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Responses to Referee #2 
The authors demonstrate a framework of using machine learning (ML) to project 
long-term (2020–2100) surface ozone levels over Asia. The machine learning 
algorithm (random forest, RF) is trained with ozone data from 2014 to 2018, 
along with data of meteorology, emissions and other auxiliary data. The trained 
RF is then used to make ozone projections based on meteorological fields from 
the four climate scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) 
of CMIP6. 
 
This study adopts a data assimilation approach that combines simulations from 
chemical transport model and observations to better represent real-world ozone 
levels. This manuscript is within the scope of ACP and has a good scientific 
quality. I suggest that this manuscript is accepted after the authors address my 
comments below. 
 
We thank the reviewer for all the insightful comments. Below, please see our 
point-by-point response (in blue) to the specific comments and suggestions and 
the changes that have been made to the manuscript, in an effort to take into 
account all the comments raised here. 
 
Specific comments: 
 
In section 2.3, a more detailed description of data assimilation approach should 
be added to the main text for readers to follow. As a minimum, the authors 
should include some citations for this section. 
 
Response: 

Thanks for the suggestion. We have now detailed the assimilation system 
in the revised paper as below: 

“The assimilation system, which is used to combine the O3 observations 
across China with results from GEOS-Chem simulations, is based on a three-
dimensional variational (3DVar) data assimilation (Kalnay, 2003; Evensen et al., 
2022). The goal of the 3DVar is to find the maximum likelihood estimation of a 
state vector x, which is the O3 concentrations here in this study, given the 
available observations y through minimizing the cost function: 
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(𝒚𝒚 − H(𝒙𝒙))T 𝐎𝐎−𝟏𝟏 (𝒚𝒚 − H(𝒙𝒙) ) 

Here 𝒙𝒙𝑏𝑏 represents the priori simulation. B is the empirical background 
covariance matrix formulated as a product of the uncertainty in the simulated 
value and a distance-based correlation matrix C, and the individual element is 
calculated as: 

𝐁𝐁𝑖𝑖,𝑗𝑗 = 0.2 ∗ 𝒙𝒙𝑖𝑖𝑏𝑏 ∗ 0.2 ∗ 𝒙𝒙𝑗𝑗𝑏𝑏 ∗ 𝐂𝐂𝑖𝑖,𝑗𝑗 



Here we have used 20% choice to characterize uncertainty of the O3 
simulation, the correlation matrix is empirically set as: 

𝐂𝐂𝑖𝑖,𝑗𝑗 = 𝑒𝑒−(
𝑑𝑑𝑖𝑖,𝑗𝑗

200𝑘𝑘𝑘𝑘)2/2 
Here 𝑑𝑑𝑖𝑖,𝑗𝑗 represents the spatial distance between the grid cell i and j. 
H denotes the linear observation operator that converts the simulation 

results into the observational space. Here all observations are assumed to be 
independent, and therefore O is a diagonal covariance matrix storing the square 
of the observation uncertainty, which is also set as 20% similarly.” 
 
In section 4, the authors mention that one of the limitations to this study is in 
only using observations across China for the data assimilation. I recommend 
that the authors also highlight this limitation in section 2.3. For instance, in lines 
191 to 193, uncertainties of GEOS-chem simulation are only minimized in China. 
 
Response: 

We thank the reviewer for this suggestion. We have now made 
modifications in the revised manuscript accordingly to emphasize the limitation, 
as “…, suggesting that the assimilated data have an excellent representation 
of O3 observations and minimize the uncertainties of GEOS-Chem simulations 
in China.”. 
 
The sentence from lines 196 to 198 appears to suggest that all of the ozone 
concentrations from the study domain have been assimilated. I don’t think this 
is the case for regions outside of China. I would suggest the authors to be more 
specific. For example, how have the ozone concentrations from outside of 
China been processed? Are these directly from the simulation of GEOS-chem? 
 
Response: 

Thank you for the comment and suggestion. We have made the statement 
clear in the manuscript as follows: “In this study, a random forest (RF) model is 
used to predict O3 concentrations, similar to our previous studies (Li H. et al., 
2021, 2022), with input data of assimilated O3 concentrations in China that 
combine observations and results from GEOS-Chem model simulations, 
GEOS-Chem simulated O3 concentrations outside of China, MERRA-2 
meteorological variables, O3 precursor emissions, land cover (LC), normalized 
difference vegetation index (NDVI), topography (TOPO), population density 
(POP), and the month of the year (MOY) and geographic location of each model 
grid as spatiotemporal information.” 
 
In section 2.2, the observational network of CNEMC has an inconsistent 
number of observational sites through 2014–2019 as the number of sites has 
grown. Does the inconsistency of sites affect data assimilation? How the 
authors handle this potential issue? 



 
Response: 

The China Ministry of Ecology and Environment (MEE) categorized a total 
of 360 key cities by 2020. Each city covers several O3 monitoring sites, and we 
average them hourly at city level. In this study, we assessed the changes of 
observed O3 concentrations from MEE in 360 cities across China during 2014–
2019, which would not affect the data assimilation. We have now clearly stated 
it in section 2.2 as follows: “In this study, the quality controlled hourly O3 

observations in 360 cities are averaged within each 0.5° latitude × 0.625° 
longitude gride of the GEOS-Chem model.” 
 
In section 2.4, could the authors give the ranges of the hyperparameters used 
in the tuning during cross validation and the final selected hyperparameters? 
Besides, Is the whole set of training data (i.e., all data from 2014-2018 over 
Asia) randomly split into 10-folds for the cross validation? If in this case, why 
does the caption of Fig. 2 indicate that the 10-fold cross-validation results are 
from the year 2019? I suggest that the authors clarify this and give more 
information regarding the cross-validation process. Moreover, I am concerned 
that spatial autocorrelation may exist in the cross-validation because of the 
random split of the training data. For instance, a grid kept for training while the 
adjacent grid that shares high similarity with this grid is used for validation. This 
may violate the assumption of data independence. See Ploton et al. (2020) 
(https://doi.org/10.1038/s41467-020-18321-y) that is relevant to the spatial 
autocorrelation issue. 
 
Response: 

Thanks for the comment. We tuned the n_estimators (the number of 
decision trees in the forest) from 50 to 250 with interval of 50 and 
min_samples_split (the minimum of samples required to split a node) from 2 to 
8 with interval of 2. The grid search and 10-fold cross-validation were applied 
to tune the hyperparameters. We found that changes of hyperparameters have 
a little impact on the performance of RF model. In this study, the best 
hyperparameters (n_estimators=200, min_samples_split=2, max_features= 
"sqrt", bootstrap= "True") of the RF model are utilized. We have now added a 
note in the revised manuscript. 

The training set from 2014 to 2018 was split into 10 folds for cross-
validation, and the performance of the machine learning model is only 
determined by the testing data, which were not used at the training/validation 
stage. We have now revised the caption of Fig. 3 accordingly: “Figure 3. 
Density scatterplots of predicted vs assimilated monthly near-surface O3 
concentrations (ppb) in 2019 over Asia. The gray and red lines are the 1:1 line 
and linear regression line, respectively. Statistical metrics including the number 
of samples (N), correlation of determination (R2, unitless), root mean square 



error (RMSE, ppb), mean absolute error (MAE, ppb), and mean relative error 
(MRE, %) are shown at the top left.” 

We agree with the reviewer about the issue of spatial autocorrelation in the 
raw data. We have now added the following comment to the discussion section 
associated with the uncertainties and limitations in the machine learning 
method. “Moreover, the spatial autocorrelation in random split of training data 
for cross-validation would lead to the overly optimistic statistics of ML model 
predictive power (Ploton et al., 2020).” 
 
Same in section 2.4, variables such as month of the year (MOY) and 
geographical locations of model grids may not have actual physical meaning. 
I’m not sure why variables such of these are necessary. Could the authors 
provide some explanations? 
 
Response: 

Wei et al. (2019) applied the spatial-time random forest model to account 
for the spatiotemporal heterogeneity of PM2.5 concentrations over China, with 
considering both the spatial heterogeneity and temporal variations of variables. 
The results showed the newly developed model performed better than the 
traditional random forest, which demonstrated that considering both 
geographical and temporal information would improve the model performance. 
Recent studies have widely used the spatiotemporal information as inputs to 
investigate air pollution based on machine learning method (e.g., Wei et al., 
2020, 2022; Li et al., 2021, 2022; Gong et al., 2022). The O3 concentrations 
also vary dramatically in space and time, thus we applied month of the year and 
geographical locations of the model grids as spatiotemporal information in this 
study. 
 
It seems that the authors construct a single RF emulator to model ozone over 
the entirety of Asia. One of the advantages of using a single emulator is in the 
large size of the training data. However, a single emulator is not able to provide 
information about feature importance for any specific regions. For instance, 
humidity in southern China is more important, while temperature and solar 
radiation may be the key features in northern China (e.g., Weng et al., 2022) 
(https://doi.org/10.5194/acp-22-8385-2022). The importance scores in Fig. 4 
can only reflect the overall importance of the features from the whole study 
domain, and the interpretation of these scores should be treated with caution. 
For instance, if the study domain covers more regions with humidity as the key 
feature for suppressing ozone production, it is likely that humidity is weighted 
to be more important than other features. I suggest the authors to address and 
discuss this limitation. 
 
Response: 



We thank the reviewer for this suggestion. We have added a sentence in 
the section 3.1 as follows. “However, it is noted that the O3 variations in different 
regions are dominated by different meteorological factors (Weng et al., 2022). 
The importance score of each independent feature quantified in this study can 
only reflect the overall importance across Asia, which is less representative of 
any specific regions.” 

We have also addressed this concern in the discussion section. 
“Additionally, the overall importance scores of the features in this study can only 
reflect that from the whole study domain. Further investigations are required to 
identify and quantify the importance score of each local variable contributed to 
the near-surface O3 predictions in different specific regions.” 
 
Minor and technical comments: 
 
Line 77: Citation of Gong et al. (2019) should be replaced by Gong and Liao 
(2019). This should be consistent with the citation in Line 76. 
 
Response: 

Corrected. 
 
Line 206: Mis-spelling of author name. It should be “Rodriguez”. 
 
Response: 

Corrected. 
 
In the supplementary, I’m not sure whether Fig. S11 and Fig. S12 follow the 
same caption as Fig. S8. Are these still percentage differences (%) between 
2020–2029 and 2091–2100? 
 
Response: 

Thanks for the note. The Fig. S11 and Fig. S12 are the spatial distributions 
of absolute difference (m/s) in the CMIP6 multi-model seasonal averaged wind 
fields at 850 hPa and 500 hPa between 2020–2029 and 2091–2100, 
respectively. We have now made corrections. 
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