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Abstract. Cloud condensation nuclei (CCN) are mediators of aerosol-cloud interactions (ACI), 17 
contributing to the largest uncertainties in the understandings of global climate change. We present 18 
a novel remote sensing-based algorithm that quantifies the vertically-resolved CCN number 19 
concentrations (NCCN) using aerosol optical properties measured by a multiwavelength lidar. The 20 
algorithm considers five distinct aerosol subtypes with bimodal size distributions. The inversion 21 
used the look-up tables developed in this study, based on the observations from the Aerosol 22 
Robotic Network to efficiently retrieve optimal particle size distributions from lidar 23 
measurements. The method derives dry aerosol optical properties by implementing hygroscopic 24 
enhancement factors to lidar measurements. The retrieved optically equivalent particle size 25 
distributions and aerosol type dependent particle composition are utilized to calculate critical 26 
diameter using the κ-Köhler theory and NCCN at six supersaturations ranging from 0.07% to 1.0%. 27 
Sensitivity analyses indicate that uncertainties in extinction coefficients and relative humidity 28 
greatly influence the retrieval error in NCCN. The potential of this algorithm is further evaluated by 29 
retrieving NCCN using airborne lidar from the NASA ORACLES campaign and validated against 30 
simultaneous measurements from the CCN counter. The independent validation with robust 31 
correlation demonstrates promising results. Furthermore, the NCCN has been retrieved for the first 32 
time using a proposed algorithm from spaceborne lidar - Cloud-Aerosol Lidar with Orthogonal 33 
Polarization (CALIOP) - measurements. The application of this new capability demonstrates the 34 
potential for constructing a 3D CCN climatology at a global scale, which help to better quantify 35 
ACI effects and thus reduce the uncertainty in aerosol climate forcing. 36 
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1 Introduction 37 

The Intergovernmental Panel on Climate Change (IPCC) report states that radiative forcing caused 38 
by aerosol-cloud interactions (ACI), dominates the largest uncertainty, and remains the least well-39 
understood anthropogenic contribution to climate change (IPCC AR5, 2013). The uncertainty 40 
mainly stems from the complicated processes of how aerosols impact the global cloud system. 41 
Atmospheric aerosols allow for water vapor condensation under certain supersaturation (SS) 42 
conditions and subsequently evolve into cloud droplets by serving as cloud condensation nuclei 43 
(CCN). Anthropogenic emissions are a major source of CCN, facilitating the formation of cloud 44 
droplets, thereby altering cloud properties, precipitation patterns, and hence the climate forcing 45 
(Carslaw et al., 2010; Paasonen et al., 2013). Consequently, reducing the uncertainty associated 46 
with ACI is crucial for increasing our confidence in predictions of global and regional climate 47 
models (IPCC, 2014). The fundamental parameter for understanding the aerosol-cloud interaction 48 
is the CCN concentrations (Rosenfeld et al., 2014). Determining CCN number concentration 49 
(NCCN) is the basis for analyses of ACI (Seinfeld et al., 2016). Large uncertainties in their 50 
magnitude and variability at a global scale are one of the main factors for the low level of scientific 51 
understanding of ACI effects. Therefore, knowledge of the global abundance of aerosols capable 52 
of serving as CCN is fundamental to advancing our understanding of ACI (Fan et al., 2016). 53 

Tackling the challenges in climate change, as identified by the IPCC, requires that CCN properties 54 
be measured globally. Missing such a fundamental quantity has greatly hindered our ability to 55 
accurately quantify the effects of anthropogenic aerosols on cloud properties (Rosenfeld et al., 56 
2014). Ground-based instruments can observe NCCN at various SS, but they only provide sparse 57 
and localized information. Besides limited coverage, near-surface CCN properties could differ 58 
significantly from CCN properties near the cloud base due to vertical aerosol inhomogeneities, 59 
particularly under stable atmospheric boundary conditions. Airborne observations can provide 60 
very useful CCN measurements near cloud base but are expensive to collect and are limited to a 61 
few field experiments, and having limited spatial-temporal coverage (Feingold et al., 1998; Li, 62 
Liu, et al., 2015; Li, Yin, et al., 2015).  63 

Overall, observations of CCN are spatiotemporally sparse, lack the vertical dimension, and provide 64 
insufficient constraints on their global distribution. ACI studies often use satellite retrievals to take 65 
advantage of their global coverage, but satellites have been unable to measure the CCN. 66 
Nevertheless, the aerosol optical parameters such as aerosol optical depth (AOD) and aerosol index 67 
(AI) are commonly used as proxies for CCN in previous studies (Gryspeerdt & Stier, 2012; Patel 68 
et al., 2017, 2019; Patel & Kumar, 2016; Quaas et al., 2008, 2009; Rosenfeld, 2008). However, all 69 
these proxies are crude tools and suffer from various issues such as aerosol swelling, lack of 70 
vertical information, cloud contamination, uncertainty in size distribution and solubility, and more 71 
(Rosenfeld et al., 2016). The aforementioned studies based on passive satellite remote sensing 72 
measurements, such as AOD and AI have limitations in several areas for ACI studies. 73 

Active remote sensing technologies such as lidar have the ability to improve the precision and 74 
range of conditions under which particle concentrations and their ability to act as CCN can be 75 
retrieved. A significant body of prior studies has assessed the relationship between aerosol optical 76 
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properties and CCN based on local in situ data offered by lidar and radar. Feingold et al., (1998) 77 
developed a technique to derive CCN from the retrieved cloud droplet concentration, vertical 78 
velocity, and lidar backscatter from ground-based radar, lidar, and radiometer. Ghan et al., (2006) 79 
and Ghan & Collins, (2004) evaluated the relationship between aerosol extinction from airborne 80 
lidar and NCCN from near-surface measurements and devised a technique for estimating CCN at a 81 
cloud base. However, their techniques rely on the assumption that the physiochemical 82 
characteristics of aerosols at the surface represent the vertical column. Thus, their retrievals may 83 
be subject to large uncertainties due to vertical inhomogeneity in particle characteristics. Previous 84 
work by Clarke & Kapustin, (2010); Kapustin et al., (2006); Liu & Li, (2014); Shinozuka et al., 85 
(2015) demonstrated a strong correlation between extinction coefficients and NCCN instead of 86 
vertically integrated AOD or AI using airborne and in situ observations. Stier, (2016) provided a 87 
global assessment of the link between aerosol radiative properties and CCN using a global aerosol-88 
climate model (ECHAM-HAM) and suggested that vertically integrated aerosol radiative 89 
properties are of limited suitability as a proxy for global surface CCN.  90 

Both Mamouri and Ansmann, (2016) and Choudhury and Tesche, (2022) examine the potential of 91 
single wavelength lidar observations to retrieve CCN number concentrations for different aerosol 92 
types. The relationships between particle extinction coefficients and number concentrations of 93 
particles with a dry radius larger than 50 nm (for non-dust) and 100 nm (for dust) were 94 
parameterized based on multiyear AERONET observations for different aerosol types. However, 95 
the measurements from the single wavelength lidar also lack sufficient information to quantify 96 
particle size distribution, particle number concentration or aerosol type, resulting in large 97 
uncertainty in NCCN retrieval (Burton et al., 2012; Tan et al., 2019). However, few recent studies 98 
(Lv et al., 2018; Tan et al., 2019) have shown efforts to retrieve NCCN based on the advanced 99 
capability of multiwavelength lidar measurements, but they have been limited to ground-based 100 
observations only. Rosenfeld et al., (2016) have attempted a new approach to retrieve satellite 101 
based NCCN using passive satellite observations. All these studies taken together provide a sound 102 
foundation of CCN-relevant aerosol properties, but most of them do not refer to CCN 103 
concentrations themselves, and the ones who do, do not give a global coverage nor a vertically 104 
resolved picture. Consequently, no reliable global observational data set of CCN exists, and the 105 
ability to routinely measure vertically resolved CCN to study ACI effectively is still lacking 106 
(Burkart et al., 2011).  107 

This study introduces ECLiAP (Estimation of CCN using Lidar measured Aerosol optical 108 
Properties), a comprehensive remote sensing algorithm designed to estimate the concentration of 109 
cloud condensation nuclei (NCCN) using multiwavelength spaceborne lidar measurements.  110 

This paper is structured as follows: The introductory section discusses the importance and 111 
motivation behind NCCN estimation. Section 2 describes the LUT-based approach utilized for 112 
NCCN estimation, focusing specifically on satellite observations. Section 3 encompasses 113 
numerical simulations, sensitivity analysis, extensive validation efforts, and an observational case 114 
study. Finally, Section 4 comprehensively discusses the results and their broader implications. 115 

  116 
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2 Dataset 117 

2.1 NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 118 

The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 119 
campaign, conducted between 2016 and 2018 over the southeast Atlantic (SEA) (Redemann et al., 120 
2021), provided valuable insights into a crucial region characterized by the interaction of biomass 121 
burning emissions with marine stratocumulus clouds specifically during July to October. These 122 
clouds wield significant influence over global climate; however, climate models often 123 
inadequately represent them due to their abundance and brightness (Bony & Dufresne, 2005; Nam 124 
et al., 2012). Furthermore, the challenges of non-polarimetric passive remote sensing of aerosols 125 
in the presence of low stratocumulus clouds(Chang et al., 2021; Coddington et al., 2010) 126 
underscore the criticality of accurately predicting Cloud Condensation Nuclei (CCN) 127 
concentrations and refining model parameterization for the SEA region. To address the knowledge 128 
gaps, the ORACLES campaign focused on comprehensive observations of aerosol and cloud 129 
properties, employing a combination of remote sensing and in situ instruments aboard the NASA 130 
P-3 (operational from 2016 to 2018) and ER2 (operational in 2016) aircraft. The ORACLES data 131 
includes in-situ measurements of NCCN from the CCN counter, as well as lidar measurements 132 
obtained through NASA Langley Research Center’s high-spectral resolution lidar (HSRL-2). We 133 
seized this opportunity to conduct a validation exercise based on the accessible data. 134 
 135 

2.1.1 High-Spectral Resolution Lidar (HSRL)-2 136 

The NASA Langley Research Center HSRL-2 measures aerosol backscatter and depolarization at 137 
three wavelengths (355 nm, 532 nm, and 1064 nm) and aerosol extinction at 355 nm and 532 nm 138 
using the HSRL technique (Burton et al., 2018; Shipley et al., 1983). At 1064 nm, extinction is 139 
derived from the product of aerosol backscatter at 1064nm and an inferred lidar ratio at 1064 nm. 140 
The HSRL-2 measurement technique differentiates between aerosol and molecular returns by 141 
analyzing the spectral distribution of the return signal. Consequently, this enables the independent 142 
determination of aerosol backscatter and extinction coefficients, unlike traditional elastic 143 
backscatter lidar retrievals that rely on a lidar ratio assumption (Hair et al., 2008). The addition of 144 
the 355 nm channel in HSRL-2 enhances sensitivity to smaller particles, including CCN, which 145 
are crucial in aerosol-cloud interactions (Burton et al., 2018). The instrument achieves horizontal 146 
and vertical resolutions of approximately 2 km and 15 m, respectively, for aerosol backscatter and 147 
depolarization. For aerosol extinction coefficients, horizontal and vertical resolutions are 148 
approximately 12 km and 300 m, respectively, with interpolation to match the finer resolutions of 149 
backscatter and depolarization. In terms of temporal resolution, aerosol backscatter and extinction 150 
coefficients are available at approximately 10 s and 60 s intervals, respectively. The uncertainty in 151 
lidar observables, influenced by factors like contrast ratio and aerosol loading, can be within 5% 152 
under certain conditions (Burton et al., 2018). This manuscript delves the ability of ECLiAP by 153 
leveraging the advanced capabilities of HSRL-2, in accurately deriving NCCN in the real-world 154 
atmospheric conditions. 155 
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2.1.2 CCN counter 156 

We utilize the Georgia Institute of Technology (GIT) Droplet Measurement Technologies (DMT) 157 
CCN counter (CCN-100) as another primary instrument and data source. The CCN-100 facilitates 158 
in situ measurements of CCN concentration across a range of water vapor supersaturation levels 159 
(S), specifically between 0.1% and 0.4% (Kacarab et al., 2020; Redemann et al., 2021). The CCN-160 
100 is ingeniously designed as a continuous-flow streamwise thermal-gradient chamber 161 
(CFSTGC) following the framework proposed by Roberts & Nenes, (2005). In this configuration, 162 
a cylindrical flow chamber generates quasi-uniform supersaturation at its centerline through 163 
continuous heat and water vapor transport from the wetted walls, subject to a temperature gradient. 164 
The difference in heat and water vapor diffusivity in the radial direction ensures the generation of 165 
supersaturation at varying levels depending on the flow rate and temperature gradient. An 166 
advantage of the continuous-flow system is its rapid sampling capabilities, achieving a frequency 167 
of approximately 1 Hz (Roberts & Nenes, 2005). Such high frequency is crucial for effectively 168 
capturing rapidly changing environments, typical of airborne sampling scenarios. Aerosols that 169 
activate into droplets with a radius greater than 0.5 µm are counted as CCN at the end of the growth 170 
chamber. The horizontal resolution of in situ observations during the ORACLES campaign is 171 
contingent upon aircraft speed. For accuracy, the uncertainty associated with CCN number 172 
concentration is approximately ±10% at high signal-to-noise ratio (S/N), while the supersaturation 173 
uncertainty is around ±0.04% (Rose et al., 2008). These precision values assure the reliability of 174 
the CCN measurements, ensuring the robustness of the dataset used to validate the ECLiAP 175 
derived NCCN in our investigation. 176 

 177 

2.2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 178 

The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) on the CALIPSO satellite, the 179 
first spaceborne polarization lidar, was launched in April 2006 (Winker et al., 2007). CALIPSO is 180 
in 705 km sun-synchronous polar orbit, and the orbit is controlled to repeat the same ground track 181 
every 16 days with cross-track errors of less than ±10 km. CALIOP acquires high-resolution 182 
(vertical and horizontal at 30 and 333 m below 8.2 km, and 60 and 1000 m between 8.2 and 20.2 183 
km) profiles of total attenuated backscatter by aerosols and clouds at 532 and 1064 nm during both 184 
day and night. Spatial averaging over different scale is typically performed to improve the signal-185 
to-noise ratio for reliable retrievals. For our study, we used the CALIPSO version 4.20 level 2 186 
aerosol profile product (vertical and horizontal resolution: 60 m × 5 km, temporal resolution: 5.92 187 
s). The CALIOP first classified the aerosol and cloud layers using Clod-Aerosol Discrimination 188 
(CAD) score algorithm (Liu et al., 2009). Further, the aerosol layers categorize into the subsequent 189 
aerosol types (Omar et al., 2009). The hybrid extinction retrieval algorithms is used to retrieve the 190 
aerosol extinction, using the assumed lidar ratios appropriate for each aerosol type (Young & 191 
Vaughan, 2009) reported in the CALIPSO level-2 5 km aerosol profile product (Vaughan et al., 192 
2017). The determination of lidar ratio contributes the major uncertainty in the retrieval of 193 
CALIOP aerosol extinction, and the misclassification of aerosol type is another source of 194 
uncertainty (Yu et al., 2010). We incorporate the profiles of aerosol extinction coefficient, 195 
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backscatter coefficient, and particle depolarization ratio, along with aerosol subtype information 196 
from CALIOP, into the ECLiAP for the NCCN retrieval. Additionally, we utilize relative humidity 197 
profiles obtained from the Global Modelling and Assimilation Office Data Assimilation System 198 
(Molod et al., 2015), which are included in the CALIPSO data product. We employed CALIOP 199 
data to assess the NCCN retrieval capability of ECLiAP and also conducted a case study. 200 

 201 

3 Methodology 202 

3.1 Construction of Lookup Tables 203 

The inversion solution using the combination of simultaneous measurements of backscatters at 204 
three wavelengths and extinction at two wavelengths, also called 3β+2⍺,	using lidar has been 205 
gaining prominence for aerosol microphysical (effective radius, total number, volume 206 
concentration, refractive index) retrieval (Burton et al., 2016; Müller et al., 1999, 2005, 2016; 207 
Veselovskii et al., 2002, 2004, 2012). Several fundamental aspects of the mathematical problem 208 
must be solved during the retrieval from multiwavelength lidar. The most important aspect is that 209 
the inversion solution is not unique. The non-uniqueness of an inversion solution in the advanced 210 
3β+2⍺ technique is the primary source of the retrieval challenges (Chemyakin et al., 2016). 211 
Additionally, retrieving six size parameters (number concentrations, effective radius, and 212 
geometric standard deviation for fine and coarse mode particles) for a bimodal particle size 213 
distribution (PSD) from five known quantities (β355, β532, β1064, ⍺355, ⍺532) is still an ill-posed 214 
inversion problem. Besides, the existing spaceborne lidar instrument (CALIOP onboard 215 
CALIPSO) provides the measurements at only two wavelengths (532 nm & 1064 nm). Considering 216 
all these constraints and partially compensating for the non-uniqueness problem, we employed the 217 
LUT approach with a fine step of bimodal particle size distributions (PSDs) to derive aerosol size 218 
parameters. The parameterization of bimodal lognormal PSD is described in section 2.1.1. The 219 
fundamental design of the LUTs framework for lidar measurements builds to test the aerosol 220 
optical properties that we target for precise information. 221 

In the present study, the LUTs are designed using the 3β+3⍺ (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) 222 
technique for the individual aerosol types. An additional input at a longer wavelength improves 223 
the retrieval accuracy for coarse mode particles (Lv et al., 2018). These LUTs contain aerosol 224 
optical properties such as backscatter coefficients at 355, 532, and 1064 nm (β355, β532, β1064) and 225 
extinction coefficients at 355, 532, and 1064 nm (⍺355, ⍺532, ⍺1064), along with size parameters 226 
including number concentration, effective radius and geometric standard deviation for fine and 227 
coarse mode particles (Ntf, rf, σf, Ntc, rc, σc). Primarily, the LUTs are generated for the five distinct 228 
aerosol subtypes: marine, dust, polluted continental, clean continental, and smoke aerosols (as 229 
shown in Figure 1). This study considers dust particles to be spheroid, while other aerosol types to 230 
be spheres. The particle optical properties are computed using the well-known Mie scattering 231 
theory (Bohren & Huffman, 1998) for spherical particles, which is a numerically accurate approach 232 
over a wide range of particle sizes. Meanwhile, the T-Matrix method (Mishchenko & Travis, 1998) 233 
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is adopted for the spheroids, which is numerically precise for the limited particle sizes. 234 
Consequently, the improved geometric optics method (IGOM; Bi et al., 2009; Yang et al., 2007) 235 
is applied to the larger spheroids not covered by the T-matrix method. The axis ratio distribution 236 
for spheroids, ranging from ~0.3 (flattened spheroids) to ~3.0 (elongated spheroids) is taken from 237 
Dubovik et al., (2006). The transition from the TMM to IGOM is determined by specific size 238 
parameters and is dependent on the particle shape and refractive index. However, the present study 239 
considers the mean complex refractive index, the transition from TMM to IGOM depends on the 240 
particle shape. PSD and mean complex refractive index were used as the input parameters for the 241 
computations of aerosol optical properties. The parameter ranges for the bimodal size distribution 242 
and mean complex refractive index of five aerosol subtypes are presented in Table 1 which are 243 
used to construct the respective look-up tables (LUTs). These parameter values were adopted from 244 
Dubovik, (2002); Torres et al., (2017) and Veselovskii et al., (2004), who used measurements from 245 
sun-sky radiometers at multiple AErosol RObotic NETwork (AERONET) sites. Torres et al., 246 
(2017) validated their models against 744 AERONET observations and 165 almucantar 247 
AERONET standard inversions at eight different sites. This approach ensures the robustness and 248 
reliability of our aerosol characterization. The PSDs are given in terms of the total particle number 249 
concentration, effective radius (𝑟), and geometric standard deviation individually for fine and 250 
coarse modes. Considering the sensitivity limitation of lidar measurements, the range of radius for 251 
the PSD is constrained to 0.01-10 µm with a fixed bin size of 0.002 defined on a logarithmic-252 
equidistant scale in the calculation. In the process of constructing LUTs, specific intervals for the 253 
parameters 𝜎! , 𝜎" , 𝑟! and 𝑟" have been carefully chosen to define the range of particle size 254 
distributions for each aerosol model. These intervals are set at 0.01, 0.01, 0.002 and 0.01 µm, 255 
respectively. These intervals are set as a compromise between accuracy and computation time, 256 
ensuring that the LUTs encompass a comprehensive range of particle size distributions for various 257 
aerosol subtypes found in the real atmosphere. Further details on the parameterization of the 258 
bimodal particle size distribution is discussed in the subsequent section. 259 

3.1.1 Lognormal Aerosol Size Distributions 260 

An earlier study by Kolmogorov, (1941) mathematically proved that the random process of 261 
sequential particle crushing leads to a lognormal distribution of particle size. In our study, PSDs 262 
have been treated as a bimodal lognormal distribution, as widely used in aerosol remote sensing 263 
studies (Dubovik et al., 2011; Remer et al., 2005; Schuster et al., 2006; Torres et al., 2014). 264 
Although particle size distributions are not always bimodal in each case, their size distributions 265 
can be considered as a combination of fine and coarse modes. This bimodal lognormal size 266 
distribution can be expressed as: 267 

𝑑𝑛(𝑟)
𝑑 ln(𝑟) = 	 -

𝑁#$
(2𝜋)% &⁄ ln 𝜎$

exp 4−
(ln 𝑟 − ln 𝑟$()&

2(ln 𝜎$)&
6

$)!,"

 (1) 

where 𝑁#$ is the total particle concentration of the ith mode and 𝑟$( is the median radius for the 268 
aerosol size distribution, with n representing the number concentration distribution. The index 𝑖 =269 
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𝑓, 𝑐 refers to the fine and coarse modes, respectively. The term ln 𝜎$ is the mode width of the ith 270 
mode. This general bimodal lognormal size distribution shape for aerosol is adopted in this study 271 
to improve the accuracy of the CCN retrieval. The sensitivity assessment regarding the response 272 
of CCN to the assumption of bimodal size distributions is presented in section 3.1. For individual 273 
lognormal components, the relationships between the volume and number distribution parameters 274 
representing by the following equations (Hatch & Choate, 1929): 275 

𝑟( =	𝑟+ 𝑒𝑥𝑝[3(ln 𝜎)&]⁄ 	 (2) 

𝑉# =	𝑁#
4𝜋
3
(𝑟(),𝑒𝑥𝑝 C

9
2
(ln 𝜎)&E (3) 

where, 𝑉# is the particle volume concentration and 𝑟+ is the median radius for the aerosol volume 276 
size distribution. As shown in Figure 1 and Table 1, the main difference between the aerosol 277 
subtype is the ratio of the volume concentration of the fine mode to the coarse mode. 278 

3.2 Retrieval of CCN Number Concentrations 279 

Building upon the methodology proposed by (Lv et al., 2018), we have enhanced and 280 
generalized the approach to enable its application to airborne and spaceborne lidar measurements 281 
for CCN estimation. The core of the algorithm relies on the utilization of look-up tables (LUTs) 282 
that incorporate aerosol size and composition information, facilitating reliable and vertically-283 
resolved CCN estimation. NCCN values are obtained at six critical supersaturations from 0.07% to 284 
1.0% based on retrieved particle size distributions. Significant improvements have been 285 
implemented within the methodology. Firstly, its applicability has been expanded to accommodate 286 
lidar measurements from diverse platforms. Secondly, the LUTs now include five aerosol types, 287 
ensuring a more comprehensive representation of aerosol characteristics. Thirdly, the methodology 288 
leverages the additional signal of the extinction coefficient at 1064 nm, effectively addressing the 289 
uncertainty associated with the non-uniqueness problem during the inversion process. Fourthly, 290 
including the hygroscopic growth correction in the revised method has led to significant 291 
improvements in the accuracy of CCN estimation, further enhancing the reliability and robustness 292 
of the. Finally, results the extensive analysis has been conducted by including the errors from RH.  293 

This section discusses a detailed methodology adopted by ECLiAP to retrieve NCCN from 294 
the given lidar measurements. 295 

3.2.1 Overview 296 

An optically related NCCN is introduced to bridge the gap between aerosol particle and their 297 
activation capability to serve as a cloud droplet. The ability of particles to act as CCN is mainly 298 
controlled by particle size distribution followed by chemical composition (Dusek et al., 2006; Patel 299 
& Jiang, 2021). However, both factors are significant in specific regions(Mamouri & Ansmann, 300 
2016), 2016). Therefore, NCCN could be quantified with size distribution and compositional 301 
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information. The key feature of an approach adopted in ECLiAP is to seek the parameters that can 302 
provide the size and composition of particles consistent with lidar measurements under dry 303 
conditions and use these parameters to estimate NCCN. 304 

Figure 2 illustrates a schematic diagram of the method to retrieve NCCN from satellite observations.  305 

In the natural environment, the particle hygroscopic properties influence the particle size 306 
distribution and their optical properties, especially when it is near a cloud base or under a high 307 
moist environment. Therefore, the lidar measured aerosol optical properties under ambient 308 
conditions need to be corrected to the dry aerosol optical properties using the hygroscopic 309 
enhancement factor. The hygroscopic enhancement factor can be fitted by the parameterization 310 
scheme using enhancement of backscatter and extinction coefficients with RH. Particle dry 311 
backscatter and extinction can also be inferred from the hygroscopic enhancement factor. An 312 
approach to computing hygroscopic enhancement factors and performing hygroscopic correction 313 
to obtain dry backscatter and extinction is described in Section 2.2.2. This step is applied to all the 314 
3β+3α parameters before looking for aerosol size parameters from the LUT. Before applying 315 
hygroscopic correction, lidar-measured optical properties, particularly for dust mixtures (polluted 316 
dust and dusty marine), are separated into dust and non-dust components using the backscatter 317 
coefficients and particle depolarization ratio (Tesche et al., 2009). The methodology to separate 318 
the dust mixture is discussed in Appendix A1. The resulting dust and non-dust aerosol optical 319 
properties, along with aerosol subtype and relative humidity, is then utilized in the ECLiAP 320 
algorithm (as shown in Figure 2) to estimate CCN concentrations. Note that the direct inclusion of 321 
internal mixtures in our analysis and LUTs poses complexity and challenges. As a result, our 322 
approach primarily centers on studying and analyzing external mixtures of aerosol subtypes.  323 

Once the dry aerosol optical properties are derived, an ECLiAP look for the suitable size 324 
parameters from the LUTs for the given dry aerosol optical properties and respective aerosol 325 
subtype (see section 2.2.3). As mentioned earlier, the ability of particles to act as CCN is mainly 326 
controlled by particle size distribution followed by chemical composition. Deriving composition 327 
information of particles from the lidar measurements is not yet well-defined. Therefore, in the 328 
absence of chemical composition data, mean chemical composition information denoted by a 329 
single value of κ, the so-called hygroscopicity parameter, is achievable for estimating NCCN, which 330 
describes the relationship between the particle dry diameter and CCN activity. The sensitivity of 331 
the estimated NCCN to κ depends strongly on the variability of the shape of the aerosol size 332 
distribution (Wang et al., 2018). Therefore, the chemical information becomes less important in 333 
estimating NCCN, especi(Patel & Jiang, 2021)iang, 2021). Most studies reported that the 334 
uncertainty of using the mean value of κ to estimate the NCCN is less than 10% (Jurányi et al., 2010; 335 
Wang et al., 2018), which varies with atmospheric conditions. In ECLiAP, the literature values of 336 
κ are considered for each aerosol subtype for further retrieval. The κ is assumed to be 0.7 for 337 
marine (Andreae & Rosenfeld, 2008), 0.03 for dust (Koehler et al., 2009), 0.27 for polluted 338 
continental (Liu et al., 2011), 0.3 for clean continental (Andreae & Rosenfeld, 2008), and 0.1 for 339 
smoke aerosols (Petters et al., 2009) for the later computations. 340 
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Finally, an ECLiAP uses the retrieved optically equivalent size parameters from LUTs and κ value 341 
as composition information for the further computation of critical radius using the κ-Köhler theory 342 
(Petters & Kreidenweis, 2007), and hence the NCCN for the six fixed supersaturations (see section 343 
2.2.4). For the dust mixture, NCCN derived separately both for dust and non-dust are added lastly. 344 

3.2.2 Separation of optical properties for dust mixture 345 

We have adopted the methodology by Tesche et al., (2009) to separate the dust and non-346 
dust extinction coefficients in the dust mixtures (polluted dust and dusty marine) using particle 347 
backscatter coefficients and particle depolarization ratio. The optical properties  348 

𝛽- =	𝛽.
G𝛿. − 𝛿&I(1 + 𝛿%)
(𝛿% − 𝛿&)G1 + 𝛿.I

 (A1.1) 

This study incorporates wavelength-dependent depolarization ratios 𝛿% and 𝛿& to distinguish the 349 
dust and non-dust aerosol components. The reported particle depolarization ratio from various 350 
campaigns is listed in the Table S1. In this study, mean values of 𝛿% (0.24, 0.31 and 0.06) and 𝛿& 351 
(0.03, 0.05, and 0.02) at 355, 532 and 1064 nm, respectively, are utilized. If the measured 352 
depolarization ratio 𝛿. > 𝛿% (< 𝛿&) then aerosol mixture is considered as pure dust (non-dust). For 353 
remaining 𝛿. values, we first estimate 𝛽- using the above equation and then calculate 𝛽(- by 354 
subtracting 𝛽- from 𝛽.. Subsequently, the extinction coefficients are computed by multiplying the 355 
backscatter coefficients with the respective lidar ratio. Determining a spatially varying lidar ratio 356 
for dust across different regions presents challenges due to uncertainties in identifying dust source 357 
regions during transport. Therefore, we employ a simplified approach using a single lidar ratio 358 
value. Previous studies have reported little to no wavelength dependency of lidar ratio for dust and 359 
marine aerosol based on ground-based Raman lidar and airborne HSRL lidar measurements. As a 360 
result, we consider a constant lidar ratio of 44 for dust and 23 for marine to calculate the extinction 361 
coefficients at the three wavelengths. However, for polluted continental aerosols, we utilize 362 
wavelength-dependent lidar ratios of 58, 70 and 30 at 355, 532 and 1064 nm (Giannakaki et al., 363 
2016; Hänel et al., 2012; Kim et al., 2018; Komppula et al., 2012; Müller et al., 2007). 364 

3.2.3 Derivation of dry backscatter and dry extinction 365 

It is difficult to measure the complex chemical composition and associated water uptake capability 366 
of a particle with increasing RH. Therefore, a widely popular and simple parameterization scheme 367 
was used to describe the changes in aerosol optical properties with atmospheric RH relative to a 368 
dry (or low-RH) state, also called the hygroscopic enhancement factor. Recent aerosol hygroscopic 369 
studies (Bedoya-Velásquez et al., 2018; Fernández et al., 2018; Lv et al., 2017) have derived 370 
backscatter and extinction enhancement factors using lidar measurements and RH profiles. The 371 
hygroscopic enhancement factor that is associated with both particle size and hygroscopicity 372 
(Kuang et al., 2017), is defined as:  373 
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𝑓/(𝑅𝐻, 𝜆) 	= 	
𝜉(𝑅𝐻, 𝜆)

𝜉(𝑅𝐻-01 , 𝜆)	
 

 
(4) 

where 𝑓/  is the hygroscopic enhancement factor of the optical property 𝜉 (backscatter and 374 
extinction) at a specific light wavelength 𝜆 and RH, and RHdry is the reference RH value (RH=0). 375 
There is no generic reference RH that represents the dry conditions for lidar measurements, unlike 376 
in-situ controlled RH measurements, to derive enhancements factor. Inferring dry backscatter and 377 
extinction coefficients is also crucial in CCN retrieval. Therefore, parameterization of the 378 
hygroscopic growth of lidar-derived optical properties should combine dry aerosol optical 379 
properties and 𝑓/(𝑅𝐻, 𝜆) together. Previous studies have proposed several parameterization 380 
schemes for hygroscopic enhancement factors (Titos et al., 2016). The most frequently used 381 
parameterization scheme is a power-law function that is known as gamma parameterization, 382 
introduced by Kasten, (1969): 383 

𝑓/(𝑅𝐻, 𝜆) 	= 𝐴	. (1	 −	𝑅𝐻 100⁄ )23 (5) 

Where the parameter A gives the extrapolated value at RH=0% and the exponent 𝛾 is the fitting 384 
parameter and defines the hygroscopic behavior of the particles. Recently, a new physically based 385 
single-parameter representation approach was proposed by Brock et al., (2016) to describe the 386 
hygroscopic enhancement factor. Their results claimed that this proposed parameterization scheme 387 
better describes light-scattering hygroscopic enhancement factors than the widely used gamma 388 
power-law approximation. The formula of this new scheme is written as: 389 

𝜉(𝑅𝐻, 𝜆) 	= 	 𝜉-01(𝑅𝐻, 𝜆)	. 𝑓/(𝑅𝐻) 	= 	 𝜉-01(𝑅𝐻, 𝜆)	.		C1	 +	𝜅/ 	(𝜆)	
𝑅𝐻

100	 − 	𝑅𝐻E 
(6) 

where, 𝜅/  is a dimensionless fitting parameter and shows a significant correlation with bulk 390 
hygroscopic parameter κ; but they are not equivalent (Brock et al., 2016; Kuang et al., 2017). 𝜉-01 391 
denotes dry aerosol optical properties (backscatter and extinction coefficients).  392 

For the estimation of the hygroscopic enactment factor, aerosol optical properties (backscatter and 393 
extinction coefficients) at 355, 532, and 1064 nm are calculated over a range of RH (0-99%) using 394 
Mie theory (T-matrix and IGOM for spheroid) for the range of PSDs and each aerosols subtype. 395 
Figure S1 illustrates the mean curve of the hygroscopic enhancement factor (the ratio between the 396 
aerosol optical properties at specific RH to dry RH) at three wavelengths with increasing RH for 397 
each aerosol subtype. With given aerosol optical properties at different RHs, 𝜅/  can be fitted by 398 
curve fitting using Eq. (6). However, Tan et al., (2019), based on a comparison of 𝜅/  and derived 399 
𝜉-01 for various ranges of RH, showed that the fitting hygroscopic parameters are found to be 400 
sensitive to fitting RH range when the RH range is limited and relatively high (between 60% and 401 
90%). Therefore, we fixed the RH range to 60%-90% for the parameter fitting (highlighted curve 402 
in Figure S1). In addition, retrieving finite dry aerosol optical properties could not be possible for 403 
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the observation with RH > 99%. Therefore, ECLiAP only applies the hygroscopic correction when 404 
RH is between 40% and 99%. In ECLiAP, individual 𝜅/  values for each aerosol optical property 405 
at three different wavelengths, along with the RH value, are used to obtain the dry aerosol optical 406 
properties separately for each aerosol subtype using Eq. (6). 407 

3.2.4 Inversion techniques for size parameters 408 

ECLiAP utilizes an inverse approach, distinct from traditional methods, to estimate the particle 409 
size distribution from Look-Up Tables (LUTs) using lidar inputs. This process involves inferring 410 
particle size distribution from known aerosol optical properties, determining the best-fitting 411 
solution that corresponds to the observed lidar measurements. It differs from the traditional 3⍺+2β 412 
technique typically used for inversion. 413 

Once the dry aerosol optical properties are obtained, the ECLiAP searches for suitable size 414 
parameters from the LUTs. For this, the ECLiAP look for the best combination of six values (Ntf, 415 
rf, σf, Ntc, rc, σc) to match inputs (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) by minimizing the following 416 
function: 417 

𝜇456 = - V
𝑥$ − 𝑥$ʹ

𝑥$
V

$)%,…,9

 (7) 

Where 𝑥$ represents input aerosol optical data (β355, β532, β1064, ⍺355, ⍺532, ⍺1064) and 𝑥$ʹ  is aerosol 418 
optical data (βʹ355, βʹ532, βʹ1064, ⍺ʹ355, ⍺ʹ532, ⍺ʹ1064) derived from LUTs, which are calculated from 419 
Mie theory (or T-matrix and IGOM for spheroid) and size distribution parameters.  420 

Each LUT consists of two parts to reduce the dimensions and size of LUTs. Therefore, the particle 421 
size distribution, as shown in Eq. (1), can be rewritten as: 422 

𝑑𝑛(𝑟)
𝑑 ln(𝑟) = 	 - W

1
(2𝜋)% &⁄ ln 𝜎$

exp 4−
(ln 𝑟 − ln 𝑟$()&

2(ln 𝜎$)&
6	 . 𝑁#$X

$)!,"

	= 	 - 𝑥$ 	. 𝑁#$
$)!,"

 (8) 

Where 𝑥! and 𝑥" refer to the data bank precomputed with (𝜎! , 𝑟! and 𝑟) and (𝜎" , 𝑟" and 𝑟), 423 
respectively. Furthermore, we have adopted the successive approximation method (Kantorovitch, 424 
1939) to deal with the extensive range of 𝑁#! and speed up the finding for the closest solution. 425 
Therefore, the inversion technique is further divided into two steps. Step-1: search for an 426 
approximate solution based on the criterion in Eq. 8 and calculate the corresponding aerosol optical 427 
data (βʹ355, βʹ532, βʹ1064, ⍺ʹ355, ⍺ʹ532, ⍺ʹ1064) from the data banks (𝑥! and 𝑥") and 𝑁#! and 𝑁#". The step 428 
widths of 𝑁#! and 𝑁#" are considered to be 100 and 0.1 cm-3, respectively. Step 2: based on the 429 
approximate solution obtained in step 1, determine the smallest solution space of 𝑁#! by repeating 430 
the procedure in step 1 using a smaller step width of 10 cm-3 for 𝑁#!. Search for the optimal solution 431 
of six size parameters (Ntf, rf, σf, Ntc, rc, σc). 432 
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3.2.5 Estimation of NCCN 433 

For the given aerosol optical properties, the retrieved size parameters and the associated 434 
hygroscopicity parameter (κ; as discussed in section 2.2.1) were used to calculate the critical 435 
radius. The critical radius (𝑟"0$#) above which all particles are activated into droplets for a certain 436 
supersaturation ratio (𝑆") can be computed from the κ-Köhler theory as suggested by Petters & 437 
Kreidenweis, (2007): 438 

𝐷"0$# 	= 	 [
4𝐴,

27	 ∗ 	𝜅	 ∗ 	 ln(𝑆")&
^
%
,:

; 				𝐴	 = 	
4𝜎4 ;⁄ 𝑀<

𝑅𝑇𝜌<
 (9) 

Where, 𝐷"0$# is the critical diameter (𝑟"0$# =	𝐷"0$# 2⁄ ), and 𝑆" 	= 	𝑆𝑆 + 1, 𝑀< and 𝜌< are the 439 
molecular weight and water density, while R and T are the ideal gas constant and the absolute 440 
temperature, respectively and 𝜎4 ;⁄  = 0.072 J m-2. The critical radius is determined at six critical 441 
supersaturations for activation (0.07%, 0.1%, 0.2%, 0.4%, 0.8% and 1.0%). While lidar 442 
measurements are more sensitive to particles with sizes around 50 nm and larger, this method 443 
incorporates factors such as particle size distribution, chemical composition, supersaturation 444 
levels, and thermodynamic properties to estimate the critical radius even for particles below the 445 
typical lidar sensitivity range. 446 

Finally, the ECLiAP calculates NCCN by integrating size distribution from critical radius to 447 
maximum radius as: 448 

𝑁""( 	= 	c
𝑑𝑛(𝑟)
𝑑 ln(𝑟)

=(	0!"#

?@ 0$
	𝑑 ln(𝑟) (10) 

 449 

4 Results 450 

4.1 Sensitivity analysis 451 

Evaluating the algorithm is a challenging task in the absence of standard and reliable 452 
measurements. The performance of the ECLiAP is evaluated using numerically simulated 453 
observations with different error characteristics. 454 

4.1.1 Retrieval of NCCN with error-free data 455 

To assess the inversion performance and stability ECLiAP, we first performed a sensitivity 456 
analysis under the assumption of error-free lidar measurements. We used 2000 different sets of 457 
bimodal size distributions for each aerosol subtypes and used them to simulate the lidar 458 
observations. The retrieval was repeated to each simulated lidar observations, and the retrieved 459 
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size parameters were used to calculate the errors in the retrieved NCCN (𝑁AAB0C# ) with respect to the 460 
initial inputs (𝑁AAB$(# ). The errors were calculated as the percentage difference using Eq. 8.  461 

𝐶𝐶𝑁	𝐸𝑟𝑟𝑜𝑟 = 	 gG𝑁AAB0C# −	𝑁AAB$(# I 𝑁AAB$(#⁄ h 	× 	100% (11) 

Table 2 lists the statistical results of CCN error for each aerosol type. As the number shows, the 462 
initial NCCN is well reproduced from the error-free inputs for each aerosol size distribution. The 463 
standard deviation of the retrieved CCN errors from the different sets of bimodal size distribution 464 
data is also estimated along with the mean value to determine the range of the retrieved CCN error. 465 
As mentioned above, the appropriate balance between the accuracy and processing time of the 466 
LUTs leads the mean CCN error close to zero but not equal to zero. However, the small standard 467 
deviation (<0.25) indicates the smaller variances of errors among the aerosol size distributions. 468 
Although the high accuracy of LUTs provides the CCN error closer to zero, the calculations are 469 
more time expensive. In general, the retrieval results shown in Table 2 exhibit the good accuracy 470 
and stability of the inversion algorithm for each aerosol subtype. 471 

Additionally, the sensitivity of the NCCN retrieval to the assumption of the bimodal size distribution 472 
is tested against the aerosol size distribution measurements at the U.S Department of Energy’s 473 
Atmospheric Radiation Measurement (ARM) climate research facility from the Southern Great 474 
Plain (SGP) site. Particle size distribution was measured simultaneously by an Ultra-High 475 
Sensitivity Aerosol Spectrometer (for the 0.07 to 1 µm geometric diameter range) and an 476 
Aerodynamic Particle Sizer (TSI-3321; for the 0.7 to 5 µm aerodynamics diameter range). The 477 
size conversion factor, defined as the ratio of aerodynamic diameter to geometric diameter, was 478 
used to construct a trimodal lognormal particle size distribution. For the purpose of this study, the 479 
corresponding bimodal fits are produced, which are representative of the observed size 480 
distributions. Figure S2 shows an example of the observed aerosol size distribution and the 481 
corresponding bimodal fits. The comparison suggests that bimodal lognormal size distributions 482 
can well represent the observed aerosol size distributions qualitatively. Later, we calculate NCCN 483 
based on the bimodal fits and compare them with the 100 observed size distributions to quantify 484 
the errors arising from the bimodal lognormal fits. The associated κ values are estimated based on 485 
observed PSDs and NCCN values as described in Patel & Jiang, (2021). The induced CCN errors 486 
from the bimodal fitting are shown in Table 3. The absolute value of NCCN retrieval errors is 3.9%, 487 
with a standard deviation of 2.8% at 0.1% supersaturation. Overall, the results suggest that bimodal 488 
lognormal aerosol size distributions are adequate for retrieving NCCN, but errors from the bimodal 489 
assumption are not negligible. 490 

4.1.2 Impact of systematic and random errors on NCCN retrieval 491 

Both systematic and random errors exist in lidar-retrieved measurements (Mattis et al., 2016). 492 
Systematic errors can be induced by experimental conditions, retrieval algorithms, data processing 493 
methods, and our understanding of physical interactions. Sensitivity analysis tests the impacts of 494 
systematic errors from backscatter and extinction coefficients on NCCN retrieval. Although the 495 
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systematic errors of different parameters are correlated, the errors are considered independent for 496 
individual lidar measurements in the simulations. The error range is reasonable for most current 497 
lidar systems. The systematic errors ranging from -20% to 20% with an interval of 5% are applied 498 
to one input parameter at a time (others are kept error-free) in each test to understand the impacts 499 
on individual parameters better. The inversion algorithm is performed to obtain a new set of aerosol 500 
size distributions and retrieve NCCN data. The procedure is repeated for each input parameter and 501 
error value with 200 sets of the randomly generated size distribution for each aerosol subtype. The 502 
percentage errors in NCCN associated with systematic errors can be estimated by comparing 503 
retrieved and initial values of NCCN using Eq. 11. Note that we have also conducted additional 504 
simulations for higher range of the error and found that our results are unchanged. However, Pérez-505 
Ramírez et al., (2013) demonstrated that larger errors in the input data can cause significant and 506 
unpredictable deviation in the retrieved results. The error range ± 20% is reasonable for most lidar 507 
systems. 508 

Figure 3 illustrates the error in retrieved NCCN as a function of the systematic errors in backscatter 509 
and extinction coefficients. The slope of the curve indicates the sensitivity of CCN errors to 510 
systematic errors in individual parameters. A steeper slope infers a high sensitivity in the NCCN 511 
retrieval to the systematic error for a given input parameter. Errors in retrieved NCCN increase as 512 
errors of backscatter and extinction increase, and it is even steeper at higher supersaturations. In 513 
general, NCCN retrievals are most sensitive to errors in extinction coefficients followed by 514 
backscatter coefficients. Interestingly, the results are less sensitive to errors in backscatter 515 
coefficients at lower supersaturations (≤0.2%) but are relatively more sensitive at higher 516 
supersaturations (>0.2%). This indicates that reducing uncertainties in the extinction coefficients 517 
can effectively improve the accuracy of NCCN retrieval while reducing uncertainty in backscatter 518 
coefficients can be beneficial for retrieving NCCN at higher supersaturation. Errors in a355 519 
influence the retrieval results the most. On average, a positive relative error of 20% in ⍺355 520 
overestimates the NCCN retrieval by about 20% at lower supersaturation and about 50% at higher 521 
supersaturation. A negative error of 20% in ⍺355 underestimates the NCCN retrieval, and the degree 522 
of impact is slightly higher than the positive error. Errors in ⍺532 and ⍺355 have the opposite effect 523 
on the retrieval error. It is also clear that the influence of systematic errors on the retrieval of NCCN 524 
varies with activation radius, as elucidated by the different signs of the slopes. For instance, the 525 
slopes of the extinction coefficient for dust aerosols reverse the sign when the activation radius 526 
exceeds low to high supersaturation. These differences most likely result from the reduced retrieval 527 
sensitivity to the coarse mode of the aerosol size distribution. In addition, there are substantial 528 
distinctions among the types of aerosols. Dust and marine aerosols have the largest absolute errors 529 
compared to others dominated by fine-mode particles (see Table 2). These collectively indicate 530 
that there are better constraints for fine-mode aerosols than for coarse-mode aerosols, which 531 
introduce a larger retrieval error in NCCN for aerosols with more weight in the coarse mode. It is 532 
noteworthy that incorporating an additional input signal of extinction coefficient at 1064 nm in the 533 
ECLiAP reduces the error by ~20% in the coarse mode-dominated aerosol subtypes (dust and 534 
marine), and ~15% in total compared to the previous studies (Lv et al., 2018; Tan et al., 2019). 535 
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Nevertheless, integrating an additional lidar signal at a wavelength longer than 1064 nm may 536 
further reduce retrieval error for the coarse mode-dominated aerosol type. 537 

RH is another crucial parameter in the present retrieval algorithm for NCCN. Errors in RH derived 538 
by remote-sensing or reanalysis influence the values of growth factors and result in the dry aerosol 539 
optical properties, which in turn influence all the input parameters. Therefore, systematic errors 540 
ranging from -10% to 10% in intervals of 2% are considered for RH. Figure 4 shows the result of 541 
systematic errors in RH. We observed that NCCN is overestimated when RH has a negative 542 
systematic error, and the extent of overestimation in NCCN increases as the error increase. A 543 
negative error of 10% in RH overestimates NCCN at lower supersaturation by about 20% and 544 
doubles (~40%) at higher supersaturation. The effects of the positive errors in RH are relatively 545 
smaller and more complicated than negative errors. The mean retrieval error peaked at the RH 546 
error at 6%, and the standard deviation of retrieval error increased with the RH error. This suggests 547 
that underestimating RH causes large errors than overestimation. Therefore, extra care should be 548 
paid to RH measurements if RH-related hygroscopic enhancements of aerosol optical properties 549 
are considered. 550 

Systematic errors introduce mean biases in NCCN retrievals, whereas random errors in observations 551 
produce random NCCN retrieval errors. Random errors obeying Gaussian distributions are produced 552 
arbitrarily with a mean value of zero. The standard deviations are set to 10% for aerosol optical 553 
properties and to 5%, 10%, and 20% for RH in each test. The simulation is repeated 5000 times 554 
for each aerosol subtype, and the statistical results are presented in Figure 5. The mean values of 555 
relative error are presented by color, and the number indicates the standard deviation. The error 556 
does not change significantly as the random error of RH increases. The mean random errors are 557 
relatively small and non-zero, mainly because the sensitivities of NCCN retrievals are different for 558 
different aerosol optical data. The standard deviations are within 16%-28%. The results reveal that 559 
random errors in the given input parameters may also contribute to systematic errors in the NCCN 560 
retrievals. The largest mean relative errors are found for coarse mode-dominated aerosol subtypes 561 
(dust and marine), consistent with the sensitivities to systematic errors. As discussed earlier, 562 
considering additional lidar measurements at longer wavelengths that are more sensitive to larger 563 
particles could improve the retrieval of NCCN for the coarse mode-dominated aerosol subtypes. The 564 
mean values of relative errors increase with increasing supersaturation for all aerosol types. Errors 565 
in the retrieved NCCN follow a Gaussian distribution for low supersaturation. However, the 566 
Gaussian shape disappears, and the high frequencies shift to the edge of the distribution when 567 
supersaturation shifts from low to high (not shown here). Furthermore, the influence of random 568 
errors on the individual input parameters is also assessed and is shown in Figure S3. Random errors 569 
underestimate the enhancement factor (𝜅/) by 30%-40% for 5% RH error, 45%-60% for 10% RH 570 
error, and 65%-75% for 20% RH error. The relative errors in β are likely to be overestimated, 571 
whereas they are underestimated in ⍺. The absolute relative error of input parameters becomes 572 
larger as the random error of RH grows.  573 
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4.2 Comparison with airborne measurements 574 

The evaluation of NCCN retrieval depends on how well retrieved and observed values are matched, 575 
as matching errors can become overwhelming. Therefore, we have carried out a validation 576 
approach by comparing ECLiAP retrieved NCCN from lidar measurements with the in-situ 577 
measurements of NCCN by CCN counter during the NASA ORACLES airborne campaign, which 578 
occurred from 2016 to 2018 over the Southeast Atlantic (SEA) (Redemann et al., 2021; Zuidema 579 
et al., 2016).  580 

HSRL-2 measures the vertical profiles of aerosol optical properties, whereas the CCN counter 581 
provides measurements for point location. Therefore, we carried out two strategically different 582 
validation exercises in this study: (1) the vertical profile-based comparison and (2) the comparison 583 
of collocated measurements. For the profile-based comparison, an ascending path of flight (area 584 
covered within the yellow dashed line in Figure S4) on 19 October 2018 has been considered, so 585 
the measurements of the CCN counter can be available at various altitudes. Prior to comparison, 586 
the lidar measurements from HSRL-2 are averaged over a selected wide space and time (yellow 587 
dashed line box in Figure S4). The NCCN measurements from the CCN counter were available at 588 
the supersaturation between 0.32% and 0.34%. Hence, the NCCN were retrieved at the 589 
supersaturation of 0.34% by applying ECLiAP to the mean profiles of lidar measurements. It is 590 
noteworthy that the retrieval has been carried out only on those observations having valid lidar 591 
measurements at least for two wavelengths. Figure 6a demonstrates the retrieval fit to HSRL-2’s 592 
vertical dry aerosol extinction coefficient measurements at 355, 532, and 1064 nm. A smoke 593 
aerosol dominates the ~93% of profiles at the altitude above 800 meters and marine at lower 594 
altitudes (< 800 m), having RH between 30%-105%. The finite dry aerosol optical properties close 595 
to the surface could not be retrieved for the observations with RH>99%. The retrieved profiles of 596 
dry extinction coefficients are in better agreement with the measured by HSRL-2. This illustrates 597 
the ability of the kappa parametrization to account for aerosol hygroscopicity. The vertical mean 598 
of absolute fitting error of extinction coefficient is found to be 3.2%, 4.8%, and 6.3% for 355, 532, 599 
and 1064 nm, respectively, and the vertical mean of absolute fitting error of backscatter 600 
coefficients is 5.1%, 6.7% and 8.9% for 355, 532 and 1064 nm respectively. The fit to the 601 
backscatter coefficients of 1064 nm has a relatively larger error. Certainly, one needs to know that 602 
the vertically resolved extinction coefficient at 1064 nm is derived using the backscatter coefficient 603 
at 1064 nm and lidar ratio. Since HSRL-2 does not directly measure extinction at 1064 nm, it is 604 
computed from an assumed relationship with the measured lidar ratio at 532 nm. Though provided 605 
as a best guess, such an estimate may cause extra uncertainty to the 1064 nm. Furthermore, the 606 
comparison of vertical profiles of ECLiAP retrieved NCCN from lidar measurements and the NCCN 607 
measured by the CCN counter is shown in Figure 6b. The retrieved values captured the pattern of 608 
altitude variations in NCCN as observed by the in-situ measurements. However, the magnitude of 609 
retrieved NCCN is slightly overestimated by ~12% in total. The overestimation is lower (~9%) at 610 
above 2 km, whereas, at below 1 km, it is slightly higher (~16%). A plausible reason behind the 611 
relatively large overestimation at below 1 km might be the considerable variation of RH between 612 
60%-105% or/and the highly variable aerosol properties due to the mixture of multiple aerosol 613 
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subtypes (smoke, marine, and dust). In addition, wind-driven advection and the age of the air parcel 614 
radically modify the characteristics of smoke aerosols and their hygroscopic behavior, which also 615 
leads to the slight overestimation of retrieved NCCN values. The discrepancy between the retrieved 616 
and observed values of NCCN should be reassessed with the robust measurements from the varieties 617 
of aerosol subtypes using the multi-campaign airborne data.  618 

The second robust validation exercise is performed, based on collocated measurements, 619 
using two years (2017-2018) of combined data from the ORACLES campaign. In 2017-2018, both 620 
HSRL-2 and CCN counter were installed on the NASA P-3 flight. The end goal of this exercise is 621 
to find one lidar measurement from HSRL-2 to directly compare with one NCCN measured by the 622 
CCN counter, both observed in approximately the same time and space. We defined colocation 623 
criteria for any given HSRL-2 profile as follows. The collocation method finds CCN measurement 624 
that falls within ±1.1 km horizontal distance, ±60 m vertical distance, and ±10 minutes of the time 625 
window. Later, the meteorological parameters within the given space and time windows are 626 
extracted along with lidar measurements and measured NCCN from each flight of the 2017-2018 627 
ORACLES campaign. ECLiAP is applied to each lidar measurement for NCCN retrieval on the 628 
same supersaturation value measured by the CCN counter (lies within the range from 0.2-0.4% 629 
SS). Figure 7 represents the result from the comparison of retrieved and measured NCCN. The NCCN 630 
inferred from the CCN counter measurement is in better agreement with the retrieved NCCN with a 631 
correlation coefficient (R) of ~0.89, a root mean square error (RMSE) value of 302.8 cm-3, and a 632 
bias of 138.8 cm-3. The systematic positive bias in the comparison indicates that the retrieved NCCN 633 
are overestimating the observed values. It is noteworthy that smoke aerosols dominate in the 634 
observations from ORACLES, but it also has significant observations from marine, dust, and 635 
polluted dust. The discrepancy between measured and retrieved values could be due to the 636 
variabilities in the aerosol properties. Overall, the strong correlation in the validation results 637 
demonstrates the potential of ECLiAP in retrieving NCCN from lidar measurements. It recommends 638 
having a detailed validation study separate for aerosol subtypes using ground-based and aircraft 639 
measurements to evaluate the reliability of the ECLiAP algorithm in estimating the NCCN. 640 

4.3 Retrieving NCCN from spaceborne lidar (CALIOP/CALIPSO): a case study 641 

Extending the scope of ECLiAP, the methodology was converted into a procedure that can be 642 
applied to any level-2 aerosol profile dataset from Cloud-Aerosol Lidar with Orthogonal 643 
Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 644 
(CALIPSO) (Winker et al., 2007). As an illustrative example, this procedure was applied to a 645 
regular CALIPSO track for 01 January 2019 starting at 20:08 UTC, which spans from 10 °N to 40 646 
°N, passing over the Tibetan plateau and Indian landmass. The CALIPSO track (solid black line) 647 
can be seen on the right-hand side in Figure 8a. CALIOP onboard CALIPSO provides 648 
measurements of aerosol optical properties only at two wavelengths (532 and 1064 nm). Therefore, 649 
a total of six parameters (β532, β1064, ⍺532, ⍺1064, depolarization ratio, and aerosol subtypes) from 650 
CALIOP along with meteorological parameters (RH, temperature) are provided as the inputs to 651 
ECLiAP and retrieved total particle concentration (NCN) and NCCN at six supersaturations as 652 
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outputs. The NCN amount represents the total number of aerosol particles that can serve as centers 653 
for condensation, while the NCCN is the fraction of NCN that can activate as CCN.  654 

The extinction coefficient at 532 nm and aerosol subtypes, along with retrieved NCN and NCCN at 655 
supersaturation of 0.4%, are shown in Figure 8. Unfortunately, due to the retrieval limitation over 656 
the elevated region along with cloudiness, there are no valid aerosol measurements over the 657 
Himalayan-Tibetan plateau (as shown by a gap between 28 °N to 37 °N). On the contrary, a strong 658 
mixed aerosol signal is observed over the Indian landmass (⍺532 larger than 2.5 km-1), while an 659 
elevated (altitude >1 km) dust aerosol layer (⍺532= ~1.0 km-1) at the edge of the CALIPSO track 660 
over the Taklamakan desert (above 38 °N). Over southern India (below 17 °N) polluted continental 661 
aerosols prevail (⍺532 between 0.5-0.8 km-1) and mostly accumulate within the boundary layer 662 
(~1.5 km a.s.l.), while over northern India (above 19 °N), the aerosol situation includes a mixture 663 
of polluted continental and polluted dust (⍺532= ~1.6 km -1 below 1 km altitude). The corresponding 664 
vertical cross-section of retrieved NCN and NCCN at a supersaturation of 0.4% using ECLiAP can 665 
be seen in Figures 8c and 8d, respectively. NCN and NCCN larger than 25000 cm-3 and 3000 cm-3 at 666 
a supersaturation of 0.4% appear over the areas where polluted continental aerosols dominate 667 
(southern India), while NCCN is greater than 2000 cm-3 appears over northern India. Dust NCCN of 668 
100 to 200 cm-3 appears over the Taklamakan desert region.  669 

To verify the capability of ECLiAP retrieval to capture similar variability of particle 670 
physicochemical characteristics and its influence on CCN retrievals, we have investigated two 671 
distinct cases identified based on the variation in aerosol subtypes and meteorological variables. 672 
These scenarios are as follows: (1) Case-I: domination of polluted continental aerosols over 673 
southern India (red color box covered in figure 8) (2) Case-II: Mixture of polluted dust and polluted 674 
continental aerosols over northern India (blue color box covered in figure 8). The profiles of 675 
extinction coefficients at 532 nm and relative humidity, along with retrieved NCN and NCCN at six 676 
supersaturations, are presented in Figure 9. Figure 9a shows the profiles of the extinction 677 
coefficient at 532 nm and relative humidity for both cases. The extinction profile in case-I ranges 678 
from 0.7-1.2 km-1, is dominated by polluted continental aerosols in the high moisture condition 679 
(RH between 60%-80%), accumulates within the boundary layer (~1.5 km), and peaks at ~1.2 km. 680 
Conversely, case-II represents the low moisture condition (RH ≤ 30%), with relatively large 681 
extinction coefficient values with a maximum of 1.6 km-1 at ~0.2 km altitude, influenced mainly 682 
by the mixture of polluted continental and polluted dust aerosols. These two cases are dynamically 683 
diverse and different in nature that providing a solid platform to verify the capability of ECLiAP 684 
in retrieving NCCN. Figure 9b illustrates the retrieved NCN using ECLiAP for both cases. The 685 
retrieved mean values of NCN are observed to be almost similar (~12000 cm-3 and ~11000 cm-3 for 686 
case-I and case-II, respectively). The profiles of NCN follow a similar vertical distribution pattern 687 
of extinction coefficients. Figures 9c and 9d display the retrieved NCCN at six supersaturations for 688 
Case-I and II, respectively. Interestingly, NCCN values are found to be relatively lower in case-II, 689 
though its extinction coefficient is larger than in case-I. Note that ECLiAP considers polluted dust 690 
as a mixture of polluted continental and dust aerosol to retrieve NCCN. The above-mentioned 691 
discrepancy can be only explained by the intrusion of dust and its non-hygroscopic behavior along 692 
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with dry conditions, further reducing the concentration of hygroscopic aerosols that leads to a 693 
decrease in NCCN. This has been clearly reflected in the calculated activation ratio (AR = 694 
NCCN/NCN) spectra in Figure S5. Figure S5 directly compares the AR spectra as a function of SS 695 
for both cases. The observed differences in the AR spectra reflect the nature of the particles to act 696 
as CCN. Relatively, larger values of AR in case-I indicate the dominance of hygroscopic aerosols 697 
get activated to CCN under high moisture and increase NCCN. In contrast, the dust intrusion in 698 
case-II reduces the capability of particles to activate as CCN under low moisture and further 699 
reduces AR by ~20%-60% for the range of supersaturation from 0.07% to 1.0%. Given the limited 700 
sample space, the aim of the study is to demonstrate the potential of ECLiAP for retrieving reliable 701 
NCCN data from spaceborne lidar measurements. We have adapted the retrieval approach to 702 
accommodate the available data, utilizing aerosol optical properties at two wavelengths and 703 
meteorological datasets. These modifications introduce potential limitations and uncertainties due 704 
to the availability of limited number of input parameters. While the CALIPSO case study offers 705 
valuable insights, we stress the need for further validation with independent measurements. A 706 
detailed comprehensive analysis comparing the CALIOP-retrieved NCCN with multi-campaign 707 
airborne measurements is essential to evaluate the reliability of ECLiAP to construct the 3D CCN 708 
climatology at a global scale. 709 

5 Discussion 710 

Due to the absence of vertically resolved information in AOD, using it as a proxy for CCN in ACI 711 
studies has several shortcomings. Among other issues, a column property like AOD is not 712 
necessarily representative of NCCN at altitudes, which affects the formation and growth of the cloud. 713 
Because no reliable global estimate of NCCN exists, the fundamental assumptions of ACI cannot 714 
be robustly verified with the available sparse and localized in-situ measurements. In this study, we 715 
present a novel approach based on the 3β+3⍺ technique for retrieving vertically-resolved cloud-716 
relevant NCCN from a single spaceborne lidar sensor. With this development, we demonstrate a 717 
new application of active satellite remote sensing that can provide direct measurements of CCN to 718 
improve understanding of ACI processes. 719 

To address the problem of the non-uniqueness of a solution in the 3β+2⍺ inverse technique, we 720 
have adopted a more realistic LUT-based approach using the 3β+3⍺ multiwavelength technique, 721 
reflecting the bimodal particle distribution in the atmosphere better. Previous studies (Lv et al., 722 
2018; Tan et al., 2019) demonstrated that CCN estimation is highly sensitive to the extinction 723 
coefficient than the backscatter coefficient. Therefore, leveraging the availability of derived 724 
extinction coefficients at 1064 nm as an additional input to ECLiAP to improve the retrieval 725 
accuracy of particle size distribution, particularly for coarse mode. In order to verify the 726 
performance, the CCN estimation error, using Eq. 12, has been calculated using both 3β+2⍺ and 727 
3β+3⍺ techniques for each aerosol subtype in comparison to the observed CCN values. The 728 
relative difference in CCN estimation error between 3β+2⍺ and 3β+3⍺ techniques for each aerosol 729 
subtype is shown in Figure 10. The analysis shows that insertion of the α1064 signal in the 3β+3⍺ 730 
technique improves the CCN estimation by ~15% in total and ~20% for the coarse mode dominated 731 
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aerosol subtypes (i.e., marine and dust aerosols) compared to 3β+2⍺. The integration of derived 732 
product, along with direct lidar measurements, addresses the inherent non-uniqueness problem of 733 
inversion, and despite introducing uncertainties, the inclusion of extinction coefficient at 1064 nm 734 
significantly reduces retrieval uncertainty, emphasizing the value of additional lidar inputs in 735 
refining retrievals. Based on CCN closure analysis, Patel & Jiang, (2021) suggested that particle 736 
size and chemical composition are more crucial in the CCN activity at lower SS. In contrast, at 737 
higher SS, most particles become activated regardless of their size and composition. Therefore, 738 
the improvement in CCN estimation is relatively large in low SS (SS < 0.2%) than in high SS (SS 739 
> 0.2%). In our NCCN retrieval approach, we use multiple input parameters: aerosol optical 740 
properties (α355, α532, α1064, β355, β532, and β1064) and relative humidity (RH). Each parameter plays 741 
a unique role in constraining aerosol size and concentration accurately. Through sensitivity 742 
analyses, we found that using all seven parameters leads to improved retrieval accuracy compared 743 
to a reduced set. The interplay between the parameters enhances the performance of algorithm, 744 
resulting in reliable and consistent NCCN retrievals. The combination of aerosol optical properties 745 
and RH provides a comprehensive understanding of aerosol behavior, ensuring a more holistic 746 
characterization of aerosol properties in our study. 747 

Systematic and random errors in the lidar measurements were evaluated individually and discussed 748 
in the sensitivity analysis. Both systematic and random errors realistically coexist in optical 749 
parameters, and therefore, we have evaluated their concurrent effect. The simulations were 750 
conducted with both systematic and random errors co-occurring. The results (not shown here) 751 
show that the retrieved CCN errors are much smaller than the error obtained individually by either 752 
systematic or random at each wavelength independently. The mean CCN error ranges between 753 
7%-15% at SS from 0.07% to 1.0%. This retrieved CCN error is slightly large (~12%-18%) for 754 
the coarse-mode dominated aerosol subtypes (dust and marine). Summing up errors from multiple 755 
optical parameters might compensate for each other and improve the CCN retrievals. Furthermore, 756 
the retrieval from ECLiAP has few constraints. (i) it strongly depends on the accuracy of lidar-757 
measured aerosol optical properties. The retrieval is only possible if the lidar signals are available 758 
at least at two wavelengths. (ii) the non-spherical shape of dust particles. While this study considers 759 
the spheroidal shape of dust particles, a recent study by Haarig et al., (2022) suggested that the 760 
assumption of spheroidal dust particle have limitations in obtaining an accurate particle 761 
depolarization ratio. Therefore, our assumption of spheroidal shape may not fully capture the 762 
complexity of dust particles and could lead to uncertainties in our dust-related retrieval. Although 763 
complex non-spherical shape models (Gasteiger et al., 2011; Saito et al., 2021) provide a more 764 
realistic representation of irregularly shaped dust particles, they are computationally expensive. 765 
We acknowledge this limitation and plan to explore alternative models in future studies.  (iii) 766 
retrieval from ECLiAP is only performed for RH ≤ 99%. (iv) The use of mean refractive indices 767 
for each aerosol subtype in the creation of the look-up tables may limit the representation of 768 
refractive index variability within each subtype. This simplified approach reduces computation 769 
time but may compromise the accuracy of the LUTs in accounting for the full range of aerosol 770 
properties. (v) The CCN activity also depends on the mixing state, which is difficult to measure 771 
from space. Subsequently, an alternative solution is required to parametrize the effect of the mixing 772 
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state on CCN activity. (v) It is constrained by the inherent limitations of lidar measurements, which 773 
may not effectively capture particles with sizes smaller than 50 nanometers. Consequently, the 774 
algorithm does not fully account for the impact of new particle formation on the estimation of 775 
CCN concentrations. 776 

The present study demonstrates the capability of ECLiAP to construct the three-dimensional global 777 
climatology of NCCN. The global coverage of NCCN, in conjunction with collocated retrieved cloud 778 
properties, will provide crucial input for the regional and global simulations that will provide 779 
realistic assessments of aerosol-induced cloud radiative forcing. The satellite-retrieved NCCN can 780 
precisely separate the aerosols into natural and anthropogenic components, which can be further 781 
used for constraining aerosol emissions and transport models for air-quality studies. The 782 
application of detailed NCCN will potentially mitigate the uncertainty of aerosol perturbed climate 783 
forcing  (direct + indirect) and improve confidence in assessing anthropogenic contributions and 784 
climate change projections. 785 

6 Summary 786 

CCN number concentration is a critically-important parameter to constrain the relationship 787 
between aerosols and clouds and is needed to improve the understanding of ACI processes. The 788 
lack of direct measurements of CCN prevents robust testing of the underlying assumptions 789 
associated with aerosol-cloud interactions robustly and evaluates climate model simulations. In 790 
order to overcome this limitation, we presented ECLiAP, an emergent remote sensing-based 791 
analytical algorithm based on the physical law to retrieve the vertically resolved NCCN from aerosol 792 
optical properties measured by the multiwavelength lidar system. Among the several fundamental 793 
aspects of the mathematical problem that must be solved during retrievals of microphysical 794 
parameters from multiwavelength lidar, the most crucial aspect is that the inverse solution is not 795 
unique. Therefore, the retrieval is implemented based on look-up tables generated from Mie 796 
scattering (and T-matrix/IGOM for dust particles) calculations. AERONET-based five 797 
representative aerosol subtypes with bimodal size distributions were considered. The influence of 798 
relative humidity on lidar-measured aerosol optical properties is corrected using the aerosol type-799 
dependent hygroscopic growth factor to obtain the dry aerosol optical properties. As a tradeoff 800 
between the accuracy and computation time of the inversion, a successive approximation technique 801 
is utilized in two steps to retrieve the optically equivalent particle number size distribution. Once 802 
the aerosol size distribution parameters are obtained through the LUT, critical diameter and NCCN 803 
at six supersaturations ranging from 0.07% to 1.0% is estimated using the κ-Köhler theory.  804 

Sensitivity analyses were carried out to evaluate the algorithm performance and to show the 805 
influence of systematic and random errors of lidar-derived optical properties and auxiliary RH 806 
profiles on CCN retrieval. The performance of ECLiAP is evaluated with error-free data, and NCCN 807 
at all six supersaturations is well reproduced with good accuracy and stability for the five aerosol 808 
subtypes. Systematic errors in extinction coefficients and RH greatly influence CCN retrieval 809 
errors. Reducing uncertainties in extinction coefficients effectively improves retrieval accuracy, 810 
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while uncertainties in backscatter coefficients benefit retrieval at higher SS. Differences in weights 811 
of fine- to coarse-mode particles within the aerosol subtypes lead to significant differences in the 812 
retrieval uncertainty. The differences can be explained via the weaker constraint of the algorithm 813 
for the coarse mode particles than for the fine mode. However, the insertion of the additional signal 814 
at a relatively longer wavelength reduced the differences in the retrieval uncertainty compared to 815 
previous techniques. The mean random errors are relatively small and found to be relatively large 816 
for the coarse mode-dominated aerosol subtypes, consistent with the sensitivities to the systematic 817 
errors. In realistic cases, systematic and random errors often offset each other and improve the 818 
mean CCN retrievals. Overall, the error analysis suggests that extinction coefficients at 355 and 819 
532 nm must be reliably derived to ensure retrieval accuracy, including measurements at longer 820 
wavelengths further improve the CCN retrievals, particularly for the coarse mode-dominated 821 
aerosol subtypes. 822 

The ECLiAP algorithm was applied to observational data from the NASA ORACLES airborne 823 
campaign to illustrate the potential of the algorithm. NCCN retrieved from lidar (HSRL-2) 824 
measurements have been validated against the simultaneous measurements from the CCN counter 825 
installed in the flight. Considering the inhomogeneity in the vertical distribution of aerosols 826 
throughout the atmospheric column, NCCN from in situ measurements and lidar retrievals agree 827 
well. Furthermore, for the first time, the ECLiAP has been applied to spaceborne lidar 828 
measurements – CALIOP/CALIPSO – to retrieve NCCN. The results demonstrate that the NCCN 829 
retrieved by ECLiAP is highly influenced by the variability of aerosol particle size and 830 
composition based on aerosol subtypes and also captures the meteorological influence. The 831 
vertically resolved information of aerosols, along with CCN from spaceborne lidar, is essential for 832 
investigating the ACI in detail. 833 

Our future goals include a comprehensive evaluation of NCCN derived from spaceborne lidar 834 
measurements, i.e., CALIOP/CALIPSO, with multi-campaign airborne measurements, covering 835 
various physicochemical regimes in the troposphere. The extensive validation will enable us to 836 
test the applicability of the ECLiAP algorithm in the context of estimating the NCCN from space. 837 
Eventually, we plan to apply the ECLiAP algorithm over the period of CALIOP observations (~15 838 
years) to generate the global three-dimensional NCCN climatology. The data set coupled with the 839 
cloud-related data from the other satellite or state-of-the-art numerical models will help improve 840 
our understanding of the ACI. The science narrative of the NASA Aerosol and Cloud, Convection 841 
and Precipitation (ACCP) project pointed out that the combination of near-simultaneous and 842 
collocated lidar and polarimeter measurements can provide more detailed information regarding 843 
particle size, concentration, and composition (Braun et al., 2022). Therefore, our future work may 844 
also include combining the lidar measurements with passive observations in the ECLiAP algorithm 845 
to further narrow down the uncertainty of aerosol microphysics with the enhanced observational 846 
constraints (Xu et al., 2021), which will in turn improve the accuracy of CCN retrieval. Moreover, 847 
the ability of CALIOP to detect the aerosol subtypes has facilitated the retrieval of aerosol type-848 
specific 3D NCCN climatology on a global scale. These datasets from spaceborne lidar 849 
measurements will be beneficial for evaluating models and other satellite products, opening a new 850 
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window to investigate the region and regime-wise detailed ACI studies and better constraining 851 
anthropogenic contributions to the climate forcing in the climate model. 852 
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Table 1: Typical parameter ranges for the aerosol bimodal distribution used in our study to 1231 
construct the LUTs. 	𝑽𝒇𝒕 	/	𝑽𝒄𝒕  is the ratio of the volume concentration of the fine mode to the coarse 1232 
mode. mR and mI represent the mean values of real and imaginary parts of the complex refractive 1233 
index. 1234 

 1235 

Table 2: CCN errors at six supersaturation (SS) retrieved from error-free inputs for the five 1236 
aerosol types 1237 

 Aerosol 
Types 

CCN error (%) 

0.07% 0.1% 0.2% 0.4% 0.8% 1.0% 

Mean 
± SD 
(%) 

Marine -0.00 ± 
0.21 

-0.01 ± 
0.23 

0.00 ± 
0.26 

-0.00 ± 
0.25 

0.00 ± 
0.23 

-0.00 ± 
0.24 

Dust -0.01 ± 
0.22 

-0.01 ± 
0.23 

0.00 ± 
0.26 

-0.01 ± 
0.24 

0.00 ± 
0.25 

-0.01 ± 
0.23 

Polluted 
continental 

-0.01 ± 
0.18 

0.00 ± 
0.18 

-0.01 ± 
0.16 

0.00 ± 
0.18 

-0.01 ± 
0.19 

-0.00 ± 
0.18 

Clean 
continental 

-0.01 ± 
0.19 

-0.01 ± 
0.20 

-0.01 ± 
0.19 

-0.00 ± 
0.17 

-0.00 ± 
0.18 

-0.01 ± 
0.17 

Smoke -0.01 ± 
0.19 

-0.01 ± 
0.21 

-0.01 ± 
0.18 

-0.01 ± 
0.20 

-0.00 ± 
0.22 

-0.01 ± 
0.19 

 1238 

Aerosol 
Parameters Marine Dust Polluted 

Continental 
Clean 

Continental 
Biomass 
burning 

𝒓𝒇𝒗 0.065-0.085 0.062-0.082 0.075-0.095 0.08-0.11 0.072-0.082 

𝒓𝒄𝒗 0.5-0.6 0.59-0.64 0.6-0.71 0.42-0.52 0.75-0.80 

𝝈𝒇𝒗 0.46-0.54 0.4-0.53 0.38-0.46 0.37-0.45 0.4-0.47 

𝝈𝒄𝒗 0.68-0.78 0.6-0.7 0.65-0.75 0.70-0.80 0.65-0.75 

𝑽𝒇𝒕 	/	𝑽𝒄𝒕  0.1-0.25 0.1-0.5 1.0-2.0 0.01-0.15 1.5-2.5 

mR / mI 1.36/0.0015 1.56/0.001 1.47/0.014 1.401/0.003 1.51/0.021 

𝜿 0.7 0.03 0.27 0.31 0.1 
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 1239 

 1240 

Table 3: Sensitivity of CCN retrieval to the bimodal fits at different supersaturation ratios from 1241 
the 100 aerosol size distributions obtained from ARM-SGP. The CCN error is calculated as an 1242 
absolute value. 1243 

 
CCN error (%) 

0.07% 0.1% 0.2% 0.4% 0.8% 1.0% 

Mean ± SD (%) 3.3 ± 2.4 3.9 ± 2.8 3.1 ± 2.7 2.9 ± 1.8 2.1 ± 1.5 1.7 ± 1.3 

 1244 

  1245 
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 1246 

 1247 
Figure 1: Bimodal log-normal particle size distributions for five aerosol types (marine, dust, 1248 
polluted continental, clean continental and smoke aerosols) considered in this study to build the 1249 
look-up-tables (LUTs). These particle size distributions were derived using measurements from 1250 
sun/sky radiometer at multiple selected Aerosol Robotic Network (AERONET) sites. Solid line 1251 
represents the mean of particle size distribution, whereas the shaded area shows the range of size 1252 
distribution covers in the respective LUTs.  1253 
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 1254 

 1255 
Figure 2: Flowchart of ECLiAP algorithm for the retrieval of NCCN  from lidar measurements. 1256 
The steps within the dotted line box describes the pre-processing which includes the calculation 1257 
of aerosol optical properties using Mie scattering theory (T-matrix/IGOM for dust) to build look-1258 
up-tables for five aerosol models. The steps outside the dotted line box represent the retrieval 1259 
process of NCCN from the given inputs of aerosol optical properties and meteorological 1260 
parameters. The chart also refers to the used equations associated to the particular retrieval 1261 
process. 1262 
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 1263 

 1264 
Figure 3: Systematic errors in retrieved NCCN. This represent the errors in retrieved NCCN as a 1265 
function of systematic errors in backscatter and extinction coefficients at all three wavelengths for 1266 
low (≤0.2%) and high (>0.2%) supersaturations and for all five aerosol subtypes as. The markers 1267 
denote the mean value and the error bars represent the standard deviation.  1268 
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 1269 

 1270 

 1271 
Figure 4: Systematic errors in retrieved NCCN. This represent the errors in retrieved NCCN as a 1272 
function of systematic error in RH, combines for all aerosol subtypes, at low (≤0.2%) and high 1273 
(>0.2%) supersaturations. The markers denote the mean value and the error bars represent the 1274 
standard deviation.  1275 
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 1276 

 1277 

 1278 
Figure 5: Random errors in retrieved NCCN. This represents the random errors in retrieved NCCN 1279 
at low (≤ 0.2%) and high (> 0.2%) supersaturations with different random error conditions 1280 
individually for five aerosol subtypes. The uncertainty of backscatter and extinction coefficients 1281 
off all the tests is 10% and the uncertainties of RH are 5%, 10% and 20%. The color shows the 1282 
mean values whereas number shows the ±1 standard deviation of errors.  1283 
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 1284 

 1285 
Figure 6: Comparison between retrieved and observed vertical profiles of aerosol extinction 1286 
coefficients and NCCN. The ECLiAP retrieved (a) aerosol extinction coefficients at 355, 532 and 1287 
1064 nm and (b) NCCN were compared against the one observed during NASA ORACLES 1288 
airborne campaign. The lidar signals were mainly influenced by the mixture of smoke and 1289 
dust or marine aerosols. The relationship between HSRL-2 measured aerosol extinction 1290 
coefficients (solid lines) and retrieved (dotted line) by an algorithm in the left panel. The right 1291 
panel illustrates the comparison of retrieved NCCN using lidar measurements and measured by 1292 
CCN counter. The dashed line in the right panel shows the moving average of retrieved NCCN 1293 
values. CCN counter measured NCCN at supersaturation ranging from 0.32%-0.34% for the 1294 
selected region (described in Figure S4), therefore, the retrieval of NCCN was carried out at 1295 
supersaturation of 0.34%.  1296 
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 1297 

 1298 

 1299 
Figure 7: Comparison between retrieved and observed NCCN. The comparison between ECLiAP 1300 
retrieved NCCN from HSRL-2 lidar measurements and the measured NCCN values from CCN 1301 
counter. The HSRL-2 and CCN counter data were collected from the multiple flights during NASA-1302 
ORACLES airborne campaigns conducted in 2017-2018. The color bar displays the observed 1303 
values of supersaturation for each measurement and the NCCN were retrieved on the same 1304 
supersaturation for the direct comparison. The slope and intercept of the best fit line are given in 1305 
the key by m and b, respectively. The gray dash line indicates the unit slope line and blue solid 1306 
line indicates the regression line.  1307 

  1308 
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 1309 

 1310 
Figure 8: Retrieval from spaceborne lidar measurements. Explore the capability of ECLiAP, the 1311 
NCN, and NCCN retrieved from CALIOP onboard CALIPSO observations on 01 January 2019, 1312 
passing over the Tibetan plateau and Indian landmass. CALIOP derived (a) extinction coefficient 1313 
at 532 nm, (b) aerosol subtypes were shown in the upper two panels. The lower two panels 1314 
illustrate the ECLiAP retrieved (c) total particle concentrations (NCN), and (d) NCCN at 1315 
supersaturation 0.4%. The two color boxes in red (case-I) and blue (case-II) are the two different 1316 
scenarios that are further studied to assess the capability of ECLiAP. 1317 
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 1318 

 1319 
Figure 9: Case studied from CALIOP observations. As per mentioned above, two different 1320 
scenarios (case-1 dominated by polluted continental and case-II contains a mixture of polluted 1321 
continental and polluted dust) were identified and studied in detail to assess the potential of 1322 
ECLiAP to accurately capture the particles physicochemical characteristics and their influence 1323 
on the retrieved values along with meteorological influence. 1324 
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 1326 

 1327 

Figure 10: Relative difference in CCN error between 3β+2⍺ and 3β+3⍺. The CCN error were 1328 
calcualted against the given inputs using Eq. (11) for both the 3β+2⍺ and 3β+3⍺ techniques 1329 
individually. Later the relative difference of CCN error has calculated from the individual CCN 1330 
errors at low and high supersaturations for each aerosol subtypes. 1331 


