

1 **Elucidate the Formation Mechanism of Particulate**
2 **Nitrate Based on Direct Radical Observations in the**
3 **Yangtze River Delta summer 2019**

4 *Tianyu Zhai^a, Keding Lu^{a, b*}, Haichao Wang^c, Shengrong Lou^d, Xiaorui Chen^{a, f}, Renzhi*
5 *Hu^e, Yuanhang Zhang^{a, b*}*

6 ^a State Key Joint Laboratory of Environmental Simulation and Pollution Control,
7 College of Environmental Sciences and Engineering, Peking University, Beijing
8 100871, China.

9 ^b Collaborative Innovation Center of Atmospheric Environment and Equipment
10 Technology, Nanjing University of Information Science & Technology, Nanjing
11 210044, China.

12 ^cSchool of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China.

13 ^d State Environmental Protection Key Laboratory of Formation and Prevention of the
14 Urban Air Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200223,
15 China.

16 ^eKey Laboratory of Environmental Optics and Technology, Anhui Institute of Optics
17 and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China.

18 ^f Now at: Department of Civil and Environmental Engineering, The Hong Kong
19 Polytechnic University, Hong Kong, China.

20

21 *Correspondence to:

22 Keding Lu (k.lu@pku.edu.cn), Yuanhang Zhang (yhzhang@pku.edu.cn)

23

24 **Abstract.** Particulate nitrate (NO_3^-) is ~~the~~ one of the dominant components of fine
25 particles in China, especially during pollution episodes, and has a significant impact on
26 human health, air quality, and climate. Here a comprehensive field campaign ~~which~~
27 ~~focuses~~that focuses on the atmospheric oxidation capacity and aerosol formation, and
28 their effects in the Yangtze River Delta (YRD) ~~had been~~was conducted from May to
29 June, 2019 at a regional site in Changzhou, Jiangsu province in China. The
30 concentration of NO_3^- , OH radical, N_2O_5 , NO_2 , O_3 , and relevant parameters were
31 measured simultaneously. We showed a high NO_3^- mass concentration with 10.6 ± 8.9
32 $\mu\text{g m}^{-3}$ on average, which accounted for 38.3 % of total water-soluble particulate
33 components and 32.0 % of total $\text{PM}_{2.5}$, ~~and~~ followed by the proportion of sulfate,
34 ammonium, and chloride by 26.0 %, 18.0 ~~%,~~%, and 2.0 %, respectively. This result
35 confirmed that the heavy nitrate pollution in eastern China not only happened in winter
36 but also summer time. High in the summertime. This study's high nitrate oxidation ratio
37 (NOR) ~~during this study~~ emphasizes the strongsolid atmospheric oxidation and fast
38 nitrate formation capacity in YRD. It is found that $\text{OH} + \text{NO}_2$ ~~at~~during daytime
39 dominates nitrate formation on clean days while N_2O_5 hydrolysis largelyvastly
40 enhanced and ~~become~~became comparable with that of $\text{OH} + \text{NO}_2$ during polluted days
41 (47.467.2 % and 52.9-%30.2 %, respectively). An updated observed-constrain
42 Empirical Kinetic Modeling Approach (EKMA) was used to assess the kinetic
43 controlling factors of both local O_3 and NO_3^- productions, which indicated that the O_3 -
44 targeted scheme (VOCs: $\text{NO}_x = 2:1$) is effectiveadequate to mitigate the O_3 and nitrate
45 pollution coordinately during summertime in this region. Our results promote the
46 understanding of nitrate pollution mechanisms and mitigation based on field
47 observation and model simulation, and call for more attentionattention to nitrate
48 pollutionpollution in the summertime.

49 **Keywords:**

50 Nitrate pollution; Dinitrogen pentoxide; Nitrate formation; Pollution mitigation

51 **1 Introduction**

52 Chemical compositions of fine ~~particle~~particles have been measured in China during
53 ~~the~~ past twenty years, and secondary inorganic aerosol is regarded as one of the
54 dominant species in aerosol (Cao et al., 2012; Hagler et al., 2006; Zhao et al., 2013;
55 Andreae et al., 2008). Since the Air Pollution Prevention and Control Action Plan, there
56 has been a significant decrease ~~of~~in SO₂, NO₂, and PM_{2.5} concentration in China, while
57 the inorganic nitrate ratio in PM_{2.5} increased and became the considerable component
58 in PM_{2.5} (Shang et al., 2021; Zhang et al., 2022). Therefore, ~~the~~ a comprehensive
59 understanding of ~~the~~ particulate nitrate ~~formation~~formation mechanism is essential and
60 critical to ~~mitigate~~mitigating haze pollution in China.

61 ~~A massive~~Massive research ~~have~~has been ~~taken~~done in China ~~for investigating to~~
62 investigate nitrate formation ~~mechanism~~mechanisms, and a basic framework has been
63 established (Sun et al., 2006; Chang et al., 2018; Wu et al., 2019). In the daytime, NO₂
64 + OH radical oxidation (Reaction 1) is the major particulate nitrate formation pathway.
65 The product (HNO₃) reacts with alkaline ~~substance~~substances in aerosol ~~by which~~,
66 generating particulate nitrate. This pathway is mainly ~~controled~~controlled by
67 ~~precursors~~precursors concentration as well as the gas-particle partition of gaseous nitric
68 acid, and particulate nitrate depends on temperature, relative humidity (RH), NH₃
69 concentration, and aerosol acidity (Wang et al., 2009; Song and Carmichael, 2001;
70 Meng et al., 2020; Zhang et al., 2021). At night, N₂O₅ uptake is ~~an importanta~~a vital
71 nitrate formation pathway (Reaction 4)(Chen et al., 2020; Wang et al., 2022). N₂O₅ is
72 formed through NO₂ + NO₃ (Reaction 3) and there ~~exists~~exists a quick thermal
73 equilibrium balance ($K_{eq} = 5.5 \times 10^{-17} \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}$, 298 K). However, ~~there are~~
74 two problems remain ambiguous in quantifying the contribution of N₂O₅ uptake to
75 nitrate formation. The first is the N₂O₅ heterogeneous uptake ~~coefficient~~coefficient (γ)
76 on ambient aerosol is highly varied with the range from 10^{-4} to 10^{-1} based on previous
77 lab and field ~~measurments~~measurements (Bertram and Thornton, 2009; Brown et al.,
78 2009; Wang et al., 2017c; Wang and Lu, 2016). The other one is ClNO₂ production

79 yield which ~~influences~~influences nitrate contribution ~~due~~due to the ~~large~~extensive
80 variation range (Phillips et al., 2016; Staudt et al., 2019; Tham et al., 2018). Both ~~the~~
81 two parameters are ~~hardly~~complex to well-predicted by current schemes. ~~NO₂~~
82 ~~heterogeneous uptake has been found nonnegligible for nitrate formation, which can be~~
83 ~~a vital pathway during heavy haze events, according to recent study (Qiu et al., 2019;~~
84 ~~Chan et al., 2021). The uptake coefficient and nitrate yield remain uncertain, as same~~
85 ~~as the N₂O₅ heterogeneous reaction.~~ Besides, N₂O₅ homogeneous hydrolysis, ~~NO₂~~
86 ~~heterogeneous uptake~~and NO₃ radical oxidation have ~~a~~ minor contribution to
87 particulate nitrate under ambient ~~condition (Brown et al., 2009; Seinfeld and Pandis,~~
88 ~~2016) conditions~~(Brown et al., 2009; Seinfeld and Pandis, 2016).

89 As a ~~key~~critical area of China's economy and industry, Yangtze River Delta (YRD)
90 has suffered severe air pollution during past decades~~s~~and fine particle pollution in YRD
91 has raised a widespread concern (Guo et al., 2014; Zhang et al., 2015; Zhang et al.,
92 2017; Ming et al., 2017; Xue et al., 2019). However, most ~~of these~~ research
93 ~~focuses~~focuses on wintertime PM_{2.5} pollution and ~~lack of~~lacks measurements of critical
94 intermediate species and radicals to assess the importance of each nitrate formation
95 pathway. In this study, with the direct measurements of hydroxyl radical and the
96 reactive nitrogen compounds and chemical box model analysis, we explore the
97 characteristics of nitrate and precursors in YRD in the summer of 2019, the importance
98 of particulate nitrate formation pathways is quantified, and the ~~impact~~controlling
99 factors are explored. ~~Further~~A further suggestion for summer pollution prevention and
100 control ~~for~~in the local area is proposed.

101 **2 Site description and methods**

102 **2.1 The campaign site**

103 This campaign ~~had been taken~~^{took} place at a ~~sub-urban~~^{suburban} sanatorium from May
104 30th to June 18th, 2019 ~~at, in~~ Changzhou, China. Changzhou (119.95 °E, 31.79 °N) is
105 located ~~at~~ⁱⁿ Jiangsu province and about 150 km northwest of Shanghai. The sanatorium
106 ~~which is,~~ located ~~at~~ 420 m east of Lake Ge (one of the largest lakes in Jiangsu province,
107 164 square kilometers~~)~~, is surrounded by farmland and ~~fishpond~~^{fishponds}. With the
108 closest arterial traffic 1 km away, ~~there are~~ several industry zones are 4 km to the east.
109 The prevailing wind was from ~~the~~ south and ~~south east~~^{southeast} sectors (about 30 % of
110 the time) compared to 20 % from the west sector, of which only 15 % came from the
111 east. The wind speed was ~~normally usually~~ lower than 5 m s⁻¹ with faster speed from the
112 west. This site was influenced by ~~both~~ anthropogenic and biological sources with
113 ~~occasionally~~^{occasional} biomass burning.

114

115 **Figure 1** The location of ~~the~~ campaign site (red star), Changzhou, is ~~located~~-150 km
116 ~~at~~^{on} the northwest side of Shanghai.

117 **2.2 The instrumentation**

118 ~~To comprehensive~~ Multiple gaseous and particulate parameters were measured
119 simultaneously during the campaign to comprehensively interpret the nocturnal
120 atmospheric capacity and aerosol formation, ~~multiple gas and particle parameters were~~
121 ~~measured simultaneously and the~~ The related instruments are listed in Table 1. N₂O₅
122 and Particle Number and Size Distribution (PNSD) were measured on ~~the~~ fourth floor
123 of the sanatorium, which is the top of the building. Other instruments were ~~set up placed~~
124 in containers ~~placed~~ on the ground ~~and~~ 170 m northeast of the building. ~~These~~
125 ~~instruments monitored through the roof of containers and~~ ~~and sampling~~ inlets ~~were at~~
126 circa 5 m above the ground ~~through the containers' roof~~.

127 N₂O₅ was measured by Cavity Enhanced Absorption Spectrometer (CEAS) based
128 on Lambert-Beer's law which was developed by (Wang et al., 2017b). Briefly, air
129 samples were drawn through the window and reached out of the wall 30 cm to prevent
130 influence from surface deposition. ~~Aerosol~~ The aerosol membrane filter was deployed
131 before ~~sample~~ the PFA ~~sampling~~ tube and changed every 2 hours ~~during the~~ night to
132 avoid a decrease in N₂O₅ transmission efficiency due to the increased loss of N₂O₅ from
133 the accumulated aerosols on the filter. N₂O₅ was decomposed to NO₃ and NO₂ through
134 preheating tube ~~which is~~ heat at 130 °C and detected within a PFA-coated resonator
135 cavity ~~which is~~ heated at 110 °C to prevent the formation of N₂O₅ by reversible reaction
136 subsequently. At the end of each sampling cycle (5 min), ~~a~~ 30 s injection of high
137 concentration NO (10 ppm, 20 ml min⁻¹) ~~which~~ mixed with sample air was set to
138 eliminate NO₃-N₂O₅ in the system. The NO titration spectrums were adopted as ~~the~~
139 dynamic background spectrum by assuming ~~that~~ no H₂O concentration variation in ~~a~~
140 single sampling cycle. The loss of N₂O₅ in the sampling system and filter ~~were~~ was also
141 considered ~~within~~ ~~during~~ data correction. The limit of detection (LOD) was estimated
142 to be 2.7 pptv (1 σ) with an uncertainty of 19 %.

143 OH radical measurement was conducted by Fluorescence Assay by Gas Expansion
144 Laser-Induced Fluorescence techniques (FAGE-LIF), ~~ambient~~. Ambient air was

145 expanded through a 0.4 mm nozzle to low pressure in a detection chamber, ~~in~~ where
146 ~~OH radical irradiated by~~ the 308 nm laser pulse ~~irradiated OH radical~~ at a repetition
147 rate of 8.5 kHz (Chen et al., 2018). NO_x and O₃ were monitored by commercial
148 monitors (Thermo-Fisher 42i and 49i). Volatile organic compounds (VOCs) were
149 measured by ~~using an~~ automated Gas Chromatograph equipped with a Mass
150 Spectrometer and flame ionization detector (GC-MS) with a time resolution of 60 min.
151 The photolysis frequencies were determined from the spectral actinic photon flux
152 density measured by ~~spectroradiometer (Bohn et al., 2008)~~ ~~a spectroradiometer (Bohn~~
153 ~~et al., 2008)~~.

154 PM_{2.5} concentration was obtained by Tapered Element Oscillating Microbalance
155 (TEOM 1405, Thermo Scientific Inc). Aerosol surface concentration (S_a) was
156 converted from particle number and size distribution, which ~~was~~ measured by Scanning
157 Mobility Particle Sizer (SMPS, TSI 3936) and Aerosol Particle Sizer (APS, TSI 3321)
158 and modified to the wet particle-state S_a with a hygroscopic growth factor (Liu et al.,
159 2013). The uncertainty of the wet S_a was ~ 30 %. Meanwhile, water-soluble particulate
160 ~~species as well as components and~~ their gaseous precursors were analyzed through the
161 Monitor for AeRosols and GAses in ambient air (MARGA, Chen et al. (2017)).
162 Meteorological data ~~were also available~~, including the temperature, relative humidity
163 (RH), pressure, wind speed, and wind direction, ~~were also available~~.

164 **Table 1** The observed gas and particle parameters during the campaign.

Parameters	Detection of limit	Method	Accuracy
N ₂ O ₅	2.7 pptv (1 σ, 1 min)	CEAS	± 19 %
OH	1.6 × 10 ⁵ cm ⁻³ (1 σ, 60 s)	LIF ^a	± 21 %
NO	60 pptv (2 σ, 1 min)	PC ^c	± 10 %
NO ₂	0.3 ppbv (2 σ, 1 min)	PC ^c	± 10 %
O ₃	0.5 ppbv (2 σ, 1 min)	UV photometry	± 5 %
VOCs	20-300 pptv (60 min)	GC-MS	± 15 %
PM _{2.5}	0.1 µg m ⁻³ (1 min)	TEOM ^d	± 5 %
Photolysis frequencies	5 × 10 ⁻⁵ s ⁻¹ (1 min)	SR ^e	± 10 %
PNSD	14 nm -700 nm (4 min)	SMPS, APS	± 10 %
HNO ₃ , NO ₃ , HCl	0.06 ppbv (30 min)	MARGA ^f	± 20 %

NH_4^+ , NO_3^- , Cl^- , SO_4^{2-}	0.05 $\mu\text{g m}^{-3}$ (30 min)	MARGA ^f	$\pm 20\%$
--	------------------------------------	--------------------	------------

^a Laser-induced fluorescence; ^b Chemiluminescence; ^c Photolytic converter; ^d Tapered Element Oscillating Microbalance; ^e Spectroradiometer; ^f the Monitor for AeRosols and GAses in ambient air.

168 2.3 The empirical kinetic ~~modelling~~modeling approach

169 A box-~~model~~ model coupled with the Regional Atmospheric Chemical Mechanism version 2
170 (RACM2, Goliff, Stockwell & Lawson, 2013) is used to conduct the mitigation
171 strategies studies. The model is operated in one-hour time resolution with measurement
172 results of temperature, relative humidity, pressure, CO, NO_2 , H_2O , photolysis
173 frequencies~~s~~ and aggregated VOCs input to constrain the model. It should be noted that
174 HONO concentration is ~~simply~~ calculated by NO_2 times 0.02~~which is, as suggested by~~
175 Elshorbany et al. (2012)~~s~~ and has been used in ~~the~~ box model before (Lou et al., 2022).
176 Long ~~lived~~lived species such as H_2 and CH_4 are ~~set assumed~~ as constants (550 ppbv and
177 1900 ppbv~~s~~, respectively). ~~What's more~~ Moreover, a 13-hour constant loss rate of
178 unconstrained intermediate and secondary products, ~~which is~~ the result of synthetic
179 evaluating secondary simulation of secondary species, is set for representing the multi-
180 effects of deposition, transformation~~s~~ and transportation.

181 The approaches ~~to the~~ chemical production of O_3 ($\text{P}(\text{O}_3)$) and inorganic nitrate
182 ($\text{P}(\text{NO}_3^-)$) are ~~using previously~~ described ~~expression~~in previous articles (Tan et al., 2021;
183 Tan et al., 2018) ~~in and expressed as~~ Equation 1 and 4:

$$\text{P}(\text{O}_3) = \text{F}(\text{O}_3) - \text{D}(\text{O}_3) \quad \text{Eq1}$$

$$\text{F}(\text{O}_3) = k_{\text{HO}_2+\text{NO}}[\text{NO}][\text{HO}_2] + k_{(\text{RO}_2+\text{NO})\text{eff}}[\text{NO}][\text{RO}_2] \quad \text{Eq2}$$

$$\text{D}(\text{O}_3) = k_{\text{OH}+\text{NO}_2}[\text{OH}][\text{NO}_2] + (k_{\text{OH}+\text{O}_3}[\text{OH}] + k_{\text{HO}_2+\text{O}_3}[\text{HO}_2] + k_{\text{alkenes}+\text{O}_3}[\text{alkenes}])[\text{O}_3] \quad \text{Eq3}$$

$$\text{P}(\text{NO}_3^-) = \text{P}(\text{HNO}_3) + \text{P}(\text{pNO}_3^-) \quad \text{Eq4}$$

$$\text{P}(\text{HNO}_3) = k_{\text{OH}+\text{NO}_2}[\text{OH}][\text{NO}_2] \quad \text{Eq5}$$

$$\text{P}(\text{pNO}_3^-) = 0.25(2 - \varphi) C \gamma S_a [\text{N}_2\text{O}_5] \quad \text{Eq6}$$

184 briefly, $\text{P}(\text{O}_3)$ is net ozone production~~s~~ which ~~is~~ calculated by peroxy radical + NO
185 oxidation (Eq. 2) minus ~~the~~ chemical loss of O_3 and NO_2 (Eq. 3). $\text{P}(\text{NO}_3^-)$ is constituted
186 by reaction $\text{OH} + \text{NO}_2$ (Eq. 5) and N_2O_5 ~~heterogenous~~heterogeneous uptake (Eq. 6).
187 Here, rate constants of reactions are obtained from NASA JPL Publication ~~(Burkholder~~
188 ~~et al., 2015)~~ or RACM2 (Goliff et al., 2013). γ is the N_2O_5 uptake coefficient ~~which is~~
189 calculated from parameterization (γ_p , more details in chapter 3.3). φ represents ClNO_2

带格式的: 下标

190 production yield through N_2O_5 hydrolysis, and the mean value reported ~~in~~ by Xia et al.
191 (2020) ~~are~~ is used in this work.

192 ~~Empirical~~The empirical Kinetic Modeling Approach (EKMA) was innovated ~~for~~
193 ~~studying to study~~ the effects of precursors (VOCs, and NO_x) ~~reactivity on the~~ 带格式的：下标
194 ~~region's~~region's ozone pollution by Kanaya et al., which ~~help~~helps recognize the
195 region's susceptibility to precursors by weight and become a prevalent tool to study the
196 process of ozone formation (Tan et al., 2018; Yu et al., 2020b; Kanaya et al., 2008).
197 The prevention and control problem of pollutant generation can be transformed through
198 the EKMA curve to reduce its precursors' emissions. Furthermore, the
199 ~~precursors~~precursor reduction scheme needed for total pollutant ~~total~~ control is given
200 qualitatively. $P(\text{NO}_3^-)$ can also be analyzed through EKMA for the nonlinear secondary
201 formation relationship with precursor reactivity. Here, an isopleth diagram of the net
202 ozone production rate as functions of the reactivities of NO_x and VOCs can be derived
203 from EKMA. In detail, 0.01 to 1.2 emission reduction strategy assumptions are
204 exponential interpolation into 20 kinds of emission ~~situations~~situations of NO_x and
205 VOCs, respectively, which in total counts 400 scenarios.

206 2.4 The calculation of aerosol liquid water content

207 Aerosol liquid water content (ALWC) is calculated through ISORROPIA II
208 (Fountoukis and Nenes, 2007). Forward mode is applied in this study. Furthermore,
209 water-soluble ~~ions~~particulate components in $\text{PM}_{2.5}$ and gaseous species ($\text{NH}_3 + \text{HNO}_3 +$
210 HCl) obtained from MARGA, along with RH and T , are input as initial input. In
211 addition, metastable aerosol state is chosen ~~since~~due to high RH during this campaign.

212 3 Result and discussion

213 3.1 Overview of measurements

214 The time used in this study is China Standard Time (UTC + 8) and the local sunrise and
215 sunset time during the campaign were around 5 am and 7 pm, respectively. The whole
216 campaign period is divided into ~~the~~ four $\text{PM}_{2.5}$ clean periods and four $\text{PM}_{2.5}$ polluted
217 periods (9 out of 14 days, ~~the~~ latter polluted periods ~~and~~days day refer to $\text{PM}_{2.5}$ pollution

218 except specified description) according to the Chinese National Air Quality Standard
 219 (CNAQS) Grade I of daily $\text{PM}_{2.5}$ concentrations ($< 35.0 \mu\text{g m}^{-3}$). Figure 2 shows the
 220 meteorological parameters, and gas-phase and particulate species timeseries during the
 221 observation. During the campaign, the temperature was highand; the maximum reached
 222 34.5°C , with an average of $25.1 \pm 3.7^\circ\text{C}$. RH changed drastically from 21 % to 88 %,
 223 with a mean value at $58.9 \pm 14.0\%$. MeanThe mean NO_2 concentration was $14.8 \pm$
 224 9.5 ppbv . Meanwhile, the O_3 average was $54.6 \pm 28.8 \text{ ppbv}$, exceeding CNAQS Grade
 225 II for a maximum daily average of 8 h ozone ($160 \mu\text{g m}^{-3}$) on 14 out of 19 days and
 226 exceeding $200 \mu\text{g m}^{-3}$ on six days.

227
 228 **Figure 2** Timeseries of NO_2 , O_3 , N_2O_5 , OH radical, $\text{PM}_{2.5}$, and water-soluble particulate
 229 speciescomponents, temperature, and RH. The vertical dotted line represents the zero
 230 clock. The black horizontal solid line in O_3 and $\text{PM}_{2.5}$ panelpanels represents Chinese
 231 national air quality standardstandards for O_3 and $\text{PM}_{2.5}$, respectively. TopThe top panelcolor
 232 colorblocks represent the $\text{PM}_{2.5}$ clean day (light green) and $\text{PM}_{2.5}$ polluted day (salmon)
 233 respectively).

234
 235 Daytime OH radical ranged from 2×10^6 to 8×10^6 molecular cm^{-3} with a daily
 236 peak over 3×10^6 molecular cm^{-3} . Maximum OH radical reached 8.18×10^6 molecular

237 cm^{-3} in this campaign. ~~Comparing~~Compared with other summertime OH radical
238 observed ~~campaign~~ in China, OH radical concentration in this site is relatively low but
239 still on the same order of magnitude (Lu et al., 2012; Lu et al., 2013; Ma et al., 2022;
240 Tan et al., 2017; Woodward-Massey et al., 2020; Yang et al., 2021). N_2O_5 mean
241 concentration was 21.9 ± 39.8 pptv with ~~a~~ nocturnal average of 61.0 ± 63.1 pptv and ~~a~~
242 daily maximum of over 200 pptv at ~~8~~eight nights. The maximum concentration of N_2O_5
243 (477.2 pptv, 5 min resolution) appeared at 20:47 ~~on~~ June 8th. The average NO_3 radical
244 production rate $P(\text{NO}_3)$ is 2.1 ± 1.4 ppbv h^{-1} with nocturnal average $P(\text{NO}_3)$ 2.8 ± 1.6
245 ppbv h^{-1} and daytime $P(\text{NO}_3)$ 2.2 ± 1.4 ppbv h^{-1} . $P(\text{NO}_3)$ is about twice of documented
246 value in Taizhou and North China Plain (Wang et al., 2017a; Wang et al., 2018b; Wang
247 et al., 2020a), but close to another result in YRD before (Chen et al., 2019). ~~Average~~
248 of ~~The average~~ $\text{PM}_{2.5}$ was $34.6 \pm 17.8 \mu\text{g m}^{-3}$ with ~~a~~ maximum reach of $163.0 \mu\text{g m}^{-3}$.
249 The water-soluble particulate components of $\text{PM}_{2.5}$ are displayed as well, ~~the~~. The
250 average NO_3^- concentration was $10.6 \mu\text{g m}^{-3}$, which accounts for 38.3 % mass
251 concentration of water-soluble particulate components and 32.0 % total $\text{PM}_{2.5}$, while
252 the proportion of sulfate, ammonium, and chloride ~~are~~is 26.0 %, 18 ~~%,~~%, and 2.0 %
253 respectively. To sum up, during ~~the~~ campaign period, the pollution of $\text{PM}_{2.5}$ would be
254 generally exacerbated ~~in general~~ on high O_3 and NO_2 days. Precipitation occurred
255 during four clean processes receded pollutant concentration; otherwise, the pollution
256 condition remained severe.

257 The mean diurnal variations (MDC) of temperature, RH, NO_2 , O_3 , $P(\text{NO}_3)$, N_2O_5 ,
258 OH radical, and $\text{PM}_{2.5}$ in different air quality are shown in Figure 3. The temperature,
259 RH, and OH radical MDC show indistinctive difference~~differences~~ between clean
260 ~~day~~days (CD) and polluted ~~day~~days (PD). The MDC of NO_2 has two concentration
261 peaks ~~appeal~~that appear at 06:00 and 21:00 on CD, while at PD, its peak ~~appeal~~appears
262 at 20:00 and ~~maintain~~maintains a high level during ~~the~~ whole night. O_3 diurnal pattern
263 reflects a typical urban-influenced character with ~~a~~ maximum O_3 peak that lasts four
264 hours from 14:00 to 17:00 ~~with, while~~ polluted-day O_3 peak concentration is 1.2 higher

265 than clean-day. $P(\text{NO}_3)$ grows after the O_3 peak and maximum $P(\text{NO}_3)$ shows at 19:00
 266 with an average value of 1.7 ppbv h^{-1} on clean day CD. By contrast, the mean polluted-
 267 day $P(\text{NO}_3)$ is 2.6 ppbv h^{-1} and the maximum value reaches 4.7 ppbv h^{-1} . In
 268 contrast, the clean-day N_2O_5 has a higher average and maximum concentration than PD,
 269 which suggests a faster removal process during PD. $\text{PM}_{2.5}$ has a similar trend with
 270 $P(\text{NO}_3)$ and has a higher concentration during nighttime.

带格式的: 非上标/下标

带格式的: 非上标/下标

带格式的: 非上标/下标

271

272
 273 **Figure 3** The mean diurnal variations of temperature, RH, NO_2 (Salmon), O_3 , $P(\text{NO}_3)$,
 274 N_2O_5 , OH radical (orange), and $\text{PM}_{2.5}$ of clean day and polluted day.

275 3.2 The evolution of nitrate pollution

276 Figure 4 (a) shows the relationship of between nitrate and sulfate with water-soluble
 277 ion particulate components. Nitrate has positive correlation positively correlates with
 278 particulate total water-soluble ion particulate components, while the sulfate ratio
 279 having has an inverse correlation. With $\text{PM}_{2.5}$ concentration increasing, nitrate
 280 proportion increasing increases rapidly and keep keeps high weight at heavy $\text{PM}_{2.5}$
 281 period while sulfate appears ratio pear opposite phenomenon. Once the mass
 282 concentration of total water-soluble ion particulate component is over 30 $\mu\text{g m}^{-3}$, the
 283 mass fraction of nitrate in total water-soluble ion particulate components is up to 50 %
 284 on average. This result illustrates that particulate nitrate is one of the vital sources of

带格式的: 字体颜色: 黑色

带格式的: 字体颜色: 黑色

带格式的: 字体颜色: 黑色

285 explosive growth particulate matter explosive growth.

286
287 **Figure 4** (a) Particulate ion mass concentration ratio of nitrate and sulfate to water
288 solubles ion. (b) NOR against RH, colored with temperature. (c) SOR against RH,
289 colored with temperature.

290

291 To further assess the conversion capacity of nitrate and sulfate in this site, the sulfur
292 oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) are used ~~for indicating to~~
293 ~~indicate the~~ secondary transformation ratio of SO_2 and NO_2 , respectively (Sun et al.,
294 2006). (Sun et al., 2006). SOR and NOR are estimated using ~~the~~ formulae below:

295

$$\text{SOR} = \frac{n\text{SO}_4^{2-}}{n\text{SO}_4^{2-} + n\text{SO}_2} \quad \text{Eq7}$$

$$\text{NOR} = \frac{n\text{NO}_3^-}{n\text{NO}_3^- + n\text{NO}_2} \quad \text{Eq8}$$

296 ~~here~~ Where n refers to the molar concentration. ~~The, the~~ higher SOR and NOR represent
297 more oxidation of gaseous species into a secondary aerosol. As depicted in Figure 4 (b-
298 c), NOR ~~rapidly~~ increases at $\text{RH} < 45\%$, remains constant at $45\% < \text{RH} < 75\%$,
299 and ends with a ~~sharply~~ sharp increase at $\text{RH} > 75\%$. ~~In addition, NOR has inverse~~
300 ~~correlation with temperature which reflects the importance of nighttime secondary~~
301 ~~transformation and the influence of negative correlation of gas solid equilibrium~~
302 ~~between particulate nitrate and gaseous HNO_3 .~~ During the study period, not only is the
303 average concentration of NO_2 ~~is~~ higher among PD, but also there is ~~significantealso a~~ 带格式的: 非上标/下标
304 significant difference between PD and CD NOR. The average values of NOR are 0.32
305 in PD, and 0.25 in CD, respectively, which manifests ~~that~~ the more secondary

306 transformation and pollution potential in PD. On theIn contrast, the SOR stays constant
 307 at ahigh value (~ 0.5) during the whole RH scale, which shows adifferent pattern with
 308 previouslyfrom previous research (Li et al., 2017; Zheng et al., 2015). One possible
 309 explanation is that SO₂ concentration stays low level during the whole campaign (4.4 ±
 310 2.4 ppbv on average), and SO₂ oxidation depends on the limit of SO₂ instead of
 311 oxidation capability. Meanwhile, the mean SOR in both situations areis over 0.5 (0.52
 312 in CD and 0.56 in PD), further supporting the SO₂ limited hypothesis. Besides, Table 2
 313 summariessummarizes NOR and SOR values in YRD. NOR and SOR in this study are
 314 similar withto values reported in other YRD research (Shu et al., 2019; Zhang et al.,
 315 2020b; Qin et al., 2021; Zhao et al., 2022), except values in 2013 (Wang et al., 2016),
 316 but higher than north China study (Cao et al., 2017) which emphasize the strongsolid
 317 atmospheric oxidation capacity in YRD region.

318 **Table 2** Statistical result of NOR and SOR in YRD

Location and Year	SOR				NOR				References
	Max	Min	Mean	SD	Max	Min	Mean	SD	
Nanjing 2013 Winter	0.42	0.10	0.28	0.11	0.29	0.15	0.21	0.05	
Suzhou 2013 Winter	0.41	0.15	0.27	0.11	0.30	0.06	0.16	0.08	
Lin'an 2013 Winter	0.50	0.19	0.35	0.11	0.24	0.12	0.18	0.05	
<u>Hangzhou</u> <u>Hangzhou</u> 2013 Winter	0.30	0.14	0.21	0.06	0.11	0.06	0.09	0.02	(Wang et al., 2016)
Ningbo 2013 Winter	0.35	0.09	0.21	0.11	0.23	0.03	0.11	0.07	
YRD 2016 Summer	-	-	0.347	-	-	-	0.11	-	(Shu et al., 2019)
YRD 2016 Winter	-	-	0.247	-	-	-	0.15	-	
Nanjing 2019 spring	0.48	0.38	-	-	0.31	0.29	-	-	(Qin et al., 2021)
Changzhou 2019 spring	0.35	0.3	-	-	0.27	0.23	-	-	
Changzhou 2019 Winter	0.68	0.24	0.35	0.12	0.44	0.13	0.2	0.1	(Zhang et al., 2020b)
Changzhou 2019 Summer	0.16	0.76	0.54	0.1	0.08	0.63	0.28	0.14	This work

319 **3.3 The derivation of N₂O₅ uptake coefficient**

320 Statistical analysis of the observation above highlights the fastrapid formation of
 321 particulate nitrate. InordertoTo assess the contribution of N₂O₅ hydrolysis to particular
 322 nitrate formation, two methods are applied to calculate the N₂O₅ uptake coefficient. The

323 first method is a stationary-state approximation (Brown et al., 2003). By assuming that
 324 the rates of production and loss of N_2O_5 are approximately in balance, the total loss rate
 325 of N_2O_5 ($k_{\text{N}_2\text{O}_5}$) can be calculated through equation 9. The $k_{\text{N}_2\text{O}_5}$ is mainly dominated by
 326 N_2O_5 heterogeneous uptake, since homogeneous hydrolysis of N_2O_5 ~~contributes very~~
 327 ~~little~~contribute tiny (Brown and Stutz, 2012). N_2O_5 uptake coefficient through steady-
 328 state (note as γ_{S}) is derived as equation 10. Here C is the mean molecule speed of N_2O_5 ,
 329 and S_a is the aerosol surface concentration.

$$\tau_{\text{ss}}(\text{N}_2\text{O}_5) = \frac{[\text{N}_2\text{O}_5]}{k_{\text{R3.1}}[\text{NO}_2][\text{O}_3]} = (k_{\text{N}_2\text{O}_5} + \frac{k_{\text{NO}_3}}{K_{\text{eq}}[\text{NO}_2]})^{-1} \quad \text{Eq9}$$

$$k_{\text{N}_2\text{O}_5} = 0.25 C \gamma_{\text{S}} S_a \quad \text{Eq10}$$

330 Due to the fast variety of NO_3 loss ~~rate~~ from VOCs, the steady-state method has
 331 been unattainable in conditions affected by emission interferences. During the whole
 332 campaign, we only retrieve three valid fitting results. As shown in Figure 5, the fitted
 333 γ_{S} ~~are~~ ranged from 0.057 to 0.123, which ~~are~~is comparable with Taizhou (0.041, Wang
 334 et al. (2020a)) and much higher than other results in China (Yu et al., 2020a; Wang et
 335 al., 2018a; Wang et al., 2020b; Wang et al., 2017a). The calculated k_{NO_3} ranged from
 336 0.002 to 0.16 s^{-1} , represents drastic VOCs change during this campaign.

337
 338 **Figure 5** Derived N_2O_5 uptake coefficients from N_2O_5 steady lifetime ($\gamma(\text{N}_2\text{O}_5 \text{ S})_{\text{S}}$)
 339 with NO_2 and S_a , plots (a-c) represent the linear fitting results ~~at~~on the nights of 05/30,
 340 06/10, and 06/11, respectively.

341 The other approach is the parameterization by (Yu et al., 2020a) which is depicted
 342 as follows:

$$\gamma_p = \frac{4 V_a}{c S_a} K_H \times 3.0 \times 10^4 \times [H_2O] \left(1 - \frac{1}{(0.033 \times \frac{[H_2O]}{[NO_3^-]}) + 1 + (3.4 \times \frac{[Cl^-]}{[NO_3^-]})} \right) \quad \text{Eq11}$$

343

344 where Where V_a/S_a is the measured aerosol volume to surface area ratio by SMPS; K_H
 345 is Henry's Henry's law coefficient which is set as 51 as recommended; $[NO_3^-]$ and $[Cl^-]$
 346 are aerosol inorganic concentration measured by Marga; $[H_2O]$ is aerosol water content
 347 calculated through ISORROPIA II. The parameterization calculated N_2O_5 uptake
 348 coefficient (note as γ_p) vary from 0.014 to 0.094 with average 0.035 The valid
 349 parameterization calculated N_2O_5 uptake coefficient (note as γ_p) from May 30th to June
 350 08th, 2019, shows in Figure 6 a good consistency between the trends of γ_p and aerosol
 351 water content. Nighttime γ_p varies from 0.001 to 0.024 with an average of 0.069 ±
 352 0.0050 in polluted condition and 0.0036 ± 0.0026 in clean condition. The N_2O_5 uptake
 353 coefficient shows a good correlation between RH and aerosol water content. For the
 354 N_2O_5 uptake coefficient, although particulate nitrate mass concentration increased
 355 during the pollution event, an antagonistic effect on the N_2O_5 uptake coefficient was
 356 not obvious for the nitrate molarity decreasing.

357 Furthermore, we compare the difference between γ_s and γ_p . Taking the night
 358 of May 30th as an example, the γ_s is 0.10089, while γ_p ranges from 0.021024 to
 359 0.037057, with an average value as of 0.026013 ± 0.0051. The difference between
 360 steady-state and parameterization is significant; one possible explanation is uncertainty
 361 for stationary-state approximation caused by local NO or VOCs emission (Brown et al.,
 362 2009; Chen et al., 2022). Another reason is that parameterization by Yu et al. ignores
 363 the impact of organic matter on the fine particle. The difference in aerosol composition
 364 between this work and Yu et al may also bring uncertainty. Overall consideration, γ_p
 365 will be chosen for the N_2O_5 heterogeneous uptake coefficient in later analysis and
 366 discussion.

367 **Figure 6** Results of N_2O_5 uptake coefficients through parameterization (γ_p). (a) shows
368 timeseries of γ_p and ISORROPIA II results of aerosol water content (AWC). (b) is the
369 box-plot of γ_p on the polluted day and clean day, the hollow square represents the mean
370 value, and the solid line across the box shows the median score for the data set, while
371 the top and bottom whiskers represent 90 % and 10 % value of γ_p , respectively.
372

373 3.4 Quantifying the contribution of nitrate formation pathways

374 After the N_2O_5 uptake coefficient is counted, nitrate production potential ($\text{P}(\text{NO}_3^-)$) can
375 be calculated. Here N_2O_5 uptake coefficient is set as 0.035036 on clean day and 0.069
376 on polluted day, respectively, which is the average value derived from
377 parameterization, while the production ratio of NO_3^- (by considering ClNO_2 yield
378 of 0.54) is set as 1.46 from the former study (Xia et al., 2020). Gas particle distribution
379 is considered by the result of particular nitrate and gas-phase nitrate by MARGA (input
380 $\text{HNO}_3/\text{NO}_3^-$ ratio to the model as $\text{OH} + \text{NO}_2$ nitrate production rate). Subsequent
381 discussion focuses on $\text{OH} + \text{NO}_2$ and N_2O_5 heterogeneous uptake. The heterogeneous
382 uptake coefficient is set as 5.8×10^{-6} depending on the report by Yu et al. (2021) which
383 is the result of 70% RH on urban grime.

384 The mean diurnal variations of the nitrate production potential of clean and polluted
385 day are depicted in Figure 6. The $\text{OH} + \text{NO}_2$ pathway shows no significant difference
386 between clean and polluted day and dominates clean day nitrate formation
387 potential. Since the level of OH and NO_2 is less affected by the fine particle level.
388 However, the rapid increase of the N_2O_5 heterogeneous uptake pathway on polluted day
389 is fatal, and its peak formation rate at night over the $\text{OH} + \text{NO}_2$ pathway which can be

带格式的: 字体颜色: 文字 1

390 used to explain nighttime nitrate explosive growth.

391 As shown ~~as in~~ Figure 6e~~7c~~, OH + NO₂ ~~dominated~~ dominates nitrate production on
392 clean day, while ~~the~~ N₂O₅ uptake pathway only contributes 13.26 $\mu\text{g m}^{-3}$. On polluted
393 days, the ability of N₂O₅ uptake ~~grows~~ fast ~~which reached 25.3, reaching 50.1 μg~~
394 m⁻³, while ~~the~~ OH pathway ~~don't~~ doesn't change ~~too~~ much. There is no distinct
395 difference ~~of~~ in ~~the~~ daytime pathway (OH + NO₂) between clean day and polluted day,
396 while ~~the~~ nighttime pathway ratio rises from 38.41 % on clean day to 52.96~~7.2~~ % on
397 polluted day. ~~The~~ NO₂ heterogeneous uptake increases from 0.93 $\mu\text{g m}^{-3}$ on clean day to
398 2.0 $\mu\text{g m}^{-3}$ on polluted day, but the contribution proportion does not change obviously.
399 Both the higher N₂O₅ uptake coefficient and higher S_a on polluted day increase the
400 contribution of N₂O₅ hydrolysis on particular nitrate ~~is vital~~ at pollution condition.

401

402

403 Figure 6~~7~~ The mean diurnal variations of ~~the~~ nitrate production potential of clean day(a)
404 and polluted day (b) and the P(NO₃⁻) distribution of clean and polluted day (c).

406 3.5 Mitigation strategies of particulate nitrate and ozone productions

407 We selected two pollution episodes (Episode I (2019.05.30 00:00 - 2019.06.02 00:00)

带格式的: 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1, 非上标/下标

带格式的: 字体颜色: 文字 1

带格式的: 缩进: 左 -1.18 字符

带格式的: 字体颜色: 黑色

408 and IV (2019.06.14 17:30 - 2019.06.17 12:00)) to explore the mitigation way of ozone
 409 and nitrate pollution. Figure 78 shows the EKMA of $P(O_3)$ and $P(NO_3^-)$ of these two
 410 periods, O_3 located at VOCs controlling area in the two pollution episodes, which
 411 consist with previous YRD urban ozone sensitivity study (Jiang et al., 2018; Zhang et
 412 al., 2020a; Xu et al., 2021). The best precursor reduction for O_3 is VOCs: $NO_x = 2:1$
 413 while nitrate is located at the transition area, which means either of the precursors
 414 reduction will mitigate nitrate pollution. For the regional and complex air pollution
 415 characteristics in this region, a fine particle-targeting reduction scheme will aggravate
 416 O_3 pollution. In contrast, the O_3 -targeting scheme can mitigate O_3 and fine particle
 417 simultaneously.

418
 419 **Figure 78** Isogram of $P(O_3)$ and $P(NO_3^-)$ of polluted episode I (2019.05.30 00:00 -
 420 2019.06.02 00:00) and IV (2019.06.14 17:30 - 2019.06.17 12:00) with different NO_x
 421 and VOC reduction degree. The grey dash line represents the ridge line.

422 4 Conclusion

423 A comprehensive campaign was conducted to interpret the atmospheric oxidation
 424 capacity and aerosol formation during from May 30th to June 18th, 2019 at in

425 Changzhou, China. The high O₃ and PM_{2.5} ~~concentration~~concentrations confirm
426 complex air pollution characteristics in Changzhou, and nitrate accounts for 38.3 %
427 mass concentration of total water-soluble particulate components and 32.0 % of total
428 PM_{2.5}. In addition, the average values of NOR are 0.32 in PD₅₀ and 0.25 in CD. The
429 positive correlation between NOR and RH and inverse correlation refer to the
430 contribution of N₂O₅ ~~heterogenous~~heterogeneous uptake to nitrate formation.

431 Based on field observations of OH and related parameters, we show OH oxidation
432 of the NO₂ pathway steadily ~~contribute~~contributes to nitrate formation no matter the
433 clean or polluted period and domination clean day nitrate production (about 22 $\mu\text{g m}^{-3}$).
434 N₂O₅ heterogeneous uptake contribution ~~grow rapidly~~proliferated on polluted day, from
435 13.26 $\mu\text{g m}^{-3}$ (38.4 %) in 1 % on clean days to 25.350.1 $\mu\text{g m}^{-3}$ (52.9 %) in 67.2 % on
436 polluted days. NO₂ heterogeneous uptake contributes minor to nitrate formation (2.6 %).

437 The precursor reduction simulation suggests the reduction ratio of VOCs: NO_x
438 equals 2:1 can simultaneously and effectively mitigate O₃ and fine particle pollution
439 during the summertime complex pollution period in Changzhou. ~~In order to~~ To more
440 precisely and delicately establish a cooperative control scheme for regional O₃ and
441 nitrate, the regional and long-time ~~filed~~field campaigns are needed in the future; to
442 analyze the seasonal and interannual variation of O₃ and nitrate and relevant parameters.
443

444 **Code/Data availability.** The datasets used in this study are available from the
445 corresponding author upon request (k.lu@pku.edu.cn).

446
447 **Author contributions.** K.D.L. and Y.H.Z. designed the study. T.Y.Z analyzed the data
448 and wrote the paper with input from all authors.
449

450 **Competing interests.** The authors declare that they have no conflicts of interest.
451

452 **Acknowledgments.** This project is supported by the National Natural Science
453 Foundation of China (21976006); the Beijing Municipal Natural Science Foundation
454 for Distinguished Young Scholars (JQ19031); the National Research Program for Key
455 Issue in Air Pollution Control (DQGG0103-01, 2019YFC0214800). Thanks for the data

456 contributed by field campaign team.

457 **References**

458 Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L.-M., and Zhang, Y.-H.: Optical properties and chemical composition of the atmospheric aerosol in
459 urban Guangzhou, China, *Atmospheric Environment*, 42, 6335-6350,
460 10.1016/j.atmosenv.2008.01.030, 2008.

461 Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N₂O₅
462 reactivity on aqueous particles: the competing effects of particle liquid water,
463 nitrate and chloride, *Atmospheric Chemistry and Physics*, 9, 8351-8363,
464 10.5194/acp-9-8351-2009, 2009.

465 Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E.,
466 Vrekoussis, M., Bloss, W. J., Clapp, L. J., Kortner, M., Dorn, H. P., Monks, P.
467 S., Platt, U., Plass-Düller, C., Mihalopoulos, N., Heard, D. E., Clemishaw, K.
468 C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency
469 measurement techniques: results of a comparison within the ACCENT project,
470 *ACP*, 8, 5373-5391, 10.5194/acp-8-5373-2008, 2008.

471 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, *Chemical
472 Society Reviews*, 41, 6405-6447, 10.1039/c2cs35181a, 2012.

473 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state
474 approximation to the interpretation of atmospheric observations of NO₃ and
475 N₂O₅, *Journal of Geophysical Research-Atmospheres*, 108, 10,
476 10.1029/2003jd003407, 2003.

477 Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A.,
478 Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M.,
479 Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive
480 uptake coefficients for N₂O₅ determined from aircraft measurements during the
481 Second Texas Air Quality Study: Comparison to current model
482 parameterizations, *Journal of Geophysical Research-Atmospheres*, 114,
483 10.1029/2008jd011679, 2009.

484 Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J., Huie, R., Kolb, C. E., Kurylo,
485 M., Orkin, V., Wilmouth, D. M., and Wine, P.: Chemical Kinetics and
486 Photochemical Data for Use in Atmospheric Studies, Evaluation Number 18,
487 10.13140/RG.2.1.2504.2806, 2015.

488 Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., Ho, K.-F.,
489 Wang, G.-H., and Han, Y.-M.: Winter and Summer PM_{2.5} Chemical
490 Compositions in Fourteen Chinese Cities, *J Air Waste Manage*, 62, 1214-1226,
491 10.1080/10962247.2012.701193, 2012.

492 Cao, Z., Zhou, X., Ma, Y., Wang, L., Wu, R., Chen, B., and Wang, W.: The
493 Concentrations, Formations, Relationships and Modeling of Sulfate, Nitrate and
494 Ammonium (SNA) Aerosols over China, *Aerosol and Air Quality Research*, 17,
495

带格式的：缩进：左侧： 0 厘米，悬挂缩进： 2 字符，首行缩进： -2 字符

带格式的：缩进：左侧： 0 厘米，悬挂缩进： 2 字符，首行缩进： -2 字符

496 84-97, 10.4209/aaqr.2016.01.0020, 2017.

497 Chan, Y. C., Evans, M. J., He, P. Z., Holmes, C. D., Jaegle, L., Kasibhatla, P., Liu, X.

498 Y., Sherwen, T., Thornton, J. A., Wang, X., Xie, Z. Q., Zhai, S. T., and

499 Alexander, B.: Heterogeneous Nitrate Production Mechanisms in Intense Haze

500 Events in the North China Plain, *Journal of Geophysical Research-Atmospheres*,

501 126, 10.1029/2021jd034688, 2021.

502 Chang, Y. H., Zhang, Y. L., Tian, C. G., Zhang, S. C., Ma, X. Y., Cao, F., Liu, X. Y.,

503 Zhang, W. Q., Kuhn, T., and Lehmann, M. F.: Nitrogen isotope fractionation

504 during gas-to-particle conversion of NO_x to NO₃⁻ in the atmosphere -

505 implications for isotope-based NO_x source apportionment, *Atmospheric*

506 *Chemistry and Physics*, 18, 11647-11661, 10.5194/acp-18-11647-2018, 2018.

507 Chen, H., Hu, R., Xie, P., Xing, X., Ling, L., Li, Z., Wang, F., Wang, Y., Liu, J., and

508 Liu, W.: A hydroxyl radical detection system using gas expansion and fast gating

509 laser-induced fluorescence techniques, *J. Environ. Sci.*, 65, 190-200,

510 10.1016/j.jes.2017.03.012, 2018.

511 Chen, X., Walker, J. T., and Geron, C.: Chromatography related performance of the

512 Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and

513 field-based evaluation, *Atmos. Meas. Tech.*, 10, 3893-3908, 10.5194/amt-10-

514 3893-2017, 2017.

515 Chen, X., Wang, H., and Lu, K.: Interpretation of NO₃-N₂O₅ observation via steady

516 state in high-aerosol air mass: the impact of equilibrium coefficient in ambient

517 conditions, *Atmospheric Chemistry and Physics*, 22, 3525-3533, 10.5194/acp-

518 22-3525-2022, 2022.

519 Chen, X. R., Wang, H. C., Liu, Y. H., Su, R., Wang, H. L., Lou, S. R., and Lu, K. D.:

520 Spatial characteristics of the nighttime oxidation capacity in the Yangtze River

521 Delta, China, *Atmospheric Environment*, 208, 150-157,

522 10.1016/j.atmosenv.2019.04.012, 2019.

523 Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F.,

524 Yang, X. P., Liu, Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M.,

525 Zeng, L. M., and Zhang, Y. H.: Field Determination of Nitrate Formation

526 Pathway in Winter Beijing, *Environmental Science & Technology*, 54, 9243-

527 9253, 10.1021/acs.est.0c00972, 2020.

528 Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global

529 atmospheric chemistry calculated with an empirical parameterization in the

530 EMAC model, *ACP*, 12, 9977-10000, 10.5194/acp-12-9977-2012, 2012.

531 Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient

532 thermodynamic equilibrium model for K⁺-Ca²⁺-Mg²⁺-Nh(4)⁽⁺⁾-Na⁺-SO₄²⁻

533 NO₃⁻-Cl⁻-H₂O aerosols, *Atmospheric Chemistry and Physics*, 7, 4639-4659,

534 2007.

535 Goliff, W. S., Stockwell, W. R., and Lawson, C. V.: The regional atmospheric

536 chemistry mechanism, version 2, *Atmospheric Environment*, 68, 174-185,

537 10.1016/j.atmosenv.2012.11.038, 2013.

538 Guo, L., Hu, Y., Hu, Q., Lin, J., Li, C., Chen, J., Li, L., and Fu, H.: Characteristics
539 and chemical compositions of particulate matter collected at the selected metro
540 stations of Shanghai, China, *Science of the Total Environment*, 496, 443-452,
541 10.1016/j.scitotenv.2014.07.055, 2014.

542 Hagler, G. S. W., Bergin, M. H., Salmon, L. G., Yu, J. Z., Wan, E. C. H., Zheng, M.,
543 Zeng, L. M., Kiang, C. S., Zhang, Y. H., Lau, A. K. H., and Schauer, J. J.:
544 Source areas and chemical composition of fine particulate matter in the Pearl
545 River Delta region of China, *Atmos. Environ.*, 40, 3802-3815,
546 10.1016/j.atmosenv.2006.02.032, 2006.

547 Jiang, M., Lu, K., Su, R., Tan, Z., Wang, H., Li, L., Fu, Q., Zhai, C., Tan, Q., Yue, D.,
548 Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Ozone formation and key
549 VOCs in typical Chinese city clusters, *Chinese Sci Bull*, 63, 1130-1141, 2018.

550 Kanaya, Y., Fukuda, M., Akimoto, H., Takegawa, N., Komazaki, Y., Yokouchi, Y.,
551 Koike, M., and Kondo, Y.: Urban photochemistry in central Tokyo: 2. Rates and
552 regimes of oxidant (O_3+NO_2) production, *Journal of Geophysical Research-
553 Atmospheres*, 113, 10.1029/2007jd008671, 2008.

554 Li, H. Y., Zhang, Q., Zhang, Q., Chen, C. R., Wang, L. T., Wei, Z., Zhou, S.,
555 Parworth, C., Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H. L.,
556 Wallington, T. J., and He, K. B.: Wintertime aerosol chemistry and haze
557 evolution in an extremely polluted city of the North China Plain: significant
558 contribution from coal and biomass combustion, *Atmospheric Chemistry and
559 Physics*, 17, 4751-4768, 2017.

560 Liu, X., Gu, J., Li, Y., Cheng, Y., Qu, Y., Han, T., Wang, J., Tian, H., Chen, J., and
561 Zhang, Y.: Increase of aerosol scattering by hygroscopic growth: Observation,
562 modeling, and implications on visibility, *Atmos. Res.*, 132-133, 91-101,
563 <https://doi.org/10.1016/j.atmosres.2013.04.007>, 2013.

564 Lou, S., Tan, Z., Gan, G., Chen, J., Wang, H., Gao, Y., Huang, D., Huang, C., Li, X.,
565 Song, R., Wang, H., Wang, M., Wang, Q., Wu, Y., and Huang, C.: Observation
566 based study on atmospheric oxidation capacity in Shanghai during late-autumn:
567 Contribution from nitril chloride, *Atmospheric Environment*, 271, 118902,
568 <https://doi.org/10.1016/j.atmosenv.2021.118902>, 2022.

569 Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M.,
570 Haseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng,
571 L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in
572 a suburban environment near Beijing: observed and modelled OH and HO₂
573 concentrations in summer 2006, *Atmospheric Chemistry and Physics*, 13, 1057-
574 1080, 10.5194/acp-13-1057-2013, 2013.

575 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C.,
576 Haseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M.,
577 Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and
578 modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a
579 missing OH source in a VOC rich atmosphere, *Atmospheric Chemistry and*

580 Physics, 12, 1541-1569, 10.5194/acp-12-1541-2012, 2012.

581 Ma, X. F., Tan, Z. F., Lu, K. D., Yang, X. P., Chen, X. R., Wang, H. C., Chen, S. Y.,
582 Fang, X., Li, S. L., Li, X., Liu, J. W., Liu, Y., Lou, S. R., Qiu, W. Y., Wang, H.
583 L., Zeng, L. M., and Zhang, Y. H.: OH and HO₂ radical chemistry at a suburban
584 site during the EXPLORE-YRD campaign in 2018, Atmospheric Chemistry and
585 Physics, 22, 7005-7028, 2022.

586 Meng, Z. Y., Wu, L. Y., Xu, X. D., Xu, W. Y., Zhang, R. J., Jia, X. F., Liang, L. L.,
587 Miao, Y. C., Cheng, H. B., Xie, Y. L., He, J. J., and Zhong, J. T.: Changes in
588 ammonia and its effects on PM2.5 chemical property in three winter seasons in
589 Beijing, China, Science of the Total Environment, 749, 2020.

590 Ming, L., Jin, L., Li, J., Fu, P., Yang, W., Liu, D., Zhang, G., Wang, Z., and Li, X.:
591 PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal
592 variations, and regional pollution events, Environmental Pollution, 223, 200-212,
593 10.1016/j.envpol.2017.01.013, 2017.

594 Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J.,
595 Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.:
596 Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃,
597 N₂O₅, C₁NO₂ and particle-phase nitrate, Atmospheric Chemistry and Physics,
598 16, 13231-13249, 10.5194/acp-16-13231-2016, 2016.

599 Qin, Y., Li, J. Y., Gong, K. J., Wu, Z. J., Chen, M. D., Qin, M. M., Huang, L., and
600 Hu, J. L.: Double high pollution events in the Yangtze River Delta from 2015 to
601 2019: Characteristics, trends, and meteorological situations, Science of the Total
602 Environment, 792, 10.1016/j.scitotenv.2021.148349, 2021.

603 Qiu, X. H., Ying, Q., Wang, S. X., Duan, L., Zhao, J., Xing, J., Ding, D., Sun, Y. L.,
604 Liu, B. X., Shi, A. J., Yan, X., Xu, Q. C., and Hao, J. M.: Modeling the impact of
605 heterogeneous reactions of chlorine on summertime nitrate formation in Beijing,
606 China, Atmospheric Chemistry and Physics, 19, 6737-6747, 10.5194/acp-19-
607 6737-2019, 2019.

608 Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air
609 pollution to climate change, Third;3rd;, Book, Whole, Wiley, Hoboken, New
610 Jersey2016.

611 Shang, D. J., Peng, J. F., Guo, S., Wu, Z. J., and Hu, M.: Secondary aerosol formation
612 in winter haze over the Beijing-Tianjin-Hebei Region, China, Front. Env. Sci.
613 Eng., 15, 13, 10.1007/s11783-020-1326-x, 2021.

614 Shu, L., Wang, T. J., Xie, M., Li, M. M., Zhao, M., Zhang, M., and Zhao, X. Y.:
615 Episode study of fine particle and ozone during the CAPUM-YRD over Yangtze
616 River Delta of China: Characteristics and source attribution, Atmospheric
617 Environment, 203, 87-101, 10.1016/j.atmosenv.2019.01.044, 2019.

618 Song, C. H. and Carmichael, G. R.: Gas-particle partitioning of nitric acid modulated
619 by alkaline aerosol, Journal of Atmospheric Chemistry, 40, 1-22, 2001.

620 Staudt, S., Gord, J. R., Karimova, N. V., McDuffie, E. E., Brown, S. S., Gerber, R. B.,
621 Nathanson, G. M., and Bertram, T. H.: Sulfate and Carboxylate Suppress the

622 Formation of ClNO₂ at Atmospheric Interfaces, *Acs Earth and Space Chemistry*,
623 3, 1987-1997, 2019.

624 Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y., and An, Z. S.: Chemical
625 characteristics of PM_{2.5} and PM₁₀ in haze-fog episodes in Beijing,
626 *Environmental Science & Technology*, 40, 3148-3155, 10.1021/es051533g,
627 2006.

628 Tan, Z., Wang, H., Lu, K., Dong, H., Liu, Y., Zeng, L., Hu, M., and Zhang, Y.: An
629 Observational Based Modeling of the Surface Layer Particulate Nitrate in the
630 North China Plain During Summertime, *Journal of Geophysical Research: Atmospheres*, 126, e2021JD035623, <https://doi.org/10.1029/2021JD035623>,
631 2021.

632 Tan, Z. F., Lu, K. D., Dong, H. B., Hu, M., Li, X., Liu, Y. H., Lu, S. H., Shao, M., Su,
633 R., Wang, H. C., Wu, Y. S., Wahner, A., and Zhang, Y. H.: Explicit diagnosis of
634 the local ozone production rate and the ozone-NO_x-VOC sensitivities, *Science Bulletin*, 63, 1067-1076, 10.1016/j.scib.2018.07.001, 2018.

635 Tan, Z. F., Fuchs, H., Lu, K. D., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H. B.,
636 Gomm, S., Haseler, R., He, L. Y., Holland, F., Li, X., Liu, Y., Lu, S. H., Rohrer,
637 F., Shao, M., Wang, B. L., Wang, M., Wu, Y. S., Zeng, L. M., Zhang, Y. S.,
638 Wahner, A., and Zhang, Y. H.: Radical chemistry at a rural site (Wangdu) in the
639 North China Plain: observation and model calculations of OH, HO₂ and RO₂
640 radicals, *Atmospheric Chemistry and Physics*, 17, 663-690, 10.5194/acp-17-663-
641 2017, 2017.

642 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C.,
643 Kecorius, S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅
644 uptake coefficient and production yield of ClNO₂ in polluted northern China:
645 roles of aerosol water content and chemical composition, *Atmospheric
646 Chemistry and Physics*, 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.

647 Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Pan, C., Li, Y. e., and Liu, D.: Regional
648 Characteristics of Air Pollutants during Heavy Haze Events in the Yangtze River
649 Delta, *Aerosol and Air Quality Research*, 16, 2159-2171,
650 10.4209/aaqr.2015.09.0551, 2016.

651 Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D.,
652 Tan, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., and
653 Zhang, Y.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications
654 of a Large Nitrate Formation Pathway, *Environmental Science and Technology
655 Letters*, 4, 416-420, 10.1021/acs.estlett.7b00341, 2017a.

656 Wang, H. C. and Lu, K. D.: Determination and Parameterization of the Heterogeneous
657 Uptake Coefficient of Dinitrogen Pentoxide (N₂O₅), *Prog. Chem.*, 28, 917-933,
658 10.7536/pc151225, 2016.

659 Wang, H. C., Chen, J., and Lu, K. D.: Development of a portable cavity-enhanced
660 absorption spectrometer for the measurement of ambient NO₃ and N₂O₅:
661 experimental setup, lab characterizations, and field applications in a polluted
662

664 urban environment, *Atmos. Meas. Tech.*, 10, 1465-1479, 10.5194/amt-10-1465-
665 2017, 2017b.

666 Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Wu, Z. J., Wu, Y. S., and Sun, K.:
667 Fast particulate nitrate formation via N₂O₅ uptake aloft in winter in Beijing,
668 *Atmospheric Chemistry and Physics*, 18, 10483-10495, 10.5194/acp-18-10483-
669 2018, 2018a.

670 Wang, H. C., Chen, X. R., Lu, K. D., Hu, R. Z., Li, Z. Y., Wang, H. L., Ma, X. F.,
671 Yang, X. P., Chen, S. Y., Dong, H. B., Liu, Y., Fang, X., Zeng, L. M., Hu, M.,
672 and Zhang, Y. H.: NO₃ and N₂O₅ chemistry at a suburban site during the
673 EXPLORE-YRD campaign in 2018, *Atmospheric Environment*, 224, 9,
674 10.1016/j.atmosenv.2019.117180, 2020a.

675 Wang, H. C., Chen, X. R., Lu, K. D., Tan, Z. F., Ma, X. F., Wu, Z. J., Li, X., Liu, Y.
676 H., Shang, D. J., Wu, Y. S., Zeng, L. M., Hu, M., Schmitt, S., Kiendler-Scharr,
677 A., Wahner, A., and Zhang, Y. H.: Wintertime N₂O₅ uptake coefficients over
678 the North China Plain, *Science Bulletin*, 65, 765-774,
679 10.1016/j.scib.2020.02.006, 2020b.

680 Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le
681 Breton, M., Lou, S. R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L.
682 M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃
683 oxidation in the outflow of urban Beijing, *Atmospheric Chemistry and Physics*,
684 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018b.

685 Wang, S. B., Wang, L. L., Fan, X. G., Wang, N., Ma, S. L., and Zhang, R. Q.:
686 Formation pathway of secondary inorganic aerosol and its influencing factors in
687 Northern China: Comparison between urban and rural sites, *Science of the Total
688 Environment*, 840, 2022.

689 Wang, X. F., Zhang, Y. P., Chen, H., Yang, X., Chen, J. M., and Geng, F. H.:
690 Particulate Nitrate Formation in a Highly Polluted Urban Area: A Case Study by
691 Single-Particle Mass Spectrometry in Shanghai, *Environmental Science &
692 Technology*, 43, 3061-3066, 2009.

693 Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and
694 Wang, T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power
695 plant and industrial plumes observed in the nocturnal residual layer over the
696 North China Plain, *Atmospheric Chemistry and Physics*, 17, 12361-12378,
697 10.5194/acp-17-12361-2017, 2017c.

698 Woodward-Massey, R., Slater, E. J., Alen, J., Ingham, T., Cryer, D. R., Stimpson, L.
699 M., Ye, C. X., Seakins, P. W., Whalley, L. K., and Heard, D. E.: Implementation
700 of a chemical background method for atmospheric OH measurements by laser-
701 induced fluorescence: characterisation and observations from the UK and China,
702 *Atmos. Meas. Tech.*, 13, 3119-3146, 10.5194/amt-13-3119-2020, 2020.

703 Wu, S. P., Dai, L. H., Zhu, H., Zhang, N., Yan, J. P., Schwab, J. J., and Yuan, C. S.:
704 The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in
705 the western Taiwan Strait region, China, *Atmos. Res.*, 228, 68-76, 2019.

706 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu,
707 Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO₂ and
708 possible source of Cl-2 from N₂O₅ uptake at a suburban site in eastern China,
709 Atmospheric Chemistry and Physics, 20, 6147-6158, 10.5194/acp-20-6147-2020,
710 2020.

711 Xu, J. W., Huang, X., Wang, N., Li, Y. Y., and Ding, A. J.: Understanding ozone
712 pollution in the Yangtze River Delta of eastern China from the perspective of
713 diurnal cycles, Science of the Total Environment, 752,
714 10.1016/j.scitotenv.2020.141928, 2021.

715 Xue, H., Liu, G., Zhang, H., Hu, R., and Wang, X.: Similarities and differences in
716 PM₁₀ and PM_{2.5} concentrations, chemical compositions and sources in Hefei
717 City, China, Chemosphere, 220, 760-765, 10.1016/j.chemosphere.2018.12.123,
718 2019.

719 Yang, X. P., Lu, K. D., Ma, X. F., Liu, Y. H., Wang, H. C., Hu, R. Z., Li, X., Lou, S.
720 R., Chen, S. Y., Dong, H. B., Wang, F. Y., Wang, Y. H., Zhang, G. X., Li, S. L.,
721 Yang, S. D., Yang, Y. M., Kuang, C. L., Tan, Z. F., Chen, X. R., Qiu, P. P.,
722 Zeng, L. M., Xie, P. H., and Zhang, Y. H.: Observations and modeling of OH
723 and HO₂ radicals in Chengdu, China in summer 2019, Science of the Total
724 Environment, 772, 2021.

725 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P.
726 G., Li, H. Y., Shan, Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y.
727 B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y. H., and Wang, T.: Heterogeneous
728 N₂O₅ reactions on atmospheric aerosols at four Chinese sites: improving model
729 representation of uptake parameters, Atmospheric Chemistry and Physics, 20,
730 4367-4378, 10.5194/acp-20-4367-2020, 2020a.

731 Yu, C. A., Wang, Z., Ma, Q. X., Xue, L. K., George, C., and Wang, T.: Measurement
732 of heterogeneous uptake of NO₂ on inorganic particles, sea water and urban
733 grime, J. Environ. Sci., 106, 124-135, 10.1016/j.jes.2021.01.018, 2021.

734 Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P.,
735 Yang, X., Liu, Y., Wang, H., He, L., Huang, X., and Zhang, Y.: An explicit
736 study of local ozone budget and NO_x-VOCs sensitivity in Shenzhen China,
737 Atmospheric Environment, 224, 117304, 10.1016/j.atmosenv.2020.117304,
738 2020b.

739 Zhang, K., Xu, J. L., Huang, Q., Zhou, L., Fu, Q. Y., Duan, Y. S., and Xiu, G. L.:
740 Precursors and potential sources of ground-level ozone in suburban Shanghai,
741 Front. Env. Sci. Eng., 14, 10.1007/s11783-020-1271-8, 2020a.

742 Zhang, R., Han, Y. H., Shi, A. J., Sun, X. S., Yan, X., Huang, Y. H., and Wang, Y.:
743 Characteristics of ambient ammonia and its effects on particulate ammonium in
744 winter of urban Beijing, China, Environ Sci Pollut R, 28, 62828-62838, 2021.

745 Zhang, Y., Hong, Z., Chen, J., Xu, L., Hong, Y., Li, M., Hao, H., Chen, Y., Qiu, Y.,
746 Wu, X., Li, J.-R., Tong, L., and Xiao, H.: Impact of control measures and
747 typhoon weather on characteristics and formation of PM_{2.5} during the 2016 G20

748 summit in China, *Atmospheric Environment*, 224, 117312,
749 <https://doi.org/10.1016/j.atmosenv.2020.117312>, 2020b.

750 Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding,
751 A., Wu, J., Ge, S., Chen, C., and Zhou, H.-c.: Chemical composition, sources and
752 evolution processes of aerosol at an urban site in Yangtze River Delta, China
753 during wintertime, *Atmospheric Environment*, 123, 339-349,
754 10.1016/j.atmosenv.2015.08.017, 2015.

755 Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R., Wang,
756 Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prevot, A. S. H., Jayne, J. T.,
757 and Worsnop, D. R.: Field characterization of the PM2.5 Aerosol Chemical
758 Speciation Monitor: insights into the composition, sources, and processes of fine
759 particles in eastern China, *Atmospheric Chemistry and Physics*, 17, 14501-
760 14517, 10.5194/acp-17-14501-2017, 2017.

761 Zhang, Y. Y., Tang, A. H., Wang, C., Ma, X., Li, Y. Z., Xu, W., Xia, X. P., Zheng, A.
762 H., Li, W. Q., Fang, Z. G., Zhao, X. F., Peng, X. L., Zhang, Y. P., Han, J.,
763 Zhang, L. J., Collett, J. L., and Liu, X. J.: PM (2.5) and water-soluble inorganic
764 ion concentrations decreased faster in urban than rural areas in China, *J. Environ.
765 Sci.*, 122, 83-91, 2022.

766 Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and
767 Liu, H. Y.: Characteristics of concentrations and chemical compositions for
768 PM2.5 in the region of Beijing, Tianjin, and Hebei, China, *Atmospheric
769 Chemistry and Physics*, 13, 4631-4644, 10.5194/acp-13-4631-2013, 2013.

770 Zhao, Z. Z., Sun, N., Zhou, W. L., Ma, S. S., Li, X. D., Li, M. L., Zhang, X., Tang, S.
771 S., and Ye, Z. L.: Chemical Compositions in Winter PM2.5 in Changzhou of the
772 Yangtze River Delta Region, China: Characteristics and Atmospheric Responses
773 Along With the Different Pollution Levels, *Front Env Sci-Switz*, 10, 2022.

774 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang,
775 T., Kimoto, T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring
776 the severe winter haze in Beijing: the impact of synoptic weather, regional
777 transport and heterogeneous reactions, *Atmospheric Chemistry and Physics*, 15,
778 2969-2983, 2015.

779

780

781

782