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Abstract. Cloud condensation nuclei (CCN) are mediators of aerosol-cloud interactions (ACI), 17 
contributing to the largest uncertainties in the understandings of global climate change. We present 18 
a novel remote sensing-based algorithm that quantifies the vertically-resolved CCN number 19 
concentrations (NCCN) using aerosol optical properties measured by a multiwavelength lidar. The 20 
algorithm considers five distinct aerosol subtypes with bimodal size distributions. The inversion 21 
used the look-up tables developed in this study, based on the observations from the Aerosol 22 
Robotic Network to efficiently retrieve optimal particle size distributions from lidar 23 
measurements. The method derives dry aerosol optical properties by implementing hygroscopic 24 
enhancement factors to lidar measurements. The retrieved optically equivalent particle size 25 
distributions and aerosol type dependent particle composition are utilized to calculate critical 26 
diameter using the κ-Köhler theory and NCCN at six supersaturations ranging from 0.07% to 1.0%. 27 
Sensitivity analyses indicate that uncertainties in extinction coefficients and relative humidity 28 
greatly influence the retrieval error in NCCN. The potential of this algorithm is further evaluated by 29 
retrieving NCCN using airborne lidar from the NASA ORACLES campaign and validated against 30 
simultaneous measurements from the CCN counter. The independent validation with robust 31 
correlation demonstrates promising results. Furthermore, the NCCN has been retrieved for the first 32 
time using a proposed algorithm from spaceborne lidar - Cloud-Aerosol Lidar with Orthogonal 33 
Polarization (CALIOP) - measurements. The application of this new capability demonstrates the 34 
potential for constructing a 3D CCN climatology at a global scale, which help to better quantify 35 
ACI effects and thus reduce the uncertainty in aerosol climate forcing. 36 
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1 Introduction 37 

The Intergovernmental Panel on Climate Change (IPCC) report states that radiative forcing caused 38 
by aerosol-cloud interactions (ACI), dominates the largest uncertainty, and remains the least well-39 
understood anthropogenic contribution to climate change (IPCC AR5, 2013). The uncertainty 40 
mainly stems from the complicated processes of how aerosols impact the global cloud system. 41 
Atmospheric aerosols allow for water vapor condensation under certain supersaturation (SS) 42 
conditions and subsequently evolve into cloud droplets by serving as cloud condensation nuclei 43 
(CCN). Anthropogenic emissions are a major source of CCN, facilitating the formation of cloud 44 
droplets, thereby altering cloud properties, precipitation patterns, and hence the climate forcing 45 
(Carslaw et al., 2010; Paasonen et al., 2013). Consequently, reducing the uncertainty associated 46 
with ACI is crucial for increasing our confidence in predictions of global and regional climate 47 
models (IPCC, 2014). The fundamental parameter for understanding the aerosol-cloud interaction 48 
is the CCN concentrations (Rosenfeld et al., 2014). Determining CCN number concentration 49 
(NCCN) is the basis for analyses of ACI (Seinfeld et al., 2016). Large uncertainties in their 50 
magnitude and variability at a global scale are one of the main factors for the low level of scientific 51 
understanding of ACI effects. Therefore, knowledge of the global abundance of aerosols capable 52 
of serving as CCN is fundamental to advancing our understanding of ACI (Fan et al., 2016). 53 

Tackling the challenges in climate change, as identified by the IPCC, requires that CCN properties 54 
be measured globally. Missing such a fundamental quantity has greatly hindered our ability to 55 
accurately quantify the effects of anthropogenic aerosols on cloud properties (Rosenfeld et al., 56 
2014). Ground-based instruments can observe NCCN at various SS, but they only provide sparse 57 
and localized information. Besides limited coverage, near-surface CCN properties could differ 58 
significantly from CCN properties near the cloud base due to vertical aerosol inhomogeneities, 59 
particularly under stable atmospheric boundary conditions. Airborne observations can provide 60 
very useful CCN measurements near cloud base but are expensive to collect and are limited to a 61 
few field experiments, and having limited spatial-temporal coverage (Feingold et al., 1998; Li, 62 
Liu, et al., 2015; Li, Yin, et al., 2015).  63 

Overall, observations of CCN are spatiotemporally sparse, lack the vertical dimension, and provide 64 
insufficient constraints on their global distribution. ACI studies often use satellite retrievals to take 65 
advantage of their global coverage, but satellites have been unable to measure the CCN. 66 
Nevertheless, the aerosol optical parameters such as aerosol optical depth (AOD) and aerosol index 67 
(AI) are commonly used as proxies for CCN in previous studies (Gryspeerdt & Stier, 2012; Patel 68 
et al., 2017, 2019; Patel & Kumar, 2016; Quaas et al., 2008, 2009; Rosenfeld, 2008). However, all 69 
these proxies are crude tools and suffer from various issues such as aerosol swelling, lack of 70 
vertical information, cloud contamination, uncertainty in size distribution and solubility, and more 71 
(Rosenfeld et al., 2016). The aforementioned studies based on passive satellite remote sensing 72 
measurements, such as AOD and AI have limitations in several areas for ACI studies. 73 

Active remote sensing technologies such as lidar have the ability to improve the precision and 74 
range of conditions under which particle concentrations and their ability to act as CCN can be 75 
retrieved. A significant body of prior studies has assessed the relationship between aerosol optical 76 
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properties and CCN based on local in situ data offered by lidar and radar. Feingold et al., (1998) 77 
developed a technique to derive CCN from the retrieved cloud droplet concentration, vertical 78 
velocity, and lidar backscatter from ground-based radar, lidar, and radiometer. Ghan et al., (2006) 79 
and Ghan & Collins, (2004) evaluated the relationship between aerosol extinction from airborne 80 
lidar and NCCN from near-surface measurements and devised a technique for estimating CCN at a 81 
cloud base. However, their techniques rely on the assumption that the physiochemical 82 
characteristics of aerosols at the surface represent the vertical column. Thus, their retrievals may 83 
be subject to large uncertainties due to vertical inhomogeneity in particle characteristics. Previous 84 
work by Clarke & Kapustin, (2010); Kapustin et al., (2006); Liu & Li, (2014); Shinozuka et al., 85 
(2015) demonstrated a strong correlation between extinction coefficients and NCCN instead of 86 
vertically integrated AOD or AI using airborne and in situ observations. Stier, (2016) provided a 87 
global assessment of the link between aerosol radiative properties and CCN using a global aerosol-88 
climate model (ECHAM-HAM) and suggested that vertically integrated aerosol radiative 89 
properties are of limited suitability as a proxy for global surface CCN.  90 

Both Mamouri and Ansmann, (2016) and Choudhury and Tesche, (2022) examine the potential of 91 
single wavelength lidar observations to retrieve CCN number concentrations for different aerosol 92 
types. The relationships between particle extinction coefficients and number concentrations of 93 
particles with a dry radius larger than 50 nm (for non-dust) and 100 nm (for dust) were 94 
parameterized based on multiyear AERONET observations for different aerosol types. However, 95 
the measurements from the single wavelength lidar also lack sufficient information to quantify 96 
particle size distribution, particle number concentration or aerosol type, resulting in large 97 
uncertainty in NCCN retrieval (Burton et al., 2012; Tan et al., 2019). However, few recent studies 98 
(Lv et al., 2018; Tan et al., 2019) have shown efforts to retrieve NCCN based on the advanced 99 
capability of multiwavelength lidar measurements, but they have been limited to ground-based 100 
observations only. Rosenfeld et al., (2016) have attempted a new approach to retrieve satellite 101 
based NCCN using passive satellite observations. All these studies taken together provide a sound 102 
foundation of CCN-relevant aerosol properties, but most of them do not refer to CCN 103 
concentrations themselves, and the ones who do, do not give a global coverage nor a vertically 104 
resolved picture. Consequently, no reliable global observational data set of CCN exists, and the 105 
ability to routinely measure vertically resolved CCN to study ACI effectively is still lacking 106 
(Burkart et al., 2011).  107 

In this study, we developed a comprehensive  remote sensing algorithm with a novel retrieval 108 
approach, known as ECLiAP (Estimation of CCN using Lidar measured Aerosol optical 109 
Properties), to estimate NCCN from multiwavelength spaceborne lidar measurements. The 110 
approach is implemented with look-up table (LUT)s involving aerosol size and composition 111 
information, in order to provide stable and efficient vertically-resolved CCN retrievals. The NCCN 112 
at six critical supersaturations ranging from 0.07%-1.0% is determined from the retrieved particle 113 
size distributions. The retrieval accuracy is assessed using simulated lidar backscatter and 114 
extinction coefficients with both random and systematic errors. The structure of this paper is as 115 
follows: This section provides the importance and motivation for retrieving NCCN. Section 2 116 
discusses the inversion approach for retrieving NCCN (particularly from satellite observations). The 117 
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numerical simulations for the sensitivity analysis, an extensive validation effort, and an 118 
observational case study are presented in section 3. Section 4 covers the final discussion.  119 

2 Methodology 120 

2.1 Construction of Lookup Tables 121 

The inversion solution using the combination of simultaneous measurements of backscatters at 122 
three wavelengths and extinction at two wavelengths, also called 3β+2⍺,	using lidar has been 123 
gaining prominence for aerosol microphysical (effective radius, total number, volume 124 
concentration, refractive index) retrieval (Burton et al., 2016). Several fundamental aspects of the 125 
mathematical problem must be solved during the retrieval from multiwavelength lidar. The most 126 
important aspect is that the inversion solution is not unique. The non-uniqueness of an inversion 127 
solution in the advanced 3β+2⍺ technique is the primary source of the retrieval challenges 128 
(Chemyakin et al., 2016). Additionally, retrieving six size parameters (number concentrations, 129 
effective radius, and geometric standard deviation for fine and coarse mode particles) for a bimodal 130 
particle size distribution (PSD) from five known quantities (β355, β532, β1064, ⍺355, ⍺532) is still an 131 
ill-posed inversion problem. Besides, the existing spaceborne lidar instrument (CALIOP onboard 132 
CALIPSO) provides the measurements at only two wavelengths (532 nm & 1064 nm). Considering 133 
all these constraints and partially compensating the non-uniqueness problem, we employed the 134 
LUT approach with a fine step of bimodal particle size distributions (PSDs) to derive aerosol size 135 
parameters. The parameterization of bimodal lognormal PSD is described in section 2.1.1. The 136 
fundamental design of the LUTs framework for lidar measurements builds to test the aerosol 137 
optical properties that we target for precise information. 138 

In the present study, the LUTs are designed using the 3β+3⍺ (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) 139 
technique for the individual aerosol types. An additional input at a longer wavelength improves 140 
the retrieval accuracy for coarse mode particles (Lv et al., 2018). These LUTs contain aerosol 141 
optical properties such as backscatter coefficients at 355, 532, and 1064 nm (β355, β532, β1064) and 142 
extinction coefficients at 355, 532, and 1064 nm (⍺355, ⍺532, ⍺1064), along with size parameters 143 
including number concentration, effective radius and geometric standard deviation for fine and 144 
coarse mode particles (Ntf, rf, σf, Ntc, rc, σc). Primarily, the LUTs are generated for the five distinct 145 
aerosols subtypes: marine, dust, polluted continental, clean continental, and smoke aerosols (as 146 
shown in Figure 1). This study considers dust particles to be spheroid, while other aerosol types to 147 
be spheres. The particle optical properties are computed using the well-known Mie scattering 148 
theory (Bohren & Huffman, 1998) for spherical particles, which is a numerically accurate approach 149 
over a wide range of particle sizes. Meanwhile, the T-Matrix method (Mishchenko & Travis, 1998) 150 
is adopted for the spheroids, which is numerically precise for the limited particle sizes. 151 
Consequently, the improved geometric optics method (IGOM; Bi et al., 2009; Yang et al., 2007) 152 
is applied to the larger spheroids not covered by the T-matrix method. The axis ratio distribution 153 
for spheroids, ranging from ~0.3 (flattened spheroids) to ~3.0 (elongated spheroids) is taken from 154 
Dubovik et al., (2006). PSD and mean complex refractive index were used as the input parameters 155 
for the computations of aerosol optical properties. The range of PSDs in the LUTs is sufficiently 156 
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broad to cover realistic values for atmospheric aerosols (Dubovik, 2002; Torres et al., 2017). The 157 
parameters of bimodal distribution for five aerosol subtypes are derived using the measurements 158 
from sun/sky radiometer at multiple selected Aerosol Robotic Network (AERONET) sites 159 
(Dubovik, 2002; Torres et al., 2017). The PSDs are given in terms of the total particle number 160 
concentration, effective radius (𝑟), and geometric standard deviation individually for fine and 161 
coarse modes. Table S1 lists the parameters of the bimodal lognormal PSDs and complex refractive 162 
index that were used for the construction of LUTs. In the calculations, the range of radius for the 163 
PSD is constrained to 0.01-10 µm with a fixed bin size of 0.002 defined on a logarithmic-164 
equidistant scale. The intervals of 𝜎! , 𝜎" , 𝑟! and 𝑟" are fixed at 0.01, 0.01, 0.002 and 0.01 µm, 165 
respectively. These intervals are set as a compromise between accuracy and computation time. The 166 
parameterization of bimodal particle size distribution is discussed in the following section. 167 

2.1.1 Lognormal Aerosol Size Distributions 168 

An earlier study by Kolmogorov, (1941) mathematically proved that the random process of 169 
sequential particle crushing leads to a lognormal distribution of particle size. In our study, PSDs 170 
have been treated as a bimodal lognormal distribution, as widely used in aerosol remote sensing 171 
studies (Dubovik et al., 2011; Remer et al., 2005; Schuster et al., 2006; Torres et al., 2014). 172 
Although particle size distributions are not always bimodal in each case, their size distributions 173 
can be considered as a combination of fine and coarse modes. This bimodal lognormal size 174 
distribution can be expressed as: 175 

𝑑𝑛(𝑟)
𝑑 ln(𝑟) = 	 -

𝑁#$
(2𝜋)% &⁄ ln 𝜎$

exp 4−
(ln 𝑟 − ln 𝑟$()&

2(ln 𝜎$)&
6

$)!,"

 (1) 

where 𝑁#$ is the total particle concentration of the ith mode and 𝑟$( is the median radius for the 176 
aerosol size distribution, with n representing the number concentration distribution. The index 𝑖 =177 
𝑓, 𝑐 refers to the fine and coarse modes, respectively. The term ln 𝜎$ is the mode width of the ith 178 
mode. This general bimodal lognormal size distribution shape for aerosol is adopted in this study 179 
to improve the accuracy of the CCN retrieval. The sensitivity assessment regarding the response 180 
of CCN to the assumption of bimodal size distributions is presented in section 3.1. For individual 181 
lognormal components, the relationships between the volume and number distribution parameters 182 
representing by the following equations (Hatch & Choate, 1929): 183 

𝑟( =	𝑟+ 𝑒𝑥𝑝[3(ln 𝜎)&]⁄ 	 (2) 

𝑉# =	𝑁#
4𝜋
3
(𝑟(),𝑒𝑥𝑝 C

9
2
(ln 𝜎)&E (3) 

where, 𝑉# is the particle volume concentration and 𝑟+ is the median radius for the aerosol volume 184 
size distribution. As shown in Figure 1 and Table S1, the main difference between the aerosol 185 
subtype is the ratio of the volume concentration of the fine mode to the coarse mode. 186 
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2.2 Retrieval of CCN Number Concentrations 187 

This section discusses a detailed methodology adopted by ECLiAP to retrieve NCCN from 188 
the given lidar measurements. 189 

2.2.1 Overview 190 

An optically related NCCN is introduced to bridge the gap between aerosol particle and their 191 
activation capability to serve as a cloud droplet. The ability of particles to act as CCN is mainly 192 
controlled by particle size distribution followed by chemical composition (Dusek et al., 2006; Patel 193 
& Jiang, 2021). However, both factors are significant in specific regions and meteorological 194 
conditions (Mamouri & Ansmann, 2016). Therefore, NCCN could be quantified with size 195 
distribution and compositional information. The key feature of an approach adopted in ECLiAP is 196 
to seek the parameters that can provide the size and composition of particles consistent with lidar 197 
measurements under dry conditions and use these parameters to estimate NCCN. 198 

Figure 2 illustrates a schematic diagram of the method to retrieve NCCN from satellite observations.  199 

In the natural environment, the particle hygroscopic properties influence the particle size 200 
distribution and their optical properties, especially when it is near a cloud base or under a high 201 
moist environment. Therefore, the lidar measured aerosol optical properties under ambient 202 
conditions need to be corrected to the dry aerosol optical properties using the hygroscopic 203 
enhancement factor. The hygroscopic enhancement factor can be fitted by the parameterization 204 
scheme using enhancement of backscatter and extinction coefficients with RH. Particle dry 205 
backscatter and extinction can also be inferred from the hygroscopic enhancement factor. An 206 
approach to computing hygroscopic enhancement factors and performing hygroscopic correction 207 
to obtain dry backscatter and extinction is described in Section 2.2.2. This step is applied to all the 208 
3β+3α parameters before looking for aerosol size parameters from the LUT. Before applying 209 
hygroscopic correction, lidar-measured optical properties, particularly for dust mixtures, are 210 
separated into dust and non-dust components using the backscatter coefficients and particle 211 
depolarization ratio (Tesche et al., 2009). The methodology to separate the dust mixture is 212 
discussed in Appendix A1.  213 

Once the dry aerosol optical properties are derived, an ECLiAP look for the suitable size 214 
parameters from the LUTs for the given dry aerosol optical properties and respective aerosol 215 
subtype (see section 2.2.3). As mentioned earlier, the ability of particles to act as CCN is mainly 216 
controlled by particle size distribution followed by chemical composition. Deriving composition 217 
information of particles from the lidar measurements is not yet well-defined. Therefore, in the 218 
absence of chemical composition data, mean chemical composition information denoted by a 219 
single value of κ, the so-called hygroscopicity parameter, is achievable for estimating NCCN, which 220 
describes the relationship between the particle dry diameter and CCN activity. The sensitivity of 221 
the estimated NCCN to κ depends strongly on the variability of the shape of the aerosol size 222 
distribution (Wang et al., 2018). Therefore, the chemical information becomes less important in 223 
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estimating NCCN, especially at higher supersaturation (Patel & Jiang, 2021). Most studies reported 224 
that the uncertainty of using the mean value of κ to estimate the NCCN is less than 10% (Jurányi et 225 
al., 2010; Wang et al., 2018), which varies with atmospheric conditions. In ECLiAP, the literature 226 
values of κ are considered for each aerosol subtype for further retrieval. The κ is assumed to be 227 
0.7 for marine (Andreae & Rosenfeld, 2008), 0.03 for dust (Koehler et al., 2009), 0.27 for polluted 228 
continental (Liu et al., 2011), 0.3 for clean continental (Andreae & Rosenfeld, 2008), and 0.1 for 229 
smoke aerosols (Petters et al., 2009) for the later computations. 230 

Finally, an ECLiAP uses the retrieved optically equivalent size parameters from LUTs and κ value 231 
as composition information for the further computation of critical radius using the κ-Köhler theory 232 
(Petters & Kreidenweis, 2007), and hence the NCCN for the six fixed supersaturations (see section 233 
2.2.4). For the dust mixture, NCCN derived separately both for dust and non-dust are added lastly. 234 

2.2.2 Derivation of dry backscatter and dry extinction 235 

It is difficult to measure the complex chemical composition and associated water uptake capability 236 
of a particle with increasing RH. Therefore, a widely popular and simple parameterization scheme 237 
was used to describe the changes in aerosol optical properties with atmospheric RH relative to a 238 
dry (or low-RH) state, also called the hygroscopic enhancement factor. Recent aerosol hygroscopic 239 
studies (Bedoya-Velásquez et al., 2018; Fernández et al., 2018; Lv et al., 2017) have derived 240 
backscatter and extinction enhancement factors using lidar measurements and RH profiles. The 241 
hygroscopic enhancement factor that is associated with both particle size and hygroscopicity 242 
(Kuang et al., 2017), is defined as:  243 

𝑓-(𝑅𝐻, 𝜆) 	= 	
𝜉(𝑅𝐻, 𝜆)

𝜉(𝑅𝐻./0 , 𝜆)	
 

 
(4) 

where 𝑓-  is the hygroscopic enhancement factor of the optical property 𝜉 (backscatter and 244 
extinction) at a specific light wavelength 𝜆 and RH, and RHdry is the reference RH value (RH=0). 245 
There is no generic reference RH that represents the dry conditions for lidar measurements, unlike 246 
in-situ controlled RH measurements, to derive enhancements factor. Inferring dry backscatter and 247 
extinction coefficients is also crucial in CCN retrieval. Therefore, parameterization of the 248 
hygroscopic growth of lidar-derived optical properties should combine dry aerosol optical 249 
properties and 𝑓-(𝑅𝐻, 𝜆) together. Previous studies have proposed several parameterization 250 
schemes for hygroscopic enhancement factors (Titos et al., 2016). The most frequently used 251 
parameterization scheme is a power-law function that is known as gamma parameterization, 252 
introduced by Kasten, (1969): 253 

𝑓-(𝑅𝐻, 𝜆) 	= 𝐴	. (1	 −	𝑅𝐻 100⁄ )12 (5) 

Where the parameter A gives the extrapolated value at RH=0% and the exponent 𝛾 is the fitting 254 
parameter and defines the hygroscopic behavior of the particles. Recently, a new physically based 255 
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single-parameter representation approach was proposed by Brock et al., (2016) to describe the 256 
hygroscopic enhancement factor. Their results claimed that this proposed parameterization scheme 257 
better describes light-scattering hygroscopic enhancement factors than the widely used gamma 258 
power-law approximation. The formula of this new scheme is written as: 259 

𝜉(𝑅𝐻, 𝜆) 	= 	 𝜉./0(𝑅𝐻, 𝜆)	. 𝑓-(𝑅𝐻) 	= 	 𝜉./0(𝑅𝐻, 𝜆)	.		C1	 +	𝜅- 	(𝜆)	
𝑅𝐻

100	 − 	𝑅𝐻E 
(6) 

where, 𝜅-  is a dimensionless fitting parameter and shows a significant correlation with bulk 260 
hygroscopic parameter κ; but they are not equivalent (Brock et al., 2016; Kuang et al., 2017). 𝜉./0 261 
denotes dry aerosol optical properties (backscatter and extinction coefficients).  262 

For the estimation of the hygroscopic enactment factor, aerosol optical properties (backscatter and 263 
extinction coefficients) at 355, 532, and 1064 nm are calculated over a range of RH (0-99%) using 264 
Mie theory (T-matrix and IGOM for spheroid) for the range of PSDs and each aerosols subtype. 265 
Figure S1 illustrates the mean curve of the hygroscopic enhancement factor (the ratio between the 266 
aerosol optical properties at specific RH to dry RH) at three wavelengths with increasing RH for 267 
each aerosol subtype. With given aerosol optical properties at different RHs, 𝜅-  can be fitted by 268 
curve fitting using Eq. (6). However, Tan et al., (2019), based on a comparison of 𝜅-  and derived 269 
𝜉./0 for various ranges of RH, showed that the fitting hygroscopic parameters are found to be 270 
sensitive to fitting RH range when the RH range is limited and relatively high (between 60% and 271 
90%). Therefore, we fixed the RH range to 60%-90% for the parameter fitting (highlighted curve 272 
in Figure S1). In addition, retrieving finite dry aerosol optical properties could not be possible for 273 
the observation with RH > 99%. Therefore, ECLiAP only applies the hygroscopic correction when 274 
RH is between 40% and 99%. In ECLiAP, individual 𝜅-  values for each aerosol optical property 275 
at three different wavelengths, along with the RH value, are used to obtain the dry aerosol optical 276 
properties separately for each aerosol subtype using Eq. (6). 277 

2.2.3 Inversion techniques for size parameters 278 

Once the dry aerosol optical properties are obtained, the ECLiAP searches for suitable size 279 
parameters from the LUTs. For this, the ECLiAP look for the best combination of six values (Ntf, 280 
rf, σf, Ntc, rc, σc) to match inputs (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) by minimizing the following 281 
function: 282 

𝜇345 = - R
𝑥$ − 𝑥$ʹ

𝑥$
R

$)%,…,8

 (7) 

Where 𝑥$ represents input aerosol optical data (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) and 𝑥$ʹ  is aerosol 283 
optical data (βʹ355, βʹ532, βʹ1064, ⍺ʹ355, ⍺ʹ532, ⍺ʹ1064) derived from LUTs, which are calculated from 284 
Mie theory (or T-matrix and IGOM for spheroid) and size distribution parameters.  285 
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Each LUT consists of two parts to reduce the dimensions and size of LUTs. Therefore, the particle 286 
size distribution, as shown in Eq. (1), can be rewritten as: 287 

𝑑𝑛(𝑟)
𝑑 ln(𝑟) = 	 - S

1
(2𝜋)% &⁄ ln 𝜎$

exp 4−
(ln 𝑟 − ln 𝑟$()&

2(ln 𝜎$)&
6 	 . 𝑁#$T

$)!,"

	= 	 - 𝑥$ 	. 𝑁#$
$)!,"

 (8) 

Where 𝑥! and 𝑥" refer to the data bank precomputed with (𝜎! , 𝑟! and 𝑟) and (𝜎" , 𝑟" and 𝑟), 288 
respectively. Furthermore, we have adopted the successive approximation method (Kantorovitch, 289 
1939) to deal with the extensive range of 𝑁#! and speed up the finding for the closest solution. 290 
Therefore, the inversion technique is further divided into two steps. Step-1: search for an 291 
approximate solution based on the criterion in Eq. 8 and calculate the corresponding aerosol optical 292 
data (βʹ355, βʹ532, βʹ1064, ⍺ʹ355, ⍺ʹ532, ⍺ʹ1064) from the data banks (𝑥! and 𝑥") and 𝑁#! and 𝑁#". The step 293 
widths of 𝑁#! and 𝑁#" are considered to be 100 and 0.1 cm-3, respectively. Step 2: based on the 294 
approximate solution obtained in step 1, determine the smallest solution space of 𝑁#! by repeating 295 
the procedure in step 1 using a smaller step width of 10 cm-3 for 𝑁#!. Search for the optimal solution 296 
of six size parameters (Ntf, rf, σf, Ntc, rc, σc). 297 

2.2.4 Estimation of NCCN 298 

For the given aerosol optical properties, the retrieved size parameters and the associated 299 
hygroscopicity parameter (κ; as discussed in section 2.2.1) were used to calculate the critical 300 
radius. The critical radius (𝑟"/$#) above which all particles are activated into droplets for a certain 301 
supersaturation ratio (𝑆") can be computed from the κ-Köhler theory as suggested by Petters & 302 
Kreidenweis, (2007): 303 

𝐷"/$# 	= 	W
4𝐴,

27	 ∗ 	𝜅	 ∗ 	 ln(𝑆")&
Z
%
,9

; 				𝐴	 = 	
4𝜎3 :⁄ 𝑀;

𝑅𝑇𝜌;
 (9) 

Where, 𝐷"/$# is the critical diameter (𝑟"/$# =	𝐷"/$# 2⁄ ), and 𝑆" 	= 	𝑆𝑆 + 1, 𝑀; and 𝜌; are the 304 
molecular weight and water density, while R and T are the ideal gas constant and the absolute 305 
temperature, respectively and 𝜎3 :⁄  = 0.072 J m-2. The critical radius is determined at six critical 306 
supersaturations for activation (0.07%, 0.1%, 0.2%, 0.4%, 0.8% and 1.0%). 307 

Finally, the ECLiAP calculates NCCN by integrating size distribution from critical radius to 308 
maximum radius as: 309 

𝑁""( 	= 	_
𝑑𝑛(𝑟)
𝑑 ln(𝑟)

<(	/!"#

>? /$
	𝑑 ln(𝑟) (10) 

 310 
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3 Results 311 

3.1 Sensitivity analysis 312 

Evaluating the algorithm is a challenging task in the absence of standard and reliable 313 
measurements. The performance of the ECLiAP is evaluated using numerically simulated 314 
observations with different error characteristics. 315 

3.1.1 Retrieval of NCCN with error-free data 316 

Firstly, error-free lidar measurements are considered as inputs to evaluate the inversion stability 317 
of ECLiAP. The retrieval procedure is repeated for 2000 different sets of the bimodal size 318 
distribution for each aerosol type. Errors are calculated in retrieved NCCN (𝑁@@A/B# ) with respect to 319 
the initial inputs (𝑁@@A$(# ) using Eq. 8. 320 

𝐶𝐶𝑁	𝐸𝑟𝑟𝑜𝑟 = 	 cd𝑁@@A/B# −	𝑁@@A$(# e 𝑁@@A$(#⁄ f 	× 	100% (11) 

Table 1 lists the statistical results of CCN error for each aerosol type. As the number shows, the 321 
initial NCCN is well reproduced from the error-free inputs for each aerosol size distribution. The 322 
standard deviation of the retrieved CCN errors from the different sets of bimodal size distribution 323 
data is also estimated along with the mean value to determine the range of the retrieved CCN error. 324 
As mentioned above, the appropriate balance between the accuracy and processing time of the 325 
LUTs leads the mean CCN error close to zero but not equal to zero. However, the small standard 326 
deviation (<0.25) indicates the smaller variances of errors among the aerosol size distributions. 327 
Although the high accuracy of LUTs provides the CCN error closer to zero, the calculations are 328 
more time expensive. In general, the retrieval results shown in Table 1 exhibit the good accuracy 329 
and stability of the inversion algorithm for each aerosol subtype. 330 

Additionally, the sensitivity of the NCCN retrieval to the assumption of the bimodal size distribution 331 
is tested against the aerosol size distribution measurements at the U.S Department of Energy’s 332 
Atmospheric Radiation Measurement (ARM) climate research facility from the Southern Great 333 
Plain (SGP) site. Particle size distribution was measured simultaneously by an Ultra-High 334 
Sensitivity Aerosol Spectrometer (for the 0.07 to 1 µm geometric diameter range) and an 335 
Aerodynamic Particle Sizer (TSI-3321; for the 0.7 to 5 µm aerodynamics diameter range). The 336 
size conversion factor, defined as the ratio of aerodynamic diameter to geometric diameter, was 337 
used to construct a trimodal lognormal particle size distribution. For the purpose of this study, the 338 
corresponding bimodal fits are produced, which are representative of the observed size 339 
distributions. Figure S2 shows an example of the observed aerosol size distribution and the 340 
corresponding bimodal fits. The comparison suggests that bimodal lognormal size distributions 341 
can well represent the observed aerosol size distributions qualitatively. Later, we calculate NCCN 342 
based on the bimodal fits and compare them with the 100 observed size distributions to quantify 343 
the errors arising from the bimodal lognormal fits. The associated κ values are estimated based on 344 

https://doi.org/10.5194/acp-2022-547
Preprint. Discussion started: 3 November 2022
c© Author(s) 2022. CC BY 4.0 License.



 

11 
 

observed PSDs and NCCN values as described in Patel & Jiang, (2021). The induced CCN errors 345 
from the bimodal fitting are shown in Table 2. The absolute value of NCCN retrieval errors is 3.9%, 346 
with a standard deviation of 2.8% at 0.1% supersaturation. Overall, the results suggest that bimodal 347 
lognormal aerosol size distributions are adequate for retrieving NCCN, but errors from the bimodal 348 
assumption are not negligible. 349 

3.1.2 Impact of systematic and random errors on NCCN retrieval 350 

Both systematic and random errors exist in lidar-retrieved measurements (Mattis et al., 2016). 351 
Systematic errors can be induced by experimental conditions, retrieval algorithms, data processing 352 
methods, and our understanding of physical interactions. Sensitivity analysis tests the impacts of 353 
systematic errors from backscatter and extinction coefficients on NCCN retrieval. Although the 354 
systematic errors of different parameters are correlated, the errors are considered independent for 355 
individual lidar measurements in the simulations. The systematic errors ranging from -20% to 20% 356 
with an interval of 5% are applied to one input parameter at a time (others are kept error-free) in 357 
each test to understand the impacts on individual parameters better. The inversion algorithm is 358 
performed to obtain a new set of aerosol size distributions and retrieve NCCN data. The procedure 359 
is repeated for each input parameter and error value with 200 sets of the randomly generated size 360 
distribution for each aerosol subtype. The percentage errors in NCCN associated with systematic 361 
errors can be estimated by comparing retrieved and initial values of NCCN using Eq. 11. 362 

Figure 3 illustrates the error in retrieved NCCN as a function of the systematic errors in backscatter 363 
and extinction coefficients. The slope of the curve indicates the sensitivity of CCN errors to 364 
systematic errors in individual parameters. A steeper slope infers a high sensitivity in the NCCN 365 
retrieval to the systematic error for a given input parameter. Errors in retrieved NCCN increase as 366 
errors of backscatter and extinction increase, and it is even steeper at higher supersaturations. In 367 
general, NCCN retrievals are most sensitive to errors in extinction coefficients followed by 368 
backscatter coefficients. Interestingly, the results are less sensitive to errors in backscatter 369 
coefficients at lower supersaturations (≤0.2%) but are relatively more sensitive at higher 370 
supersaturations (>0.2%). This indicates that reducing uncertainties in the extinction coefficients 371 
can effectively improve the accuracy of NCCN retrieval while reducing uncertainty in backscatter 372 
coefficients can be beneficial for retrieving NCCN at higher supersaturation. Errors in a355 373 
influence the retrieval results the most. On average, a positive relative error of 20% in ⍺355 374 
overestimates the NCCN retrieval by about 20% at lower supersaturation and about 50% at higher 375 
supersaturation. A negative error of 20% in ⍺355 underestimates the NCCN retrieval, and the degree 376 
of impact is slightly higher than the positive error. Errors in ⍺532 and ⍺355 have the opposite effect 377 
on the retrieval error. It is also clear that the influence of systematic errors on the retrieval of NCCN 378 
varies with activation radius, as elucidated by the different signs of the slopes. For instance, the 379 
slopes of the extinction coefficient for dust aerosols reverse the sign when the activation radius 380 
exceeds low to high supersaturation. These differences most likely result from the reduced retrieval 381 
sensitivity to the coarse mode of the aerosol size distribution. In addition, there are substantial 382 
distinctions among the types of aerosols. Dust and marine aerosols have the largest absolute errors 383 
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compared to others dominated by fine-mode particles (see Table 1). These collectively indicate 384 
that there are better constraints for fine-mode aerosols than for coarse-mode aerosols, which 385 
introduce a larger retrieval error in NCCN for aerosols with more weight in the coarse mode. It is 386 
noteworthy that incorporating an additional input signal of extinction coefficient at 1064 nm in the 387 
ECLiAP reduces the error by ~20% in the coarse mode-dominated aerosol subtypes (dust and 388 
marine), and ~15% in total compared to the previous studies (Lv et al., 2018; Tan et al., 2019). 389 
Nevertheless, integrating an additional lidar signal at a wavelength longer than 1064 nm may 390 
further reduce retrieval error for the coarse mode-dominated aerosol type. 391 

RH is another crucial parameter in the present retrieval algorithm for NCCN. Errors in RH derived 392 
by remote-sensing or reanalysis influence the values of growth factors and result in the dry aerosol 393 
optical properties, which in turn influence all the input parameters. Therefore, systematic errors 394 
ranging from -10% to 10% in intervals of 2% are considered for RH. Figure 4 shows the result of 395 
systematic errors in RH. We observed that NCCN is overestimated when RH has a negative 396 
systematic error, and the extent of overestimation in NCCN increases as the error increase. A 397 
negative error of 10% in RH overestimates NCCN at lower supersaturation by about 20% and 398 
doubles at higher supersaturation. The effects of the positive errors in RH are relatively smaller 399 
and more complicated than negative errors. The mean retrieval error peaked at the RH error at 6%, 400 
and the standard deviation of retrieval error increased with the RH error. This suggests that 401 
underestimating RH causes large errors than overestimation. Therefore, extra care should be paid 402 
to RH measurements if RH-related hygroscopic enhancements of aerosol optical properties are 403 
considered. 404 

Systematic errors introduce mean biases in NCCN retrievals, whereas random errors in observations 405 
produce random NCCN retrieval errors. Random errors obeying Gaussian distributions are produced 406 
arbitrarily with a mean value of zero. The standard deviations are set to 10% for aerosol optical 407 
properties and to 5%, 10%, and 20% for RH in each test. The simulation is repeated 5000 times 408 
for each aerosol subtype, and the statistical results are presented in Figure 5. The mean values of 409 
relative error are presented by color, and the number indicates the standard deviation. The error 410 
does not change significantly as the random error of RH increases. The mean random errors are 411 
relatively small and non-zero, mainly because the sensitivities of NCCN retrievals are different for 412 
different aerosol optical data. The standard deviations are within 16%-28%. The results reveal that 413 
random errors in the given input parameters may also contribute to systematic errors in the NCCN 414 
retrievals. The largest mean relative errors are found for coarse mode-dominated aerosol subtypes 415 
(dust and marine), consistent with the sensitivities to systematic errors. As discussed earlier, 416 
considering additional lidar measurements at longer wavelengths that are more sensitive to larger 417 
particles could improve the retrieval of NCCN for the coarse mode-dominated aerosol subtypes. The 418 
mean values of relative errors increase with increasing supersaturation for all aerosol types. Errors 419 
in the retrieved NCCN follow a Gaussian distribution for low supersaturation. However, the 420 
Gaussian shape disappears, and the high frequencies shift to the edge of the distribution when 421 
supersaturation shifts from low to high (not shown here). Furthermore, the influence of random 422 
errors on the individual input parameters is also assessed and is shown in Figure S3. Random errors 423 
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underestimate the enhancement factor (𝜅-) by 30%-40% for 5% RH error, 45%-60% for 10% RH 424 
error, and 65%-75% for 20% RH error. The relative errors in β are likely to be overestimated, 425 
whereas they are underestimated in ⍺. The absolute relative error of input parameters becomes 426 
larger as the random error of RH grows.  427 

3.2 Comparison with airborne measurements 428 

The evaluation of NCCN retrieval depends on how well retrieved and observed values are matched, 429 
as matching errors can become overwhelming. Therefore, we have carried out a validation 430 
approach by comparing ECLiAP retrieved NCCN from lidar measurements with the in-situ 431 
measurements of NCCN by CCN counter during the NASA ObseRvations of Aerosols above Clouds 432 
and their intEractionS (ORACLES) airborne campaign, which occurred from 2016 to 2018 over 433 
the Southeast Atlantic (SEA) (Redemann et al., 2021; Zuidema et al., 2016). The ORACLES data 434 
contain measured in-situ NCCN from the CCN counter and lidar measurements with NASA Langley 435 
Research Center’s high-spectral resolution lidar (HSRL-2). We took the opportunity to conduct 436 
the validation exercise based on the accessible data.  437 

HSRL-2 measures the vertical profiles of aerosol optical properties, whereas the CCN counter 438 
provides measurements for point location. Therefore, we carried out two strategically different 439 
validation exercises in this study: (1) the vertical profile-based comparison and (2) the comparison 440 
of collocated measurements. For the profile-based comparison, an ascending path of flight (area 441 
covered within the yellow dashed line in Figure S4) on 19 October 2018 has been considered, so 442 
the measurements of the CCN counter can be available at various altitudes. Prior to comparison, 443 
the lidar measurements from HSRL-2 are averaged over a selected wide space and time (yellow 444 
dashed line box in Figure S4). The NCCN measurements from the CCN counter were available at 445 
the supersaturation between 0.32% and 0.34%. Hence, the NCCN were retrieved at the 446 
supersaturation of 0.34% by applying ECLiAP to the mean profiles of lidar measurements. It is 447 
noteworthy that the retrieval has been carried out only on those observations having valid lidar 448 
measurements at least for two wavelengths. Figure 6a demonstrates the retrieval fit to HSRL-2’s 449 
vertical dry aerosol extinction coefficient measurements at 355, 532, and 1064 nm. A smoke 450 
aerosol dominates the ~93% of profiles at the altitude above 800 meters and marine at lower 451 
altitudes (< 800 m), having RH between 30%-105%. The finite dry aerosol optical properties close 452 
to the surface could not be retrieved for the observations with RH>99%. The retrieved profiles of 453 
dry extinction coefficients are in better agreement with the measured by HSRL-2. This illustrates 454 
the ability of the kappa parametrization to account for aerosol hygroscopicity. The vertical mean 455 
of absolute fitting error of extinction coefficient is found to be 3.2%, 4.8%, and 6.3% for 355, 532, 456 
and 1064 nm, respectively, and the vertical mean of absolute fitting error of backscatter 457 
coefficients is 5.1%, 6.7% and 8.9% for 355, 532 and 1064 nm respectively. The fit to the 458 
backscatter coefficients of 1064 nm has a relatively larger error. Certainly, one needs to know that 459 
the vertically resolved extinction coefficient at 1064 nm is derived using the backscatter coefficient 460 
at 1064 nm and lidar ratio. Since HSRL-2 does not directly measure extinction at 1064 nm, it is 461 
computed from an assumed relationship with the measured lidar ratio at 532 nm. Though provided 462 
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as a best guess, such an estimate may cause extra uncertainty to the 1064 nm. Furthermore,  the 463 
comparison of vertical profiles of ECLiAP retrieved NCCN from lidar measurements and the NCCN 464 
measured by the CCN counter is shown in Figure 6b. The retrieved values captured the pattern of 465 
altitude variations in NCCN as observed by the in-situ measurements. However, the magnitude of 466 
retrieved NCCN is slightly overestimated by ~12% in total. The overestimation is lower (~9%) at 467 
above 2 km, whereas, at below 1 km, it is slightly higher (~16%). A plausible reason behind the 468 
relatively large overestimation at below 1 km might be the considerable variation of RH between 469 
60%-105% or/and the highly variable aerosol properties due to the mixture of multiple aerosol 470 
subtypes (smoke, marine, and dust). In addition, wind-driven advection and the age of the air parcel 471 
radically modify the characteristics of smoke aerosols and their hygroscopic behavior, which also 472 
leads to the slight overestimation of retrieved NCCN values. The discrepancy between the retrieved 473 
and observed values of NCCN should be reassessed with the robust measurements from the varieties 474 
of aerosol subtypes using the multi-campaign airborne data.  475 

The second robust validation exercise is performed, based on collocated measurements, 476 
using two years (2017-2018) of combined data from the ORACLES campaign. In 2017-2018, both 477 
HSRL-2 and CCN counter were installed on the NASA P-3 flight. The end goal of this exercise is 478 
to find one lidar measurement from HSRL-2 to directly compare with one NCCN measured by the 479 
CCN counter, both observed in approximately the same time and space. We defined colocation 480 
criteria for any given HSRL-2 profile as follows. The collocation method finds CCN measurement 481 
that falls within ±1.1 km horizontal distance, ±60 m vertical distance, and ±10 minutes of the time 482 
window. Later, the meteorological parameters within the given space and time windows are 483 
extracted along with lidar measurements and measured NCCN from each flight of the 2017-2018 484 
ORACLES campaign. ECLiAP is applied to each lidar measurement for NCCN retrieval on the 485 
same supersaturation value measured by the CCN counter (lies within the range from 0.2-0.4% 486 
SS). Figure 7 represents the result from the comparison of retrieved and measured NCCN. The NCCN 487 
inferred from the CCN counter measurement is in better agreement with the retrieved NCCN with a 488 
correlation coefficient (R) of ~0.89, a root mean square error (RMSE) value of 302.8 cm-3, and a 489 
bias of 138.8 cm-3. The systematic positive bias in the comparison indicates that the retrieved NCCN 490 
are overestimating the observed values. It is noteworthy that smoke aerosols dominate in the 491 
observations from ORACLES, but it also has significant observations from marine, dust, and 492 
polluted dust. The discrepancy between measured and retrieved values could be due to the 493 
variabilities in the aerosol properties. Overall, the strong correlation in the validation results 494 
demonstrates the potential of ECLiAP in retrieving NCCN from lidar measurements. It recommends 495 
having a detailed validation study separate for aerosol subtypes using ground-based and aircraft 496 
measurements to evaluate the reliability of the ECLiAP algorithm in estimating the NCCN. 497 

3.3 Retrieving NCCN from spaceborne lidar (CALIOP/CALIPSO): a case study 498 

Extending the scope of ECLiAP, the methodology was converted into a procedure that can be 499 
applied to any level-2 aerosol profile dataset from Cloud-Aerosol Lidar with Orthogonal 500 
Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 501 
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(CALIPSO) (Winker et al., 2007). As an illustrative example, this procedure was applied to a 502 
regular CALIPSO track for 01 January 2019 starting at 20:08 UTC, which spans from 10 °N to 40 503 
°N, passing over the Tibetan plateau and Indian landmass. The CALIPSO track (solid black line) 504 
can be seen on the right-hand side in Figure 8a. CALIOP onboard CALIPSO provides 505 
measurements of aerosol optical properties only at two wavelengths (532 and 1064 nm). Therefore, 506 
a total of six parameters (β532, β1064, ⍺532, ⍺1064, depolarization ratio, and aerosol subtypes) from 507 
CALIOP along with meteorological parameters (RH, temperature) are provided as the inputs to 508 
ECLiAP and retrieved total particle concentration (NCN) and NCCN at six supersaturations as 509 
outputs. The NCN amount represents the total number of aerosol particles that can serve as centers 510 
for condensation, while the NCCN is the fraction of NCN that can activate as CCN. 511 

The extinction coefficient at 532 nm and aerosol subtypes, along with retrieved NCN and NCCN at 512 
supersaturation of 0.4%, are shown in Figure 8. Unfortunately, due to the retrieval limitation over 513 
the elevated region along with cloudiness, there are no valid aerosol measurements over the 514 
Himalayan-Tibetan plateau (as shown by a gap between 28 °N to 37 °N). On the contrary, a strong 515 
mixed aerosol signal is observed over the Indian landmass (⍺532 larger than 2.5 km-1), while an 516 
elevated (altitude >1 km) dust aerosol layer (⍺532= ~1.0 km-1) at the edge of the CALIPSO track 517 
over the Taklamakan desert (above 38 °N). Over southern India (below 17 °N), polluted 518 
continental aerosols prevail (⍺532 between 0.5-0.8 km-1) and mostly accumulate within the 519 
boundary layer (~1.5 km a.s.l.), while over northern India (above 19 °N), the aerosol situation 520 
includes a mixture of polluted continental and polluted dust (⍺532= ~1.6 km -1 below 1 km altitude). 521 
The corresponding vertical cross-section of retrieved NCN and NCCN at a supersaturation of 0.4% 522 
using ECLiAP can be seen in Figures 8c and 8d, respectively. NCN and NCCN larger than 25000 523 
cm-3 and 3000 cm-3 at a supersaturation of 0.4% appear over the areas where polluted continental 524 
aerosols dominate (southern India), while NCCN is greater than 2000 cm-3 appears over northern 525 
India. Dust NCCN of 100 to 200 cm-3 appears over the Taklamakan desert region.  526 

To verify the capability of ECLiAP retrieval to capture similar variability of particle 527 
physicochemical characteristics and its influence on CCN retrievals, we have investigated two 528 
distinct cases identified based on the variation in aerosol subtypes and meteorological variables. 529 
These scenarios are as follows: (1) Case-I: domination of polluted continental aerosols over 530 
southern India (red color box covered in figure 8) (2) Case-II: Mixture of polluted dust and polluted 531 
continental aerosols over northern India (blue color box covered in figure 8). The profiles of 532 
extinction coefficients at 532 nm and relative humidity, along with retrieved NCN and NCCN at six 533 
supersaturations, are presented in Figure 9. Figure 9a shows the profiles of the extinction 534 
coefficient at 532 nm and relative humidity for both cases. The extinction profile in case-I ranges 535 
from 0.7-1.2 km-1, is dominated by polluted continental aerosols in the high moisture condition 536 
(RH between 60%-80%), accumulates within the boundary layer (~1.5 km), and peaks at ~1.2 km. 537 
Conversely, case-II represents the low moisture condition (RH ≤ 30%), with relatively large 538 
extinction coefficient values with a maximum of 1.6 km-1 at ~0.2 km altitude, influenced mainly 539 
by the mixture of polluted continental and polluted dust aerosols. These two cases are dynamically 540 
diverse and different in nature that providing a solid platform to verify the capability of ECLiAP 541 
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in retrieving NCCN. Figure 9b illustrates the retrieved NCN using ECLiAP for both cases. The 542 
retrieved mean values of NCN are observed to be almost similar (~12000 cm-3 and ~11000 cm-3 for 543 
case-I and case-II, respectively). The profiles of NCN follow a similar vertical distribution pattern 544 
of extinction coefficients. Figures 9c and 9d display the retrieved NCCN at six supersaturations for 545 
Case-I and II, respectively. Interestingly, NCCN values are found to be relatively lower in case-II, 546 
though its extinction coefficient is larger than in case-I. Note that ECLiAP considers polluted dust 547 
as a mixture of polluted continental and dust aerosol to retrieve NCCN. The above-mentioned 548 
discrepancy can be only explained by the intrusion of dust and its non-hygroscopic behavior along 549 
with dry conditions, further reducing the concentration of hygroscopic aerosols that leads to a 550 
decrease in NCCN. This has been clearly reflected in the calculated activation ratio (AR = 551 
NCCN/NCN) spectra in Figure S5. Figure S5 directly compares the AR spectra as a function of SS 552 
for both cases. The observed differences in the AR spectra reflect the nature of the particles to act 553 
as CCN. Relatively, larger values of AR in case-I indicate the dominance of hygroscopic aerosols 554 
get activated to CCN under high moisture and increase NCCN. In contrast, the dust intrusion in 555 
case-II reduces the capability of particles to activate as CCN under low moisture and further 556 
reduces AR by ~20%-60% for the range of supersaturation from 0.07% to 1.0%. Given the limited 557 
sample space, the aim of the study is to demonstrate the potential of ECLiAP for retrieving reliable 558 
NCCN data from spaceborne lidar measurements. A detailed comprehensive analysis comparing the 559 
CALIOP-retrieved NCCN with multi-campaign airborne measurements is essential to evaluate the 560 
reliability of ECLiAP to construct the 3D CCN climatology at a global scale. 561 

4 Discussion 562 

Due to the absence of vertically resolved information in AOD, using it as a proxy for CCN in ACI 563 
studies has several shortcomings. Among other issues, a column property like AOD is not 564 
necessarily representative of NCCN at altitudes, which affects the formation and growth of the cloud. 565 
Because no reliable global estimate of NCCN exists, the fundamental assumptions of ACI cannot 566 
be robustly verified with the available sparse and localized in-situ measurements. In this study, we 567 
present a novel approach based on the 3β+3⍺ technique for retrieving vertically-resolved cloud-568 
relevant NCCN from a single spaceborne lidar sensor. With this development, we demonstrate a 569 
new application of active satellite remote sensing that can provide direct measurements of CCN to 570 
improve understanding of ACI processes. 571 

To address the problem of the non-uniqueness of a solution in the 3β+2⍺ inverse technique, we 572 
have adopted a more realistic LUT-based approach using the 3β+3⍺ multiwavelength technique, 573 
reflecting the bimodal particle distribution in the atmosphere better. Previous studies (Lv et al., 574 
2018; Tan et al., 2019) demonstrated that CCN estimation is highly sensitive to the extinction 575 
coefficient than the backscatter coefficient. Therefore, we have included an additional signal of 576 
extinction coefficient at 1064 nm to improve the retrieval accuracy of particle size distribution, 577 
particularly for coarse mode. In order to verify the performance, the CCN estimation error, using 578 
Eq. 12, has been calculated using both 3β+2⍺ and 3β+3⍺ techniques for each aerosol subtype in 579 
comparison to the observed CCN values. The relative difference in CCN estimation error between 580 
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3β+2⍺ and 3β+3⍺ techniques for each aerosol subtype is shown in Figure 10. The analysis shows 581 
that insertion of the α1064 signal in the 3β+3⍺ technique improves the CCN estimation by ~15% in 582 
total and ~20% for the coarse mode dominated aerosol subtypes (i.e., marine and dust aerosols) 583 
compared to 3β+2⍺. Based on CCN closure analysis, Patel & Jiang, (2021) suggested that particle 584 
size and chemical composition are more crucial in the CCN activity at lower SS. In contrast, at 585 
higher SS, most particles become activated regardless of their size and composition. Therefore, 586 
the improvement in CCN estimation is relatively large in low SS (SS < 0.2%) than in high SS (SS 587 
> 0.2%).  588 

Systematic and random errors in the lidar measurements were evaluated individually and discussed 589 
in the sensitivity analysis. Both systematic and random errors realistically coexist in optical 590 
parameters, and therefore, we have evaluated their concurrent effect. The simulations were 591 
conducted with both systematic and random errors co-occurring. The results (not shown here) 592 
show that the retrieved CCN errors are much smaller than the error obtained individually by either 593 
systematic or random at each wavelength independently. The mean CCN error ranges between 594 
7%-15% at SS from 0.07% to 1.0%. This retrieved CCN error is slightly large (~12%-18%) for 595 
the coarse-mode dominated aerosol subtypes (dust and marine). Summing up errors from multiple 596 
optical parameters might compensate for each other and improve the CCN retrievals. Furthermore, 597 
the retrieval from ECLiAP has few constraints. (i) it strongly depends on the accuracy of lidar-598 
measured aerosol optical properties. The retrieval is only possible if the lidar signals are available 599 
at least at two wavelengths. (ii) retrieval from ECLiAP is only performed for RH ≤ 99%. (iii) the 600 
CCN activity also depends on the mixing state, which is difficult to measure from space. 601 
Subsequently, an alternative solution is required to parametrize the effect of the mixing state on 602 
CCN activity.  603 

The present study demonstrates the capability of ECLiAP to construct the three-dimensional global 604 
climatology of NCCN. The global coverage of NCCN, in conjunction with collocated retrieved cloud 605 
properties, will provide crucial input for the regional and global simulations that will provide 606 
realistic assessments of aerosol-induced cloud radiative forcing. The satellite-retrieved NCCN can 607 
precisely separate the aerosols into natural and anthropogenic components, which can be further 608 
used for constraining aerosol emissions and transport models for air-quality studies. The 609 
application of detailed NCCN will potentially mitigate the uncertainty of aerosol perturbed climate 610 
forcing  (direct + indirect) and improve confidence in assessing anthropogenic contributions and 611 
climate change projections. 612 

5 Summary 613 

CCN number concentration is a critically-important parameter to constrain the relationship 614 
between aerosols and clouds and is needed to improve the understanding of ACI processes. The 615 
lack of direct measurements of CCN prevents robust testing of the underlying assumptions 616 
associated with aerosol-cloud interactions robustly and evaluates climate model simulations. In 617 
order to overcome this limitation, we presented ECLiAP, an emergent remote sensing-based 618 
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analytical algorithm based on the physical law to retrieve the vertically resolved NCCN from aerosol 619 
optical properties measured by the multiwavelength lidar system. Among the several fundamental 620 
aspects of the mathematical problem that must be solved during retrievals of microphysical 621 
parameters from multiwavelength lidar, the most crucial aspect is that the inverse solution is not 622 
unique. Therefore, the retrieval is implemented based on look-up tables generated from Mie 623 
scattering (and T-matrix/IGOM for dust particles) calculations. AERONET-based five 624 
representative aerosol subtypes with bimodal size distributions were considered. The influence of 625 
relative humidity on lidar-measured aerosol optical properties is corrected using the aerosol type-626 
dependent hygroscopic growth factor to obtain the dry aerosol optical properties. As a tradeoff 627 
between the accuracy and computation time of the inversion, a successive approximation technique 628 
is utilized in two steps to retrieve the optically equivalent particle number size distribution. Once 629 
the aerosol size distribution parameters are obtained through the LUT, critical diameter and NCCN 630 
at six supersaturations ranging from 0.07% to 1.0% is estimated using the κ-Köhler theory.  631 

Sensitivity analyses were carried out to evaluate the algorithm performance and to show the 632 
influence of systematic and random errors of lidar-derived optical properties and auxiliary RH 633 
profiles on CCN retrieval. The performance of ECLiAP is evaluated with error-free data, and NCCN 634 
at all six supersaturations is well reproduced with good accuracy and stability for the five aerosol 635 
subtypes. Systematic errors in extinction coefficients and RH greatly influence CCN retrieval 636 
errors. Reducing uncertainties in extinction coefficients effectively improves retrieval accuracy, 637 
while uncertainties in backscatter coefficients benefit retrieval at higher SS. Differences in weights 638 
of fine- to coarse-mode particles within the aerosol subtypes lead to significant differences in the 639 
retrieval uncertainty. The differences can be explained via the weaker constraint of the algorithm 640 
for the coarse mode particles than for the fine mode. However, the insertion of the additional signal 641 
at a relatively longer wavelength reduced the differences in the retrieval uncertainty compared to 642 
previous techniques. The mean random errors are relatively small and found to be relatively large 643 
for the coarse mode-dominated aerosol subtypes, consistent with the sensitivities to the systematic 644 
errors. In realistic cases, systematic and random errors often offset each other and improve the 645 
mean CCN retrievals. Overall, the error analysis suggests that extinction coefficients at 355 and 646 
532 nm must be reliably derived to ensure retrieval accuracy, including measurements at longer 647 
wavelengths further improve the CCN retrievals, particularly for the coarse mode-dominated 648 
aerosol subtypes. 649 

The ECLiAP algorithm was applied to observational data from the NASA ORACLES airborne 650 
campaign to illustrate the potential of the algorithm. NCCN retrieved from lidar (HSRL-2) 651 
measurements have been validated against the simultaneous measurements from the CCN counter 652 
installed in the flight. Considering the inhomogeneity in the vertical distribution of aerosols 653 
throughout the atmospheric column, NCCN from in situ measurements and lidar retrievals agree 654 
well. Furthermore, for the first time, the ECLiAP has been applied to spaceborne lidar 655 
measurements – CALIOP/CALIPSO – to retrieve NCCN. The results demonstrate that the NCCN 656 
retrieved by ECLiAP is highly influenced by the variability of aerosol particle size and 657 
composition based on aerosol subtypes and also captures the meteorological influence. The 658 
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vertically resolved information of aerosols, along with CCN from spaceborne lidar, is essential for 659 
investigating the ACI in detail. 660 

Our future goals include a comprehensive evaluation of NCCN derived from spaceborne lidar 661 
measurements, i.e., CALIOP/CALIPSO, with multi-campaign airborne measurements, covering 662 
various physicochemical regimes in the troposphere. The extensive validation will enable us to 663 
test the applicability of the ECLiAP algorithm in the context of estimating the NCCN from space. 664 
Eventually, we plan to apply the ECLiAP algorithm over the period of CALIOP observations (~15 665 
years) to generate the global three-dimensional NCCN climatology. The data set coupled with the 666 
cloud-related data from the other satellite or state-of-the-art numerical models will help improve 667 
our understanding of the ACI. The science narrative of the NASA Aerosol and Cloud, Convection 668 
and Precipitation (ACCP) project pointed out that the combination of near-simultaneous and 669 
collocated lidar and polarimeter measurements can provide more detailed information regarding 670 
particle size, concentration, and composition (Braun et al., 2022). Therefore, our future work may 671 
also include combining the lidar measurements with passive observations in the ECLiAP algorithm 672 
to further narrow down the uncertainty of aerosol microphysics with the enhanced observational 673 
constraints (Xu et al., 2021), which will in turn improve the accuracy of CCN retrieval. Moreover, 674 
the ability of CALIOP to detect the aerosol subtypes has facilitated the retrieval of aerosol type-675 
specific 3D NCCN climatology on a global scale. These datasets from spaceborne lidar 676 
measurements will be beneficial for evaluating models and other satellite products, opening a new 677 
window to investigate the region and regime-wise detailed ACI studies and better constraining 678 
anthropogenic contributions to the climate forcing in the climate model.  679 
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Appendix A1: Separation of optical properties for dust mixture 680 

We have adopted the methodology by Tesche et al., (2009) to separate the dust and non-681 
dust extinction coefficients in the dust mixtures (polluted dust and dusty marine) using particle 682 
backscatter coefficients and particle depolarization ratio. The optical properties  683 

𝛽. =	𝛽C
d𝛿C − 𝛿&e(1 + 𝛿%)
(𝛿% − 𝛿&)d1 + 𝛿Ce

 (A1.1) 

Where the values of 𝛿% and 𝛿& are 0.31 and 0.05, respectively. If 𝛿C > 0.31 (< 0.05) then aerosol 684 
mixture has considered to be pure dust (non-dust). For the remaining values of 𝛿C, we first estimate 685 
𝛽. using the above equation and then calculate 𝛽(. by subtracting 𝛽. from 𝛽C. Later, the extinction 686 
coefficients are computed by multiplying the backscatter coefficients with the respective lidar ratio 687 
(44, 70, and 23 for dust, polluted continental, and marine aerosols). 688 
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 972 

Table 1: CCN errors at six supersaturation (SS) retrieved from error-free inputs for the five 973 
aerosol types 974 

 Aerosol 
Types 

CCN error (%) 

0.07% 0.1% 0.2% 0.4% 0.8% 1.0% 

Mean 
± SD 
(%) 

Marine -0.00 ± 
0.21 

-0.01 ± 
0.23 

0.00 ± 
0.26 

-0.00 ± 
0.25 

0.00 ± 
0.23 

-0.00 ± 
0.24 

Dust -0.01 ± 
0.22 

-0.01 ± 
0.23 

0.00 ± 
0.26 

-0.01 ± 
0.24 

0.00 ± 
0.25 

-0.01 ± 
0.23 

Polluted 
continental 

-0.01 ± 
0.18 

0.00 ± 
0.18 

-0.01 ± 
0.16 

0.00 ± 
0.18 

-0.01 ± 
0.19 

-0.00 ± 
0.18 

Clean 
continental 

-0.01 ± 
0.19 

-0.01 ± 
0.20 

-0.01 ± 
0.19 

-0.00 ± 
0.17 

-0.00 ± 
0.18 

-0.01 ± 
0.17 

Smoke -0.01 ± 
0.19 

-0.01 ± 
0.21 

-0.01 ± 
0.18 

-0.01 ± 
0.20 

-0.00 ± 
0.22 

-0.01 ± 
0.19 

 975 

 976 

 977 

Table 2: Sensitivity of CCN retrieval to the bimodal fits at different supersaturation ratios from 978 
the 100 aerosol size distributions obtained from ARM-SGP. The CCN error is calculated as an 979 
absolute value. 980 

 
CCN error (%) 

0.07% 0.1% 0.2% 0.4% 0.8% 1.0% 

Mean ± SD (%) 3.3 ± 2.4 3.9 ± 2.8 3.1 ± 2.7 2.9 ± 1.8 2.1 ± 1.5 1.7 ± 1.3 

 981 
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 983 

 984 
Figure 1: Bimodal log-normal particle size distributions for five aerosol types (marine, dust, 985 
polluted continental, clean continental and smoke aerosols) considered in this study to build the 986 
look-up-tables (LUTs). These particle size distributions were derived using measurements from 987 
sun/sky radiometer at multiple selected Aerosol Robotic Network (AERONET) sites. Solid line 988 
represents the mean of particle size distribution, whereas the shaded area shows the range of size 989 
distribution covers in the respective LUTs.  990 

https://doi.org/10.5194/acp-2022-547
Preprint. Discussion started: 3 November 2022
c© Author(s) 2022. CC BY 4.0 License.



 

30 
 

 991 

 992 
Figure 2: Flowchart of ECLiAP algorithm for the retrieval of NCCN  from lidar measurements. 993 
The steps within the dotted line box describes the pre-processing which includes the calculation 994 
of aerosol optical properties using Mie scattering theory (T-matrix/IGOM for dust) to build look-995 
up-tables for five aerosol models. The steps outside the dotted line box represent the retrieval 996 
process of NCCN from the given inputs of aerosol optical properties and meteorological 997 
parameters. The chart also refers to the used equations associated to the particular retrieval 998 
process.  999 

https://doi.org/10.5194/acp-2022-547
Preprint. Discussion started: 3 November 2022
c© Author(s) 2022. CC BY 4.0 License.



 

31 
 

 1000 

 1001 
Figure 3: Systematic errors in retrieved NCCN. This represent the errors in retrieved NCCN as a 1002 
function of systematic errors in backscatter and extinction coefficients at all three wavelengths for 1003 
low (≤0.2%) and high (>0.2%) supersaturations and for all five aerosol subtypes as. The markers 1004 
denote the mean value and the error bars represent the standard deviation.  1005 
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 1006 

 1007 

 1008 
Figure 4: Systematic errors in retrieved NCCN. This represent the errors in retrieved NCCN as a 1009 
function of systematic error in RH, combines for all aerosol subtypes, at low (≤0.2%) and high 1010 
(>0.2%) supersaturations. The markers denote the mean value and the error bars represent the 1011 
standard deviation.  1012 
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 1013 

 1014 

 1015 
Figure 5: Random errors in retrieved NCCN. This represent the random errors in retrieved NCCN 1016 
at low (≤ 0.2%) and high (> 0.2%) supersaturations with different random error conditions 1017 
individually for five aerosol subtypes. The uncertainty of backscatter and extinction coefficients 1018 
off all the tests is 10% and the uncertainties of RH are 5%, 10% and 20%. The color shows the 1019 
mean values whereas number shows the ±1 standard deviation of errors.  1020 
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 1021 

 1022 
Figure 6: Comparison between retrieved and observed vertical profiles of aerosol extinction 1023 
coefficients and NCCN. The ECLiAP retrieved (a) aerosol extinction coefficients at 355, 532 and 1024 
1064 nm and (b) NCCN were compared against the one observed during NASA ORACLES 1025 
airborne campaign. The lidar signals were mainly influenced by the mixture of smoke and 1026 
dust or marine aerosols. The relationship between HSRL-2 measured aerosol extinction 1027 
coefficients (solid lines) and retrieved (dotted line) by an algorithm in the left panel. The right 1028 
panel illustrates the comparison of retrieved NCCN using lidar measurements and measured by 1029 
CCN counter. The dashed line in the right panel shows the moving average of retrieved NCCN 1030 
values. CCN counter measured NCCN at supersaturation ranging from 0.32%-0.34% for the 1031 
selected region (described in Figure S4), therefore, the retrieval of NCCN was carried out at 1032 
supersaturation of 0.34%.  1033 
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 1034 

 1035 

 1036 
Figure 7: Comparison between retrieved and observed NCCN. The comparison between ECLiAP 1037 
retrieved NCCN from HSRL-2 lidar measurements and the measured NCCN values from CCN 1038 
counter. The HSRL-2 and CCN counter data were collected from the multiple flights during NASA-1039 
ORACLES airborne campaigns conducted in 2017-2018. The color bar displays the observed 1040 
values of supersaturation for each measurement and the NCCN were retrieved on the same 1041 
supersaturation for the direct comparison. The slope and intercept of the best fit line are given in 1042 
the key by m and b, respectively. The gray dash line indicates the unit slope line and blue solid 1043 
line indicates the regression line.  1044 
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 1046 

 1047 
Figure 8: Retrieval from spaceborne lidar measurements. Explore the capability of ECLiAP, the 1048 
NCN, and NCCN retrieved from CALIOP onboard CALIPSO observations on 01 January 2019, 1049 
passing over the Tibetan plateau and Indian landmass. CALIOP derived (a) extinction coefficient 1050 
at 532 nm, (b) aerosol subtypes were shown in the upper two panels. The lower two panels 1051 
illustrate the ECLiAP retrieved (c) total particle concentrations (NCN), and (d) NCCN at 1052 
supersaturation 0.4%. The two color boxes in red (case-I) and blue (case-II) are the two different 1053 
scenarios that are further studied to assess the capability of ECLiAP. 1054 
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 1055 

 1056 
Figure 9: Case studied from CALIOP observations. As per mentioned above, two different 1057 
scenarios (case-1 dominated by polluted continental and case-II contains a mixture of polluted 1058 
continental and polluted dust) were identified and studied in detail to assess the potential of 1059 
ECLiAP to accurately capture the particles physicochemical characteristics and their influence 1060 
on the retrieved values along with meteorological influence. 1061 
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 1062 

 1063 

 1064 

Figure 10: Relative difference in CCN error between 3β+2⍺ and 3β+3⍺. The CCN error were 1065 
calcualted against the given inputs using Eq. (11) for both the 3β+2⍺ and 3β+3⍺ techniques 1066 
individually. Later the relative difference of CCN error has calculated from the individual CCN 1067 
errors at low and high supersaturations for each aerosol subtypes. 1068 
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