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Abstract: The interaction between water vapor and aerosol nanoparticles is important in 13 

atmospheric processes. Hygroscopicity of sub-10 nm organic nanoparticles and their 14 

concentration-dependent thermodynamic properties (e.g., water activity) in the highly 15 

supersaturated concentration range are, however, scarcely available. Here we investigate the size 16 

dependence of hygroscopicity of organics (i.e., levoglucosan, D-glucose) in dry particle diameter 17 

down to 6 nm using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA). 18 

Our results show that there is only a weak size dependent hygroscopic growth of both levoglucosan 19 

and D-glucose nanoparticles with diameters down to 20 nm. In the diameter range smaller than 20 20 

nm (down to 6 nm), we observed a strong size-dependent hygroscopic growth for D-glucose 21 

nanoparticles. The hygroscopic growth factors cannot be determined for levoglucosan below 20 22 
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nm due to its evaporation. In addition, we compare hygroscopicity measurements for levoglucosan 23 

and D-glucose nanoparticles with the E-AIM (standard UNIFAC), the ideal solution theory, and 24 

DKA predictions, respectively. The ideal solution theory describes well the measured hygroscopic 25 

growth factors of levoglucosan with diameters down to 20 nm and D-glucose nanoparticles with 26 

diameters higher than 60 nm, respectively, while the E-AIM (standard UNIFAC) model can 27 

successfully predict the growth factors of D-glucose nanoparticles with diameters from 100 down 28 

to 6 nm at RH above 88-40 % (e.g., at RH above 88 % for 100 nm D-glucose, at RH above 40 % 29 

for 6 nm D-glucose). The use of the DKA method leads to a good agreement with measured 30 

hygroscopic growth factors of D-glucose aerosol nanoparticles with diameters from 100 down to 31 

6 nm. Predicted water activity for these aqueous organic solutions (i.e., levoglucosan, D-glucose) 32 

from different parameterization methods agrees well with observations in the low solute 33 

concentration range (< 20 mol kg-1), and start to deviate from observations in the high solute 34 

concentration (> 20 mol kg-1). 35 

  36 

1 Introduction 37 

Organic aerosol nanoparticles play an important role in new particle formation, subsequent 38 

condensation and coagulation growth, cloud condensation nuclei (CCN), and thus in affecting 39 

visibility degradation, radiative forcing, and climate (Chylek and Coakley, 1974; Charlson et al., 40 

1992; Dusek et al., 2010; Cheng et al., 2012; Zhang et al., 2012; Kulmala et al., 2013). Both growth 41 

of nanoparticles and their ability to act as CCN are directly related to its hygroscopicity that 42 

describes the interaction between organic nanoparticles and water vapor (Köhler, 1936; 43 

Kreidenweis et al., 2005; Su et al., 2010; Cheng et al., 2015; Wang et al., 2015). However, current 44 

knowledge of hygroscopicity of sub-10 nm organic nanoparticles and their concentration-45 
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dependent thermodynamic properties (e.g., water activity) in the highly supersaturated 46 

concentration range is scarcely available. 47 

Levoglucosan aerosol nanoparticles have attracted increasing interest in recent years (Simoneit et 48 

al., 1999; Mochida and Kawamura, 2004; Mikhailov et al., 2009; Elias et al., 2010; Lei et al., 2014, 49 

2018; Bhattarai et al., 2019) due to relative stability and high emission factors, which are 50 

considered as an ideal tracer for characterization and quantification the biomass burning (Fraser 51 

and Lakshmanan, 2000). Also, levoglucosan is typically the most abundant species in wood 52 

burning aerosols, which contributes substantially (16.6–30.9% by mass) to the total organics in 53 

PM2.5 (Mochida and Kawamura, 2004; Bhattarai et al., 2019). D-glucose, a hydrolysis product of 54 

cellulose and levoglucosan, is a major pyrolysis product of wood (Mochida and Kawamura, 2004; 55 

Bhattarai et al., 2019; Mikhailov and Vlasenko., 2020). Hygroscopicity of levoglucosan and D-56 

glucose substances is thus important in reproducing the overall hygroscopic behavior of the real 57 

biomass burning aerosol particles (Bhandari and Bareyre. 2003; Mochida and Kawamura, 2004; 58 

Chan et al., 2005; Koehler et al., 2006; Peng et al., 2010; Mikhailov and Vlasenko., 2020). For 59 

example, a small difference in the hygroscopicity parameter (к) between measured data of model 60 

mixtures including levoglucosan and ammonium sulfate in the laboratory using HTDMA and 61 

biomass burning aerosol particles in the field using CCN activity measurement due to the similar 62 

O: C ratios of levoglucosan and ammonium sulfate mass fractions used in model mixtures when 63 

experimental κ data from sub- and supersaturated water vapor conditions are compared (Bhandari 64 

and Bareyre. 2003; Mochida and Kawamura, 2004; Chan et al., 2005; Koehler et al., 2006; Peng 65 

et al., 2010; Pöhlker et al., 2016; Lei et al., 2018; Mikhailov and Vlasenko., 2020). Most of the 66 

previous lab studies have focused on investigation of the hygroscopic behavior of 100-nm 67 

levoglucosan and D-glucose aerosol nanoparticles, which mainly utilized the humidified tandem 68 



4 

 

differential mobility analyzers (DMAs) (Mikhailov et al., 2004; Mochida and Kawamura. 2004; 69 

Koehler et al., 2006; Lei et al., 2014; 2018). For example, Mochida and Kawamura (2004) observed 70 

that 100-nm levoglucosan and D-glucose aerosol nanoparticles uptake/release water continuously 71 

in both deliquescence and efflorescence modes, respectively. To our knowledge, there are no phase 72 

transitions for these organic aerosol nanoparticles in both deliquescence and efflorescence 73 

processes.   74 

Early studies showed that the hygroscopicity and solubility of inorganic aerosols, such as 75 

ammonium sulfate (AS) and sodium chloride (NaCl), exhibited a strong size dependence (Cheng 76 

et al., 2015). Firstly, hygroscopic diameter growth factors of AS, NaCl as well as Na2SO4 77 

nanoparticles are found to decrease with size decreases in both deliquescence and efflorescence 78 

modes (Biskos et al., 2006a, b, c, Lei et al., 2020). Secondly, there is no significant difference in 79 

the deliquescence relative humidity (DRH) and the efflorescence relative humidity (ERH) between 80 

AS nanoparticles with dry diameters of 6 and 60 nm (Biskos et al., 2006b; Lei et al., 2020), while 81 

a pronounced size dependence of the DRH of NaCl is up to 10 % RH between dry diameters of 6 82 

and 60 nm (Biskos et al., 2006a). The behaviors of change of phase transition RH and 83 

concentrations of Na2SO4 are between NaCl and AS (Lei et al., 2020). However, there are very few 84 

lab studies on investigating hygroscopicity (gf, DRH, ERH) of organic aerosol nanoparticles in sub-85 

10 nm size range (Wang et al., 2017). It is not clear how the size effect influences the hygroscopic 86 

growth of organics, especially those without DRH and ERH. Besides technique limitation (Lei et 87 

al., 2020; Wang et al., 2017), another reason is the high diffusion of sub-100 nm organic 88 

nanoparticles, especially in the sub-10 nm size range, which results in nanoparticle losses in the 89 

HTDMA system (Seinfeld and Pandis, 2006). 90 
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Thermodynamic model is widely used to predict the hygroscopic growth factor of organic aerosol 91 

particles as a function of RH (Bhandari and Bareyre. 2003; Chan et al., 2005; Koehler et al., 2006; 92 

Peng et al., 2010). The thermodynamic model needs thermodynamic data such as water activity, 93 

liquid-vapor interfacial energy (surface tension), and density of organic aqueous solutions (Tang 94 

and Munkelwitz, 1994; Tang 1996; Pruppacher and Klett, 1997; Clegg et al., 1998). Because 95 

nanodroplets can become more highly supersaturated where no thermodynamic data are available, 96 

it makes the current thermodynamic model difficult or impossible to predict the hygroscopic 97 

behavior of organic aerosol nanoparticles. Cheng et al. (2015) pointed out that size effect might be 98 

taken models into account. By measuring the hygroscopic growth factor of organic nanoparticles 99 

(e.g., levoglucosan and D-glucose) of different sizes, we may be able to retrieve these 100 

thermodynamic data using a Differential Köhler Analysis (DKA) method (Cheng et al., 2015). This 101 

will further help us to understand the new particle formation, transportation, and their interactions 102 

between water molecules.  103 

In this study, we investigate the hygroscopic growth factors of levoglucosan and D-glucose 104 

nanoparticles in size down to 6 nm using a nano-hygroscopic tandem differential mobility analyzer 105 

(nano-HTDMA, Lei et al., 2020). Moreover, we compare our measurement data with model 106 

prediction from the Extended Aerosol Inorganic Model (E-AIM (standard UNIFAC)) (Clegg et al., 107 

2001; Clegg and Seinfeld, 2006; available online: http://www.aim.env.ac.uk/aim/aim.php), the 108 

ideal solution theory, and DKA. In addition, the use of the DKA method is to calculate 109 

thermodynamic properties (e.g., water activity) of D-glucose nanodroplets in the highly 110 

supersaturated concentration range and then to compare with KD-derived data (KD=Kreidenweis), 111 

thermodynamic property data from Köhler (Kreidenweis et al., 2005), E-AIM (standard UNIFAC) 112 

model, and references, respectively.  113 

http://www.aim.env.ac.uk/aim/aim.php
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 114 

2 Methodology 115 

2.1 Experimental methods 116 

2.1.1 Nanoparticle generation  117 

An electrospray is employed to generate levoglucosan and D-glucose aerosol nanoparticles of 6, 8, 118 

10, and 15 nm using 2, 3, 5, and 10 mM aqueous solutions with 50 % volume fraction of a 20 mM 119 

ammonium acetate buffer solution (Chen et al., 2005; Wang et al., 2015), respectively. The 120 

generated nanoparticles are diluted by mixing with dry and filtered N2 (1 l/min) and CO2 (0.1 l/min), 121 

bringing aerosol nanoparticles to a dry RH state (≤ 2% RH). Subsequently, aerosol nanoparticles 122 

pass through a Po210 neutralizer to reach the equilibrium charge distribution (Wiedensohler 1986). 123 

In order to avoid blocking the 25-μm capillary tube in the electrospray with high solution 124 

concentration, the aerosol nanoparticles with diameters of 60-100 and 20 nm are generated by an 125 

atomizer with a 0.05 and 0.01 wt % organic solution (i.e., levoglucosan and D-glucose), 126 

respectively. The chemical substances and their physical properties are characterized in Table S1. 127 

These solutions are prepared with distilled and de-ionized million-Q water (resistivity of 18.2 MΩ 128 

cm at 298.15 K). Note that the size selected by the nano-DMA1 should be the right part of peak 129 

diameter of the number size distribution of the generated nanoparticles, which minimizes the 130 

influence of the multiple charged nanoparticles in hygroscopicity measurements. This is to ensure 131 

that we could have as many particles as possible to compensate for the strong loss of very small 132 

particles in the whole humidification system.  133 

2.1.2 Nano-HTDMA setup 134 
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Figure 1 shows a schematic of the nano-HTDMA system for investigating the hygroscopic 135 

behavior of aerosol nanoparticles, especially in the sub-10 nm size range. The detailed description, 136 

calibration, and validation of nano-HTDMA setup have been reported in the previous paper (Lei et 137 

al., 2020). In brief, the polydisperse aerosol nanoparticles pass through a silica gel diffusion dryer 138 

and a Nafion gas dryer (TROPOS Model ND.070, Length 60 cm). The dry aerosol nanoparticles 139 

at RH below 10 % are charged by a Kr85 bipolar charger and then enter the first nano-differential 140 

mobility analyzer (nano-DMA1, TROPOS Model Vienna-type short DMA), where a monodisperse 141 

distribution of nanoparticles with the desired dry diameter is selected. The monodispersed 142 

nanoparticles subsequently are exposed to the different RH conditions, which can be set to 143 

deliquescence mode (from low RH to high RH for measuring deliquescence) or efflorescence mode 144 

(from the high RH to low RH for measuring efflorescence). In the deliquescence mode, the dry 145 

aerosol nanoparticles are gradually humidified to a target RH through a Nafion humidifier (NH-1, 146 

TROPOS Model ND.070, Length 60 cm). In the efflorescence mode, after deliquescence of aerosol 147 

nanoparticles with RH above 97% in a Nafion humidifier (NH-2: Perma Pure Model MH-110, 148 

Length 30 cm), the deliquesced aerosol nanoparticles are stepwise dried to a target RH in NH-1. 149 

The number size distribution of the humidified nanoparticles is then measured by a nano-150 

differential mobility analyzer (nano-DMA2) at a target RH through a Nafion humidifier (NH-3, 151 

Perma Pure Model PD-100) coupled with an ultrafine condensation particle counter (CPC, TSI, 152 

model no. 3776). To have the uniform RH within the nano-DMA2 for the accurate determination 153 

of hygroscopicity (gf, DRH, ERH) of aerosol nanoparticles, the difference between the sheath flow 154 

RH (RHs) and the aerosol flow RH (RHa) upstream of the nano-DMA2 is kept <1 %. Most 155 

importantly, the temperature difference between inlet and outlet of the nano-DMA2 is maintained 156 

below 0.2 °C during the measurements. In addition, the residence time (e.g., 5.4 s: between the 157 
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humidifier and the nano-DMA2; 0.07 s: deliquescence for aerosol nanoparticles) is sufficient for 158 

water-soluble aerosol nanoparticles to equilibrate with water vapor at a given RH and to occur 159 

solid-liquid phase transition (Kerminen 1997; Duplissy et al., 2005; Raoux et al., 2007), 160 

respectively.  161 

2.2 Theory and modeling methods 162 

2.2.1 Köhler theory 163 

The fractional ambient relative humidity (
𝑅𝐻

100
) over a spherical droplet in equilibrium with the 164 

environment is described by Köhler equation (Köhler 1936): 165 

𝑅𝐻

100
= 𝑎𝑤𝑒𝑥𝑝 (

4𝜎𝑠𝑜𝑙𝑣𝑤

𝑅𝑇𝐺𝑓𝐷𝑠
)                                                                                                                      (1) 166 

where 𝑎𝑤 is the water activity of the solution droplet, 𝜎𝑠𝑜𝑙 is the liquid-vapor interfacial energy of 167 

solution droplet (also called surface tension), 𝑣𝑤  is the partial molar volume of water, 𝑅 is the 168 

universal gas constant, 𝑇 is the temperature, 𝐺𝑓 is the diameter growth factor of aerosol particles, 169 

and 𝐷𝑠 is the dry diameter of spherical aerosol particles. The hygroscopic growth curve (𝐺𝑓 vs RH) 170 

is estimated based on the assumptions in models or theories described in the following sections 171 

(2.2.2-2.2.3). 172 

2.2.2 Water activity 173 

The expression for water activity used in the Simplified Kohler Theory (SKT) assumes the droplet 174 

contains 𝑛𝑤 moles of water and  𝑛𝑠 moles of nonvolatile solute.  175 

𝑎𝑤 =
𝑛𝑤

𝑛𝑤+𝑣𝑛𝑠
                                                                                                                                    (2) 176 
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𝑣 is the number of ions of solute present in solution (𝑣=1 for organic composition). This expression 177 

has been applied to the diluted solution (Kreidenweis et al., 2005; Koehler et al., 2006). 178 

The following KD expression proposed by Kreidenweis et al. (2005) (KD= Kreidenweis) is to 179 

present the relationship between 𝑎𝑤 and Gf determined in hygroscopic growth measurements: 180 

𝐺𝑓 = [1 + (𝑎 + 𝑏 ∗ 𝑎𝑤 + 𝑐 ∗ 𝑎𝑤
2 )

𝑎𝑤

1−𝑎𝑤
]

1

3
                                                                                          (3) 181 

The coefficients a, b, and c for organic solution droplet in this study from Lei et al. (2014, 2018) 182 

and Estillore et al. (2017) as shown in Table S2. 183 

Differential Köhler analysis (DKA) proposed by Cheng et al. (2015) is theoretically based on 184 

Köhler equation (Köhler, 1936) to determine water activity by measuring hygroscopic growth 185 

factors of aerosol nanoparticles in different sizes.  186 

𝑎𝑤 =
𝑠𝑤1

(
𝐷𝑠1

𝐷𝑠1−𝐷𝑠2
)

𝑠𝑤2

(
𝐷𝑠2

𝐷𝑠1−𝐷𝑠2
)
                                                                                                                                (4)                                                                            187 

where 𝑠𝑤1 and 𝑠𝑤2 are water saturation ratio measured at the same 𝑔𝑓 but at the different initial dry 188 

diameters (𝐷𝑠1, 𝐷𝑠2), respectively. Using the DKA method can calculate the water activity in the 189 

highly supersaturated concentration range.  190 

2.2.3 Growth factor  191 

For ideal solution, the hygroscopic curve can be estimated assuming that the water activity 𝑎𝑤 of 192 

the solution containing non-volatile and non-electrolyte solute component is equal to the molar 193 

ratio of water in the solution. Here, the partial molar volume of pure water in the solution is equal 194 

to the molar volume of pure water. Since the hygroscopic diameter growth factor measurements 195 
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are on volume basis using nano-HTDMA system, the expression of Gf as a function of molar ratio 196 

(𝑥𝑗), molar mass (𝑀𝑗), and mass density (𝜌𝑗) of components 𝑗 as follows: 197 

𝐺𝑓 = [
∑ (𝑥𝑗𝑀𝑗

1

𝜌𝑗
)𝑗

∑ (𝑥𝑗𝑀𝑗
1

𝜌𝑗
)𝑗,𝑗≠𝑤

]

1

3

                                                                                                                     (5) 198 

The hygroscopic growth curve of aerosol particles is commonly evaluated from Extend-Aerosol 199 

Inorganic Model (E-AIM). It is a thermodynamic equilibrium model used for calculating phase 200 

partitioning (gas/liquid/solid). Most importantly, the E-AIM mode can model thermodynamic 201 

properties (e.g., water activity, liquid-vapor interfacial energy, and solution density) in the highly 202 

supersaturated concentration solution (Dutcher et al., 2013). Also, the standard universal quasi-203 

chemical functional group activity coefficients (UNIFAC) within E-AIM can be used to predict 204 

𝑎𝑤, 𝜎𝑠𝑜𝑙, and 𝜌𝑠𝑜𝑙 of organic aqueous solution (Fredenslund et al., 1975; Hansen et al., 1991). Note 205 

that the E-AIM calculations based on the standard UNIFAC group contribution method predict 206 

hygroscopic growth factors of organic aerosol particles. (i.e.., E-AIM model (standard UNIFAC)) 207 

growth curve as a function of RH is based on Eq. (1) and Eq. (6).). 208 

𝐺𝑓 = (
𝜌𝑠

𝑥𝑠𝜌𝑠𝑜𝑙
)

1

3                                                                                                                                   (6)             209 

𝜌𝑠 and 𝜌𝑠𝑜𝑙 are the density of solute and solution, respectively, and 𝑥𝑠 is the solute mass fraction. 210 

 211 

3 Results and discussion 212 

3.1 Levoglucosan 213 

3.1.1 Concentration-dependent water activity of levoglucosan solution 214 
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By applying a water activity parameterization model (KD, Eq. 3) to measured growth factors of 215 

levoglucosan aerosol nanoparticles with diameters from 20 to 100 nm using a nano-HTDMA, as 216 

shown in Fig. 2, we obtain water activity of aqueous levoglucosan nanoparticles with molality up 217 

to 140 mol kg-1. Chan et al. (2005) levitated single particles of ~10 μm levoglucosan at the different 218 

RHs in an electrodynamic balance for mass measurements, and reported water activity data for 219 

aqueous droplets with molality up to 14 mol kg-1. These water activity data are compared with 220 

predictions from the Köhler (Kreidenweis et al., 2005, Eq. 2) and the E-AIM model, respectively. 221 

A good agreement between KD-derived water activity and Köhler indicates these aerosol particles 222 

are aqueous droplets with molality less than 20 mol kg-1. However, a derivation of SKT from the 223 

KD-derived water activity is observed as the molality increases from 20 to 120 mol kg-1, indicating 224 

levoglucosan nanoparticles become highly supersaturated. Also, a discrepancy exists between KD-225 

derived data and E-AIM model prediction. For DKA-derived water activity calculations, a strong 226 

size dependence of the hygroscopic growth factors is needed for aerosol nanoparticles in the 227 

different sizes, which is not the case for the hygroscopic measurements of levoglucosan 228 

nanoparticles.  229 

3.1.2 Size dependent hygroscopicity of levoglucosan nanoparticles 230 

Black solid squares in Fig. 3 shows the measured humidogram of 100-nm levoglucosan 231 

nanoparticles in both deliquescence and efflorescence modes. Levoglucosan nanoparticles uptake 232 

water continuously from 5 % to 90 % RH. Also, they gradually release water as RH decreases 233 

down to 5 %. The hygroscopic growth factors of levoglucosan nanoparticles in deliquescence and 234 

efflorescence modes overlap. For example, the hygroscopic growth factors of levoglucosan 235 

nanoparticles at 80 % RH, 87 % RH are 1.16, 1.23, respectively, in the deliquescence mode, very 236 

close to the corresponding values in the efflorescence mode are 1.15, 1.22 (shown in Fig. S1), 237 
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suggesting that growing and shrinking of particles are in equilibrium with water vapor surrounding 238 

moisture conditions. No prompt phase transitions of levoglucosan nanoparticles are observed in 239 

both deliquescence and efflorescence modes. A similar non-prompt phase transition of 240 

levoglucosan nanoparticles was observed in the previous studies (Mochida and Kawamura, 2004; 241 

Chan et al., 2005; Svenningsson et al., 2006; Mikhailov et al., 2008; Lei et al., 2014, 2018). This 242 

study is in good agreement with most of reference results, but there is a difference in the 243 

hygroscopic growth factor of levoglucosan nanoparticles between Mikhailov et al. (2008) and this 244 

study. The reason is that Mikhailov et al. (2008) used minimum mobility diameter measured in the 245 

deliquescence and efflorescence modes instead of the initial dry mobility diameter measured in the 246 

deliquescence or efflorescence modes to calculate the hygroscopic growth factor of levoglucosan 247 

nanoparticles, which could lead to the higher hygroscopic growth factors of levoglucosan 248 

nanoparticles than those of this study.  249 

Figure 4 shows measured size-resolved hygroscopic growth factors of levoglucosan nanoparticles 250 

against RH up to 90 %. There is a weak size dependence of hygroscopic growth factors of 251 

levoglucosan nanoparticles with diameters down to 20 nm in both deliquescence and efflorescence 252 

modes. E.g., a slight difference in hygroscopic growth factor between 100 and 20-nm levoglucosan 253 

nanoparticles is ~0.02 at 88 % RH. In addition, E-AIM (standard UNIFAC) model and ideal 254 

solution theory are used to predict our measurement results as shown in Fig. 4a and 4b, respectively. 255 

E-AIM (standard UNIFAC) model is applied to estimate the hygroscopic growth of organic aerosol 256 

nanoparticles according to UNIFAC group contribution method. Ideal solution theory is used to 257 

describe water absorption of the ideal/diluted aqueous solution nanodroplets. Due to consideration 258 

of Kelvin effect in model and theory, these model predictions are expected to present a size 259 

dependence of growth factors of nanoparticles in size from 100 down to 20 nm. For example, as 260 
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shown in Fig. 4a, the thermodynamic equilibrium model (E-AIM (standard UNIFAC)) shows a 261 

weak size dependence of the growth factors of levoglucosan nanoparticles with diameters 100, 60, 262 

and 20 nm at low RH but a strong size dependence of growth factors at RH above 70 %. However, 263 

the calculated growth factors of nanoparticles down to 20 nm in size are deviated from the 264 

measured growth factors of levoglucosan nanoparticles at RH below 80 %, which is similar to the 265 

observation of 100-nm levoglucosan hygroscopicity prediction from previous studies (Lei et al., 266 

2014, 2018). Lei et al. (2014, 2018) explained that the possible reason for this discrepancy is that 267 

the E-AIM (standard UNIFAC) predictions are not suitable for organic compounds with the 268 

strongly polar functional groups in series (Fredenslund et al., 1975; Hansen et al., 1991). Since 269 

levoglucosan contains three OH groups in series, thus, thermodynamic properties (e.g., water 270 

activity, surface tension) in E-AIM (standard UNIFAC) are more likely to be invalid for 271 

levoglucosan system. However, a good agreement of growth factors of levoglucosan with 272 

diameters 100, 60, and 20 nm is observed between measurements and predictions by ideal solution 273 

theory as shown in Fig. 4b.  274 

The hygroscopic growth for sub-20 nm levoglucosan nanoparticles cannot be determined with the 275 

nano-HTDMA system because we observed significant evaporation of the dry particles in the 276 

measurement system. Figure 5a-b shows the measured peak diameter of normalized size 277 

distribution scanned by the nano-DMA2 and nano-DMA1 for sub-20 nm levoglucosan 278 

nanoparticles. It is obvious that the size of nanoparticles in DMA2 is smaller than that in DMA1, 279 

corresponding to a decrease of 22% to 50% of 15-nm and 10-nm levoglucosan nanoparticles, 280 

respectively, indicating significant evaporation of these small levoglucosan nanoparticles in the 281 

system. To test this hypothesis, we estimate the ratio of gas-phase concentration to the total 282 

concentration of the generated levoglucosan nanoparticles in the different sizes. Firstly, the 283 
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calculated gas-phase concentration of levoglucosan is based on the Kelvin equation and ideal gas 284 

equation (Eq. S1&2, SI. S1). Figure 5c shows the vapor saturation ratio of levoglucosan as 285 

nanodroplet diameter increases from 0 to 100 nm. The inset in Fig. 5c is an enlarged view (black 286 

open square) of vapor saturation ratio of levoglucosan as a function of nanodroplet diameters below 287 

20 nm. Levoglucosan is semi-volatile at ambient condition (Hennigan et al., 2010). Due to Kelvin 288 

effect, sub-20 nm levoglucosan aerosol particles become more volatile. Secondly, the total 289 

concentration of levoglucosan particles is estimated by Eq. (S3). Thus, the results of the ratio of 290 

gas-phase concentration (mg) to the total concentration (mt) have been shown in Fig. 5d and Table 291 

S3 for levoglucosan nanoparticles in the diameter range from 10 to 100 nm. It shows a slight 292 

increase in the calculated ratio (mg/mt) for levoglucosan aerosol nanoparticles with dimeters from 293 

100 down to 20 nm. However, the ratio of gas-phase concentration to the total concentration is 294 

dramatically enhanced for sub-20 nm levoglucosan aerosol nanoparticles, which is consistent with 295 

measurement observations, indicating the larger impact of evaporation of sub-20 nm levoglucosan 296 

nanoparticles on the measurement results. Therefore, there is an obvious partial levoglucosan 297 

evaporation from DMA1 to DMA2 within several seconds. 298 

3.2 D-glucose 299 

3.2.1 Concentration-dependent water activity of D-glucose solution 300 

Figure 6 shows the DKA-derived water activity of aqueous D-glucose nanodroplets with diameters 301 

from 6 nm to 100 nm with molality up to 1000 mol kg-1 (Cheng et al., 2015, Eq. 4). Here, by 302 

comparing with KD-derived water activity, Köhler, E-AIM model, and observation from literatures 303 

(Comesaña et al., 2001; Peng et al., 2001; Bhandari and Bareyre, 2003; Ferreira et al., 2003), a 304 

good agreement among them is observed in the solute concentration below 20 mol kg-1. However, 305 
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there is a disagreement between water activity results in the highly supersaturated concentration 306 

range (> 20 mol kg-1). 307 

3.2.2 Size dependent hygroscopicity of D-glucose nanoparticles 308 

Figure 7 shows the measured hygroscopic growth factors of 100-nm D-glucose nanoparticles as a 309 

function of RH. No significant difference in the hygroscopic growth factor of 100-nm D-glucose 310 

nanoparticles is found between deliquescence and efflorescence measurement modes (Fig. S2). For 311 

example, the measured growth factors of D-glucose nanoparticles at 81 % RH, 88 % RH are 1.16, 312 

1.25 in the deliquescence mode, respectively, in good agreement with results in the efflorescence 313 

mode (gf =1.17 at 81 % RH, gf =1.26 at 88 % RH shown in Fig. S2). Also, measured hygroscopic 314 

growth factors of 100-nm D-glucose are consistent with results from previous studies (Mochida 315 

and Kawamura. 2004; Chan and Chan, 2005; Suda and Petters, 2013; Estillore et al., 2017; 316 

Mikhailov and Vlasenko, 2020). For example, Mikhailov and Vlasenko, (2020) investigated the 317 

hygroscopic behavior of 100-nm D-glucose aerosol particles using a HHTDMA in deliquescence, 318 

efflorescence, and restructuring modes of operation, respectively. A clear morphology effect on 319 

the hygroscopicity of D-glucose aerosol particles is observed in the RH range from 2 % to 96 % 320 

RH. No prompt phase transitions are observed in both deliquescence and efflorescence 321 

measurement modes. Estillore et al. (2017) observed a slightly amorphous structure of D-glucose 322 

particles under ambient conditions using an atomic force microscopy and D-glucose particles grow 323 

through gradual water uptake where the solid-liquid phase transition is non-discrete. Thus, a 324 

continuous growth/shrink of diameter in both deliquescence and efflorescence modes is explained 325 

by the lack of crystallization of D-glucose nanoparticles upon drying to low RH below 10 %. 326 

Figure 8a shows the size dependence of measured hygroscopic growth factors of D-glucose 327 

nanoparticles in the size range from 6 to 100 nm, with differences in growth factor up to 0.14 328 
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between 100-nm and 6-nm nanoparticles at 90 % RH (Fig. S2). A weak size dependence on the 329 

hygroscopic growth factors of D-glucose nanoparticles is observed in the size range from 20 to 100 330 

nm, which is similar to observation for levoglucosan nanoparticles with diameters down to 20 nm. 331 

However, there is a strong size-dependent growth factor of D-glucose nanoparticles with diameters 332 

from 6 to 20 nm, especially at high RH, i.e., RH > ~80%. There is no evident difference in 333 

hygroscopic growth factors of D-glucose nanoparticles at RH below 80 % in size range from 6 to 334 

100 nm. The reason that the growth factor shows size dependence only in the regime of hygroscopic 335 

growth (RH > 80%), and not in the regime of water adsorption (RH < 80%) has not been explained 336 

before. Our hypothesis is that the distinct behaviors between high RH and low RH region can be 337 

attributed to the distinct size effect on the hygroscopic growth and adsorption, i.e., the growth factor 338 

shows size dependence only in the regime of hygroscopic growth (RH > 80 %), and not in the 339 

regime of water adsorption (RH < 80 %). Figure 8b further shows the clear change in the 340 

hygroscopic growth factor of D-glucose aerosol nanoparticles with diameters from 100 down to 6 341 

nm at 87 % RH. The hygroscopic growth factor of D-glucose nanoparticles is almost unchanged 342 

with diameters from 20 to 100 nm. However, a markedly increase in the hygroscopic growth factor 343 

of D-glucose aerosol nanoparticles is observed as size increases from 6 to 20 nm. E-AIM model 344 

predict well the measured hygroscopic growth factors of D-glucose with diameters smaller than 15 345 

nm at 87 % RH, while ideal solution theory agrees with hygroscopic measurement results of D-346 

glucose with diameters higher than 60 nm at the same RH. The use of DKA methods leads to a 347 

good agreement between measurements and model predictions. 348 

The measured hygroscopic growth factors of D-glucose nanoparticles with diameters of 6 and 100 349 

nm are compared with the model and theory shown in Fig. 9, Fig. S3, and Fig. S4, respectively. 350 

Ideal solution theory is applied to predict the hygroscopic growth factor of organics in the ideal 351 
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solution. Figure 9a and Fig. S3 show that the measured growth factors of 100-nm D-glucose 352 

nanoparticles are lower than predicted growth factors from E-AIM (standard UNIFAC) model, 353 

especially at RH below 85 %. Also, E-AIM (standard UNIFAC) model could predict well the 354 

measured hygroscopic growth factor of 6-nm D-glucose aerosol nanoparticles at RH above 40 % 355 

shown in Fig. 9a and Fig. S3. The possible reason for discrepancies between E-AIM (standard 356 

UNIFAC) model and measurements is inaccurate thermodynamic parameters (e.g., water activity, 357 

surface tension) estimated by the E-AIM (standard UNIFAC) model without consideration 358 

intramolecular interaction (Fredenslund et al., 1975; Hansen et al., 1991; Fredenslund and Sørensen, 359 

1994; Mochida and Kawamura, 2004). D-glucose contains five OH groups in series, hydrogen 360 

bond could potentially exist and affects the E-AIM (standard UNIFAC) model-measurement 361 

agreement for D-glucose aerosol nanoparticles system (Mochida and Kawamura, 2004; Lei et al., 362 

2014, 2018). Using of ideal solution theory is to predict the hygroscopic curve of D-glucose 363 

nanoparticles with diameters of 6-100 nm shown in Fig. 9b and Fig. S3. There is a good agreement 364 

between measured growth factors of 100-nm D-glucose and ideal theory predictions. This suggests 365 

that thermodynamic parameters (e.g., water activity, surface tension, and solution density) assumed 366 

by the ideal solution theory are accurate to use in Eq. (1) and (2) for predicting the hygroscopic 367 

curve of D-glucose nanoparticles with large sizes (e.g., 60, 100 nm). However, an underestimation 368 

of growth factors of 6-nm D-glucose nanoparticles has been shown in Fig. 9b and Fig. S3 by ideal 369 

solution theory prediction at RH above 30 %. The possible reason is the unfavorable assumption 370 

of ideal solution theory. As D-glucose size decreases from 20 to 6 nm, D-glucose nanodroplets 371 

could be highly supersaturated in concentration compared to the dilution solution. However, the 372 

current thermodynamic models (e,g., E-AIM) mostly rely on the concentration-dependent 373 

thermodynamic properties (such as water activity) derived from the measurements of large aerosol 374 
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particles or even bulk samples (Tang and Munkelwitz, 1994; Tang, 1996; Pruppacher and Klett, 375 

1997; Clegg et al., 1998). They are thus difficult or impossible to apply to describe the hygroscopic 376 

behavior of sub-10 nm nanoparticles, which can often be supersaturated in concentration compared 377 

to bulk solutions (Cheng et al., 2015; Wang et al., 2018). Thus, nanosize effect on these 378 

thermodynamic properties has been taken into account the models and theories (Cheng et al., 2015). 379 

Combination of DKA methods and hygroscopic measurements of aerosol nanoparticles in the 380 

different sizes can use to determine the thermodynamic properties (e.g., water activity) in the highly 381 

supersaturated concentration range (Cheng et al., 2015). Therefore, as shown in Fig. 9c and Fig. 382 

S4, the use of the DKA method leads a good agreement with the measured hygroscopic growth 383 

factors of Glucose nanoparticles with diameters from 100 down to 6 nm.  384 

 385 

4 Conclusions  386 

In this study, we investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles 387 

with diameters down to 6 nm using a nano-HTDMA. Due to the larger impact of evaporation of 388 

sub-20 nm levoglucosan nanoparticles in the nano-HTDMA system, we measure hygroscopic 389 

growth factor of levoglucosan with diameters down to 20 nm. There is a weak size dependence of 390 

hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a 391 

strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed 392 

in the size range from 6 to 20 nm. No prompt phase transitions occur in both deliquescence and 393 

efflorescence modes for both levoglucosan and D-glucose nanoparticles. By comparing with the 394 

KD-derived water activity, Köhler, E-AIM model, and DKA-derived data, the predicted water 395 

activity of aqueous organic solution (levoglucosan and D-glucose) is consistent with observation 396 

data from references in the low solute concentration (< 20 mol kg-1) but failed in the solute 397 
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concentration (> 20 mol kg-1). In addition, ideal solution theory predicts well the hygroscopic 398 

behavior of two specific organics with diameters higher than 60 nm (levoglucosan and D-glucose), 399 

while hygroscopic growth factor of D-glucose down to 6 nm in size is in good agreement with E-400 

AIM (standard UNIFAC) model prediction at high RH. The use of the DKA method leads to a 401 

good agreement with measured hygroscopic growth factor of glucose nanoparticles with diameters 402 

from 100 down to 6 nm. 403 
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 667 

Figure 1. Experimental setup of the nano-HTDMA. Here, AG: aerosol generator (aerosol atomizer or electrospray); 668 

ND: nafion dryer; Kr-85: Krypton source aerosol neutralizer; Nano-DMA: nano differential mobility analyzer; TPF: 669 

total particle filter; HF: hydrophobic filter; MFC: mass flow controller; MFM: mass flow meter; RB: recirculation 670 

blower; DPM: dew point mirror; GTHH: Gore-Tex humidifier and heater; NH: nafion humidifier; HE: heat exchanger; 671 

CPC: condensation particle counter; Black line: aerosol line; Blue line: sheath line;  Royal blue line: humidified air; 672 

Green line: MilliQ water (resistivity of 18.2 MΩ cm at 298.15 K). RHa and RHs (measured by RH sensors) represent 673 

the RH of aerosol and sheath flow in the inlet of nano-DMA2, respectively. RHe (measured by dew point) represents 674 

the RH of excess air. T represent the temperature of aerosol and sheath flow in the inlet of nano-DMA2, respectively.  675 
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Figure 2. Concentration-dependent water activity (aw) of levoglucosan solution. The KD-derived aw (KD=Kreidenweis, 683 

cyan open square) is compared with observations (red open square), E-AIM (Extend-Aerosol Inorganic Model, black 684 

line), and aw model (SKT, blue line). The light grey shaded areas mark the sub-saturated concentration with respect to 685 

bulk solution. 686 
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Figure 3. Hygroscopic diameter growth factor (Gf) of levoglucosan particles with dry diameter of 100 nm in both 703 

deliquescence and efflorescence mode processes (black solid square). The measured data compared with literature data 704 

from Mochida and Kawmura (2004) in both deliquescence and efflorescence modes (red open square), Chan et al. 705 

(2005) in the deliquescence mode (magenta open square), Svenningsson et al. (2006) in the deliquescence mode (violet 706 

open square), and Mikhailov et al. (2008) in both deliquescence and efflorescence modes (cyan open square). 707 
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Figure 4. Hygroscopic diameter growth factor (Gf) of levoglucosan particles with dry diameter of 100 nm (red square), 718 

60 nm (blue square), and 20nm (green square). Köhler model curves are based on: (a) E-AIM (standard UNIFAC) 719 

(100 nm: red, 60 nm: blue, 20 nm: green line), (b) ideal solution theory (100 nm: red, 60 nm: blue, 20 nm: green line). 720 
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 735 

Figure 5. The normalized size distributions scanned by nano-DMA2 for: (a) 10 nm and (b) 15-nm levoglucosan at 10% 736 

at 298K. The dotted lines mark the diameters of the monodispersed nanoparticles selected by the nano-DMA1. The 737 

back solid lines mark the peak diameters from the normalized size distributions scanned by the nano-DMA2. (c) Vapor 738 

saturation ratio of levoglucosan as a function of nanodroplet diameter according to the Kelvin equation. The diameter 739 

range 0-20 nm for the saturation ratio of levoglucosan particles is shown as an inset. The value of surface tension of 740 

pure levoglucosan is 0.0227104 [J m-2]. (d) The ratio of gas-phase concentration (mg) to the total concentration (mt) of 741 

levoglucosan nanoparticles against diameter.  742 
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Figure 6. Concentration-dependent water activity (aw) of D-glucose solution. The DKA-derived aw (Differential 748 

Köhler Analysis, magenta open square) is compared with observations (red open square), E-AIM (Extend-Aerosol 749 

Inorganic Model, black line), aw model (SKT, blue line), and parameterization model for aw (KD=Kreidenweis, cyan 750 

open square). The light grey shaded areas mark the sub-saturated concentration with respect to bulk solution. 751 
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Figure 7. Hygroscopic diameter growth factor (Gf) of D-glucose particles with dry diameter of 100 nm in both 762 

deliquescence and efflorescence modes (black solid square). The measured data compared with reference data from 763 

Mochida and Kawmura (2004) in both deliquescence and efflorescence modes (pink open square), Suda and Petters, 764 

(20017) in deliquescence mode (violet open square), Estillore et al., (2017) in both deliquescence and efflorescence 765 

modes (red open square), and Mikhailov and Vlasenko (2020) in both deliquescence and efflorescence modes (green 766 

open square). 767 
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  777 

Figure 8. (a) Hygroscopic diameter growth factor (Gf) of D-glucose nanoparticles with dry diameters of 100 nm (red 778 

square), 60 nm (blue square), 20 nm (cyan square), 15 nm (green square), 10 nm (pink square), 8 nm (royal square), 779 

and 6 nm (black square). (b) Hygroscopic diameter growth factor (Gf, black square) of D-glucose nanoparticles with 780 

dry diameters from 6 to 100 nm at 87% RH. The measured hygroscopic growth factors of D-glucose nanoparticles 781 

with diameters from 100 down to are compared with E-AIM model (red line), ideal solution theory (blue line), and 782 

DKA prediction (pink line).  783 
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Figure 9. Hygroscopic diameter growth factor (Gf) of D-glucose nanoparticles with dry diameters of 100 nm (red 796 

square) and 6 nm (black square). Köhler model curves are based on: (a) AIM (standard UNIFAC), (100 nm: red, 6 nm: 797 

black line), (b) ideal solution theory (100 nm: red, 6 nm: black line), and (c) DKA mode (100 nm: red, 6 nm: black 798 

line). 799 


