

1 **Elucidate the Formation Mechanism of Particulate**
2 **Nitrate Based on Direct Radical Observations in the**
3 **Yangtze River Delta summer 2019**

4 *Tianyu Zhai^a, Keding Lu^{a, b*}, Haichao Wang^c, Shengrong Lou^d, Xiaorui Chen^{a, f}, Renzhi*
5 *Hu^e, Yuanhang Zhang^{a, b*}*

6 ^a State Key Joint Laboratory of Environmental Simulation and Pollution Control,
7 College of Environmental Sciences and Engineering, Peking University, Beijing
8 100871, China.

9 ^b Collaborative Innovation Center of Atmospheric Environment and Equipment
10 Technology, Nanjing University of Information Science & Technology, Nanjing
11 210044, China.

12 ^c School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China.

13 ^d State Environmental Protection Key Laboratory of Formation and Prevention of the
14 Urban Air Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200223,
15 China.

16 ^e Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics
17 and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China.

18 ^f Now at: Department of Civil and Environmental Engineering, The Hong Kong
19 Polytechnic University, Hong Kong, China.

20

21 *Correspondence to:

22 Keding Lu (k.lu@pku.edu.cn), Yuanhang Zhang (yhzhang@pku.edu.cn)

23

24 **Abstract.** Particulate nitrate (NO_3^-) is one of the dominant components of fine particles
25 in China, especially during pollution episodes, and has a significant impact on human
26 health, air quality, and climate. Here a comprehensive field campaign that focuses on
27 the atmospheric oxidation capacity and aerosol formation and their effects in the
28 Yangtze River Delta (YRD) was conducted from May to June 2019 at a regional site in
29 Changzhou, Jiangsu province in China. The concentration of NO_3^- , OH radical, N_2O_5 ,
30 NO_2 , O_3 , and relevant parameters were measured simultaneously. We showed a high
31 NO_3^- mass concentration with $10.6 \pm 8.9 \mu\text{g m}^{-3}$ on average, which accounted for 38.3 %
32 of total water-soluble particulate components and 32.0 % of total $\text{PM}_{2.5}$, followed by
33 the proportion of sulfate, ammonium, and chloride by 26.0 %, 18.0 %, and 2.0 %,
34 respectively. This result confirmed that the heavy nitrate pollution in eastern China not
35 only happened in winter but also in the summertime. This study's high nitrate oxidation
36 ratio (NOR) emphasizes the solid atmospheric oxidation and fast nitrate formation
37 capacity in YRD. It is found that $\text{OH} + \text{NO}_2$ during daytime dominates nitrate formation
38 on clean days while N_2O_5 hydrolysis vastly enhanced and became comparable with that
39 of $\text{OH} + \text{NO}_2$ during polluted days (67.2 % and 30.2 %, respectively). An updated
40 observed-constrain Empirical Kinetic Modeling Approach (EKMA) was used to assess
41 the kinetic controlling factors of both local O_3 and NO_3^- productions, which indicated
42 that the O_3 -targeted scheme (VOCs: $\text{NO}_x = 2: 1$) is adequate to mitigate the O_3 and
43 nitrate pollution coordinately during summertime in this region. Our results promote
44 the understanding of nitrate pollution mechanisms and mitigation based on field
45 observation and model simulation and call for more attention to nitrate pollution in the
46 summertime.

47 **Keywords:**

48 Nitrate pollution; Dinitrogen pentoxide; Nitrate formation; Pollution mitigation

49 **1 Introduction**

50 Chemical compositions of fine particles have been measured in China during the past
51 twenty years, and secondary inorganic aerosol is regarded as one of the dominant
52 species in aerosol (Cao et al., 2012; Hagler et al., 2006; Zhao et al., 2013; Andreae et
53 al., 2008). Since the Air Pollution Prevention and Control Action Plan, there has been
54 a significant decrease in SO_2 , NO_2 , and $\text{PM}_{2.5}$ concentration in China, while the
55 inorganic nitrate ratio in $\text{PM}_{2.5}$ increased and became the considerable component in
56 $\text{PM}_{2.5}$ (Shang et al., 2021; Zhang et al., 2022). Therefore, a comprehensive
57 understanding of the particulate nitrate formation mechanism is essential and critical to
58 mitigating haze pollution in China.

59 Massive research has been done in China to investigate nitrate formation
60 mechanisms, and a basic framework has been established (Sun et al., 2006; Chang et
61 al., 2018; Wu et al., 2019). In the daytime, $\text{NO}_2 + \text{OH}$ radical oxidation (Reaction 1) is
62 the major particulate nitrate formation pathway. The product (HNO_3) reacts with
63 alkaline substances in aerosol, generating particulate nitrate. This pathway is mainly
64 controlled by precursors concentration as well as the gas-particle partition of gaseous
65 nitric acid, and particulate nitrate depends on temperature, relative humidity (RH), NH_3
66 concentration, and aerosol acidity (Wang et al., 2009; Song and Carmichael, 2001;
67 Meng et al., 2020; Zhang et al., 2021). At night, N_2O_5 uptake is a vital nitrate formation
68 pathway (Reaction 4)(Chen et al., 2020; Wang et al., 2022). N_2O_5 is formed through
69 $\text{NO}_2 + \text{NO}_3$ (Reaction 3) and there exists a quick thermal equilibrium balance ($K_{\text{eq}} = 5.5$
70 $\times 10^{-17} \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}$, 298 K). However, two problems remain ambiguous in
71 quantifying the contribution of N_2O_5 uptake to nitrate formation. The first is the N_2O_5
72 heterogeneous uptake coefficient (γ) on ambient aerosol is highly varied with the range
73 from 10^{-4} to 10^{-1} based on previous lab and field measurements (Bertram and Thornton,
74 2009; Brown et al., 2009; Wang et al., 2017c; Wang and Lu, 2016). The other one is
75 ClNO_2 production yield which influences nitrate contribution due to the extensive
76 variation range (Phillips et al., 2016; Staudt et al., 2019; Tham et al., 2018). Both two

77 parameters are complex to well-predicted by current schemes. NO_2 heterogeneous
78 uptake has been found nonnegligible for nitrate formation, which can be a vital pathway
79 during heavy haze events, according to recent study (Qiu et al., 2019; Chan et al., 2021).
80 The uptake coefficient and nitrate yield remain uncertain, as same as the N_2O_5
81 heterogeneous reaction. Besides, N_2O_5 homogeneous hydrolysis and NO_3 radical
82 oxidation have a minor contribution to particulate nitrate under ambient conditions
83 (Brown et al., 2009; Seinfeld and Pandis, 2016).

84 As a critical area of China's economy and industry, Yangtze River Delta (YRD)
85 has suffered severe air pollution during past decades, and fine particle pollution in YRD
86 has raised a widespread concern (Guo et al., 2014; Zhang et al., 2015; Zhang et al.,
87 2017; Ming et al., 2017; Xue et al., 2019). However, most research focuses on
88 wintertime $\text{PM}_{2.5}$ pollution and lacks measurements of critical intermediate species and
89 radicals to assess the importance of each nitrate formation pathway. In this study, with
90 the direct measurements of hydroxyl radical and the reactive nitrogen compounds and
91 chemical box model analysis, we explore the characteristics of nitrate and precursors in
92 YRD in the summer of 2019, the importance of particulate nitrate formation pathways
93 is quantified, and the controlling factors are explored. A further suggestion for summer
94 pollution prevention and control in the local area is proposed.

95 **2 Site description and methods**

96 **2.1 The campaign site**

97 This campaign took place at a suburban sanatorium from May 30th to June 18th, 2019,
98 in Changzhou, China. Changzhou (119.95 °E, 31.79 °N) is located in Jiangsu province
99 and about 150 km northwest of Shanghai. The sanatorium, located 420 m east of Lake
100 Ge (one of the largest lakes in Jiangsu province, 164 square kilometers), is surrounded
101 by farmland and fishponds. With the closest arterial traffic 1 km away, several industry
102 zones are 4 km to the east. The prevailing wind was from the south and southeast sectors
103 (about 30 % of the time) compared to 20 % from the west sector, of which only 15 %
104 came from the east. The wind speed was usually lower than 5 m s⁻¹ with faster speed
105 from the west. This site was influenced by anthropogenic and biological sources with
106 occasional biomass burning.

107

108 **Figure 1** The location of the campaign site (red star), Changzhou, is 150 km on the
109 northwest side of Shanghai.

110 **2.2 The instrumentation**

111 Multiple gaseous and particulate parameters were measured simultaneously during the

112 campaign to comprehensively interpret the nocturnal atmospheric capacity and aerosol
113 formation. The related instruments are listed in Table 1. N₂O₅ and Particle Number and
114 Size Distribution (PNSD) were measured on the fourth floor of the sanatorium, which
115 is the top of the building. Other instruments were placed in containers on the ground
116 170 m northeast of the building and sampling inlets at circa 5 m above the ground
117 through the containers' roof.

118 N₂O₅ was measured by Cavity Enhanced Absorption Spectrometer (CEAS) based
119 on Lambert-Beer's law which was developed by (Wang et al., 2017b). Briefly, air
120 samples were drawn through the window and reached out of the wall 30 cm to prevent
121 influence from surface deposition. The aerosol membrane filter was deployed before
122 the PFA sampling tube and changed every 2 hours at night to avoid a decrease in N₂O₅
123 transmission efficiency due to the increased loss of N₂O₅ from the accumulated aerosols
124 on the filter. N₂O₅ was decomposed to NO₃ and NO₂ through preheating tube heat at
125 130 °C and detected within a PFA-coated resonator cavity heated at 110 °C to prevent
126 the formation of N₂O₅ by reversible reaction subsequently. At the end of each sampling
127 cycle (5 min), a 30 s injection of high concentration NO (10 ppm, 20 ml min⁻¹) mixed
128 with sample air was set to eliminate NO₃-N₂O₅ in the system. The NO titration
129 spectrums were adopted as the dynamic background spectrum by assuming no H₂O
130 concentration variation in a single sampling cycle. The loss of N₂O₅ in the sampling
131 system and filter was also considered during data correction. The limit of detection
132 (LOD) was estimated to be 2.7 pptv (1 σ) with an uncertainty of 19 %.

133 OH radical measurement was conducted by Fluorescence Assay by Gas Expansion
134 Laser-Induced Fluorescence techniques (FAGE-LIF). Ambient air was expanded
135 through a 0.4 mm nozzle to low pressure in a detection chamber, where the 308 nm
136 laser pulse irradiated OH radical at a repetition rate of 8.5 kHz (Chen et al., 2018). NO_x
137 and O₃ were monitored by commercial monitors (Thermo-Fisher 42i and 49i). Volatile
138 organic compounds (VOCs) were measured by an automated Gas Chromatograph
139 equipped with a Mass Spectrometer and flame ionization detector (GC-MS) with a time

140 resolution of 60 min. The photolysis frequencies were determined from the spectral
141 actinic photon flux density measured by a spectroradiometer (Bohn et al., 2008).

142 PM_{2.5} concentration was obtained by Tapered Element Oscillating Microbalance
143 (TEOM 1405, Thermo Scientific Inc). Aerosol surface concentration (S_a) was
144 converted from particle number and size distribution, which was measured by Scanning
145 Mobility Particle Sizer (SMPS, TSI 3936) and Aerosol Particle Sizer (APS, TSI 3321)
146 and modified to the wet particle-state S_a with a hygroscopic growth factor (Liu et al.,
147 2013). The uncertainty of the wet S_a was ~ 30 %. Meanwhile, water-soluble particulate
148 components and their gaseous precursors were analyzed through the Monitor for
149 AeRosols and GAses in ambient air (MARGA, Chen et al. (2017)). Meteorological data
150 were also available, including the temperature, relative humidity (RH), pressure, wind
151 speed, and wind direction.

152 **Table 1** The observed gas and particle parameters during the campaign.

Parameters	Detection of limit	Method	Accuracy
N ₂ O ₅	2.7 pptv (1 σ , 1 min)	CEAS	± 19 %
OH	1.6 \times 10 ⁵ cm ⁻³ (1 σ , 60 s)	LIF ^a	± 21 %
NO	60 pptv (2 σ , 1 min)	PC ^c	± 10 %
NO ₂	0.3 ppbv (2 σ , 1 min)	PC ^c	± 10 %
O ₃	0.5 ppbv (2 σ , 1 min)	UV photometry	± 5 %
VOCs	20-300 pptv (60 min)	GC-MS	± 15 %
PM _{2.5}	0.1 μ g m ⁻³ (1 min)	TEOM ^d	± 5 %
Photolysis frequencies	5 \times 10 ⁻⁵ s ⁻¹ (1 min)	SR ^e	± 10 %
PNSD	14 nm -700 nm (4 min)	SMPS, APS	± 10 %
HNO ₃ , NO ₃ , HCl	0.06 ppbv (30 min)	MARGA ^f	± 20 %
NH ₄ ⁺ , NO ₃ ⁻ , Cl ⁻ , SO ₄ ²⁻	0.05 μ g m ⁻³ (30 min)	MARGA ^f	± 20 %

153 ^a Laser-induced fluorescence; ^b Chemiluminescence; ^c Photolytic converter; ^d Tapered
154 Element Oscillating Microbalance; ^e Spectroradiometer; ^f the Monitor for AeRosols and
155 GAses in ambient air.

156 **2.3 The empirical kinetic modeling approach**

157 A box model coupled with the Regional Atmospheric Chemical Mechanism version 2
158 (RACM2, Goliff, Stockwell & Lawson, 2013) is used to conduct the mitigation
159 strategies studies. The model is operated in one-hour time resolution with measurement

160 results of temperature, relative humidity, pressure, CO, NO₂, H₂O, photolysis
161 frequencies, and aggregated VOCs input to constrain the model. It should be noted that
162 HONO concentration is calculated by NO₂ times 0.02, as suggested by Elshorban et al.
163 (2012), and has been used in the box model before (Lou et al., 2022). Long-lived species
164 such as H₂ and CH₄ are assumed as constants (550 ppbv and 1900 ppbv, respectively).
165 Moreover, a 13-hour constant loss rate of unconstrained intermediate and secondary
166 products, the result of synthetic evaluating secondary simulation of secondary species,
167 is set for representing the multi-effects of deposition, transformation, and transportation.

168 The approaches to the chemical production of O₃ (P(O₃)) and inorganic nitrate
169 (P(NO₃⁻)) are described in previous articles (Tan et al., 2021; Tan et al., 2018) and
170 expressed as Equation 1 and 4:

$$P(O_3) = F(O_3) - D(O_3) \quad \text{Eq1}$$

$$F(O_3) = k_{HO_2+NO}[NO][HO_2] + k_{(RO_2+NO)_{eff}}[NO][RO_2] \quad \text{Eq2}$$

$$D(O_3) = k_{OH+NO_2}[OH][NO_2] + (k_{OH+O_3}[OH] + k_{HO_2+O_3}[HO_2] + k_{alkenes+O_3}[alkenes])[O_3] \quad \text{Eq3}$$

$$P(NO_3^-) = P(HNO_3) + P(pNO_3^-) \quad \text{Eq4}$$

$$P(HNO_3) = k_{OH+NO_2}[OH][NO_2] \quad \text{Eq5}$$

$$P(pNO_3^-) = 0.25(2 - \varphi) C \gamma S_a [N_2O_5] \quad \text{Eq6}$$

171 briefly, P(O₃) is net ozone production, which is calculated by peroxy radical + NO
172 oxidation (Eq. 2) minus the chemical loss of O₃ and NO₂ (Eq. 3). P(NO₃⁻) is constituted
173 by reaction OH + NO₂ (Eq. 5) and N₂O₅ heterogeneous uptake (Eq. 6). Here, rate
174 constants of reactions are obtained from NASA JPL Publication (Burkholder et al.,
175 2015) or RACM2 (Goliff et al., 2013). γ is the N₂O₅ uptake coefficient calculated from
176 parameterization (γ_P , more details in chapter 3.3). φ represents ClNO₂ production yield
177 through N₂O₅ hydrolysis, and the mean value reported by Xia et al. (2020) is used in
178 this work.

179 The empirical Kinetic Modeling Approach (EKMA) was innovated to study the
180 effects of precursors (VOCs and NO_x) reactivity on the region's ozone pollution by
181 Kanaya et al., which helps recognize the region's susceptibility to precursors by weight
182 and become a prevalent tool to study the process of ozone formation (Tan et al., 2018;
183 Yu et al., 2020b; Kanaya et al., 2008). The prevention and control problem of pollutant
184 generation can be transformed through the EKMA curve to reduce its precursors'
185 emissions. Furthermore, the precursor reduction scheme needed for total pollutant
186 control is given qualitatively. P(NO₃⁻) can also be analyzed through EKMA for the

187 nonlinear secondary formation relationship with precursor reactivity. Here, an isopleth
188 diagram of the net ozone production rate as functions of the reactivities of NO_x and
189 VOCs can be derived from EKMA. In detail, 0.01 to 1.2 emission reduction strategy
190 assumptions are exponential interpolation into 20 kinds of emission situations of NO_x
191 and VOCs, respectively, which in total counts 400 scenarios.

192 **2.4 The calculation of aerosol liquid water content**

193 Aerosol liquid water content (ALWC) is calculated through ISORROPIA II
194 (Fountoukis and Nenes, 2007). Forward mode is applied in this study. Furthermore,
195 water-soluble particulate components in $\text{PM}_{2.5}$ and gaseous species ($\text{NH}_3 + \text{HNO}_3 + \text{HCl}$)
196 obtained from MARGA, along with RH and T, are input as initial input. In addition,
197 metastable aerosol state is chosen due to high RH during this campaign.

198 **3 Result and discussion**

199 **3.1 Overview of measurements**

200 The time used in this study is China Standard Time (UTC + 8) and the local sunrise and
201 sunset time during the campaign were around 5 am and 7 pm, respectively. The whole
202 campaign period is divided into four $\text{PM}_{2.5}$ clean periods and four $\text{PM}_{2.5}$ polluted
203 periods (9 out of 14 days, the latter polluted periods days day refer to $\text{PM}_{2.5}$ pollution
204 except specified description) according to the Chinese National Air Quality Standard
205 (CNAQS) Grade I of daily $\text{PM}_{2.5}$ concentrations ($< 35.0 \mu\text{g m}^{-3}$). Figure 2 shows the
206 meteorological parameters, and gas-phase and particulate species timeseries during the
207 observation. During the campaign, the temperature was high; the maximum reached
208 34.5°C , with an average of $25.1 \pm 3.7^\circ\text{C}$. RH changed drastically from 21 % to 88 %,
209 with a mean value of 58.9 ± 14.0 %. The mean NO_2 concentration was $14.8 \pm 9.5 \text{ ppbv}$.
210 Meanwhile, the O_3 average was $54.6 \pm 28.8 \text{ ppbv}$, exceeding CNAQS Grade II for a
211 maximum daily average of 8 h ozone ($160 \mu\text{g m}^{-3}$) on 14 out of 19 days and exceeding
212 $200 \mu\text{g m}^{-3}$ on six days.

213
 214 **Figure 2** Timeseries of NO_2 , O_3 , N_2O_5 , OH radical, $\text{PM}_{2.5}$, and water-soluble particulate
 215 components, temperature, and RH. The vertical dotted line represents the zero clock.
 216 The black horizontal solid line in O_3 and $\text{PM}_{2.5}$ panels represents Chinese national air
 217 quality standards for O_3 and $\text{PM}_{2.5}$, respectively. The top panel color blocks represent
 218 the $\text{PM}_{2.5}$ clean day (light green) and $\text{PM}_{2.5}$ polluted day(salmon).
 219

220 Daytime OH radical ranged from 2×10^6 to 8×10^6 molecular cm^{-3} with a daily
 221 peak over 3×10^6 molecular cm^{-3} . Maximum OH radical reached 8.18×10^6 molecular
 222 cm^{-3} in this campaign. Compared with other summertime OH radical observed in China,
 223 OH radical concentration in this site is relatively low but still on the same order of
 224 magnitude (Lu et al., 2012; Lu et al., 2013; Ma et al., 2022; Tan et al., 2017; Woodward-
 225 Massey et al., 2020; Yang et al., 2021). N_2O_5 mean concentration was 21.9 ± 39.8 pptv
 226 with a nocturnal average of 61.0 ± 63.1 pptv and a daily maximum of over 200 pptv at
 227 eight nights. The maximum concentration of N_2O_5 (477.2 pptv, 5 min resolution)
 228 appeared at 20:47 on June 8th. The average NO_3 radical production rate $P(\text{NO}_3)$ is 2.1
 229 ± 1.4 ppbv h^{-1} with nocturnal average $P(\text{NO}_3)$ 2.8 ± 1.6 ppbv h^{-1} and daytime $P(\text{NO}_3)$
 230 2.2 ± 1.4 ppbv h^{-1} . $P(\text{NO}_3)$ is about twice of documented value in Taizhou and North
 231 China Plain (Wang et al., 2017a; Wang et al., 2018b; Wang et al., 2020a), but close to

232 another result in YRD before (Chen et al., 2019). The average $\text{PM}_{2.5}$ was 34.6 ± 17.8
233 $\mu\text{g m}^{-3}$ with a maximum reach of $163.0 \mu\text{g m}^{-3}$. The water-soluble particulate
234 components of $\text{PM}_{2.5}$ are displayed as well. The average NO_3^- concentration was 10.6
235 $\mu\text{g m}^{-3}$, which accounts for 38.3 % mass concentration of water-soluble particulate
236 components and 32.0 % total $\text{PM}_{2.5}$, while the proportion of sulfate, ammonium, and
237 chloride is 26.0 %, 18 %, and 2.0 % respectively. To sum up, during the campaign
238 period, the pollution of $\text{PM}_{2.5}$ would be generally exacerbated on high O_3 and NO_2 days.
239 Precipitation occurred during four clean processes receded pollutant concentration;
240 otherwise, the pollution condition remained severe.

241 The mean diurnal variations (MDC) of temperature, RH, NO_2 , O_3 , $\text{P}(\text{NO}_3)$, N_2O_5 ,
242 OH radical, and $\text{PM}_{2.5}$ in different air quality are shown in Figure 3. The temperature,
243 RH, and OH radical MDC show indistinctive differences between clean days (CD) and
244 polluted days (PD). The MDC of NO_2 has two concentration peaks that appear at 06:00
245 and 21:00 on CD, while at PD, its peak appears at 20:00 and maintains a high level
246 during the whole night. O_3 diurnal pattern reflects a typical urban-influenced character
247 with a maximum O_3 peak that lasts four hours from 14:00 to 17:00, while polluted-day
248 O_3 peak concentration is 1.2 higher than clean-day. $\text{P}(\text{NO}_3)$ grows after the O_3 peak and
249 maximum $\text{P}(\text{NO}_3)$ shows at 19:00 with an average value of 1.7 ppbv h^{-1} on CD. By
250 contrast, the mean polluted-day $\text{P}(\text{NO}_3)$ is 2.6 ppbv h^{-1} , and the maximum value
251 reaches 4.7 ppbv h^{-1} . In contrast, the clean-day N_2O_5 has a higher average and maximum
252 concentration than PD, which suggests a faster removal process during PD. $\text{PM}_{2.5}$ has
253 a similar trend with $\text{P}(\text{NO}_3)$ and has a higher concentration during nighttime.

254

255 **Figure 3** The mean diurnal variations of temperature, RH, NO₂ (Salmon), O₃, P(NO₃),
256 N₂O₅, OH radical(orange), and PM_{2.5} of clean day and polluted day.
257

258 3.2 The evolution of nitrate pollution

259 Figure 4 (a) shows the relationship between nitrate and sulfate with water-soluble
260 particulate components. Nitrate positively correlates with total water-soluble
261 particulate components, while the sulfate ratio has an inverse correlation. With PM_{2.5}
262 concentration increasing, nitrate proportion increases rapidly and keeps high weight at
263 heavy PM_{2.5} period while sulfate ratio pears opposite phenomenon. Once the mass
264 concentration of total water-soluble particulate component is over 30 $\mu\text{g m}^{-3}$, the mass
265 fraction of nitrate in total water-soluble particulate components is up to 50 % on average.
266 This result illustrates that particulate nitrate is one of the vital sources of explosive
267 growth particulate matter.

268 **Figure 4** (a) Particulate ion mass concentration ratio of nitrate and sulfate to water
269 soluble ion. (b) NOR against RH, colored with temperature. (c) SOR against RH,
270 colored with temperature.
271

272

273 To further assess the conversion capacity of nitrate and sulfate in this site, the sulfur
 274 oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) are used to indicate the
 275 secondary transformation ratio of SO_2 and NO_2 , respectively (Sun et al., 2006). SOR
 276 and NOR are estimated using the formulae below:

277

$$\text{SOR} = \frac{n\text{SO}_4^{2-}}{n\text{SO}_4^{2-} + n\text{SO}_2} \quad \text{Eq7}$$

$$\text{NOR} = \frac{n\text{NO}_3^-}{n\text{NO}_3^- + n\text{NO}_2} \quad \text{Eq8}$$

278 Where n refers to the molar concentration, the higher SOR and NOR represent more
 279 oxidation of gaseous species into a secondary aerosol. As depicted in Figure 4 (b-c),
 280 NOR rapidly increases at $\text{RH} < 45\%$, remains constant at $45\% < \text{RH} < 75\%$, and ends
 281 with a sharp increase at $\text{RH} > 75\%$. During the study period, not only is the average
 282 concentration of NO_2 higher among PD but there is also a significant difference
 283 between PD and CD NOR. The average values of NOR are 0.32 in PD and 0.25 in CD,
 284 respectively, which manifests the more secondary transformation and pollution
 285 potential in PD. In contrast, the SOR stays constant at a high value (~ 0.5) during the
 286 whole RH scale, which shows a different pattern from previous research (Li et al., 2017;
 287 Zheng et al., 2015). One possible explanation is that SO_2 concentration stays low during
 288 the whole campaign (4.4 ± 2.4 ppbv on average), and SO_2 oxidation depends on the
 289 limit of SO_2 instead of oxidation capability. Meanwhile, the mean SOR in both
 290 situations is over 0.5 (0.52 in CD and 0.56 in PD), further supporting the SO_2 limited
 291 hypothesis. Besides, Table 2 summarizes NOR and SOR values in YRD. NOR and
 292 SOR in this study are similar to values reported in other YRD research (Shu et al., 2019;
 293 Zhang et al., 2020b; Qin et al., 2021; Zhao et al., 2022), except values in 2013 (Wang
 294 et al., 2016), but higher than north China study (Cao et al., 2017) which emphasize the
 295 solid atmospheric oxidation capacity in YRD region.

Table 2 Statistical result of NOR and SOR in YRD

Location and Year	SOR				NOR				References
	Max	Min	Mean	SD	Max	Min	Mean	SD	
Nanjing 2013 Winter	0.42	0.10	0.28	0.11	0.29	0.15	0.21	0.05	
Suzhou 2013 Winter	0.41	0.15	0.27	0.11	0.30	0.06	0.16	0.08	
Lin'an 2013 Winter	0.50	0.19	0.35	0.11	0.24	0.12	0.18	0.05	(Wang et al., 2016)
Hangzhou 2013 Winter	0.30	0.14	0.21	0.06	0.11	0.06	0.09	0.02	
Ningbo 2013 Winter	0.35	0.09	0.21	0.11	0.23	0.03	0.11	0.07	
YRD 2016 Summer	-	-	0.347	-	-	-	0.11	-	(Shu et al., 2019)
YRD 2016 Winter	-	-	0.247	-	-	-	0.15	-	
Nanjing 2019 spring	0.48	0.38	-	-	0.31	0.29	-	-	(Qin et al., 2021)
Changzhou 2019 spring	0.35	0.3	-	-	0.27	0.23	-	-	
Changzhou 2019 Winter	0.68	0.24	0.35	0.12	0.44	0.13	0.2	0.1	(Zhang et al., 2020b)
Changzhou 2019 Summer	0.16	0.76	0.54	0.1	0.08	0.63	0.28	0.14	This work

297 **3.3 The derivation of N₂O₅ uptake coefficient**

298 Statistical analysis of the observation above highlights the rapid formation of
299 particulate nitrate. To assess the contribution of N₂O₅ hydrolysis to particular nitrate
300 formation, two methods are applied to calculate the N₂O₅ uptake coefficient. The first
301 method is a stationary-state approximation (Brown et al., 2003). By assuming that the
302 rates of production and loss of N₂O₅ are approximately in balance, the total loss rate of
303 N₂O₅ ($k_{N_2O_5}$) can be calculated through equation 9. The $k_{N_2O_5}$ is mainly dominated by
304 N₂O₅ heterogeneous uptake, since homogeneous hydrolysis of N₂O₅ contribute tiny
305 (Brown and Stutz, 2012). N₂O₅ uptake coefficient through steady-state (note as γ_s) is
306 derived as equation 10. Here C is the mean molecule speed of N₂O₅, and S_a is the aerosol
307 surface concentration.

$$\tau_{ss}(N_2O_5) = \frac{[N_2O_5]}{k_{R3.1}[NO_2][O_3]} = (k_{N_2O_5} + \frac{k_{NO_3}}{K_{eq}[NO_2]})^{-1} \quad Eq9$$

$$k_{N_2O_5} = 0.25 C \gamma_s S_a \quad Eq10$$

308 Due to the fast variety of NO₃ loss rates from VOCs, the steady-state method has been
309 unattainable in conditions affected by emission interferences. During the whole
310 campaign, we only retrieve three valid fitting results. As shown in Figure 5, the fitted

311 γ_s ranged from 0.057 to 0.123, which is comparable with Taizhou (0.041, Wang et al.
312 (2020a)) and much higher than other results in China (Yu et al., 2020a; Wang et al.,
313 2018a; Wang et al., 2020b; Wang et al., 2017a). The calculated k_{NO_3} ranged from 0.002
314 to 0.16 s^{-1} , represents drastic VOCs change during this campaign.

315 **Figure 5** Derived N_2O_5 uptake coefficients from N_2O_5 steady lifetime (γ_s) with NO_2
316 and S_a , plots (a-c) represent the linear fitting results on the nights of 05/30, 06/10, and
317 06/11, respectively.

319 The other approach is the parameterization by (Yu et al., 2020a) which is depicted
320 as follows:

$$\gamma_P = \frac{4 V_a}{c S_a} K_H \times 3.0 \times 10^4 \times [H_2O] \left(1 - \frac{1}{\left(0.033 \times \frac{[H_2O]}{[NO_3^-]} \right) + 1 + \left(3.4 \times \frac{[Cl^-]}{[NO_3^-]} \right)} \right) \quad \text{Eq11}$$

321
 322 Where V_a/S_a is the measured aerosol volume to surface area ratio by SMPS; K_H is
 323 Henry's law coefficient which is set as 51 as recommended; $[NO_3^-]$ and $[Cl^-]$ are aerosol
 324 inorganic concentration measured by Marga; $[H_2O]$ is aerosol water content calculated
 325 through ISORROPIA II. The valid parameterization calculated N_2O_5 uptake coefficient
 326 (note as γ_P) from May 30th to June 08th, 2019, shows in Figure 6 a good consistency
 327 between the trends of γ_P and aerosol water content. Nighttime γ_P varies from 0.001 to
 328 0.024 with an average of 0.069 ± 0.0050 in polluted condition and 0.0036 ± 0.0026 in
 329 clean condition. The N_2O_5 uptake coefficient shows a good correlation between RH and
 330 aerosol water content. For the N_2O_5 uptake coefficient, although particulate nitrate mass
 331 concentration increased during the pollution event, an antagonistic effect on the N_2O_5
 332 uptake coefficient was not obvious for the nitrate molarity decreasing.

Furthermore, we compare the difference between γ_s and γ_p . Taking the night of May 30th as an example, the γ_s is 0.089 while γ_p ranges from 0.024 to 0.057 with an average value of 0.013 ± 0.0051 . The difference between steady-state and parameterization is significant; one possible explanation is uncertainty for stationary-state approximation caused by local NO or VOCs emission (Brown et al., 2009; Chen et al., 2022). Another reason is that parameterization by Yu et al. ignores the impact of organic matter on the fine particle. The difference in aerosol composition between this work and Yu et al may also bring uncertainty. Overall consideration, γ_p will be chosen for the N_2O_5 heterogeneous uptake coefficient in later analysis and discussion.

Figure 6 Results of N_2O_5 uptake coefficients through parameterization (γ_p). (a) shows timeseries of γ_p and ISORROPIA II results of aerosol water content (AWC). (b) is the box-plot of γ_p on the polluted day and clean day, the hollow square represents the mean value, and the solid line across the box shows the median score for the data set, while the top and bottom whiskers represent 90 % and 10 % value of γ_p , respectively.

3.4 Quantifying the contribution of nitrate formation pathways

After the N_2O_5 uptake coefficient is counted, nitrate production potential ($\text{P}(\text{NO}_3^-)$) can be calculated. Here N_2O_5 uptake coefficient is set as 0.036 on clean day and 0.069 on polluted day, respectively, which are the average value derived from parameterization. The production ratio of NO_3^- (by considering ClNO_2 yield of 0.54) is set as 1.46 in the former study (Xia et al., 2020). Gas particle distribution is considered by the result of particular nitrate and gas-phase nitrate by MARGA (input $\text{HNO}_3/\text{NO}_3^-$ ratio to the model as $\text{OH} + \text{NO}_2$ nitrate production rate). NO_2 heterogeneous uptake coefficient is set

356 as 5.8×10^{-6} depending on the report by Yu et al. (2021) which is the result of 70% RH
 357 on urban grime.

358 The mean diurnal variations of the nitrate production potential of clean and polluted
 359 day are depicted in Figure 7. The OH + NO₂ pathway shows no significant difference
 360 between clean and polluted day and dominates clean day nitrate formation potential.
 361 Since the level of OH and NO₂ is less affected by the fine particle level. However, the
 362 rapid increase of the N₂O₅ heterogeneous uptake pathway on polluted day is fatal, and
 363 its peak formation rate at night over the OH + NO₂ pathway can be used to explain
 364 nighttime nitrate explosive growth.

365 As shown in Figure 7c, OH + NO₂ dominates nitrate production on clean day, while
 366 the N₂O₅ uptake pathway only contributes 13.6 $\mu\text{g m}^{-3}$. On polluted days, the ability of
 367 N₂O₅ uptake grows fast, reaching 50.1 $\mu\text{g m}^{-3}$, while the OH pathway doesn't change
 368 much. There is no distinct difference in the daytime pathway (OH + NO₂) between clean
 369 day and polluted day, while the nighttime pathway ratio rises from 38.1 % on clean day
 370 to 67.2 % on polluted day. NO₂ heterogeneous uptake increases from 0.93 $\mu\text{g m}^{-3}$ on
 371 clean day to 2.0 $\mu\text{g m}^{-3}$ on polluted day, but the contribution proportion does not change
 372 obviously. Both the higher N₂O₅ uptake coefficient and higher S_a on polluted day
 373 increase the contribution of N₂O₅ hydrolysis on particular nitrate at pollution condition.

374

375

376 **Figure 7** The mean diurnal variations of the nitrate production potential of clean day(a)
 377 and polluted day (b) and the P(No₃⁻) distribution of clean and polluted day (c).

378 **3.5 Mitigation strategies of particulate nitrate and ozone productions**

379 We selected two pollution episodes (Episode I (2019.05.30 00:00 - 2019.06.02 00:00)
 380 and IV (2019.06.14 17:30 - 2019.06.17 12:00)) to explore the mitigation way of ozone
 381 and nitrate pollution. Figure 8 shows the EKMA of $P(O_3)$ and $P(NO_3^-)$ of these two
 382 periods, O_3 located at VOCs controlling area in the two pollution episodes, which
 383 consist with previous YRD urban ozone sensitivity study (Jiang et al., 2018; Zhang et
 384 al., 2020a; Xu et al., 2021). The best precursor reduction for O_3 is VOCs: $NO_x = 2:1$
 385 while nitrate is located at the transition area, which means either of the precursors
 386 reduction will mitigate nitrate pollution. For the regional and complex air pollution
 387 characteristics in this region, a fine particle-targeting reduction scheme will aggravate
 388 O_3 pollution. In contrast, the O_3 -targeting scheme can mitigate O_3 and fine particle
 389 simultaneously.

390
 391 **Figure 8** Isogram of $P(O_3)$ and $P(NO_3^-)$ of polluted episode I (2019.05.30 00:00 -
 392 2019.06.02 00:00) and IV (2019.06.14 17:30 - 2019.06.17 12:00) with different NO_x
 393 and VOC reduction degree. The grey dash line represents the ridge line.

394 **4 Conclusion**

395 A comprehensive campaign was conducted to interpret the atmospheric oxidation
396 capacity and aerosol formation from May 30th to June 18th, 2019, in Changzhou, China.
397 The high O₃ and PM_{2.5} concentrations confirm complex air pollution characteristics in
398 Changzhou, and nitrate accounts for 38.3 % mass concentration of total water-soluble
399 particulate components and 32.0 % of total PM_{2.5}. In addition, the average values of
400 NOR are 0.32 in PD and 0.25 in CD. The positive correlation between NOR and RH
401 and inverse correlation refer to the contribution of N₂O₅ heterogeneous uptake to nitrate
402 formation.

403 Based on field observations of OH and related parameters, we show OH oxidation
404 of the NO₂ pathway steadily contributes to nitrate formation no matter the clean or
405 polluted period and domination clean day nitrate production (about 22 $\mu\text{g m}^{-3}$). N₂O₅
406 heterogeneous uptake contribution proliferated on polluted day, from 13.6 $\mu\text{g m}^{-3}$
407 (38.1 %) on clean days to 50.1 $\mu\text{g m}^{-3}$ (67.2 %) on polluted days. NO₂ heterogeneous
408 uptake contributes minor to nitrate formation (2.6 %).

409 The precursor reduction simulation suggests the reduction ratio of VOCs: NO_x
410 equals 2:1 can simultaneously and effectively mitigate O₃ and fine particle pollution
411 during the summertime complex pollution period in Changzhou. To more precisely and
412 delicately establish a cooperative control scheme for regional O₃ and nitrate, the
413 regional and long-time field campaigns are needed in the future to analyze the seasonal
414 and interannual variation of O₃ and nitrate and relevant parameters.
415

416 **Code/Data availability.** The datasets used in this study are available from the
417 corresponding author upon request (k.lu@pku.edu.cn).

418 **Author contributions.** K.D.L. and Y.H.Z. designed the study. T.Y.Z analyzed the data
419 and wrote the paper with input from all authors.

420 **Competing interests.** The authors declare that they have no conflicts of interest.
421

424 **Acknowledgments.** This project is supported by the National Natural Science
425 Foundation of China (21976006); the Beijing Municipal Natural Science Foundation
426 for Distinguished Young Scholars (JQ19031); the National Research Program for Key
427 Issue in Air Pollution Control (DQGG0103-01, 2019YFC0214800). Thanks for the data
428 contributed by field campaign team.

429 **References**

430 Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L.-M., and Zhang,
431 Y.-H.: Optical properties and chemical composition of the atmospheric aerosol in
432 urban Guangzhou, China, *Atmospheric Environment*, 42, 6335-6350,
433 10.1016/j.atmosenv.2008.01.030, 2008.

434 Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N₂O₅
435 reactivity on aqueous particles: the competing effects of particle liquid water,
436 nitrate and chloride, *Atmospheric Chemistry and Physics*, 9, 8351-8363,
437 10.5194/acp-9-8351-2009, 2009.

438 Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E.,
439 Vrekoussis, M., Bloss, W. J., Clapp, L. J., Kortner, M., Dorn, H. P., Monks, P.
440 S., Platt, U., Plass-Dülmer, C., Mihalopoulos, N., Heard, D. E., Clemitshaw, K.
441 C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency
442 measurement techniques: results of a comparison within the ACCENT project,
443 *ACP*, 8, 5373-5391, 10.5194/acp-8-5373-2008, 2008.

444 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, *Chemical
445 Society Reviews*, 41, 6405-6447, 10.1039/c2cs35181a, 2012.

446 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state
447 approximation to the interpretation of atmospheric observations of NO₃ and
448 N₂O₅, *Journal of Geophysical Research-Atmospheres*, 108, 10,
449 10.1029/2003jd003407, 2003.

450 Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A.,
451 Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M.,
452 Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive
453 uptake coefficients for N₂O₅ determined from aircraft measurements during the
454 Second Texas Air Quality Study: Comparison to current model
455 parameterizations, *Journal of Geophysical Research-Atmospheres*, 114,
456 10.1029/2008jd011679, 2009.

457 Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J., Huie, R., Kolb, C. E., Kurylo,
458 M., Orkin, V., Wilmouth, D. M., and Wine, P.: Chemical Kinetics and
459 Photochemical Data for Use in Atmospheric Studies, Evaluation Number 18,
460 10.13140/RG.2.1.2504.2806, 2015.

461 Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., Ho, K.-F.,
462 Wang, G.-H., and Han, Y.-M.: Winter and Summer PM_{2.5} Chemical

463 Compositions in Fourteen Chinese Cities, *J Air Waste Manage*, 62, 1214-1226,
464 10.1080/10962247.2012.701193, 2012.

465 Cao, Z., Zhou, X., Ma, Y., Wang, L., Wu, R., Chen, B., and Wang, W.: The
466 Concentrations, Formations, Relationships and Modeling of Sulfate, Nitrate and
467 Ammonium (SNA) Aerosols over China, *Aerosol and Air Quality Research*, 17,
468 84-97, 10.4209/aaqr.2016.01.0020, 2017.

469 Chan, Y. C., Evans, M. J., He, P. Z., Holmes, C. D., Jaegle, L., Kasibhatla, P., Liu, X.
470 Y., Sherwen, T., Thornton, J. A., Wang, X., Xie, Z. Q., Zhai, S. T., and
471 Alexander, B.: Heterogeneous Nitrate Production Mechanisms in Intense Haze
472 Events in the North China Plain, *Journal of Geophysical Research-Atmospheres*,
473 126, 10.1029/2021jd034688, 2021.

474 Chang, Y. H., Zhang, Y. L., Tian, C. G., Zhang, S. C., Ma, X. Y., Cao, F., Liu, X. Y.,
475 Zhang, W. Q., Kuhn, T., and Lehmann, M. F.: Nitrogen isotope fractionation
476 during gas-to-particle conversion of NO_x to NO₃⁻ in the atmosphere -
477 implications for isotope-based NO_x source apportionment, *Atmospheric
478 Chemistry and Physics*, 18, 11647-11661, 10.5194/acp-18-11647-2018, 2018.

479 Chen, H., Hu, R., Xie, P., Xing, X., Ling, L., Li, Z., Wang, F., Wang, Y., Liu, J., and
480 Liu, W.: A hydroxyl radical detection system using gas expansion and fast gating
481 laser-induced fluorescence techniques, *J. Environ. Sci.*, 65, 190-200,
482 10.1016/j.jes.2017.03.012, 2018.

483 Chen, X., Walker, J. T., and Geron, C.: Chromatography related performance of the
484 Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and
485 field-based evaluation, *Atmos. Meas. Tech.*, 10, 3893-3908, 10.5194/amt-10-
486 3893-2017, 2017.

487 Chen, X., Wang, H., and Lu, K.: Interpretation of NO₃-N₂O₅ observation via steady
488 state in high-aerosol air mass: the impact of equilibrium coefficient in ambient
489 conditions, *Atmospheric Chemistry and Physics*, 22, 3525-3533, 10.5194/acp-
490 22-3525-2022, 2022.

491 Chen, X. R., Wang, H. C., Liu, Y. H., Su, R., Wang, H. L., Lou, S. R., and Lu, K. D.:
492 Spatial characteristics of the nighttime oxidation capacity in the Yangtze River
493 Delta, China, *Atmospheric Environment*, 208, 150-157,
494 10.1016/j.atmosenv.2019.04.012, 2019.

495 Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F.,
496 Yang, X. P., Liu, Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M.,
497 Zeng, L. M., and Zhang, Y. H.: Field Determination of Nitrate Formation
498 Pathway in Winter Beijing, *Environmental Science & Technology*, 54, 9243-
499 9253, 10.1021/acs.est.0c00972, 2020.

500 Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global
501 atmospheric chemistry calculated with an empirical parameterization in the
502 EMAC model, *ACP*, 12, 9977-10000, 10.5194/acp-12-9977-2012, 2012.

503 Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
504 thermodynamic equilibrium model for K⁺-Ca²⁺-Mg²⁺-Nh(4)(+)-Na⁺-SO₄²⁻

505 NO₃--Cl--H₂O aerosols, Atmospheric Chemistry and Physics, 7, 4639-4659,
506 2007.

507 Goliff, W. S., Stockwell, W. R., and Lawson, C. V.: The regional atmospheric
508 chemistry mechanism, version 2, Atmospheric Environment, 68, 174-185,
509 10.1016/j.atmosenv.2012.11.038, 2013.

510 Guo, L., Hu, Y., Hu, Q., Lin, J., Li, C., Chen, J., Li, L., and Fu, H.: Characteristics
511 and chemical compositions of particulate matter collected at the selected metro
512 stations of Shanghai, China, Science of the Total Environment, 496, 443-452,
513 10.1016/j.scitotenv.2014.07.055, 2014.

514 Hagler, G. S. W., Bergin, M. H., Salmon, L. G., Yu, J. Z., Wan, E. C. H., Zheng, M.,
515 Zeng, L. M., Kiang, C. S., Zhang, Y. H., Lau, A. K. H., and Schauer, J. J.:
516 Source areas and chemical composition of fine particulate matter in the Pearl
517 River Delta region of China, Atmos. Environ., 40, 3802-3815,
518 10.1016/j.atmosenv.2006.02.032, 2006.

519 Jiang, M., Lu, K., Su, R., Tan, Z., Wang, H., Li, L., Fu, Q., Zhai, C., Tan, Q., Yue, D.,
520 Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Ozone formation and key
521 VOCs in typical Chinese city clusters, Chinese Sci Bull, 63, 1130-1141, 2018.

522 Kanaya, Y., Fukuda, M., Akimoto, H., Takegawa, N., Komazaki, Y., Yokouchi, Y.,
523 Koike, M., and Kondo, Y.: Urban photochemistry in central Tokyo: 2. Rates and
524 regimes of oxidant (O₃+NO₂) production, Journal of Geophysical Research-
525 Atmospheres, 113, 10.1029/2007jd008671, 2008.

526 Li, H. Y., Zhang, Q., Zhang, Q., Chen, C. R., Wang, L. T., Wei, Z., Zhou, S.,
527 Parworth, C., Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H. L.,
528 Wallington, T. J., and He, K. B.: Wintertime aerosol chemistry and haze
529 evolution in an extremely polluted city of the North China Plain: significant
530 contribution from coal and biomass combustion, Atmospheric Chemistry and
531 Physics, 17, 4751-4768, 2017.

532 Liu, X., Gu, J., Li, Y., Cheng, Y., Qu, Y., Han, T., Wang, J., Tian, H., Chen, J., and
533 Zhang, Y.: Increase of aerosol scattering by hygroscopic growth: Observation,
534 modeling, and implications on visibility, Atmos. Res., 132-133, 91-101,
535 <https://doi.org/10.1016/j.atmosres.2013.04.007>, 2013.

536 Lou, S., Tan, Z., Gan, G., Chen, J., Wang, H., Gao, Y., Huang, D., Huang, C., Li, X.,
537 Song, R., Wang, H., Wang, M., Wang, Q., Wu, Y., and Huang, C.: Observation
538 based study on atmospheric oxidation capacity in Shanghai during late-autumn:
539 Contribution from nitryl chloride, Atmospheric Environment, 271, 118902,
540 <https://doi.org/10.1016/j.atmosenv.2021.118902>, 2022.

541 Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M.,
542 Haseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng,
543 L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in
544 a suburban environment near Beijing: observed and modelled OH and HO₂
545 concentrations in summer 2006, Atmospheric Chemistry and Physics, 13, 1057-
546 1080, 10.5194/acp-13-1057-2013, 2013.

547 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C.,
548 Haseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M.,
549 Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and
550 modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a
551 missing OH source in a VOC rich atmosphere, *Atmospheric Chemistry and*
552 *Physics*, 12, 1541-1569, 10.5194/acp-12-1541-2012, 2012.

553 Ma, X. F., Tan, Z. F., Lu, K. D., Yang, X. P., Chen, X. R., Wang, H. C., Chen, S. Y.,
554 Fang, X., Li, S. L., Li, X., Liu, J. W., Liu, Y., Lou, S. R., Qiu, W. Y., Wang, H.
555 L., Zeng, L. M., and Zhang, Y. H.: OH and HO₂ radical chemistry at a suburban
556 site during the EXPLORE-YRD campaign in 2018, *Atmospheric Chemistry and*
557 *Physics*, 22, 7005-7028, 2022.

558 Meng, Z. Y., Wu, L. Y., Xu, X. D., Xu, W. Y., Zhang, R. J., Jia, X. F., Liang, L. L.,
559 Miao, Y. C., Cheng, H. B., Xie, Y. L., He, J. J., and Zhong, J. T.: Changes in
560 ammonia and its effects on PM_{2.5} chemical property in three winter seasons in
561 Beijing, China, *Science of the Total Environment*, 749, 2020.

562 Ming, L., Jin, L., Li, J., Fu, P., Yang, W., Liu, D., Zhang, G., Wang, Z., and Li, X.:
563 PM_{2.5} in the Yangtze River Delta, China: Chemical compositions, seasonal
564 variations, and regional pollution events, *Environmental Pollution*, 223, 200-212,
565 10.1016/j.envpol.2017.01.013, 2017.

566 Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J.,
567 Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.:
568 Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃,
569 N₂O₅, ClNO₂ and particle-phase nitrate, *Atmospheric Chemistry and Physics*,
570 16, 13231-13249, 10.5194/acp-16-13231-2016, 2016.

571 Qin, Y., Li, J. Y., Gong, K. J., Wu, Z. J., Chen, M. D., Qin, M. M., Huang, L., and
572 Hu, J. L.: Double high pollution events in the Yangtze River Delta from 2015 to
573 2019: Characteristics, trends, and meteorological situations, *Science of the Total*
574 *Environment*, 792, 10.1016/j.scitotenv.2021.148349, 2021.

575 Qiu, X. H., Ying, Q., Wang, S. X., Duan, L., Zhao, J., Xing, J., Ding, D., Sun, Y. L.,
576 Liu, B. X., Shi, A. J., Yan, X., Xu, Q. C., and Hao, J. M.: Modeling the impact of
577 heterogeneous reactions of chlorine on summertime nitrate formation in Beijing,
578 China, *Atmospheric Chemistry and Physics*, 19, 6737-6747, 10.5194/acp-19-
579 6737-2019, 2019.

580 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric chemistry and physics: from air*
581 *pollution to climate change*, Third;3rd;, Book, Whole, Wiley, Hoboken, New
582 Jersey2016.

583 Shang, D. J., Peng, J. F., Guo, S., Wu, Z. J., and Hu, M.: Secondary aerosol formation
584 in winter haze over the Beijing-Tianjin-Hebei Region, China, *Front. Env. Sci.*
585 *Eng.*, 15, 13, 10.1007/s11783-020-1326-x, 2021.

586 Shu, L., Wang, T. J., Xie, M., Li, M. M., Zhao, M., Zhang, M., and Zhao, X. Y.:
587 Episode study of fine particle and ozone during the CAPUM-YRD over Yangtze
588 River Delta of China: Characteristics and source attribution, *Atmospheric*

631 Uptake Coefficient of Dinitrogen Pentoxide (N₂O₅), *Prog. Chem.*, 28, 917-933,
632 10.7536/pc151225, 2016.

633 Wang, H. C., Chen, J., and Lu, K. D.: Development of a portable cavity-enhanced
634 absorption spectrometer for the measurement of ambient NO₃ and N₂O₅:
635 experimental setup, lab characterizations, and field applications in a polluted
636 urban environment, *Atmos. Meas. Tech.*, 10, 1465-1479, 10.5194/amt-10-1465-
637 2017, 2017b.

638 Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Wu, Z. J., Wu, Y. S., and Sun, K.:
639 Fast particulate nitrate formation via N₂O₅ uptake aloft in winter in Beijing,
640 *Atmospheric Chemistry and Physics*, 18, 10483-10495, 10.5194/acp-18-10483-
641 2018, 2018a.

642 Wang, H. C., Chen, X. R., Lu, K. D., Hu, R. Z., Li, Z. Y., Wang, H. L., Ma, X. F.,
643 Yang, X. P., Chen, S. Y., Dong, H. B., Liu, Y., Fang, X., Zeng, L. M., Hu, M.,
644 and Zhang, Y. H.: NO₃ and N₂O₅ chemistry at a suburban site during the
645 EXPLORE-YRD campaign in 2018, *Atmospheric Environment*, 224, 9,
646 10.1016/j.atmosenv.2019.117180, 2020a.

647 Wang, H. C., Chen, X. R., Lu, K. D., Tan, Z. F., Ma, X. F., Wu, Z. J., Li, X., Liu, Y.
648 H., Shang, D. J., Wu, Y. S., Zeng, L. M., Hu, M., Schmitt, S., Kiendler-Scharr,
649 A., Wahner, A., and Zhang, Y. H.: Wintertime N₂O₅ uptake coefficients over
650 the North China Plain, *Science Bulletin*, 65, 765-774,
651 10.1016/j.scib.2020.02.006, 2020b.

652 Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le
653 Breton, M., Lou, S. R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L.
654 M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃
655 oxidation in the outflow of urban Beijing, *Atmospheric Chemistry and Physics*,
656 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018b.

657 Wang, S. B., Wang, L. L., Fan, X. G., Wang, N., Ma, S. L., and Zhang, R. Q.:
658 Formation pathway of secondary inorganic aerosol and its influencing factors in
659 Northern China: Comparison between urban and rural sites, *Science of the Total
660 Environment*, 840, 2022.

661 Wang, X. F., Zhang, Y. P., Chen, H., Yang, X., Chen, J. M., and Geng, F. H.:
662 Particulate Nitrate Formation in a Highly Polluted Urban Area: A Case Study by
663 Single-Particle Mass Spectrometry in Shanghai, *Environmental Science &
664 Technology*, 43, 3061-3066, 2009.

665 Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and
666 Wang, T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power
667 plant and industrial plumes observed in the nocturnal residual layer over the
668 North China Plain, *Atmospheric Chemistry and Physics*, 17, 12361-12378,
669 10.5194/acp-17-12361-2017, 2017c.

670 Woodward-Massey, R., Slater, E. J., Alen, J., Ingham, T., Cryer, D. R., Stimpson, L.
671 M., Ye, C. X., Seakins, P. W., Whalley, L. K., and Heard, D. E.: Implementation
672 of a chemical background method for atmospheric OH measurements by laser-

673 induced fluorescence: characterisation and observations from the UK and China,
674 *Atmos. Meas. Tech.*, 13, 3119-3146, 10.5194/amt-13-3119-2020, 2020.

675 Wu, S. P., Dai, L. H., Zhu, H., Zhang, N., Yan, J. P., Schwab, J. J., and Yuan, C. S.:
676 The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in
677 the western Taiwan Strait region, China, *Atmos. Res.*, 228, 68-76, 2019.

678 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu,
679 Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO₂ and
680 possible source of Cl-2 from N₂O₅ uptake at a suburban site in eastern China,
681 *Atmospheric Chemistry and Physics*, 20, 6147-6158, 10.5194/acp-20-6147-2020,
682 2020.

683 Xu, J. W., Huang, X., Wang, N., Li, Y. Y., and Ding, A. J.: Understanding ozone
684 pollution in the Yangtze River Delta of eastern China from the perspective of
685 diurnal cycles, *Science of the Total Environment*, 752,
686 10.1016/j.scitotenv.2020.141928, 2021.

687 Xue, H., Liu, G., Zhang, H., Hu, R., and Wang, X.: Similarities and differences in
688 PM₁₀ and PM_{2.5} concentrations, chemical compositions and sources in Hefei
689 City, China, *Chemosphere*, 220, 760-765, 10.1016/j.chemosphere.2018.12.123,
690 2019.

691 Yang, X. P., Lu, K. D., Ma, X. F., Liu, Y. H., Wang, H. C., Hu, R. Z., Li, X., Lou, S.
692 R., Chen, S. Y., Dong, H. B., Wang, F. Y., Wang, Y. H., Zhang, G. X., Li, S. L.,
693 Yang, S. D., Yang, Y. M., Kuang, C. L., Tan, Z. F., Chen, X. R., Qiu, P. P.,
694 Zeng, L. M., Xie, P. H., and Zhang, Y. H.: Observations and modeling of OH
695 and HO₂ radicals in Chengdu, China in summer 2019, *Science of the Total
696 Environment*, 772, 2021.

697 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P.
698 G., Li, H. Y., Shan, Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y.
699 B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y. H., and Wang, T.: Heterogeneous
700 N₂O₅ reactions on atmospheric aerosols at four Chinese sites: improving model
701 representation of uptake parameters, *Atmospheric Chemistry and Physics*, 20,
702 4367-4378, 10.5194/acp-20-4367-2020, 2020a.

703 Yu, C. A., Wang, Z., Ma, Q. X., Xue, L. K., George, C., and Wang, T.: Measurement
704 of heterogeneous uptake of NO₂ on inorganic particles, sea water and urban
705 grime, *J. Environ. Sci.*, 106, 124-135, 10.1016/j.jes.2021.01.018, 2021.

706 Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P.,
707 Yang, X., Liu, Y., Wang, H., He, L., Huang, X., and Zhang, Y.: An explicit
708 study of local ozone budget and NO_x-VOCs sensitivity in Shenzhen China,
709 *Atmospheric Environment*, 224, 117304, 10.1016/j.atmosenv.2020.117304,
710 2020b.

711 Zhang, K., Xu, J. L., Huang, Q., Zhou, L., Fu, Q. Y., Duan, Y. S., and Xiu, G. L.:
712 Precursors and potential sources of ground-level ozone in suburban Shanghai,
713 *Front. Env. Sci. Eng.*, 14, 10.1007/s11783-020-1271-8, 2020a.

714 Zhang, R., Han, Y. H., Shi, A. J., Sun, X. S., Yan, X., Huang, Y. H., and Wang, Y.:

715 Characteristics of ambient ammonia and its effects on particulate ammonium in
716 winter of urban Beijing, China, Environ Sci Pollut R, 28, 62828-62838, 2021.

717 Zhang, Y., Hong, Z., Chen, J., Xu, L., Hong, Y., Li, M., Hao, H., Chen, Y., Qiu, Y.,
718 Wu, X., Li, J.-R., Tong, L., and Xiao, H.: Impact of control measures and
719 typhoon weather on characteristics and formation of PM2.5 during the 2016 G20
720 summit in China, Atmospheric Environment, 224, 117312,
721 <https://doi.org/10.1016/j.atmosenv.2020.117312>, 2020b.

722 Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding,
723 A., Wu, J., Ge, S., Chen, C., and Zhou, H.-c.: Chemical composition, sources and
724 evolution processes of aerosol at an urban site in Yangtze River Delta, China
725 during wintertime, Atmospheric Environment, 123, 339-349,
726 10.1016/j.atmosenv.2015.08.017, 2015.

727 Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R., Wang,
728 Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prevot, A. S. H., Jayne, J. T.,
729 and Worsnop, D. R.: Field characterization of the PM2.5 Aerosol Chemical
730 Speciation Monitor: insights into the composition, sources, and processes of fine
731 particles in eastern China, Atmospheric Chemistry and Physics, 17, 14501-
732 14517, 10.5194/acp-17-14501-2017, 2017.

733 Zhang, Y. Y., Tang, A. H., Wang, C., Ma, X., Li, Y. Z., Xu, W., Xia, X. P., Zheng, A.
734 H., Li, W. Q., Fang, Z. G., Zhao, X. F., Peng, X. L., Zhang, Y. P., Han, J.,
735 Zhang, L. J., Collett, J. L., and Liu, X. J.: PM (2.5) and water-soluble inorganic
736 ion concentrations decreased faster in urban than rural areas in China, J. Environ.
737 Sci., 122, 83-91, 2022.

738 Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and
739 Liu, H. Y.: Characteristics of concentrations and chemical compositions for
740 PM2.5 in the region of Beijing, Tianjin, and Hebei, China, Atmospheric
741 Chemistry and Physics, 13, 4631-4644, 10.5194/acp-13-4631-2013, 2013.

742 Zhao, Z. Z., Sun, N., Zhou, W. L., Ma, S. S., Li, X. D., Li, M. L., Zhang, X., Tang, S.
743 S., and Ye, Z. L.: Chemical Compositions in Winter PM2.5 in Changzhou of the
744 Yangtze River Delta Region, China: Characteristics and Atmospheric Responses
745 Along With the Different Pollution Levels, Front Env Sci-Switz, 10, 2022.

746 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang,
747 T., Kimoto, T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring
748 the severe winter haze in Beijing: the impact of synoptic weather, regional
749 transport and heterogeneous reactions, Atmospheric Chemistry and Physics, 15,
750 2969-2983, 2015.

751