution calculated from three-dimensional cloud-scale chemical 815 
transport model simulations, J. Geophys. Res., 115, D04301, 816 
https://doi.org/10.1029/2009JD011880, 2010. 817 

 818 
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural 819 

and transboundary pollution influences on sulfate-nitrate-ammonium 820 
aerosols in the United States: Implications for policy, J. Geophys. Res. 821 
Atmos., 109, 20, https://doi.org/10.1029/2003jd004473, 2004. 822 

 823 
Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., 824 

Dormann, C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-825 
Fleury, S., and Pélissier, R.: Spatial validation reveals poor predictive 826 
performance of large-scale ecological mapping models, Nat. Commun., 11, 827 

https://doi.org/10.1525/elementa.302


 

33 
 

1–11, https://doi.org/10.1038/s41467-020-18321-y, 2020. 828 
 829 
Pommier, M., Fagerli, H., Gauss, M., Simpson, D., Sharma, S., Sinha, V., 830 

Ghude, D. S., Landgren, O., Nyiri, A., and Wind, P.: Impact of regional 831 
climate change and future emission scenarios on surface O3 and PM2.5 over 832 
India, Atmos. Chem. Phys., 18, 103–27, https://doi.org/10.5194/acp-18-833 
103-2018, 2018. 834 

 835 
Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and 836 

Seinfeld, J. H.: Effect of changes in climate and emissions on future sulfate-837 
nitrate-ammonium aerosol levels in the United States, J. Geophys. Res. 838 
Atmos., 114, D01205, https://doi.org/10.1029/2008jd010701, 2009. 839 

 840 
Qian, J., Liao, H., Yang, Y., Li, K., Chen, L., and Zhu, J.: Meteorological 841 

influences on daily variation and trend of summertime surface ozone over 842 
years of 2015–2020: Quantification for cities in the Yangtze River Delta, Sci. 843 
Total Environ., 834, 155107, 844 
https://doi.org/10.1016/j.scitotenv.2022.155107, 2022. 845 

 846 
Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity analysis of k-fold 847 

cross validation in prediction error estimation, IEEE T. Pattern Anal., 32, 848 
569–575, https://doi.org/10.1109/TPAMI.2009.187, 2010. 849 

 850 
Santurtún, A., González-Hidalgo, J. C., Sanchez-Lorenzo, A., and Zarrabeitia, 851 

M. T.: Surface ozone concentration trends and its relationship with weather 852 
types in Spain (2001–2010), Atmos. Environ., 101, 10–22, 853 
https://doi.org/10.1016/j.atmosenv.2014.11.005, 2015. 854 

 855 
Su, X., An, J., Zhang, Y., Zhu, P., and Zhu, B.: Prediction of ozone hourly 856 

concentrations by support vector machine and kernel extreme learning 857 
machine using wavelet transformation and partial least squares methods, 858 
Atmos. Pollut. Res., 6, 51–60, https://doi.org/10.1016/j.apr.2020.02.024, 859 
2020. 860 

 861 
Toh, Y. Y., Lim, S. F., and von Glasow, R.: The influence of meteorological 862 

factors and biomass burning on surface ozone concentrations at Tanah 863 
Rata, Malaysia, Atmos. Environ., 70, 435–446, 864 
https://doi.org/10.1016/j.atmosenv.2013.01.018, 2013. 865 

 866 
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., 867 

Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., 868 
Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates 869 
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, 870 
https://doi.org/10.5194/essd-9-697-2017, 2017. 871 

https://doi.org/10.5194/acp-18-103-2018
https://doi.org/10.5194/acp-18-103-2018


 

34 
 

 872 
Wang, Y., Shen, L., Wu, S., Mickley, L. J., He, J., and Hao, J.: Sensitivity of 873 

surface ozone over China to 2000–2050 global changes of climate and 874 
emissions, Atmos. Environ., 75, 374–382, 875 
https://doi.org/10.1016/j.atmosenv.2013.04.045, 2013. 876 

 877 
Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Dong, W., Wang, C., Gui, K., and 878 

Xie, B.: Incorrect Asian aerosols affecting the attribution and projection of 879 
regional climate change in CMIP6 models, npj Clim. Atmos. Sci., 4, 2, 880 
https://doi.org/10.1038/s41612-020-00159-2, 2021. 881 

 882 
Wei, J., Li, Z., Li, K., Dickerson, R., Pinker, R., Wang, J., Liu, X., Sun, L., Xue, 883 

W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of 884 
ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote 885 
Sens. Environ., 270, 112775, https://doi.org/10.1016/j.rse.2, 2022. 886 

 887 
Weng, X., Forster, G. L., and Nowack, P.: A machine learning approach to 888 

quantify meteorological drivers of ozone pollution in China from 2015 to 889 
2019, Atmos. Chem. Phys., 22, 8385–8402, https://doi.org/10.5194/acp-22-890 
8385-2022, 2022. 891 

 892 
Xu, Z., Han, Y., Tam, C. Y., Yang, Z., and Fu, C.: Bias-corrected CMIP6 global 893 

dataset for dynamical downscaling of the historical and future climate 894 
(1979–2100), Sci. Data, 8, 293, https://doi.org/10.1038/s41597-021-895 
01079-3, 2021. 896 

 897 
Xue, T., Zheng, Y., Geng, G., Xiao, Q., Meng, X., Wang, M., Li, X., Wu, N., 898 

Zhang, Q., and Zhu, T.: Estimating Spatiotemporal Variation in Ambient 899 
Ozone Exposure during 2013–2017 Using a Data-Fusion Model, Environ. 900 
Sci. Technol., 54, 14877–14888, 901 
https://dx.doi.org/10.1021/acs.est.0c03098, 2020. 902 

 903 
Yang, Y., Li, M., Wang, H., Li, H., Wang, P., Li, K., Gao, M., and Liao, H.: ENSO 904 

modulation of summertime tropospheric ozone over China, Environ. Res. 905 
Lett., 17, 034020, https://doi.org/10.1088/1748-9326/ac54cd, 2022. 906 

 907 
Yin, Z., Cao, B., and Wang, H.: Dominant patterns of summer ozone pollution 908 

in eastern China and associated atmospheric circulations, Atmos. Chem. 909 
Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019, 2019. 910 

 911 
Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and 912 

Li, J.: Ozone and haze pollution weakens net primary productivity in China, 913 
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-914 
2017, 2017. 915 



 

35 
 

 916 
Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A. K., 917 

Bauer, S. E., Deushi, M., Horowitz, L. W., Keeble, J., Le Sager, P., 918 
O’Connor, F. M., Oshima, N., Tsigaridis, K., and van Noije., T.: Climate 919 
change penalty and benefit on surface ozone: a global perspective based 920 
on CMIP6 earth system models, Environ. Res. Lett., 17, 024014, 921 
https://doi.org/10.1088/1748-9326/ac4a34, 2022. 922 

 923 
Zhang, X., Zhao, L., Cheng, M., and Chen, D.: Estimating ground-level ozone 924 

concentrations in eastern China using satellite-based precursors, IEEE 925 
Trans. Geosci. Remote Sens., 58, 4754–4763, https://doi.org/ 926 
10.1109/TGRS.2020.2966780, 2020. 927 

 928 
Zhou, C., Gao, M., Li, J., Bai, K., Tang, X., Lu, X., Liu, C., Wang, Z., and Guo, 929 

Y.: Optimal Planning of Air Quality-Monitoring Sites for Better Depiction of 930 
PM2.5 Pollution across China, Environ. Au., 2, 314–323, 931 
https://doi.org/10.1021/acsenvironau.1c00051, 2022. 932 

 933 
Zhu, J., Liao, H., Mao, Y., Yang, Y., and Jiang, H.: Interannual variation, 934 

decadal trend, and future change in ozone outflow from East Asia, Atmos. 935 
Chem. Phys., 17, 3729–3747, https://doi.org/10.5194/acp-17-3729-2017, 936 
2017. 937 

  938 



 

36 
 

Table 1. Summary of detailed datasets used in this study. 939 
Dataset  

type 
Variable Description 

Spatial 

resolution 

Temporal 

resolution 

Time 

period 
Data source 

O3 O3 
Near-surface ozone 

concentrations 
0.5°×0.625° 

Monthly 

(historical) 

2014–2019 

(historical) 

Assimilated 

GEOS-Chem 

simulations and 

Observations 

Meteorology 

T_2m Air temperature at 2 meters 

0.5°×0.625° 

Monthly 

(historical) 

Monthly 

(future) 

2014–2019 

(historical) 

2020–2100 

(future) 

MERRA-2 

(historical) 

Adjusted 

CMIP6 

(future) 

T_850 Air temperature at 850 hPa 

T_500 Air temperature at 500 hPa 

U_850 Zonal wind at 850 hPa 

U_500 Zonal wind at 500 hPa 

V_850 Meridional wind at 850 hPa 

V_500 Meridional wind at 500 hPa 

RH Relative humidity 

PRECP Precipitation rate 

CLT Total cloud cover 

RSDS 
Incoming shortwave radiation at 

the surface 

SLP Sea level pressure 

Emission 

NOx 

Nitric oxide from anthropogenic 

sources 

0.5°×0.625° 

Monthly 

(historical) 

Monthly 

(future) 

2014–2019 

(historical) 

2019 

(future) 

CEDS 

(Anthropogenic) 

GFED4 

(Biomass burning) 

MEGAN V-2.1 

(Biogenic) 

Nitric oxide from biomass burning 

Nitric oxide from soil sources 2016 

Nitric oxide from lightning sources 2016 

CO 

Carbon monoxide from 

anthropogenic sources 

2014–2019 

(historical) 

2019 

(future) 

Carbon monoxide from biomass 

burning 

NMVOC 

Non-methane volatile organic 

compounds from anthropogenic 

sources 

Non-methane volatile organic 

compounds from biomass burning 

Non-methane volatile organic 

compounds from biogenic sources 
2016 

Land use 

LC Land cover 300 m×300 m 

Monthly 

2014–2019 

(historical) 

2019 

(future) 

ESA CCI 

NDVI 
Normalized Difference Vegetation 

Index 
0.05°×0.05° AVHRR 

Topography TOPO Digital elevation model 90 m×90 m - 2010 SRTM 

Population POP Population density 1 km×1 km - 2010 Land Scan 
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 940 
 941 
 942 

 943 

 944 
Figure 1. The structure and specific schematics for predicting future O3 945 
concentrations under four scenarios based on the machine learning (ML) 946 
method. 947 
  948 
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 949 

 950 
Figure 2. Spatial distributions of observed near-surface O3 concentrations 951 
across China (a) and assimilated O3 concentrations over Asia (b) O3 952 
concentrations in 2014–2019 over Asia. Correlation coefficient (R) between 953 
observed and assimilated O3 and the normalized mean bias (NMB = ∑ 954 
(Observed – Assimilated) / ∑Assimilated × 100%) are given at the bottom left of 955 
panel (a).  956 
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40 
 

 958 
 959 
Figure 23. Density scatterplots of 10-fold cross-validation results forpredicted 960 
vs assimilated monthly near-surface O3 concentrations (ppb) in 2019 over Asia. 961 
The gray and red lines are the 1:1 line and linear regression line, respectively. 962 
Statistical metrics including the number of samples (N), correlation of 963 
determination (R2, unitless), root mean square error (RMSE, ppb), mean 964 
absolute error (MAE, ppb), and mean relative error (MRE, %) are shown at the 965 
top left. 966 
  967 
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 968 

 969 
Figure 34. Spatial distributions of the performance statistics of the random 970 
forest (RF)ML model with regard to (a) R2 (unitless), (b) RMSE (ppb), (c) MAE 971 
(ppb), and (d) MRE (%) during 2014–2019 over Asia. 972 
 973 
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 975 
 976 
Figure 45. Importance scores of independent variables (meteorological 977 
parameters, emissions, land use, topography, and population density) used in 978 
the ML model for predicting future near-surface O3 concentrations over Asia. 979 
  980 
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 981 

 982 
Figure 56. The spatial distributions of absolute (ppb) and percentage difference 983 
(%) of surface O3 level between 2025 (2020–2029 mean) and 2095 (2091–2100 984 
mean) driven by climate change under four scenarios (a, e) SSP1-2.6, (b, f) 985 
SSP2-4.5, (c, g) SSP3-7.0 and (d, h) SSP5-8.5. The box-outlined areas in (d) 986 
are North China (NC, 35°–41°N, 105°–120°E), South China (SC, 22°–33.5°N, 987 
105°–120°E), Southeast Asia (SEA, -9.5°S–19°N, 93.75°–140°E), South India 988 
(SI, 8°–18°N, 73.125°–80.625°E), Gangetic Plains (GP, 21.5°–23.5°N, 989 
85.625°–92.5°E, 23.5°–27°N, 76.25°–92.5°E, and 27°–30°N, 76.25°–81.25°E), 990 
and Tibetan Plateau (TP, 28°–31°N, 81.875°–102.5°E and 31°–38°N, 73.125°–991 
102.5°E). No overlaying hatch pattern indicates statistical significance with 95% 992 
confidence from a two-tailed t test.  993 
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 994 
 995 
Figure 67. Time series (2020–2100) of annual mean near-surface O3 996 
concentrations (ppb) driven by climate change under the four scenarios (SSP1-997 
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) over North China (NC, 35°–41°N, 998 
105°–120°E), South China (SC, 22°–33.5°N, 105°–120°E), Southeast Asia 999 
(SEA, -9.5°S–19°N, 93.75°–140°E), South India (SI, 8°–18°N, 73.125°–1000 
80.625°E), Gangetic Plains (GP, 21.5°–23.5°N, 85.625°–92.5°E, 23.5°–27°N, 1001 
76.25°–92.5°E, and 27°–30°N, 76.25°–81.25°E), and Tibetan Plateau (TP, 28°–1002 
31°N, 81.875°–102.5°E and 31°–38°N, 73.125°–102.5°E). The black lines are 1003 
the averages of the predicted O3 based on meteorological fields from 18 CMIP6 1004 
models. 1005 
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 1007 
 1008 
Figure 78. Absolute (a, ppb) and percentage (b, %) changes in projected near-1009 
surface climate-driven O3 concentrations in 2095 (2091–2100 mean) relative to 1010 
2025 (2020–2029 mean) over the six selected key regions of Asia, including 1011 
NC, SC, SEA, SI, GP, and TP under four future climate scenarios. The error 1012 
bars indicate one standard deviation.  1013 
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 1014 

 1015 
Figure 89. The spatial distributions of percentage differences (%) in near-1016 
surface O3 concentrations between 2025 (2020–2029 mean) and 2095 (2091–1017 
2100 mean) driven by climate change under four scenarios (SSP1-2.6, SSP2-1018 
4.5, SSP3-7.0 and SSP5-8.5, from left to right) averaged in MAM (March–April–1019 
May), JJA (June–July–August), SON (September–October–November), and 1020 
DJF (December–January–February) (from top to bottom). No overlaying hatch 1021 
pattern indicates statistical significance with 95% confidence from a two-tailed 1022 
t test. 1023 


