Comment on acp-2022-547
Anonymous Referee #2

General

The manuscript discusses a new lidar approach to estimate CCN concentrations. It is a useful contribution to the lidar literature. However, since a new lidar method is introduced and the manuscript deals with all details of this method including an uncertainty analysis, AMT would be more appropriate.

Minor revisions are necessary.

We thank the reviewer for taking the time to review our paper and providing constructive comments. We have addressed each of the reviewer's comments and included below a point-wise response, as well as included highlighted changes in the revised manuscript (main manuscript and supplementary material files). We hope our extensive comments in the initial review illustrate our genuine efforts to engage constructively with all review comments. The responses to the reviewer's comment are indicated in blue, while the modifications made in the revised manuscript are highlighted in red.

We understand your concern that the technical nature of the paper suggests that it should have been submitted to Atmospheric Measurement Techniques (AMT) rather than Atmospheric Chemistry and Physics (ACP). However, we believe that the paper is of sufficient interest to the broad readership of ACP. The paper presents a new method for estimating CCN concentrations, which is a topic of active research in atmospheric science. The paper also has implications for understanding the global distribution of CCN and their impact on climate. We will address the specific issues that you have raised in your comment in the revised manuscript. We appreciate your help in improving the quality of my work.

Detailed comments:

p3, l97: Why do we need to know the particle size distribution? CCN is just the overall particle number concentration (integral over all sizes)!

Authors: While it is true that CCN is often characterized by the overall particle number concentration, understanding the particle size distribution is crucial for several reasons:

1. **Activation Efficiency**: Activation efficiency refers to the likelihood of a particle serving as a CCN under certain supersaturation and participating in cloud formation. The activation efficiency of particles as CCN strongly depends on the interplay between the size of the particles and their chemical properties (Farmer et al., 2015; Patel and Jiang, 2021). The activation of aerosol particles occurs when the supersaturation within an air parcel exceeds a critical value, which is determined by the particle size and composition. This threshold refers to a critical radius. The critical radius is a fundamental concept in CCN studies. It represents the minimum size of a particle that can activate as a CCN and form a cloud droplet under a given supersaturation condition. Larger particles have a higher probability of activation.
because they possess a larger surface area onto which water vapor can condense. As particle size decreases below the critical radius, activation becomes less probable, and smaller particles may require higher supersaturations to activate.

2. **Aerosol Composition**: The particle size distribution of aerosol is closely linked to their chemical composition. Certain chemical species and sources may preferentially contribute to specific size ranges. By investigating the particle size distribution, we can gain valuable information about the origins and properties of aerosol particles, enabling a better understanding of their CCN activity.

3. **Atmospheric Processes**: The behavior of aerosol particles, including their transport, transformation, and interactions with clouds, is influenced by their size. By understanding the particle size distribution, we can estimate the range of particle sizes present in the atmosphere and assess their activation potential. This knowledge is essential for predicting aerosol-CCN activity, cloud formation, understanding the aerosol indirect effect on climate, and improving cloud parameterizations in climate models.

This means that CCN number concentrations are not integral over all sizes of particles, but they are integral to the particle sizes ranging from the critical radius to the maximum. The same has been calculated using Eq. 10 in the manuscript. Therefore, the particle size distribution is a critical parameter for calculating the CCN number concentration. Moreover, the particle size distribution provides insights into the variability and heterogeneity of aerosol particles. It helps identify the dominant size ranges contributing to the CCN population, thereby enabling a better understanding of the sources, transport, and transformation processes affecting cloud properties. Therefore, considering the particle size distribution is crucial for a comprehensive understanding of CCN behavior, including the activation efficiency and the critical radius.

Regarding aerosol type, to my opinion the separation into dust and non-dust is sufficient. Size plays a strong role, but chemical composition a minor role…? Maybe discuss that a bit more.

Authors: In our study, we have categorized aerosols into dust and non-dust aerosols as a simplified approach to capturing the major sources of aerosol particles. This categorization allows us to assess the general influence of dust versus non-dust particles on cloud condensation nuclei (CCN) activity. However, we acknowledge the importance of both size and chemical composition in understanding aerosol behavior to act as CCN and their impacts on cloud processes.

While size plays a dominant role in determining aerosol properties, it is also essential to consider the influence of chemical composition. Chemical composition affects the hygroscopicity of aerosols, their ability to uptake water, and their CCN activity. Different chemical species exhibit varying degrees of water absorption and can undergo chemical transformations within the atmosphere, impacting their CCN potential. However, a study by Dusek et al. (2006) found that the cloud-nucleating ability of particles was primarily determined by their size distribution rather than their chemical composition. Larger particles with diameters between 100 and 200 nm were more effective at activating and forming cloud droplets than smaller particles with diameters less than 50 nm, even when the smaller particles had a more hygroscopic chemical composition. This is because larger particles can provide more surface area for water vapor to condense, irrespective of its hygroscopicity, and form cloud droplets. However, the effect of chemical composition on CCN activation is limited by the availability of hygroscopic material (i.e., organic matter or sulfate) in the aerosol particles, which are more effective at attracting water vapor and forming
cloud droplets. This suggests that the cloud-nucleating ability of particle are mainly controlled by the size of a particle, followed by the chemical composition.

It is important to note that the relative importance of particle size and chemical composition in CCN activation may vary depending on the specific environmental conditions and the types of aerosol particles present in the atmosphere. Nevertheless, a recent study by Patel and Jiang et al. (2021) analyzed the particle size distribution, chemical composition, and nucleating ability to act as CCN at various supersaturation for different airmass clusters using ground-based measurements. The study found that particle size was the most critical factor influencing the ability of aerosols to activate, whereas the effect of chemical composition was secondary. It also suggests that chemical composition and mixing state information are more crucial at lower supersaturation, whereas most particles become activated at higher supersaturation regardless of their chemical composition. Moreover, determining the accurate chemical composition of aerosol particles from space remains an unsolved challenge.

Therefore, in the present study, the particle size is the primary focus, followed by the chemical composition (described as a hygroscopicity) for the estimation of CCN number concentration. We recognize the importance of chemical composition in aerosol-cloud interactions, and while it is not extensively discussed in this study, the simplified categorization allows us to provide insights into the overall behavior of aerosols as CCN.

Thank you for raising this point, and we appreciate your valuable feedback.

What I learned from all these complex lidar inversion papers since Mueller et al. (1999) and Veseolovskii et al. (2002) is…. that it is impossible to retrieve the particle size distribution with good accuracy, even from a set of 3 backscatter and 3 extinction coefficients. Furthermore, the retrieved particle number concentration always shows the largest uncertainty (close to 100%). Now you use Look Up Tables. How can you have uncertainties < 50% when using a much more simple approach than these sophisticated inversion techniques? Please comment on that in the manuscript!

Authors: Thank you for your comment regarding the retrieval of particle size distribution and the associated uncertainties in lidar inversion techniques. We appreciate your insight into the challenges and limitations of these complex inversion methods.

Our study employed a Look Up Table (LUT) approach to estimate the particle size distribution. While LUT-based methods are more straightforward than sophisticated inversion techniques, they provide a practical and efficient means of evaluating particle properties, including size distribution, in real-time applications.

We acknowledge that the accuracy of particle size distribution retrieval from lidar measurements can be challenging, and previous studies have reported limitations and uncertainties in these retrievals (Mueller et al., 1999; Veseolovskii et al., 2002). The complexity arises from the non-uniqueness of the inverse problem (Chemyakin et al., 2016), where multiple combinations of particle size distributions can produce similar backscatter and extinction coefficients. By providing instances, Chemyakin et al., (2016) demonstrated that the particle size distribution from the inversion solution is not unique, and the LUT approach can reduce the uncertainty associated with non-uniqueness.
Our LUT approach addresses this challenge by pre-computing a comprehensive set of forward model simulations using a range of particle size distributions and associated optical properties. We can identify the particle size distribution that best matches the observations by comparing the measured backscatter and extinction coefficients with the LUT. The LUT approach offered in our study partially compensates for the difficulties of the inversion solution. While the LUT approach simplifies the inversion process, it still requires careful calibration and validation to ensure accurate results. To assess the uncertainties in our approach, we have performed rigorous exercises to quantify both systematic and random errors. Incorporating an additional measurement of the extinction coefficient at 1064 nm enhances the effectiveness of our algorithm in accurately determining the closest solution for the particle size distribution based on the provided lidar measurements. This further reduces the uncertainty due to the non-uniqueness solution of inversion. Therefore, we called it “3β+3α technique”. The reduction in uncertainty is clearly reflected in the CCN estimation (as seen Figure 10).

In summary, while we recognize the complexities and limitations of particle size distribution retrieval from lidar measurements, our LUT approach offers a practical and efficient means of estimating these properties in real-time applications. We have included a discussion of the uncertainties associated with our retrieval method and the potential sources of error to provide a comprehensive understanding of the limitations of our study.

Thank you for raising this important point, and we appreciate the opportunity to clarify our approach and address the concerns regarding uncertainties in the manuscript.

P3, 1101: Why do you mention the Rosenfeld et al (2016) method in this lidar paper?

Authors: The main objective of our study is to estimate the CCN number concentration from satellite measurements. While we focus on lidar-based retrieval of CCN, it is essential to acknowledge the broader context of CCN estimation from satellite observations.

The Rosenfeld et al. (2016) study is significant in the field of CCN research as it explores the potential of using passive satellite observations to retrieve CCN number concentration. Although their approach does not provide a vertically resolved picture of CCN, their work lays a foundation and demonstrates the feasibility of estimating CCN-related properties from satellite measurements. By mentioning the Rosenfeld et al. (2016) study, we aim to acknowledge the efforts and advancements made in CCN estimation from satellite data. We agree with your viewpoint that the Rosenfeld et al. (2016) method may seem tangential to a lidar-focused paper. However, it is important to highlight the collective progress in the field and the different approaches being explored for CCN estimation, including those from satellite observations. By referencing the Rosenfeld et al. (2016) study, we aim to emphasize the ongoing efforts in the field and the potential for future integration of lidar and satellite-based techniques in CCN research. Thank you for bringing this up, and we will ensure that the mention of the Rosenfeld et al. (2016) method is appropriately justified and positioned within the manuscript to provide clarity and relevance to our study objectives.

Authors: The suggested citation are added in the revised manuscripts.

The inversion solution using the combination of simultaneous measurements of backscatters at three wavelengths and extinction at two wavelengths, also called $3\beta + 2\alpha$, using lidar has been gaining prominence for aerosol microphysical (effective radius, total number, volume concentration, refractive index) retrieval (Burton et al., 2016; Müller et al., 1999, 2005, 2016; Veselovskii et al., 2002, 2004, 2012).

P4, l131: to my opinion, you have just a $2+2$ lidar because the 1064 nm BSC is always a problem and the solutions are rather uncertain, because clear air calibration is very difficult, and a good calibration is only possible in the presence of ice clouds.

Authors: We appreciate the reviewer’s concern regarding using the 1064 nm channel to retrieve aerosol properties and CCNs. However, we respectfully disagree that we have only $2+2$ lidar observations.

From an airborne perspective, Advanced multiwavelength Raman lidars and High Spectral Resolution Lidar (HSRL2) have been increasingly used in recent years to retrieve aerosol and CCN properties (Chemyakin et al., 2014; Müller et al., 1999, 2014; Burton et al., 2015; 2018). These lidar systems independently measure profiles of particle backscatter coefficients and particle depolarization ratios at 355, 532, and 1064 nm and particle volume extinction coefficients at 355 and 532 nm (Müller et al., 2014; Burton et al., 2015; 2018). However, the particle extinction coefficient at 1064 nm (α_{1064}) is derived using the backscatter coefficient and depolarization at 1064 nm using HSRL technique. Therefore, the $3\beta + 2\alpha$ algorithm using lidar measurements has been gaining prominence for aerosol microphysical retrieval (Müller et al., 1999, 2005, 2016; Veselovskii et al., 2002, 2004, 2012; Burton et al., 2016; Chemyakin et al., 2016; Lv et al., 2018; Tan et al., 2019). While it is true that the existing three wavelengths (355, 532, and 1064 nm) lidar system (such as HSRL2) face challenges in clear air calibration of the 1064 nm due to atmospheric interference, and we acknowledge the calibration with ice clouds may not always be available. As stated in our paper, this can introduce limitations and uncertainties in our results. However, these issues can be mitigated with appropriate calibration and processing techniques. For instance, the HSRL2 system is designed to accurately measure aerosol backscatter and depolarization profiles at 532 nm wavelength, which can be combined with the 1064 nm signal to derive aerosol extinction profiles. Moreover, techniques such as range-dependent calibration and calibration using atmospheric model simulations have been shown to improve the accuracy of such lidar measurements (Burton et al., 2012).

In the context of the satellite perspective, it is important to note that our study focuses on estimating the particle size distribution and the subsequent estimation of cloud condensation nuclei (CCN) number concentration from satellite measurements. While we understand the challenges associated with the 1064 nm BSC measurements, our approach aims to leverage the available satellite data to derive valuable information about aerosol properties and their impact on cloud processes. Satellite lidar instruments typically operate at multiple wavelengths, including 1064 nm, to provide a more comprehensive characterization of the atmosphere. While the clear air calibration at 1064 nm can pose challenges due to the absence of strong scattering targets, such as aerosols or clouds, it is
worth noting that the calibration process for satellite lidar instruments is carefully designed and validated to ensure accurate measurements.

Nevertheless, the present study aims to leverage the available quality-assured measurements at 1064 nm to reduce the uncertainty due to the non-uniqueness problem and find the closest solution to particle size distribution. The inclusion of lidar measurements at 1064 nm provides important information on the vertical profile of aerosols and CCNs, particularly for coarse mode particles. In the present study, a comparative analysis between \(3\beta+2\alpha\) and \(3\beta+3\alpha\) (Figure 10) demonstrated that insertion of the \(a_{1064}\) signal improves the CCN estimation by \(\sim 15\%\) in total and \(\sim 20\%\) for the coarse mode-dominated aerosol subtypes (i.e., marine and dust aerosols) compared to \(3\beta+2\alpha\).

In addition, we have also validated our retrieved results against independent in-situ measurements from HSRL2-measured vertical profiles of aerosol optical properties from the NASA ORACLES airborne campaign. This provides additional confidence in our retrieval. Overall, we carefully evaluated the uncertainties associated with the use of the lidar measurements at 1064 nm and provided in section 3.1. However, we appreciate reviewer feedback and acknowledge that lidar calibration remains an active area of research and development.

We acknowledge the uncertainties and limitations associated with the 1064 nm measurements and the challenges of clear air calibration. These limitations are inherent to lidar measurements, and efforts are continually made to improve calibration techniques and minimize uncertainties.

P4, l147: Are you sure that the assumption of spheroidal dust particles is ok to obtain trustworthy dust lidar ratios at all three wavelengths? You may check the recent paper of Haarig et al. (2022).

Authors: Thank you for highlighting the limitation of assuming spheroidal dust particles in our study. We acknowledge that this assumption may introduce uncertainties in our dust-related retrievals. In light of this, we are committed to addressing this issue and improving the accuracy of our methodology. Our future research will focus on exploring alternative models that can efficiently capture the complex shapes of dust particles while remaining computationally efficient. By incorporating these advanced models, we aim to enhance the reliability and trustworthiness of our dust-related retrievals, ensuring that our results align with the latest understanding of dust particle properties. We appreciate your valuable input and will consider it in our ongoing efforts to refine and improve our methodology.

(ii) the non-spherical shape of dust particles. While this study considers the spheroidal shape of dust particles, a recent study by Haarig et al., (2022) suggested that the assumption of spheroidal dust particle have limitations in obtaining an accurate particle depolarization ratio. Therefore, our assumption of spheroidal shape may not fully capture the complexity of dust particles and could lead to uncertainties in our dust-related retrieval. Although complex non-spherical shape models (Gasteiger et al., 2011; Saito et al., 2021) provide a more realistic representation of irregularly shaped dust particles, they are computationally expensive. We acknowledge this limitation and plan to explore alternative models in future studies.
How do you handle all kinds of external mixtures, e.g., marine and dust, pollution and dust, smoke and dust, etc. The LUTs only include pure aerosol type information, right? So this is an open point that should be better explained in the manuscript.

Authors: We recognize that the characterization of internal mixtures can be complex and challenging to incorporate directly into the LUTs used in our analysis. Therefore, our approach primarily focuses on external mixtures of aerosol subtypes.

While the LUTs used in our study are based on pure aerosol types, we accounted for the presence of external mixtures by analyzing different aerosol subtypes individually. This allowed us to capture the variability and contributions of various aerosol components in the retrieved CCN values. The algorithm employed in our study only consider the dust mixtures (polluted dust and dusty marine). To avoid complications in the LUT approach, we exclude the mixture of dust and smoke due to the varying depolarization values of smoke, which can change as it ages from freshly emitted state.

The algorithm separates the optical properties of polluted dust into polluted continental and dust components, while for dusty marine aerosols, it distinguishes between dust and marine contributions. It utilizes a widely accepted technique for separating dust and non-dust components in the backscatter coefficient. This technique, as described by Tesche et al., (2009), relies on the particle depolarization ratio. By setting specific wavelength-dependent particle depolarization ratio, the algorithm distinguishes between pure dust and non-dust aerosol mixtures. The algorithm multiplies the resulting backscatter coefficients of dust and non-dust components by the corresponding lidar ratio for each aerosol subtype to determine the extinction coefficients for dust and non-dust aerosol components. The resulting separated aerosol optical properties combined with relative humidity and aerosol subtype information, is then utilized in the ECLiAP algorithm (as shown in Figure 2) to estimate CCN concentrations. Further details regarding the methodology to separate dust and non-dust components can be found in the revised manuscript. We added the more details in the revised manuscript.

Before applying hygroscopic correction, lidar-measured optical properties, particularly for dust mixtures (polluted dust and dusty marine), are separated into dust and non-dust components using the backscatter coefficients and particle depolarization ratio (Tesche et al., 2009). The methodology for separating dust mixture discussed initially in an Appendix A1, is now covered as a part of the methodology in the main manuscript. The section was revised by providing the additional information. The resulting dust and non-dust aerosol optical properties, along with aerosol subtype and relative humidity, is then utilized in the ECLiAP algorithm (as shown in Figure 2) to estimate CCN concentrations. Note that the direct inclusion of internal mixtures in our analysis and LUTs poses complexity and challenges. As a result, our approach primarily centers on studying and analyzing external mixtures of aerosol subtypes.

Thank you for pointing out the missing information. We added following details on methodology for separation of optical properties for dust mixture in Appendix A1.
This study incorporates wavelength-dependent depolarization ratios δ_1 and δ_2 to distinguish the dust and non-dust aerosol components. The reported particle depolarization ratio from various campaigns is listed in the Table S1. In this study, mean values of δ_1 (0.24, 0.31 and 0.06) and δ_2 (0.03, 0.05, and 0.02) at 355, 532 and 1064 nm, respectively, are utilized. If the measured depolarization ratio $\delta_p > \delta_1 (< \delta_2)$ then aerosol mixture is considered as pure dust (non-dust). For remaining δ_p values, we first estimate β_d using the above equation and then calculate β_{nd} by subtracting β_d from β_p. Subsequently, the extinction coefficients are computed by multiplying the backscatter coefficients with the respective lidar ratio. Determining a spatially varying lidar ratio for dust across different regions presents challenges due to uncertainties in identifying dust source regions during transport. Therefore, we employ a simplified approach using a single lidar ratio value. Previous studies have reported little to no wavelength dependency of lidar ratio for dust and marine aerosol based on ground-based Raman lidar and airborne HSRL lidar measurements. As a result, we consider a constant lidar ratio of 44 for dust and 23 for marine to calculate the extinction coefficients at the three wavelengths. However, for polluted continental aerosols, we utilize wavelength-dependent lidar ratios of 58, 70 and 30 at 355, 532 and 1064 nm (Giannakaki et al., 2016; Hänel et al., 2012; Kim et al., 2018; Komppula et al., 2012; Müller et al., 2007).

Relative humidity has a strong influence on all the retrievals. Are the growth or enhancement factors for all three wavelengths the same? Please provide more information. Just references are not sufficient. What about enhancement factors for internally mixed sulfate-BC-OC particles, or sulfate coated dust? What about growth factors for mixture of fine mode (urban haze) and coarse mode dust. The enhancement factor will then be clearly wavelength dependent, because 355 nm is very sensitive to hygroscopic small particles, and 1064 nm will be very sensitive to the hydrophobic dust particles. Is it possible to consider all these complex items?

Authors: We acknowledge that RH plays a significant role in aerosol characterization. In our study, we employed a wavelength-dependent hygroscopic enhancement factor account for the effects of RH on aerosol optical properties to a dry state.

We utilized a new physically based single-parameter representation approach proposed by Brock et al. (2016) was considered to estimate the hygroscopic enhancement factor. This approach showed better performance in describing light-scattering hygroscopic enhancement factors compared to the most frequently used gamma power-law approximation (Kasten, 1969). The formula of this scheme incorporates a dimensionless fitting parameter and the dry aerosol optical properties (as seen in Equation 6 in manuscript). To estimate the hygroscopic enhancement factor, we calculated aerosol optical properties (backscatter and extinction coefficients) at three different wavelengths (355 nm, 532 nm, and 1064 nm) over a range of RH values using Mie theory. Curve fitting was performed to determine using the derived aerosol optical properties at different RHs. We fixed the RH range to 60%-90% for the parameter fitting. The hygroscopic correction was only applied when RH was between 40% and 99%.
Figure 1: Mean enhancement factor for backscatter and extinction coefficients at 355, 532 and 1064 nm are fitted using Eq (6) for five aerosol subtypes. This mean fitting curve is calculated with the set of PNSD and κ considered for the construction of LUTs. The thin line represents Mie model simulations, and the highlighted thick line (within RH range of 60-90%) are used to fit parameterization lines.

In our ECLiAP algorithm, individual values for each aerosol optical property and wavelength, along with the RH value, were used to calculate the dry aerosol optical properties separately for each aerosol subtype (see figure above). This approach allowed us to consider the wavelength dependence and the influence of RH on aerosol optical properties in the retrieval process. For more detailed information and graphical representations, please refer to Figure S1 and the detailed methodology provided in section 2.2.2 in the manuscript.

Finally, we acknowledge that the complexity of internally mixed aerosol types, such as sulfate-BC-OC particles or sulfate-coated dust, introduces additional challenges. However, due to the limitations in directly incorporating internal mixtures into our lookup tables (LUTs), our approach mainly focuses on external mixtures. Internal mixing is a complex topic requiring further investigation and the development of specific retrieval techniques.

Final point, RH values are at all obtained from models? Absolute uncertainties of plus-minus 20% have always to be kept in mind…. in many cases even 50% is my long-term experience. Are there papers that provide clear statements on modelled RH uncertainty?

Authors: We appreciate the reviewer's concern regarding RH uncertainties in CCN retrievals, and we have taken several steps to address and mitigate these uncertainties in our study.
In our validation process with airborne lidar observations, we utilized measured meteorological parameters from the airborne platform, which provides reliable in-situ measurements and reduces reliance on model-derived RH. This helps to ensure that the retrieved CCN values are validated using robust data sources. For CCN retrieval process using CALIPSO data, we relied on the RH values provided in the CALIPSO product, which are obtained from the GMAO modeling and assimilation office. While we made efforts to use the best available RH data, we acknowledge that model-derived RH values may have associated uncertainties.

To account for the potential impact of RH uncertainties, our algorithm incorporates a wavelength-dependent and aerosol-type dependent hygroscopic enhancement factor (as described in section 2.2.2). This factor allows us to correct the lidar-derived wet size distribution to the dry size distribution, ensuring accurate CCN calculations. By considering this hygroscopic enhancement factor, we aim to effectively account for the effects of RH on the aerosol optical properties and reduce the potential influence of RH uncertainties on CCN retrievals.

Furthermore, we conducted a sensitivity analysis to evaluate the influence of systematic and random errors in lidar-derived optical properties and auxiliary RH profiles on our CCN retrieval. This analysis allowed us to assess the overall performance of our retrieval algorithm and identify the main sources of errors. Through this comprehensive evaluation, we have considered and quantified the uncertainties associated with RH in our CCN retrievals.

While we acknowledge that uncertainties in model-derived RH values are inherent, our thorough error analysis and incorporation of the hygroscopic enhancement factor address these uncertainties to a significant extent. We have taken into account the changes in aerosol properties due to water uptake, which are influenced by RH, ensuring that our CCN retrievals are robust and reliable. Regarding the request for papers providing clear statements on modeled RH uncertainty, we have reviewed the literature extensively, and while there are studies discussing RH uncertainties, there is currently no consensus on a universal quantification of these uncertainties. The quantification of RH uncertainties depends on various factors, including the specific model used, the region of interest, and the time period considered.

In summary, we have implemented measures to address and mitigate RH uncertainties in our CCN retrievals. By incorporating a hygroscopic enhancement factor, conducting a sensitivity analysis, and considering the limitations of model-derived RH values, we have taken a comprehensive approach to ensure the reliability and accuracy of our results. We appreciate the reviewer's input, and we will continue to explore further improvements in addressing RH uncertainties in future research endeavors.

P9, l301: I am not sure, but is the critical radius not defined as the radius for which 50% of particles are activated….
Authors: The critical radius can be defined differently depending on the specific application and the experimental setup.

Traditionally, the critical radius has been defined as the size at which 50% of particles are activated, representing the point at which half of the aerosol population transitions to cloud
droplets under a given supersaturation condition. This definition is commonly used in cloud physics and aerosol activation studies (e.g., Twomey, 1959; Seinfeld and Pandis, 2016).

However, it is worth noting that the definition of critical radius can vary in different research contexts. In some studies, the critical radius may be defined as the minimum size required for activation under specific supersaturation conditions, corresponding to the smallest aerosol particles that can initiate cloud droplet formation. This definition focuses on the transition point from non-activated to activated particles rather than specifically targeting the 50% activation threshold.

In our manuscript, we have adopted the definition of critical radius as the minimum size of an aerosol particle that can activate into droplets for a given supersaturation ratio. This definition aligns with the concept of critical radius as the size threshold for activation without explicitly referring to the 50% activation criterion.

P9, l307: The critical radius can be as low as 25 nm for high supersaturations of 0.8 to 1%. The lidar backscatter and extinction is only sensitive to particles with radius of 50 nm and larger.… How can you then derive a critical radius of 25 nm? Please clarify and explain that in the manuscript!

Authors: The critical radius represents the size at which particles become activated as CCN. Indeed, lidar backscatter and extinction measurements are typically more sensitive to particles with larger sizes, generally around 50 nm and larger. However, it is essential to note that the estimation of the critical radius is not solely based on lidar measurements but involves additional considerations.

In our study, estimating the critical radius and subsequent CCN number concentration retrieval involves combining techniques, including lidar measurements and other ancillary data sources. While lidar measurements provide valuable information on the size distribution and extinction properties of particles, determining the critical radius relies on integrating various factors, such as aerosol size distribution, aerosol composition, supersaturation levels, and environmental conditions. The critical radius is derived by considering the Köhler theory or an equivalent approach, which considers the interplay between particle properties, such as size and composition, and the thermodynamic properties of the surrounding air parcel. By incorporating these factors, it is possible to estimate the critical radius even for particle sizes below the typical sensitivity range of lidar measurements.

We acknowledge that it is important to clearly explain the relationship between lidar sensitivity and the estimation of the critical radius in the manuscript. We revised the manuscript to include a detailed discussion of the methodology and considerations used to derive the critical radius, considering the limitations and sensitivity ranges of lidar measurements.

Thank you for raising this point, and we appreciate the opportunity to address it in the revised manuscript.
Probably you make use of Eq.(8), but that is then an assumption you use here… and causes an uncertainty. What about the impact of new particle formation on the actual Aitken mode (contributing to the CCN concentration)? This is an important uncertainty source, I could imagine!

Authors: In our retrieval methodology, we parameterize the particle size distribution within the range of 0.01 microns to 10 microns. This choice is based on the limitations of lidar measurements, which primarily provide sensitivity to particles with sizes larger than approximately 50 nanometers. The lidar backscatter and extinction signals are more sensitive to particles in the accumulation and coarse mode ranges, and the retrieval focuses on estimating aerosol properties within this range.

We acknowledge that this parameterization introduces uncertainties, particularly in capturing the contribution of particles smaller than 50 nanometers, such as those associated with new particle formation events. These particles can play a significant role in influencing the Aitken mode and CCN concentration.

Additionally, lidar measurements at the three wavelengths (355 nm, 532 nm, and 1064 nm) have different sensitivities to different aerosol types and sizes. The 355 nm wavelength is more sensitive to small particles, including hygroscopic species, while the 1064 nm wavelength is more sensitive to larger particles, such as dust. This wavelength dependence further adds to the complexity of accurately characterizing the aerosol population.

We included this as a limitation of lidar measurements, which subsequently appears in the estimation of CCN concentrations. We will also emphasize the need for further research to address the challenges associated with capturing the contribution of particles smaller than 50 nanometers and the impact of new particle formation on the CCN concentration.

Results:

p10, l317 and p11, l358: To my understanding, ECLiAP is not an inversion method. It is just an LUT approach. One should not mix that.

Authors: ECLiAP employs an inverse approach to determine the best-fitting particle size distribution from the Look-Up Tables (LUTs) based on lidar inputs. While using the term "inversion," it differs from traditional methods but still estimates the unknown particle size distribution using known aerosol optical properties. Essentially, the LUTs help identify the particle size distribution that likely corresponds to the observed lidar measurements. This inversion process involves estimating particle size distribution using available aerosol optical properties, differing from the traditional $3\alpha+2\beta$ technique.

ECLiAP utilizes an inverse approach, distinct from traditional methods, to estimate the particle size distribution from Look-Up Tables (LUTs) using lidar inputs. This process involves inferring particle size distribution from known aerosol optical properties, determining the best-fitting solution that corresponds to the observed lidar measurements. It differs from the traditional $3\alpha+2\beta$ technique typically used for inversion.
The relative humidity is a crucial input parameter. Uncertainties of 10-20% can never be excluded. So, resulting CCN retrieval uncertainties must be visualized up to RH plus minus 20%.

Authors: We appreciate the reviewer's concern regarding the impact of relative humidity (RH) on the resulting CCN retrievals. We acknowledge that uncertainties in RH can introduce variability in the retrieval outcomes, and we have given careful consideration to this aspect in our study. As indicated in the manuscript, we have accounted for systematic errors in RH by encompassing a range of RH uncertainties from -10% to 10%. This range was selected to cover typical variations in RH encountered in various atmospheric conditions. However, we understand the reviewer's interest in visualizing the impact of larger RH uncertainties up to plus minus 20%. We have indeed explored the effects of a 20% uncertainty in RH in our analysis, and the results demonstrate that this level of uncertainty introduces relatively larger errors in the NCCN estimation. Specifically, for negative RH errors.

![Figure: Systematic errors in retrieved N_{CCN}](image)

A 10% uncertainty in RH leads to approximately 20% underestimation in NCCN, and for negative RH errors, it results in around 40% underestimation. This finding serves to illustrate the significance of RH as a crucial parameter in the lidar-based retrieval. However, we should note that encountering a 20% RH uncertainty is infrequent in typical atmospheric conditions. The purpose of considering a 10% RH uncertainty was to demonstrate the sensitivity of our retrieval and its implications for typical RH variations observed in the atmosphere. Additionally, we have conducted an evaluation of the effects of random errors in RH, ranging from 5% to 20%, and have visualized the resulting NCCN retrieval errors under these different RH uncertainty scenarios. The results indicate that random errors in RH also contribute to the overall retrieval uncertainties, with the largest mean relative errors observed for coarse mode-dominated aerosol subtypes, consistent with their sensitivities to systematic errors.

We thank the reviewer for their valuable input, and we are confident that the current analysis, along with the comprehensive discussion in the manuscript, appropriately addresses the role of RH uncertainties in our CCN retrievals. Our aim is to demonstrate the significance of RH as a crucial
parameter in the lidar-based retrieval of NCCN and to provide valuable insights for the atmospheric science community.

P13, l461: The HSRL does not measure directly the 1064 nm extinction! ..is stated in line 461. This statement comes much too late. It must be clear from the beginning that HSRL is a typical 3+2 lidar instrument. You even do not know the 1064 nm lidar ratio. Please provide the lidar ratio! It is an important quantity! but not mentioned. May be you assumed 40 sr at 1064 nm, and in reality it is 80-100 sr, what are the consequences of such a bad assumption on the CCN retrieval? Please comment on that in the manuscript.

Authors: HSRL2 have been widely used to retrieve aerosol properties. These lidar systems independently measure the particle backscatter coefficients and depolarization ratios at three wavelengths (355, 532 and 1064 nm), and particle volume extinction coefficients at two wavelengths (355 and 532 nm) (Müller et al., 2014; Burton et al., 2015; 2018). At 1064 nm, extinction coefficient is derived from the product of aerosol backscatter at 1064 nm and an inferred lidar ratio at 1064 nm. The unique feature of the HSRL-2 is that its measurement technique differentiates between aerosol and molecular returns by analyzing the spectral distribution of the return signal. Consequently, this enables the independent determination of aerosol backscatter and extinction coefficients, unlike traditional elastic backscatter lidar retrievals that rely on a lidar ratio assumption (Hair et al., 2008).

It is important to note that our approach does not involve a direct retrieval of aerosol properties. Instead, leveraging the availability of derived extinction coefficients at 1064 nm as an additional input to ECLiAP reduces the uncertainty arising from the non-uniqueness solution of inversion. This enhancement leads to more comprehensive aerosol characterization, and as shown in Figure 10, it results in a reduction in uncertainty in CCN estimation. We appreciate your feedback and have made the necessary revisions to better understand our methodology and the implications of incorporating the inferred lidar ratio at 1064 nm.

P13, l471: That is my basic question: How do you handle mixtures: dust, marine, and smoke…. in your retrieval…
50100620403426

Authors: We appreciate your continued interest in our study. As mentioned in the earlier response, our study primarily focuses on external mixtures of aerosol subtypes, as the direct incorporation of internal mixtures into the Look-Up Tables (LUTs) used in our analysis can be complex. To account for mixtures, we separated the optical properties of polluted dust and dusty marine aerosols and utilized a technique based on particle depolarization ratio to distinguish between dust and non-dust components. The resulting separated aerosol properties, along with relative humidity and aerosol subtype information, were used in the ECLiAP algorithm to estimate CCN concentrations. Additional details on the methodology can be found in Appendix A1 of the revised manuscript.

P15, l506-511: I have no idea what you mean here…. because CALIOP is a 2+0 lidar, or even a 1+0 lidar. Please explain better …!
Authors: We understand the concern about the difference in the number of input parameters between our retrieval (3+3) and CALIPSO observations (2+0). It is crucial to clarify that the
application of ECLiAP to CALIPSO data involves some modifications to account for the available input parameters. Specifically, since CALIPSO provides measurements of aerosol optical properties at only two wavelengths (532 and 1064 nm), we have adapted our retrieval approach to utilize the available data. This involved using the available extinction coefficient measurements and selecting a representative RH value from climatological datasets to perform the retrievals. In the modified version of ECLiAP, we provided CALIPSO based (2+2) inputs along with RH and performed the same retrieval process, where ECLiAP try to search for the closet aerosol optical properties for two wavelengths in the LUTs and provides the suitable size distribution for the retrieval of N_{CCN}. We acknowledge that this adaptation introduces uncertainties and have address these points in the revised manuscript.

We have adapted the retrieval approach to accommodate the available data, utilizing aerosol optical properties at two wavelengths and meteorological datasets. These modifications introduce potential limitations and uncertainties due to the availability of limited number of input parameters. While the CALIPSO case study offers valuable insights, we stress the need for further validation with independent measurements.

P15, l512-526: Again, I have no idea what you did? Did you apply the depolarization-ratio based method to separate dust and non-dust components? And then what did you do in the next steps? Must be clear in the manuscript.

Authors: Yes, we applied a wavelength-dependent depolarization ratio method to separate dust and non-dust components. As mentioned above, the resulting separated aerosol properties, along with relative humidity and aerosol subtype information, were used in the ECLiAP algorithm to estimate CCN concentrations (as seen in Figure-2). Additional details on the methodology can be found in Appendix A1 of the revised manuscript.

P16, l548: Again, there is a mixture of dust and continental pollution. What are the different steps of the retrieval. Please explain in detail!

Authors: Details on the methodology can be found in Appendix A1 of the revised manuscript.

P16, l573: What does that mean… a more realistic LUT-based approach using the 3+3 wavelength technique? You do not have any good information about the 1064 nm lidar ratio!

Authors: We have expanded the parameter ranges in the LUTs to encompass a wider range of potential mode radii and geometric standard deviation values both for fine (r_f, σ_f) and coarse mode (r_c, σ_c) for each aerosol subtypes. The parameter ranges for the bimodal size distribution and mean complex refractive index of five aerosol subtypes are presented in Table 1 (it was Table S1 in the original version of manuscript) which are used to construct the respective look-up tables (LUTs). In the process of constructing LUTs, specific intervals for the parameters σ_f, σ_c, r_f and r_c have been carefully chosen to define the range of particle size distributions for each aerosol model. These intervals are set at 0.01, 0.01, 0.002 and 0.01 µm, respectively. These intervals are set as a compromise between accuracy and computation time, ensuring that the LUTs encompass a comprehensive range of particle size distributions for various aerosol subtypes. By accounting for the variability in size distribution parameters, our approach becomes more robust and better represents real-world aerosol conditions. This ensures that ECLiAP can find the closest solution
of particle size distribution from the LUTs, providing relatively accurate CCN estimates based on the given lidar inputs.

In the summary and conclusion section one could discuss: How large is the chance that there will be an airborne or spaceborne 3+3 HSRL in the near future (within the next 10 years).

Authors: We appreciate the reviewer's suggestion. The NASA Langley Research Center airborne lidar instrument HSRL-2 measures aerosol backscatter and depolarization at three wavelengths (355 nm, 532 nm, and 1064 nm) and aerosol extinction at 355 nm and 532 nm using the HSRL technique (Burton et al., 2018; Shipley et al., 1983). At 1064 nm, extinction is derived from the product of aerosol backscatter at 1064 nm and an inferred lidar ratio at 1064 nm. So, technically it is 3+2 but not the 3+3. Leveraging the availability of derived extinction coefficients at 1064 nm as an additional input to ECLiAP reduces the uncertainty arising from the non-uniqueness solution of inversion. This enhancement leads to more comprehensive aerosol characterization, and as shown in Figure 10, it results in a reduction in uncertainty in CCN estimation. Therefore, we called it “3β+3α technique”.

P20, 1684, the depol value of 0.31 holds for 532 nm only!

Authors: Thank you for pointing out the missing information. Detailed information on the values of particle depolarization ratio is added in the Appendix A1. We utilized a reported wavelength-dependent particle depolarization ratio from various campaigns (listed in Table S1). For this investigation, we employ mean values of particle depolarization ratio 0.24, 0.31, and 0.06 for dust and 0.03, 0.05, and 0.02 for non-dust at 355 nm, 532 nm, and 1064 nm, correspondingly.

Tables 1 and 2: If the numbers are so small, do we really have to show this?

Authors: We understand reviewer’s concern regarding the small numbers presented in Table 2 and Table 3 (they were Table 1 and Table 2 in the original version of manuscript). While the values may appear small, they still hold important information for the analysis.

In this evaluation, we aim to assess the performance and stability of the inversion technique used in ECLiAP by considering error-free lidar measurements. To achieve this, we employed 2000 different sets of bimodal size distributions for each aerosol subtype to simulate realistic lidar observations. Subsequently, the retrieval process was applied to each simulated lidar observation, allowing us to obtain the retrieved size parameters. The calculated errors in the retrieved NCCN (N_{CCN}^{ret}) were then compared with the initial inputs (N_{CCN}^{int}) to quantify the accuracy of the retrieval process.

The results, as presented in Table 2, demonstrate that the initial NCCN values are well reproduced from the error-free inputs for each aerosol size distribution. We also estimated the standard deviation of the retrieved CCN errors from the different sets of bimodal size distribution data along with the mean value, providing insights into the range of the retrieved CCN error. The appropriate balance between the accuracy and processing time of the LUTs leads the mean CCN error close to zero but not equal to zero. However, the small standard deviation indicates the smaller variances of errors among the aerosol size distributions.
By including these tables, we ensure transparency and provide comprehensive insights into the performance and limitations of our methodology. This strengthens the scientific rigor of our study and enables other researchers to reproduce and validate our findings effectively.

Figure 6 triggered my basic question: How are aerosol mixtures handled in the entire retrieval procedure?

Authors: Details on the methodology can be found in Appendix A1 of the revised manuscript.

Figure 8: I have no idea how you got all the shown information and how you could estimate CCN at the end. And who can evaluate the quality of the products? We have just to believe.

Authors: In Figure-8, we used a single CALIPSO overpass to showcase the capability of ECLiAP in retrieving NCCN from space-borne lidar observations. The aerosol extinction coefficient at 532 nm and aerosol subtypes information illustrated in Figure 8(a & b) are already taken directly form the data product, whereas particle concentrations and CCN concentration in Figure 8 (c & d) are derived using ECLiAP.

We understand the importance of independent validation to confirm the reliability of the retrieval results. In our study, we have conducted extensive validation exercises using airborne datasets from the NASA ORACLES campaign. These validations involved comparing ECLiAP retrieved NCCN with in-situ measurements of NCCN obtained from CCN counters during the airborne campaign. The validation results demonstrate the capability of ECLiAP in capturing the patterns of altitude variations in NCCN and the agreement between retrieved and observed NCCN. We applied the ECLiAP to a single CALIPSO overpass to demonstrate its capabilities in retrieving NCCN from space-borne lidar observations. This demonstration aims to highlight the potential of ECLiAP for NCCN retrievals using CALIPSO data. However, we understand the need for more comprehensive validation and evaluation of ECLiAP when applied to CALIPSO data. We are now actively working on a separate dedicated study to address these issues and present a detailed analysis of the application of ECLiAP to CALIPSO observations. This new study will include an in-depth validation using CALIPSO and multi-campaign airborne measurements to rigorously assess the performance of our retrieval methodology on a global scale.

We have adapted the retrieval approach to accommodate the available data, utilizing aerosol optical properties at two wavelengths and meteorological datasets. These modifications introduce potential limitations and uncertainties due to the availability of limited number of input parameters. While the CALIPSO case study offers valuable insights, we stress the need for further validation with independent measurements.

Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., & Whiteman, D. N. (2002). Inversion with regularization for the retrieval of tropospheric aerosol parameters from
https://doi.org/10.1364/AO.41.003685

https://doi.org/10.1126/science.1125261

