The density of ambient black carbon retrieved by a new method:	删除了: Variations of the
implications to CCN prediction	删除了: importance
Jingye Ren ^{1, 2} , Fang Zhang ^{2*} , Lu Chen ¹ , Jieyao Liu ¹	
¹ College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China	
Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of	删除了: ² School
Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China	
*Correspondence to: Fang Zhang (<u>zhangfang2021@hit.edu.cn)</u>	
1	

28 Abstract.

29	The effective density of black carbon (BC) is a crucial factor relevant to its aging
30	degree that would add uncertainty in evaluating its climate effect. Here, we have
31	developed a new method to retrieve the effective density of <u>internally mixed BC in the</u>
32	atmosphere combining field observations conducted on 15 November -14 December
33	2016 in urban Beijing with the Köhler theory. The uncertainty of the retrieval method
34	was evaluated within ± 30 %, which is primarily caused by assumptions of the
35	hygroscopic parameter of organics and the fraction of primary organic aerosols in non-
36	hygroscopic or hygroscopic mode. Using the method, we obtain that the ambient
37	internally-mixed BC, accounting for 80 ± 20 % of total BC aerosol particles, is retrieved
38	with campaign mean density of 1.1±0.6 g cm ⁻³ during the observed periods. The
39	retrieved <u>result is comparable with that</u> reported in the literatures. <u>By applying a lower</u>
40	(0.14 g cm ⁻³) and upper (2.1 g cm ⁻³) limit of the retrieved BC density in cloud
41	condensation nuclei (CCN) number concentrations $(N_{\rm CCN})$ estimation, we derived that
42	neglect of such variations in BC density, led to an uncertainty of -28 %~11 % in
43	predicting $N_{\rm CCN}$ at supersaturations of 0.23 % and 0.40 %. We also find that the $N_{\rm CCN}$ is
44	more sensitive to the variations of BC density when it is $<1.0 \text{ g cm}^{-3}$. This illustrates a
45	necessity of accounting for the effect of BC density on CCN activity closer to source
46	regions where the BC particles are mostly freshly emitted. The CCN closure achieves
47	when introducing the retrieved real-time BC density and mixing state. This study
48	provides a unique way of utilizing field measurements to infer ambient BC density and

删除了: morphology and mixing state 删除了: develop

删除了: ambient

删除了: new

删除了: new

_	
册	肋除了: BC density during the campaign varies widely from
	.14 to 2.1 g cm ⁻³ , with a campaign mean density of
1	.11±0.54 g cm ⁻³ for
Ħ	别除了: that accounts
Ħ	削除了: 79±18
Ħ	别除了:
Ħ	削除了: values fall within the range of typical density of
ir	nternally-mixed BC
Ħ	删除了: We further examined the sensitivity of
Ħ	删除了: prediction to
Ħ	别除了: of
Ħ	别除了:, showing
Ħ	别除了: calculating
Ħ	刑除了: 2
Ħ	削除了: 4 % by varying the BC density within the retrieved
ra	anges.
Ħ	則除了:, illustrating
Ħ	别除了: such

72 highlights the importance of applying variable BC density values in models when

73 predicting CCN and assessing its relevant climate effect.

74 1 Introduction

75 Black carbon (BC) aerosols, as the major absorber of solar radiation, play a vital 76 role in energy budget and climate of the earth-atmosphere system by affecting the radiative forcing and cloud properties (Flanner et al., 2007; Ramanathan and 77 78 Carmichael, 2008). The light-absorbing capability induced by BC is related to its 删除了: capability of density and morphology (Zhang et al., 2008; Rissler et al., 2014), which can be 79 modified after mixing with other atmospheric aerosol particles (Khalizov et al., 2009; 80 81 Xue et al., 2009). Changes in its physicochemical properties would also regulate its ability to serve as cloud condensation nuclei (CCN) and further indirectly affect the 82 83 radiative balance by affecting the clouds process (Yuan et al., 2008; Wang et al., 2011). Owing to the complex evolution of the mixing state, density and morphology of BC, 84 85 the contribution of BC particles to CCN budgets is still not well understood. 86 BC particles, with diesel vehicles, industrial and residential coal combustion as 87 major sources, are ubiquitous in urban environments (Bond et al., 2013; Dameto et al., 88 2017; Li et al., 2017; Liu et al., 2019a). The mixing state of BC describes the distribution of the bare BC and coating masteries among the aerosol population. 89 90 Typically, freshly generated BC exists in the form of chain aggregates, and initially uncoated, which is known as externally mixed BC (Ex-BC). When the BC particles 91

were emitted, they generally mix with other materials by condensation, coagulation, 92

删除了: varying

删除了: understand

-{	删除了: D.
1	删除了: 2019).

删除了: . While after aging,

3

99	and other processes (Riemer et al., 2004; Zhang et al., 2008; Liu et al., 2013; Zhang et	
100	al., 2020a), forming the internally mixed BC (In-BC) particles consisting of BC core	 删除了: 2020). The structure of BC
101	and other chemical components (Cheng et al., 2006; Zhang et al., 2016). The BC	
102	structure would be more compact with regular shapes (Pagels et al., 2009; Zhang et al.,	
103	2008; Wang et al., 2017), and the effective density of <u>internally mixed</u> BC are changed	
104	accordingly with the reconstruction (Liu et al., 2019b). The density and morphology of	 删除了: H.
105	BC particles are closely related to its sources, mobility size, coating thickness, coating	删除了: 2019
106	material and its chemical composition (Zhang et al., 2008; Pagels et al., 2009; Peng et	删除了: after aging
107	al., 2016; Zhang et al., 2022). A wide range of BC density has been reported in previous	
108	studies (Lide 1992; Mcmurry et al., 2002; Park et al., 2004; Kiselev et al., 2010). Recent	
109	field measurements have indicated that the average <u>BC</u> density is ~1.2 g cm ⁻³ in the	 删除了: of BC
110	ambient atmosphere (Zhang et al., 2016). Field measurements have also indicated that	
111	a <u>considerable</u> fraction of externally mixed/uncoated BC exists (Clarke et al., 2004;	
112	Cheng et al., 2012), although a higher proportion of internally mixed/aged BC particles	删除了:; Chen et al., 2020) and even
113	in the ambient atmosphere were observed (Schwarz et al., 2008; Massoli et al., 2015;	删除了: than that internal/
114	Chen et al., 2020). In climate models, the BC was generally assumed completely	删除了:). While, in
115	internally-mixed and treated to have a void-free spherical structure and a density value	
116	of 1.8 g cm ⁻³ (Bond et al., 2013). This may lead to bias in estimating the climate <u>effect</u>	 删除了: effects
117	driven by BC.	
118	Previous study based on a case study show that when the aging degree of ambient	
119	particles is low, the BC density (~1.8 g cm ⁻³) under the spherical assumption will lead	
120	to the overestimation of <u>particle</u> hygroscopicity by 40-50 % and the overestimation can	 删除了: particles

删除了: by

et al. 2020). This indicates the importance of using reasonable BC density values in the calculation of particle hygroscopicity. In addition, when estimating the CCN number concentration, a significant bias of $-35 \% \sim +20 \%$ was found <u>due to the assumption of</u> particle mixing state (Ren et al., 2018). However, these studies have not yet <u>accounted</u> for such impact of BC density and mixing state on CCN prediction due to lack of real time measurement data.

be explained almost 100 %, using the effective density of fresh BC (~0.45 g cm⁻³) (Fan

131

The mixing state and the density of BC particles are usually directly measured by 138 several techniques, such as an integrated system of a volatility tandem differential 139 mobility analyzer and a single particle soot photometer (VTDMA-SP2) (Zhang et al., 140 2016), or a differential mobility analyzer with a SP2 (DMA-SP2) (Olfert et al., 2007; 141 142 Rissler et al., 2014; Wu et al., 2019), and a differential mobility analyzer-centrifugal 143 particle analyzer-single-particle soot photometer (DMA-CPMA-SP2) system (Liu et al., 2019b; Yu et al., 2020), etc. However, such techniques or measurements are not 144 145 available in many previously conducted filed campaigns. In this study, we develop a 146 novel method for retrieving the mixing state and effective density of ambient BC 147 particles by combining field measured hygroscopic growth factor and aerosol chemical composition and Köhler theory (Petters and Kreidenweis, 2007). The uncertainty of the 148 new retrieval method was evaluated. The retrieved results were also compared and 149 validated with existing observations. In addition, the effect of BC density and mixing 150 state on prediction of CCN number concentrations is further evaluated through a 151 152 sensitivity and closure test by accounting for the retrieved real-time variations of BC 删除了: caused by

删除了: account

1	删除了: H.	J
-	删除了: 2019	1
		1

158 density and mixing state.

159 2 Field measurements and methodology

160 2.1 Field measurements

Measurements in this study were conducted from 15 November to 14 December 161 162 2016 at a typical urban site of Beijing (39.97°N, 116.37°E, 49 m above sea level). The 163 site locates at the Institute of Atmospheric Physics, Chinese Academy of Sciences, which is mainly influenced by the surrounding cooking, road traffic and residential coal 164 165 burning emissions during the home heating periods (Sun et al., 2016). The detailed information about the sampling site was presented in previous studies (Sun et al., 2015; 166 Zhang et al., 2019). The number concentration of condensation nuclei (CN) at each size 167 was measured by a scanning mobility particle sizer, which is equipped with a 168 169 differential mobility analyzer (DMA; model 3081, TSI) and a condensation particle 170 counter (CPC; model 3772, TSI). Subsequently, the mono-dispersed particles were introduced into a Droplet Measurement Technologies CCN counter (CCNc, DMT; 171 172 Lance et al., 2006) to measure CCN number concentration. A hygroscopic tandem differential mobility analyzer (HTDMA) system was used to measure the hygroscopic 173 174 growth factor (Gf) (Tan er al., 2013). Here, four diameters of 40, 80, 110, 150, and 200 nm are selected in the campaign. Gf is defined as the ratio of the mobility diameter at 175 176 the given RH to the dry diameter (Petters and Kreidenweis, 2007). The nonrefractory 177 submicron aerosol chemical composition was measured by an Aerodyne high-178 resolution time-of-flight aerosol mass spectrometer (HR-AMS; Xu et al., 2019),

6

删除了: Then

删除了: Aerosol Chemical Speciation Monitor (ACSM; Sun et al., 2015

182 including sulfate, nitrate, ammonium, chloride, and organics. Two factors, including a non-hygroscopic primary organic aerosol (POA) and hygroscopic secondary organic 183 184 aerosol (SOA) were classified by positive matrix factorization (PMF) with PMF 185 algorithm (v4.2) method (Paatero and Tapper, 1994) and followed the procedures 186 reported in Ulbrich et al. (2009). The refractory black carbon mass loading was 187 measured by an aethalometer (model AE33, Magee Scientific Corporation). Both the nonrefractory materials and BC mass concentration were measured with diameters < 188 189 $1.0 \,\mu\text{m}$. The detailed description of the instrument operation and data process have been described in details elsewhere (Ren et al., 2018; Xu et al., 2019; Zhang et al., 2019; Fan 190 et al., 2020). 191

192 **2.2 Retrieving the mixing state and density of BC**

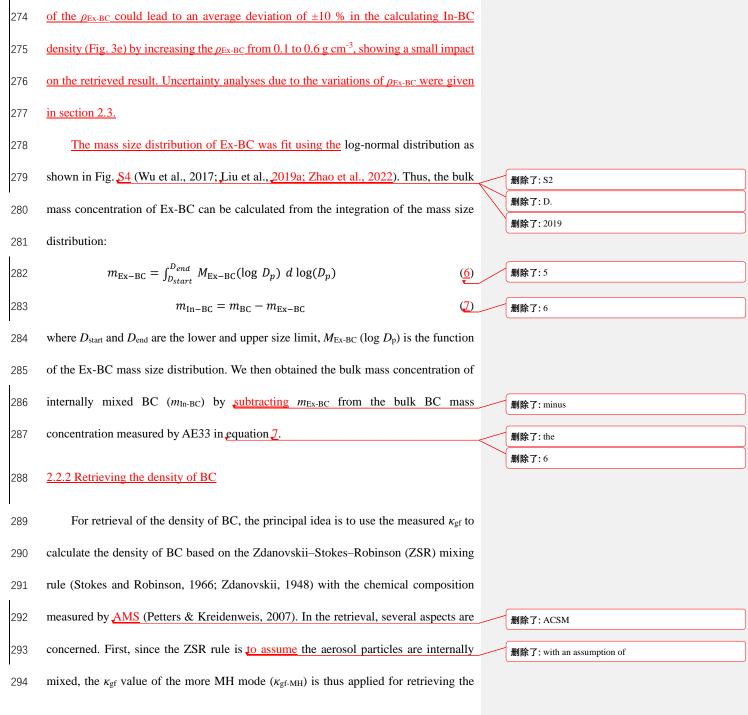
193 <u>2.2.1 Retrieving the mixing state of BC</u>

194 The Gf probability distribution function (Gf-PDF) for a specified diameter can be 195 retrieved firstly based on the TDMAinv algorithm (Gysel et al., 2009). The κ -PDF can 196 be further calculated based on the Gf-PDF (Fan et al., 2020). Size-resolved κ is derived 197 using κ -Köhler theory based on hygroscopic growth factor (Gf) (Petters and 198 Kreidenweis, 2007),

199
$$\kappa_{gf} = (\mathrm{Gf}^3 - 1) \cdot \left[\frac{1}{\mathrm{RH}} \exp\left(\frac{4\sigma_{\mathrm{s/a}}M_{\mathrm{w}}}{\mathrm{RT}\rho_{\mathrm{w}}\mathrm{D}_{\mathrm{d}}\mathrm{Gf}}\right) - 1\right]$$
(1)

where Gf is hygroscopic growth factor, RH is the relative humidity in the HTDMA (90 %), $D_{\rm d}$ is the dry diameter, $\sigma_{\rm s/a}$ is assumed to be the surface tension of pure water,

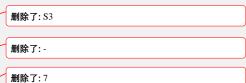
f 删除了: using


-{	删除了: .,
1	删除了:

205	<i>R</i> is the universal gas constant, <i>T</i> is the temperature, M_w and ρ_w is the molecular mass,		
206	and the density of water, respectively.		
207	The κ -PDF patterns of particles in different sizes always present two modes: nearly		
208	hydrophobic (NH) mode with $\kappa_{gf} \le 0.1$ and more hygroscopic (MH) mode with $\kappa_{gf} > 0.1$		
209	(Fig. S1). Firstly, based on the κ -PDF patterns, the number fraction (NF) of the total		
210	nearly hydrophobic group with the boundary of [0, 0.1] was calculated according to the		删除了: by usin
211	following equation:		
212	$NF = \int_0^{0.1} c(\kappa, D_p) d\kappa \tag{2}$		
213	<u>here</u> , the κ -PDF, represented by $c(\kappa, D_p)$, was normalized as $\int c(\kappa, D_p) d\kappa = 1$, where		删除了: Here
214	κ can be replaced by κ_{gf} , D_p is the selected electrical mobility diameter in the campaign.		
215	The nearly hydrophobic mode consists of both externally mixed POA (Ex-POA or	<	删除了: Consid
216	bare POA) and externally mixed BC (Ex-BC). <u>Since the number fraction of the nearly</u>		删除了: externa
217	hydrophobic <u>POA would change</u> with the <u>emission and aging processes</u> , in this study,	\mathbb{N}	删除了: Here, 删除了: POA in
218	we have applied different values for the number fractions of hydrophobic POA (NH-	\mathbb{N}	删除了:
219	POA) under clean (91%), moderately polluted (70%), and heavily polluted conditions	$\backslash \rangle$	删除了: mode (to the simultane
220	(31 %) by referring the literature (Liu et al., 2021a), as shown in Fig. S2. The number		rest 30 % of PC 删除了: other h
221	concentration of Ex-BC was then calculated using the total number fraction of NH	Ň	删除了: fractio
222	mode minus the number of NH-POA.		
223	$N_{POA-containing} = N_{total} \times NF_{POA-containing}$		
224	$N_{bare-POA} = N_{POA-containing} \times NF_{bare-POA}$		
225	$N_{Ex-BC} = N_{NH} - N_{bare-POA} $ (3)		
226	where $N_{\text{POA-containing}}$ and $NF_{\text{POA-containing}}$ are the number concentration and fraction of		
•			

: by using

Considering the : external 7: Here, POA in **:** T: mode ($NF_{\text{NH-POA}}$) was assumed to be 70 % according simultaneous measurements (Liu et al., 2021), and the % of POA is assumed mixed : other hygroscopic aerosols. And thus, : fraction


239	POA-containing particles, N_{total} is the total number concentration, $N_{\text{bare-POA}}$ and $NF_{\text{bare-POA}}$		
240	POA are the number concentration and fraction of bare POA particles, and N _{NH} is the		删除了: NH-POA. Then, the
241	number of nearly- hydrophobic group.		
242	<u>The number size distribution of the externally mixed BC $(n_{\text{Ex-BC}} (\log D_p))$ can be</u>		删除了: external
243	calculated based on the particle number size distribution (PNSD) and the number		
244	fraction of the hydrophobic mode of BC (NF_{Ex-BC}) as follows:		
245	$n_{\text{Ex-BC}}(\log Dp) = NF_{\text{Ex-BC}} \times n (\log Dp)$ (4)		删除了: (3)
246	where $n (\log D_p)$ is the function of the aerosol number size distribution, D_p is the		
247	mobility diameter.		
248	By assuming that the particles are spherical (Rader and McMurry, 1986), the mass		
249	size distribution of Ex-BC (M_{Ex-BC}) was obtained as follows:		
250	$M_{\rm Ex-BC}(\log Dp) = \frac{\pi}{6} D_p^{3} \rho n_{\rm Ex-BC}(\log Dp) $ (5)		删除了: (4)
251	where $D_{\rm p}$ is the mobility diameter, ρ is the effective density of Ex-BC, and $n_{\rm Ex-BC}$ (log		
252	$D_{\rm p}$) is the function of the number size distribution of Ex-BC, respectively. By reviewing		删除了: Here
253	and summarizing the existing results about, we show that typical values of density for		删除了: assume
254	the freshly emitted or externally mixed BC observed in the winter of urban Beijing or	\backslash	删除了: the Ex-BC effective 删除了: is 0.40 g cm ⁻³ according to previous measurements
255	North China Plain spans over 0.14-0.50 g cm ⁻³ , with mean of ~0.40±0.10 g cm ⁻³ (Fig.		reported
256	S3), in the size range of 100 to 300 nm, where the mass concentration of externally		删除了:(
257	mixed BC accounted for a large proportion in urban Beijing (Geller et al., 2006; Peng		
258	et al., 2016, 2017; Wu et al., 2019; Liu et al., 2020; Zhao et al., 2022). Therefore, an		删除了:).
259	average ρ_{Ex-BC} of 0.4 g cm ⁻³ was used for calculating the mass concentration of		The Ex-BC mass size distributions 删除了: modelled as a single
260	externally-mixed BC in our study. The uncertainty analysis exhibits that the variations		
1			

305	density of internally mixed BC. Second, since the size distribution of BC number		删除了:-
306	concentration is usually with peaks between 100 and 200 nm (Liu et al., 2019a; Yu et		删除了: D.
307	al., 2020; Zhao et al., 2022), the κ_{gf-MH} value of particles in accumulation mode, was		删除了:2019
308	averaged and applied for the retrieval. Previous studies showed an independence of κ_{gf} .		删除了:, which
309	MH on particle size when the $D_p > 100$ nm during the campaign period (Fan et al., 2020).		删除了:), was average
310	Therefore, the average of $\kappa_{\text{gf-MH}}$ in accumulation mode is reasonable for the		
311	determination of the In-BC density. In addition, because the inversion including		
312	measurements from HTDMA and HR-AMS, a total mass closure of the measured		删除了: ACSM
313	aerosol particles was conducted between the two techniques by comparing the mass		
314	concentration of PM_1 and the results are well consistent (Fig. <u>55</u>). The density of		删除了:S3
315	internally mixed BC (In-BC), $\rho_{\text{In-BC}}$ is then derived from the following equations:		删除了:-
316	$\kappa_{gf-MH} = \kappa_{chem} = \sum_{i} \varepsilon_{i} \kappa_{i} = \frac{v_{inorg}}{v_{total}} \kappa_{inorg} + \frac{v_{SOA}}{v_{total}} \kappa_{SOA} + \frac{v_{In-POA}}{v_{total}} \kappa_{POA} + \frac{v_{In-BC}}{v_{total}} \kappa_{BC} \tag{8}$		删除了:7
317	where κ_{gf-MH} is the hygroscopic parameter of the more hygroscopic (MH) mode, κ_{chem}		
318	is the hygroscopic parameter of aerosol particles in the mixed composition and can be		
319	calculated based on chemical volume fractions using a simple rule (Stokes and		删除了: by
320	<u>Robinson, 1966;</u> Petters & Kreidenweis, 2007), κ_i is the hygroscopic parameter of each		
321	pure composition and ε_i is the volume faction of the individual components in the		
322	internal-mixed particle. v_{inorg} , v_{SOA} and v_{In-POA} are the volume of the inorganic, SOA		
323	and internally mixed POA species, and can be calculated as follows: $v_{inorg} = \frac{m_{inorg}}{\rho_{inorg}}$		
324	$v_{SOA} = \frac{m_{SOA}}{\rho_{SOA}}$, and $v_{In-POA} = \frac{m_{In-POA}}{\rho_{POA}}$. v_{total} is the total volume of all the species and can be		
325			III 哈乙, the
320	written as $v_{total} = \frac{m_{inorg}}{\rho_{inorg}} + \frac{m_{SOA}}{\rho_{SOA}} + \frac{m_{In-POA}}{\rho_{POA}} + \frac{m_{In-BC}}{\rho_{In-BC}}$. In equation (8), κ_{BC} and κ_{POA} are	\leq	删除了: the 删除了: 7
326	assumed to be 0. Then, the $\rho_{\rm In\text{-}BC}$ can be calculated based on its mass concentration and		AU3 125 J • /

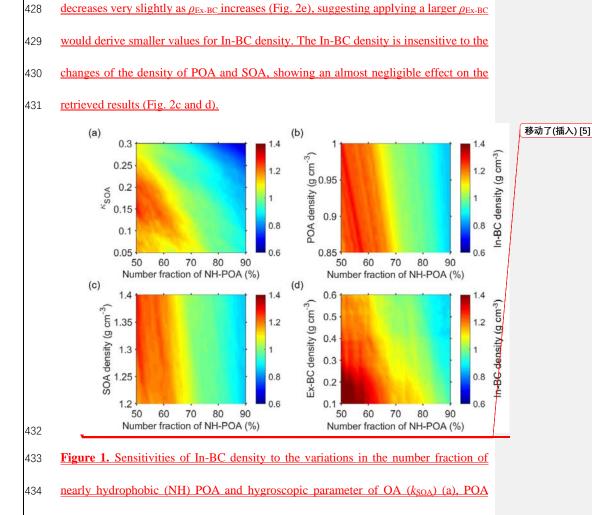
删除了:-删除了:D. 删除了:2019 删除了:,which

删除了:), was averaged and applied for the retrieval.

删除了: the 删除了: 7 339 volume as follows:

340	$\rho_{In-BC} = \frac{m_{In-BC}}{\left(\frac{m_{inorg}}{\rho_{Inorg}} + \frac{m_{SOA}}{\rho_{SOA}} \times SOA} - \frac{m_{inorg}}{\rho_{Inorg}} - \frac{m_{SOA}}{\rho_{SOA}} - \frac{m_{In-POA}}{\rho_{POA}}\right)} $ (9)		删除了:8
341	where, $m_{\text{In-BC}}$ is the mass concentration of <u>internally</u> mixed BC, m_{inorg} and m_{SOA} are the		删除了: internal-
342	mass concentrations of the inorganic species and SOA, which are measured by the <u>AMS</u> .		删除了: ACSM
343	$m_{\text{In-POA}}$ is the mass concentrations of <u>internally</u> mixed POA and can be calculated		删除了: internal-
344	subtracting the mass fraction of NH-POA from the total mass concentrations of POA	<	删除了: by using
345	$\rho_{\text{inorg}}, \rho_{\text{SOA}}$ and ρ_{POA} are the density of the inorganic species, SOA and POA. Since the		删除了: minus the mass fraction of NH-POA.
346	AMS measures the concentrations of the organic and inorganic ions, including SO_4^{2-} ,		
347	NO_3 , NH_4 , CI . Here inorganic species were derived by applying a simplified ion		
348	pairing scheme (Gysel et al., 2007) to convert mass concentrations of ions to the		删除了: 2007).
349	inorganic salts as follows:		
351	$n_{\rm NH_4NO_3} = n_{\rm NO_3^-}$		
352	$n_{\rm NH_4HSO_4} = \min(2n_{\rm SO_4^{2-}} - n_{\rm NH_4^+} + n_{\rm NO_3^-}, n_{\rm NH_4^+} - n_{\rm NO_3^-})$		
353	$n_{(\mathrm{NH}_4)_2\mathrm{SO}_4} = \max(n_{\mathrm{NH}_4^+} - n_{\mathrm{NO}_3^-} - n_{\mathrm{SO}_4^{2^-}}, 0)$		
350	$n_{\rm H_2SO_4} = \max(0, n_{\rm SO_4^{2-}} - n_{\rm NH_4^+} + n_{\rm NO_3^-}) $ (10)		
354	where n represents the number of moles, then the mass concentrations were obtained		
355	by the number of moles times the molar mass of each inorganic salts. Because the		
356	maximum value of the $n_{\rm H_2SO_4}$ was zero in this campaign. Three inorganic salts		
357	including NH4HSO4, (NH4)2SO4, and NH4NO3 were applied in our study. The densities		删除了: and organics
358	for inorganic salts were taken from previous studies (Gysel et al., 2007; Wu et al., 2016).	K	删除了: referred
359	Here the densities for three inorganics are 1.78, 1.77 and 1.72 g cm ⁻³ , respectively. By		删除了: the articles published 删除了: 79
360	summarizing the previous studies (Gysel et al., 2007; Dinar et al., 2006), 1.4 g cm ⁻³ was		制除了: And
•	12		

373	selected as the density of SOA (ρ_{SOA}). The density of POA (ρ_{POA}) is assumed to be 1.0	\bigwedge	删除了: and
374	g cm ⁻³ , for urban environments, which is similar to the lubricating oil (Wu et al., 2016).	$\left \right\rangle$	删除了: are
		\nearrow	删除了: as 1.4 and
375	Considering the cooking organic aerosols represent a high contribution to POA in urban		删除了:.
376	environments, a density of 0.85 g cm ⁻³ chosen as the mean density for the rapeseed oil		
377	and oleic acid (Reyes-Villegas et al., 2018) was also used to evaluated the result as		
378	shown in section 2.3. The values of κ for inorganic components are 0.56 for NH ₄ HSO ₄ ,		删除了: each pure component was refereed from Petters &
379	0.48 for $(NH_4)_2SO_4$ and 0.58 for NH_4NO_3 along with the best-fit values for the three	\backslash	Kreidenweis, 2007 and Gunthe et al., 2009. For the
515	0.40 for (1414)2004 and 0.50 for 1414103, along with the best fit values for the three))	删除了: compounds, the κ values
380	inorganic salts (Petters & Kreidenweis, 2007 and Gunthe et al., 2009). The κ_{SOA} is		删除了:.
381	assumed to be 0.15 according to the field studies in urban areas (Chang et al., 2010;		
382	Kawana et al., 2016).		
383	Note that, this method fails to retrieve the BC density when organics account for		移动了(插入) [1]
384	a large fraction (>60 %). This is because that a higher fraction of OA usually		
385	corresponds to lower total volume of all the species (Fig. S6), yielding negative values		
386	for $v_{\text{In-BC}}$ introduced in equation 11. As a result, 61_{w} % of the data observed during the		移动了(插入) [2]
387	campaign were valid for calculating the BC density.		
388	$\underline{v_{In-BC}} = \frac{v_{inorg}\kappa_{inorg} + v_{SOA}\kappa_{SOA}}{\kappa_{gf-MH}} - v_{inorg} - v_{SOA} - v_{In-POA} $ (11)		
389	Similarly, the bulk density of BC ($\rho_{\text{bulk-BC}}$) is calculated with the same method as		
390	that for calculating the $\rho_{\text{In-BC}}$ When calculating the $\rho_{\text{bulk-BC}}$, the bulk κ_{gf} value measured		移动了(插入) [3]
391	by HTDMA is applied with the assumption of all the aerosol particles are internally		
392	mixed		


401 2.3 Uncertainties and limitations

402	For the retrieval, the assumptions on the values of κ_{SOA} , ρ_{POA} , ρ_{SOA} and ρ_{Ex-BC} as	
403	well as the fraction of primary organic aerosols in non-hygroscopic or hygroscopic	
404	mode would add uncertainty in the inferred values of ambient internally, mixed BC	
405	density. For example, the freshly emitted POA particles might consistently be coated	
406	with the secondary particles during the aging process, resulting in changes of the $NF_{\rm NH-}$	
407	POA. However, a real-time variation of the NF _{NH-POA} is not yet available due to the lack	
408	of such measurements data. Applying the rough fractions of hydrophobic POA only	
409	under three different atmospheric conditions could still cause uncertainties. Also, the	
410	densities of POA and SOA may differ due to their precursors, emission sources and the	
411	formation mechanisms in ambient atmosphere (Alfarra et al., 2006; Reyes-Villegas et	
412	al., 2018). And the density of Ex-BC is generally characterized by the morphology and	
413	size (Wu et al., 2019). In addition, the value of κ_{SOA} spans largely due to the variability	
414	in the emissions of gas precursors and formation processes under different atmospheric	
415	conditions (Zhang et al., 2015; Liu et al., 2021b). Therefore, we examined the	
416	sensitivities of In-BC density to the variations of these factors, as exhibited in Fig. 1	
417	and Fig.2.	
418	The figures show that the In-BC density gradually decreases with the increment of	
419	the NF _{NH-POA} , implying the higher fraction of bare POA particles correspond to the early	
420	aging stage of aerosol particles. With increase of κ_{SOA} , the In-BC density is generally	
421	reduced, but with small fluctuations (Fig.1a, Fig. 2b). This suggests a complex impact	
422	of assumptions of κ_{SOA} on the retrieved BC density. In addition, the In-BC density	

删除了: -mixed BC density.

删除了: 1. Within a typical atmospheric observed range of 50-90 % for the *NF*_{NH-POA} (Liu et al., 2021), the assumption on *NF*_{NH-POA} can lead to relative deviations (uncertainty) of -20 %-+30 % for the retrieved BC density (Fig. 2a).

移动了(插入) [4]

435 density (b), SOA density (c) and the externally mixed BC density (d).

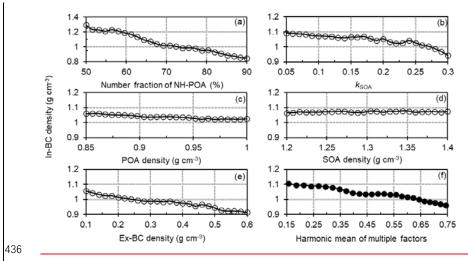
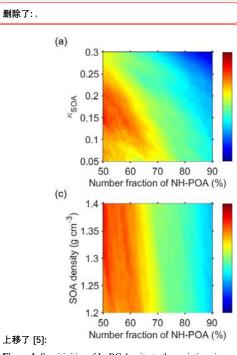
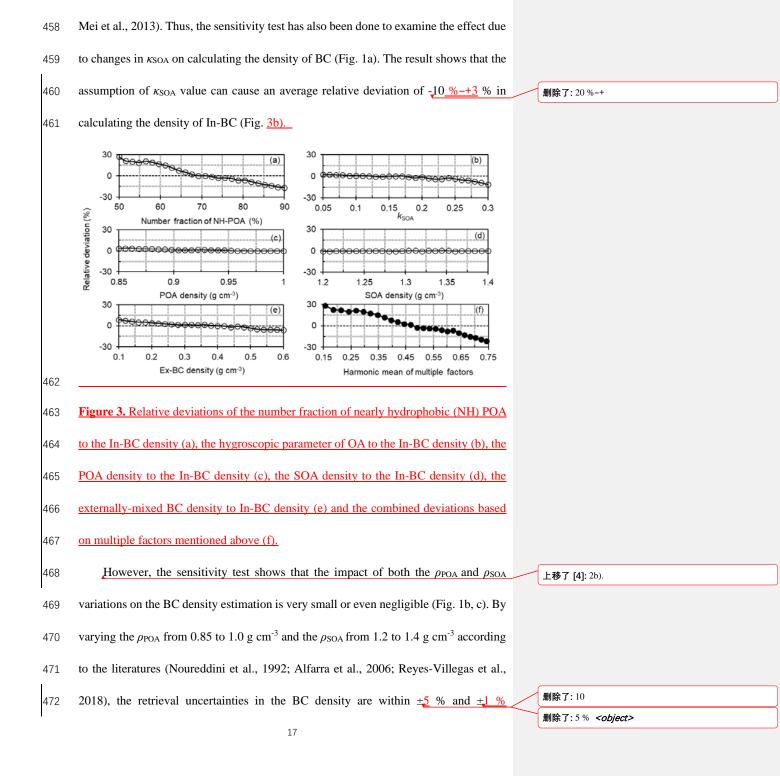




Figure 2. Sensitivity of the In-BC density to variations in the number fraction of nearly 437 hydrophobic (NH) POA (a), the hygroscopic parameter of SOA (b), the POA density 438 (c), the SOA density (d), the externally mixed BC density (e) and the harmonic mean 439 440 of multiple factors (f). 441 The uncertainty analysis shows that, by comparing the results based on the mean fractions of the NF_{NH-POA} with a typical atmospheric observed range of 50-90 % for the 442 NF_{NH-POA} (Liu et al., 2021a), we show that the assumption on NF_{NH-POA} can lead to 443 relative deviations (uncertainty) of -17 %-+27 % for the retrieved BC density (Fig.3a). 444 In addition, unlike inorganics, (eg., NH4HSO4, (NH4)2SO4 and NH4NO3), which 445 the hygroscopicity has been already well-understood (Petters and Kreidenweis, 2007), 446 447 the hygroscopicity of organic species varies largely due to the complexity in organic aerosol constituents. Therefore, the assumption of the values of κ_{SOA} will add the 448 uncertainty in the calculation of BC density. Previous studies have suggested that the 449 450 organics has a wide range of κ values ranging from 0.05 to 0.3 (Jimenez et al., 2009;

Figure 1. Sensitivities of In-BC density to the variations in the number fraction of nearly hydrophobic (NH) POA and hygroscopic parameter of OA (k_{SOA}) (a), POA density (b), SOA density (c) and the externally

删除了: -mixed BC density (d).

477 respectively (Fig. <u>3c</u>, d). For $\rho_{\text{Ex-BC}}$, it exhibits that the <u>evolution</u> of the $\rho_{\text{Ex-BC}}$ <u>could lead</u> 478 to <u>an average deviation of ± 10 % in calculating In-BC density (Fig. 3e)</u> when 479 increasing the values of $\rho_{\text{Ex-BC}}$ from 0<u>1</u> to 0<u>6</u> g cm⁻³, which represents a typical range, 480 in ambient atmosphere (Wu et al., 2019; Liu et al., 2020). A combined uncertainty (δ) 481 caused by the multiple factors (δ_i), which is calculated by <u>equation 12</u>, is <u>-21 % -+29</u> %

482 as shown in Fig. <u>3f</u>.

483

484 3 Results and Discussion

485 **3.1 Retrieved mixing state and density of BC: comparison and validation**

 $\delta = \sqrt{\sum_{i=1}^{n} {\delta_i}^2}$

Figure <u>4a</u> shows retrieved time series of the mixing state of ambient BC during the 486 487 campaign. Large temporal variations of the mass fraction of internally and externally mixed BC are presented during the observed period at the sites. The temporal changes 488 489 should be related to the atmospheric aging process or diurnal variations of emissions (Liu et al., 2019a; Fan et al., 2020). Statistically, the average mass fraction of externally 490 491 and internally mixed BC is 20 ± 18 % and 80 ± 20 % respectively, showing that most of the BC particles were aged and internally mixed with other components. Previous 492 493 studies at urban sites have shown that the co-existence of the externally mixed BC in the ambient atmosphere (Schwarz et al., 2008; Cheng et al., 2012; Chen et al., 2020) 494 due to continuous combustion processes (e.g., vehicle exhaust and residential sector) 495 (Wang et al., 2017; Liu et al., 2019a). Our results are basically comparable with those 496

删除了: 2c...c, d). Similarly...or ρ_{Ex-BC} , it exhibits that the variations...volution of the ρ_{Ex-BC} would **Figure 2.** Relative deviations of the number fraction of nearly hydrophobic (NH) POA...ould lead to the In-BC density (a), the hygroscopic parameter of OA to the In-BC density (b), the POA density to the In-BC density (c), the SOA density to the In-BC density (d), the externally-mixed BC density to In-BC density (e) and the combined deviations based on multiple factors mentioned above (f).

删除了: (..., calculating In-BC density (Fig. 2e) in retrieved In-BC density...e) when increasing the values of ρ_{Ex-BC} from 0.10... to 0.60... g cm⁻³, which represents a typical range of ρ_{Ex-BC} ...in ambient atmosphere (Wu et al., 2019; Liu et al., 2020). A combined uncertainty (δ) caused by the multiple factors (δ), which is calculated by the ...quation 9...2, is -23 %-+31...1 %-+29 % as shown in Fig. 2f

删除了: (9

cause

<u>(12</u>)

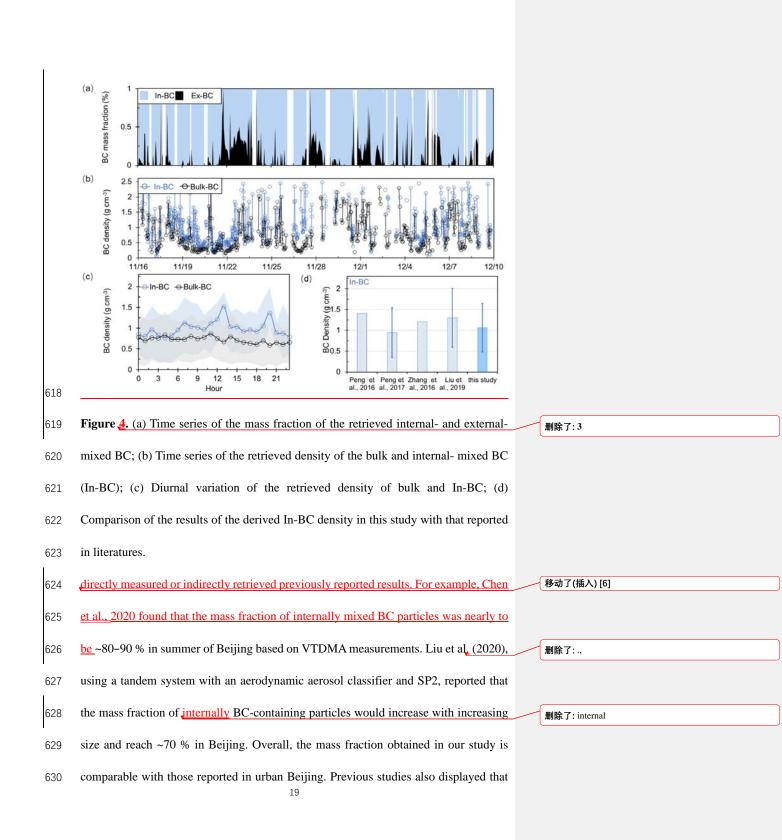
上移了 [1]: Note that, this method fails to retrieve the BC density when organics account for a large fraction (>60 %). This is because that a higher fraction of OA usually corresponds to lower total volume of all the species (Fig.

上移了 [2]: % of the data observed during the campaign were valid for calculating the BC density.

 $v_{In-BC} = \frac{v_{inorg}\kappa_{inorg} + v_{SOA}\kappa_{SOA}}{\kappa_{gf-MH}} - v_{inorg} - v_{SOA} -$

上移了 [3]: When calculating the $\rho_{\text{bulk-BC}}$, the bulk κ_{gf} value measured by HTDMA is applied with the assumption of all the aerosol particles are internally mixed.

删除了: S4), yielding negative values for vIn-BC introduced in equation 10. As a result, 62

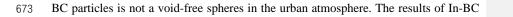

删除了:10)

Similarly, the bulk density of BC ($\rho_{bulk-BC}$) is calculated with the same method as that for calculation the ρ_{In-BC} .

删除了: 3a...a shows retrieved time series of the mixing state of ambient BC during the campaign. Large temporal variations of the mass fraction of internal...nternally and

下移了 [6]: directly measured or indirectly retrieved previously reported results. For example, Chen et al.,

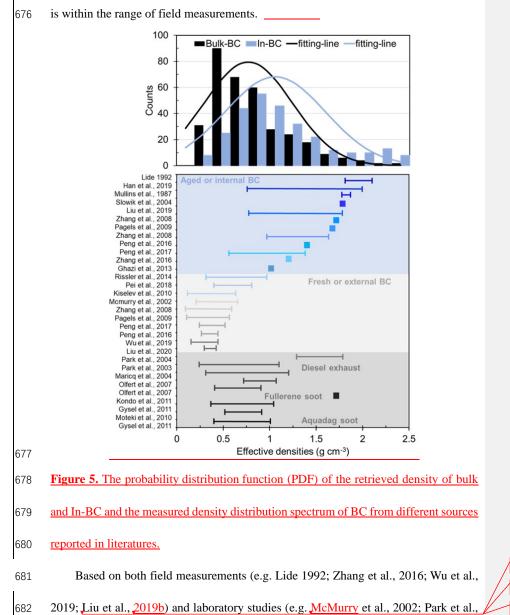
删除了: 2020 found that the mass fraction of internal mixed BC particles was nearly to be



634	the significant diversity of the BC mixing state among emission conditions and coating
635	process (Shiraiwa et al., 2008; Pan et al., 2017; Zhang et al., 2020b). Accordingly, the
636	densities of the bulk and <u>internally</u> mixed BC present apparent fluctuations as shown in
637	Fig. <u>4b</u> , which is significantly affected by the variations of BC emission sources and its
638	rapid aging process. The density of the In-BC during daytime was generally higher than
639	that at night (Fig. <u>4c</u>). The elevated BC density during daytime is likely due to that the
640	strong photochemical processes promote the aging of BC particles, which resulted in a
641	conversion from uncompacted structure to compact and regular spherical shapes of BC
642	(Qiao et al., <u>2018; Liu et al., 2019b; Zhou et al., 2022). The lift in BC density around</u>
643	20:00 LT might indicate that the BC particles would be rapidly coated with the SIA
644	particles and continuously aged in the polluted period due to the heterogeneous
645	reactions of SIA in urban regions (Zhang et al., 2016; Peng et al., 2017). Actually,
646	following the haze evolution, the fraction of nearly hydrophobic group reduced rapidly
647	(Fig. S7). Consequently, the average density of In-BC increased obviously from the
648	clean conditions to the polluted periods (Fig. S8). A slight decrease was observed in the
649	bulk_BC density during traffic hours. This is likely associated with the continues
650	emissions (e.g., vehicle exhaust) that lead to uncoated or uncompacted BC particles in
651	this period. The diurnal cycle in In-BC density is consistent with the coating thickness
652	measured by a tandem CPMA-SP2-DMA-SP2 (Liu et al., 2020), demonstrating that the
653	new method can derive the density of ambient BC particles reasonably. Averagely, the
654	bulk and <u>internally mixed BC densities are with campaign averaged values of 0.7 ± 0.5</u>
655	and 1 ± 0.6 g cm ⁻³ respectively, which are much less than 1.8 g cm ⁻³ , implying that the
•	

-	删除了: 2020
-	删除了: internal
-	删除了: 3b
1	删除了: were
-	删除了: 3c

删除了: 2018; H. Liu et al., 2019; Zhou et al., 2022). The slightly decreases were observed both in the bulk BC and In-


Ι	删除了: more
Ϊ	删除了: urban regions.
1	删除了: cycles
\neg	删除了: are
	删除了: that
/	删除了: internal-
1	删除了:73
-	删除了:46
1	删除了:11
-1	删除了: 54

density are comparable with that observed at the other sites in North China Plain (NCP)

as shown in Fig. <u>4d</u>, illustrating that the BC effective density retrieved by this method

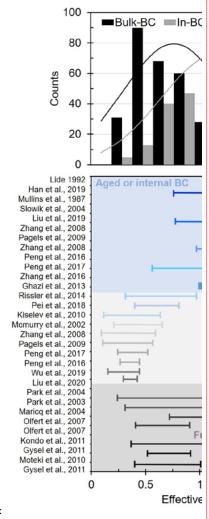
删除了:3d

删除了: Mcmurry

删除了:H.

删除了: 2019

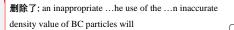
<u>y studi</u> 21


687	2003, 2004; Olfert et al., 2007; Kiselev et al., 2010; Gysel et al., 2011, 2012), the BC
688	density from diverse combustion sources or representing different aging degree has
689	been obtained and ranges widely from 0.14 to 2.1 g cm ⁻³ , as has been summarized and
690	shown in Fig. <u>5</u> . Mean probability distribution function (PDF) of the density of bulk
691	and In-BC retrieved by this study is also presented in Fig. 5. It shows that the retrieved
692	density of bulk BC exhibits a dominant mode with <u>a peak value of 0.7 g cm^{-3}, which is</u>
693	situated between the typical density range of those externally, mixed and internally,
694	mixed BC measured previously. For the In-BC, the PDF is with a peak value at $1 \pm g$
695	cm ⁻³ , but ranges widely from ~0.5 to 25 g cm^{-3} , which indicates various morphologies,
696	different aging degree and compositions of ambient BC particles due to the complex
697	impact of multiple local sources and aging processes during the observed period in
698	urban Beijing. Overall, the retrieved values for In-BC fall within the range of typical
699	internal <u>mixed</u> BC reported in the literatures, verifying the reliability of our inversion
700	results.

701 **3.2 Sensitivity of predicted** *N*_{CCN} **to changes of BC density**

2002

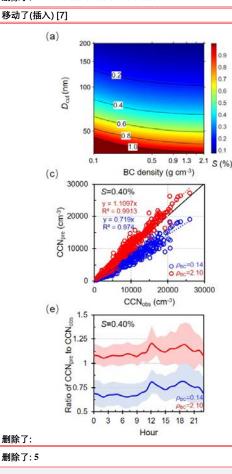
2004


A previous study showed that the use of an inaccurate density value of BC particles would result in large bias in estimating κ of ambient aerosol particles with the ZSR mixing rule (Fan et al., 2020), as would further lead to uncertainties in prediction of $N_{\rm CCN}$ and relevant climate effects. Considering the large variation range of BC density during the campaign, which is closely associated with its morphology or degree of its aging, we further examine the sensitivity of critical supersaturation (S_c), critical



删除了:

Figure 4. The probability distribution function (PDF) of the retrieved density of bulk and In-BC and the measured density distribution spectrum of BC from different sources reported in literatures.


删除了: It has been studied

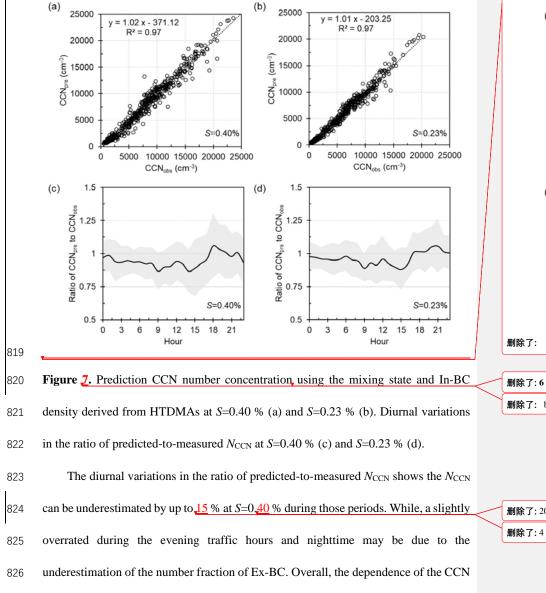
下移了 [7]: to derive the critical diameter is based on Köhler theory and ZSR rule.

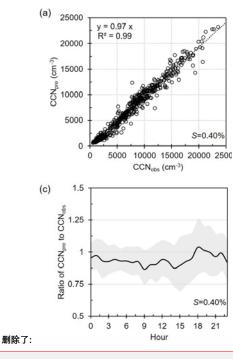
下移了 [8]: to evaluate the effect of BC density and mixing state on prediction of CCN number concentrations. The detailed calculation methods are presented in the supporting information (SI: Methods) or referenced from Ren et al.,

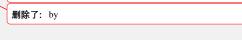
23

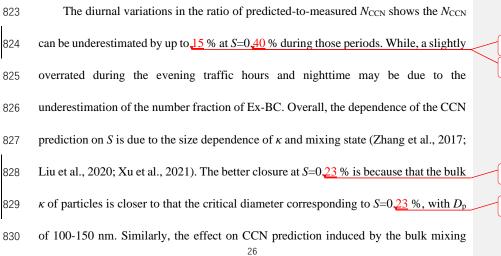
742

(e) and S=0.23 % (f).


754	The results show that, by varying the value of density from 0.14 to 2.1 g cm ⁻³ that		
755	represents the lower and upper limit of BC density in the atmosphere, the D _{cut} reduces		删除了:),
756	apparently at a given supersaturation (S) (Fig. $6a$), or similarly, the S _c decreases rapidly	-	删除了: 5a
757	for a given particle size (Fig. $\frac{6b}{10}$). The results show that the changes of the D_{cut} and S_c		删除了: 5b
758	are more sensitive when the BC density is below 1.0 g cm ⁻³ . And the effects on the D_{cut}		
759	and S_c both gradually weakened with the increase of BC density. This shows that it is		
760	critical to apply more accurate BC density for the aerosol particles with low aging		
761	degree in predicting CCN and its climate effect. Accordingly, the ratios of predicted-		
762	to-measured N_{CCN} ranged from 0.72 to 1.11 by varying the BC density from 0.14 to 2.1		
763	g cm ⁻³ at the typical S of $0,23$ % and $0,40$ % (Fig. 6c, 6d), showing an estimation		删除了:2
764	uncertainty of -28 %–11 % in $N_{\rm CCN}$ prediction.		删除了:4
765	The diurnal variations in the ratio of predicted-to-measured $N_{\rm CCN}$ at S=0.40 % and	Ŀ	删除了: 5c, 5d
766	0.23 % are shown to examine the response of the BC density on $N_{\rm CCN}$ prediction at		
767	different time periods (Fig. <u>6e, 6f</u>). By applying the lower limit of density value of 0.14		删除了: 5e, 5f
768	g cm ⁻³ , the prediction is much worse compared to the use of the density of 2.1 g cm ⁻³ at		
769	nighttime (00:00-06:00 LT), when the latter is much closer to the real density of ambient		
770	BC (Fig. <u>4c</u>). The prediction is improved substantially by applying the value of 0.14 g		删除了: 3c
771	cm ⁻³ during evening rush hours (18:00-20:00 LT), during which the ambient BC		
772	particles is <u>disturbed by the traffic emissions</u> (Fig. <u>4c</u>). And now, the prediction becomes		删除了: more externally-mixed with smaller densities
773	worse by applying the value of 2.1 g cm ⁻³ , and an obvious overestimation by up to ~ 40 %		删除了: 3c
774	is shown. The results further illustrate that it is critical to account for the real-time		
775	mixing state and density of BC particles in $N_{\rm CCN}$ prediction, <u>particularly</u> in those regions	-(1	删除了: in particular


787 with heavy traffic and residential coal emissions.


788	It should be noted that the assumption of the surface tension of water would
789	overestimate the critical diameter and underpredict CCN number concentration. While
790	the surface tension depression might be more obvious for the small size particles (<60
791	nm), as the fraction of organics are higher at small particles size (Meng et al., 2014; Cai
792	et al., 2018). Here, in this study, we calculated the critical diameters at supersaturations
793	of 0.40 % and 0.23 %, typical values in cloud, corresponding to larger sizes (> 70 nm
794	and 90 nm) of aerosols. Therefore, the uncertainties from the application of the surface
795	tension of pure water should be negligible (< 10 %). Here, three schemes were assumed,
796	to evaluate the effect of BC density and mixing state on prediction of CCN number
797	concentrations. The detailed calculation methods are presented in the supporting
798	information (SI: Methods) or referenced from Ren et al., 2018.
799	3.3 Using the real-time variations of BC density and mixing state to predict $N_{\rm CCN}$
800	Figure 2 exhibits the comparisons between predicted and measured $N_{\rm CCN}$ at S of
801	0,23 % and $0,40$ % by accounting for the retrieved real-time variations of BC density
802	and mixing state. It shows that the $N_{\rm CCN}$ can be well predicted with a slope of <u>1.01</u> and
803	<u>1.02</u> at S of 0.23 % and 0.40 % respectively (Fig. 7a, 7b), only presenting a slight
804	deviation. The slight <u>deviation</u> is primarily due to <u>the fixed value</u> of the density for the
805	externally mixed BC caused by the retrieved method, especially during noontime and
806	evening rush periods (Fig. <u>7c</u> and <u>7d</u>).


-	删除了:6
-	删除了:2
	删除了:4
	删除了: 0.98
-	删除了: 0.97
	删除了:2
	删除了:4
	删除了: 6a, 6b
$\left(\right)$	删除了: underestimation
	删除了: an underestimation
	删除了:6c
	删除了: 6d

移动了(插入) [8]

-{	删除了: 20	J
\neg	删除了:4	J

删除了: 2	
删除了: 2	

state would be more critical for smaller particles, corresponding to the critical diameter
at high *S*.
Overall, when considering the effective density of BC relevant to its mixing state,

the CCN closure achieves. Previous studies have shown that the fresh emitted BC

842 particles may convert from fractal-like aggregates to a compact structure and its density

843 would increase with the aging process (Pagels et al., 2009; Rissler et al., 2014; Peng et

al., 2016; Liu et al., <u>2019b</u>; Zhang et al., <u>2020a</u>, 2022), but the actual density of In-BC

845 may be lower than 1.8 g cm⁻³ in the ambient atmosphere according to this study.

846 Therefore, the currently applied value represents a density of the void-free structure of

847 BC particles may cause an overestimation in CCN prediction.

848 4 Conclusions

849 The mixing state and effective density of BC changed through heterogenous 850 chemistry process and thus would <u>cause</u> uncertainty in evaluating its CCN activity. In this study, we develop a new method to retrieve the mixing state and effective density 851 852 of ambient BC using field measurements and the Köhler theory. The uncertainty of the new retrieval method was evaluated within ± 30 %, which is primarily caused <u>to</u> 853 854 <u>assuming</u> the κ_{SOA} and the fraction of primary organic aerosols in non-hygroscopic or hygroscopic mode. The retrieved results show that most of the BC particles were aged 855 and internally mixed with other components, with mean mass fraction of $\frac{80\pm20}{8}$ %. 856 Averagely, the retrieved densities of the bulk and internal mixed BC are 0.7 ± 0.5 and 857 $1_{\pm}0_{6}$ g cm⁻³ respectively, but ranges widely from ~0.1 to 2_{5} g cm⁻³, indicating 858

1	删除了: H.
	删除了:2019
	删除了: 2020

删除了: causes

1	删除了: by assumptions of
	删除了:-
Ŋ	删除了: 79±18
//	删除了:
//	删除了: 73
λ	删除了: 46
X	删除了:11
1	删除了: 54
-{	删除了:4

various morphologies, different aging degree and compositions of ambient BC particles
due to the complex impact of multiple local sources and aging processes during the
observed period. The retrieved results are basically comparable with the previous
observations in North China Plain.

Further examination shows the $N_{\rm CCN}$ prediction is with uncertainties of -28 %-11 %

at the typical S of 0.23 % and 0.40 % by varying the BC density from 0.14 to 2.1 g cm⁻

878 ³ that represents the lower and upper limit of ambient BC particles. Moreover, the prediction is found more sensitive to the variability of BC density when it is <1.0 g cm⁻ 879 ³, suggesting a great significance to account for the effect of BC density for the aerosol 880 particles with low aging degree when evaluating the climate effect. The CCN closure 881 achieves when introducing the retrieved real-time BC density relevant to its mixing 882 883 state. This work provides a unique way of utilizing field observations to infer ambient 884 BC density and highlights the <u>current</u> assumption of a void-free structure of BC 885 particles in models would cause large uncertainties in CCN prediction and in the relevant climate effect evaluation. 886

887 Data availability.

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplement. All data used in the study are also available from the corresponding author upon request (zhangfang2021@hit.edu.cn). 删除了:2 删除了:4

删除了: currently

894 Author contributions.

- 895 FZ and JR conceived the conceptual development of the manuscript. JR directed and
- 896 performed of the experiments with JL, LC, and FZ. JR conducted the data analysis and
- 897 wrote the draft of the manuscript. All authors edited and commented on the various
- 898 sections of the manuscript.

899 Acknowledgments.

- 900 This work was funded by the National Natural Science Foundation of China (NSFC)
- 901 research project (41975174, 41675141). We thank all participants in the field campaigns
- 902 for their tireless work and cooperation. We also thank Dr. Yele Sun and his group for
- 903 providing the data of nonrefractory submicron aerosol chemical composition.

904 Competing interests.

- 905 The contact author has declared that neither they nor their co-authors have any
- 906 competing interests.

907 **References**

- Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H.,
 Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of
 secondary organic aerosols formed from the photooxidation of anthropogenic and
 biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293,
 https://doi:10.5194/acp-6-5279-2006, 2006.
- Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner,
 M., Ghan, S., Kärcher, B., and Koch, D.: Bounding the role of black carbon in the

915 climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118(11), 5380–
 916 5552, https://doi.org/10.1002/jgrd.50171, 2013

- Clarke, A.D., Shinozuka, Y., Kapustin, V.N., Howell, S., Huebert, B., Doherty, S.,
 Anderson, T., Covert, D., Anderson, J., Hua, X., Moore II, K.G., McNaughton, C.,
- Carmichael, G., Weber, R.: Size distributions and mixtures of dust and black carbon
 aerosol in Asian outflow: physiochemistry and optical properties, J. Geophys. Res. Atmos., 109, D15S09, https://doi.org/10.1029/2003JD004378, 2004.
- Cheng, Y. F., Su, H., Rose, D., Gunthe, S. S., Berghof, M., Wehner, B., Achtert, P.,
 Nowak, A., Takegawa, N., Kondo, Y., Shiraiwa, M., Gong, Y. G., Shao, M., Hu, M.,
 Zhu, T., Zhang, Y. H., Carmichael, G. R., Wiedensohler, A., Andreae, M. O., and
 Pöschl, U.: Size-resolved measurement of the mixing state of soot in the megacity
 Beijing, China: diurnal cycle, aging and parameterization, Atmos. Chem. Phys., 12,
- 4477–4491, https://doi.org/10.5194/acp-12-4477-2012, 2012.
 Cheng, Y. F., Eichler, H., Wiedensohler, A., Heintzenberg, J., Zhang, Y. H., Hu, M.,
 Herrmann, H., Zeng, L. M., Liu, S., Gnauk, T., Brüggemann, E., and He, L. Y.:
 Mixing state of elemental carbon and non-light-absorbing aerosol components
 derived from in situ particle optical properties at Xinken in Pearl River Delta of China,
 J. Geophys. Res., 111, D20204, doi:10.1029/2005JD006929, 2006.
- Chen, L., F. Zhang, P. Yan, X. Wang, L. Sun, Y. Li, X. Zhang, Y. Sun, and Z. Li.: The
 large proportion of black carbon (BC)-containing aerosols in the urban atmosphere,
 Environ. Pollut., 263, 114507, https://doi.org/10.1016/j.envpol.2020.114507, 2020.
- Chang, R. Y.-W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J.,
 Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (*k*) of ambient
 organic aerosol at a field site subject to biogenic and anthropogenic influences:
 relationship to degree of aerosol oxidation, Atmos. Chem. Phys., 10, 5047–5064,
 https://doi:10.5194/acp-10-5047-2010, 2010.
- Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., and Zhao,
 J.: The size-resolved cloud condensation nuclei (CCN) activity and its prediction
 based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD)
 region during wintertime 2014, Atmos. Chem. Phys., 18, 16419–16437,
 https://doi.org/10.5194/acp-18-16419-2018, 2018.
- Dinar, E., Mentel, T. F., and Rudich, Y.: The density of humic acids and humic like
 substances (HULIS) from fresh and aged wood burning and pollution aerosol
 particles, Atmos. Chem. Phys., 6, 5213–5224, doi:10.5194/acp-6-5213-2006, 2006.
- Dameto de España, C., Wonaschütz, A., Steiner, G., Rosati, B., Demattio, A., Schuh, 949 950 H., and Hitzenberger, R.: Long-term quantitative field study of New Particle Formation (NPF) events as a source of Cloud Condensation Nuclei (CCN) in the 951 952 urban background of Vienna, Atmos. Environ., 164, 289-298, https://doi.org/10.1016/j.atmosenv.2017.06.001, 2017. 953
- Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate
 forcing and response from black carbon in snow, J. Geophys. Res.-Atmos., 112,
 D11202, https://doi.org/10.1029/2006JD008003, 2007.
- Fan, X., Liu, J., Zhang, F., Chen, L., Conllins, D., Xu, W., Jin, X., Ren, J., Wang, Y., Wu,
 H., Li, S., Sun, Y., Li, Z.: Contrasting size-resolved hygroscopicity of fine particles

- derived by HTDMA and HR-ToF-AMS measurements between summer and winter
 in Beijing: the impacts of aerosol aging and local emissions, Atmos. Chem. Phys. 20,
 915-929, https://doi.org/10.5194/acp-20-915-2020, 2020.
- Geller, M., Biswas, S., and Sioutas, C.: Determination of particle effective density in
 urban environments with a differential mobility analyzer and aerosol particle mass
 analyzer, Aerosol Sci. Technol., 40, 709–723,
 https://doi.org/10.1080/02786820600803925, 2006.
- Gysel, M., McFiggans, G. B., and Coe, H.: Inversion of tandem differential mobility
 analyser (TDMA) measurements, J. Aerosol Sci., 40, 134–151,
 https://doi.org/10.1016/j.jaerosci.2008.07.013, 2009.
- Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J.,
 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between
 chemical composition and hygroscopic growth of aerosol particles during TORCH2,
 Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007.
- Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J.
 L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation
 nuclei in pristine tropical rainforest air of Amazonia: size resolved measurements and
 modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys.,
 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009.
- Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R., & Gröhn, A. J.: Effective density
 of aquadag and fullerene soot black carbon reference materials used for SP2
 calibration, Atmos. Meas. Tech., 4(12), 4937–4955, https://doi.org/10.5194/amt-42851-2011, 2011.
- Gysel, M., Laborde, M., Mensah, A. A., Corbin, J. C., Keller, A., Kim, J., et al.:
 Technical note: The single particle soot photometer fails to reliably detect PALAS
 soot nanoparticles, Atmos. Meas. Tech., 5(12), 3099–3107,
 https://doi.org/10.5194/amt-5-3099-2012, 2012.
- Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll,
 J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S.,
 Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson,
 K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T.,
 Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D.
- 991 R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,
- 992 Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S.,
- 993 Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
- 994 T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J.
- 995 R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood,
- 996 E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.:
- Evolution of Organic Aerosols in the Atmosphere, Science., 326, 1525–1529,
 https://doi.org/10.1126/science.1180353, 2009.
- Kiselev, A., Wennrich, C., Stratmann, F., Wex, H., Henning, S., Mentel, T.F., KiendlerScharr, A., Schneider, J., Walter, S., Lieberwirth, I.: Morphological characterization
 of soot aerosol particles during LACIS Experiment in November (LExNo), J.
- 1002 Geophys. Res. -Atmos., 115, D11204. https://doi.org/10.1029/2009jd012635, 2010.

- Khalizov, A. F., Zhang, R., Zhang, D., Xue, H., Pagels, J., and McMurry, P. H.:
 Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric
 acid vapor, J. Geophys. Res.-Atmos., 114, D05208,
 https://doi.org/10.1029/2008jd010595, 2009.
- Kawana, K., Nakayama, T., and Mochida, M.: Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya, Japan, J. Geophys. Res.-Atmos., 121, 4100–4121, https://doi.org/10.1002/2015JD023213, 2016.
- Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y.,
 Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S.,
 Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
 inventory under the international collaboration framework of the MICS-Asia and
 HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017,
 2017.
- Liu, D., Joshi, R., Wang, J., Yu, C., Allan, J. D., Coe, H., Flynn, M. J., Xie, C., Lee, J.,
 Squires, F., Kotthaus, S., Grimmond, S., Ge, X., Sun, Y., and Fu, P.: Contrasting
 physical properties of black carbon in urban Beijing between winter and summer,
 Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019,
 2019a.
- Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans, G.,
 Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic properties
 controlled by mixing state and composition, Atmos. Chem. Phys., *13*, 2015–2029,
 https://doi.org/10.5194/acp-13-2015-2013, 2013.
- Liu, H., Pan, X.L., Wu, Y., Wang, D.W., Tian, Y., Liu, X.Y., et al.: Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018, Atmos. Chem. Phys. 19, 14791–14804, https://doi.org/10.5194/acp-19-14791-2019, 2019b.
- Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics. CRC Press: Ann Arbor,
 MI. (1992).
- Lance, S., Medina, J., Smith, J., and Nenes, A.: Mapping the operation of the DMT
 continuous flow CCN counter, Aerosol Sci. Tech., 40, 242–254,
 https://doi.org/10.1080/02786820500543290, 2006.
- Liu, H., Pan, X., Liu, D., Liu, X., Chen, X., Tian, Y., Sun, Y., Fu, P., and Wang, Z.:
 Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing,
 Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020,
 2020.
- Liu, L, Zhang, J, Zhang, Y, Wang, Y, Xu, L, Yuan, Q, et al.: Persistent residential
 burning-related primary organic particles during wintertime hazes in North China:
 insights into their aging and optical changes, Atmos. Chem. Phys. 21, 2251–2265,
 https://doi.org/10.5194/acp-21-2251-2021, <u>2021a</u>.
- Liu, J., Zhang, F., Xu, W., Sun, Y., Chen, L., Li, S.: Hygroscopicity of organic aerosols
 linked to formation mechanisms, Geophysical Research Letters, 48, e2020GL091683,
 https://doi.org/10.1029/2020gl091683, 2021b.
- 1046 McMurry, H. Peter, Wang Xin, Park Kihong & Ehara Kensei.: The Relationship

删除了:2019

删除了:2019

删除了:2021

- between Mass and Mobility for Atmospheric Particles: A New Technique for
 Measuring Particle Density, Aerosol Sci. Technol., 36:2, 227-238,
 https://doi.10.1080/027868202753504083, 2002.
- Massoli, P., Onasch, T.B., Cappa, C.D., Nuamaan, I., Hakala, J., Hayden, K., Li, S.M.,
 Sueper, D.T., Bates, T.S., Quinn, P.K., Jayne, J.T., Worsnop, D.R.: Characterization
 of black carbon-containing particles from soot particle aerosol mass spectrometer
 measurements on the R/V Atlantis during CalNex 2010, J. Geophys. Res.- Atmos.,
 120, 2575-2593, https://doi.org/10.1002/2014JD022834, 2015.
- Mei, F., Setyan, A., Zhang, Q., and Wang, J.: CCN activity of organic aerosols observed
 downwind of urban emissions during CARES, Atmos. Chem. Phys., 13, 12155–
 12169, https://doi.org/10.5194/acp-13-12155-2013, 2013.
- Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved cloud
 condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in
 Hong Kong, Atmos. Chem. Phys., 14, 10267–10282, https://doi.org/10.5194/acp-14 1064 10267-2014, 2014.
- 1065 Noureddini, H., Teoh, B. C., Davis Clements, L.: Densities of vegetable oils and fatty
- 1066 acids, J. Am. Oil Chem. Soc., 69 (12), 1184–1188, 1992.
- Olfert, J. S., Symonds, J. P. R., and Collings, N.: The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst, J. Aerosol Sci., 38, 69–82, https://doi.org/10.1016/j.jaerosci.2006.10.002, 2007.
- Park, K., Kittelson, D. B., and McMurry, P. H.: Structural properties of diesel exhaust
 particles measured by transmission electron microscopy (TEM): Relationships to
 particle mass and mobility, Aerosol Sci. Technol., 38, 881–889,
 https://doi.org/10.1080/027868290505189, 2004.
- Pagels, J., Khalizov, A.F., McMurry, P.H. and Zhang, R.Y.: Processing of soot by controlled sulphuric acid and water condensation-mass and mobility relationship, Aerosol Sci. Technol., 43, 629–640, https://doi.org/10.1080/02786820902810685,
 2009.
- Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., Shang, D. J., Zamora, M., Zeng, L.
 M., Shao, M., Wu, Y. S., Zheng, J., Wang, Y., Glen, C., Collins, D., Molina, M., and
 Zhang, R. Y.: Markedly enhanced absorption, and direct radiative forcing of black
 carbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113(16), 4266–
 4271, https://doi.org/10.1073/pnas.1602310113, 2016.
- Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
- Paatero, P. and Tapper, U.: Positive matrix factorization: A nonnegative factormodel
 with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126,
 1994.
- Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., M., Zeng, L. M., Shao, M., Wu, Y. S.,
 Collins, D., Molina, M., and Zhang, R. Y.: Ageing and hygroscopicity variation of
 black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution

- study (QUALITY) chamber, Atmos. Chem. Phys., 17(17), 10333-10348,
 https://doi.org/10.5194/acp-17-10333-2017, 2017.
- Pan, X.L., Kanaya, Y., Taketani, F., Miyakawa, T., Inomata, S., Komazaki, Y., et al.:
 Emission characteristics of refractory black carbon aerosols from fresh biomass
 burning: a perspective from laboratory experiments, Atmos. Chem. Phys., 17(21),
 13001–13016, https://doi.org/10.5194/acp-17-13001-2017, 2017.
- Park, K., Cao, F., Kittelson, D. B., & McMurry, P. H.: Relationship between particle
 mass and mobility for diesel exhaust particles, Environ. Sci. Tehnol., 37, 577–583,
 https://doi.org/10.1021/es025960v, 2003.
- Qiao, K., Wu, Z., Pei, X., Liu, Q., Shang, D., Zheng, J., Du, Z., Zhu,W.,Wu, Y., Lou, S.,
 Guo, S., Chan, C.K., Pathak, R.K., Hallquist, M., Hu, M.: Size-resolved effective
 density of submicron particles during summertime in the rural atmosphere of Beijing.
 China, J. Environ. Sci. (China) 73, 69–77. https://doi.org/10.1016/j.jes.2018.01.012,
 2018.
- Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M., Sporre, M. K.,
 Wierzbicka, A., Svenningsson, B., Londahl, J., Messing, M. E., Sjogren, S.,
 Hemmingsen, J. G., Loft, S., Pagels, J. H., and Swietlicki, E.: Effective Density and
 Mixing State of Aerosol Particles in a Near-Traffic Urban Environment, Environ. Sci.
 Technol., 48, 6300–6308, https://doi.org/10.1021/es5000353, 2014.
- Riemer, N., Vogel, H., and Vogel, B.: Soot aging time scales in polluted regions during
 day and night, Atmos. Chem. Phys., 4, 1885–1893, https://doi.org/10.5194/acp-41885-2004, 2004.
- Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black
 carbon, Nat. Geosci., 36, 221-227, https://doi.org/10.1038/ngeo156, 2008.
- Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., et al.: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing, Atmos. Chem. Phys., 18, 6907–6921, https://doi.org/10.5194/acp-18-6907-2018, 2018.
- Rader, D.J., McMurry, P.H.: Application of the tandem differential mobility analyzer
 to studies of droplet growth or evaporation, J. Geophys. Res.- Atmos., 17, 771-787,
 https://doi.org/10.1016/0021-8502(86)90031-5, 1986.
- Reyes-Villegas, E., Bannan, T., Le Breton, M., Mehra, A., Priestley, M., Percival, C.,
 Coe, H., and Allan, J. D.: Online Chemical Characterization of Food-Cooking
 Organic Aerosols: Implications for Source Apportionment, Environ. Sci. Technol.,
 52, 5308–5318, https://doi.org/10.1021/acs.est.7b06278, 2018.
- Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D.
 W., Ryerson, T. B., Peischl, J., Holloway, J. S., Trainer, M., Frost, G. J., Baynard,
 T., Lack, D. A., de Gouw, J. A., Warneke, C., and Del Negro, L. A.: Measurement
 of the mixing state, mass, and optical size of individual black carbon particles in
- 1132 urban and biomass burning emissions, Geophys. Res. Lett., 35, L13810,
 1133 https://doi.org/10.1029/2008GL033968, 2008.
- Stokes, R. and Robinson, R.: Interactions in aqueous nonelectrolyte solutions, I. Solute solvent equilibria, J. Phys. Chem.-US, 70, 2126–2131, 1966.
- 1136 Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W.,

- Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary, and secondary aerosols
 in Beijing in winter: sources, variations, and processes, Atmos. Chem. Phys., 16,
 8309–8329, https://doi.org/10.5194/acp-16-8309-2016,2016.
- Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J.,
 Jayne, J., and Worsnop, D. R.: Long term real-time measurements of aerosol particle
 composition in Beijing, China: seasonal variations, meteorological effects, and
 source analysis, Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp15-10149-2015, 2015.
- Shiraiwa, M., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L., Takami, A., et al.:
 Radiative impact of mixing state of black carbon aerosol in Asian outflow, J.
 Geophys. Res.- Atmos., 113, D24210, https://doi.org/10.1029/2008JD010546, 2008.
- Tan, H., Xu, H., Wan, Q., Li, F., Deng, X., Chan, P. W., Xia, D., and Yin, Y.: Design and application of an unattended multifunctional H-TDMA system, J. Atmos. Ocean.
 Tech., 30, 1136–1148, https://doi.org/10.1175/JTECH-D-12-00129.1, 2013.
- Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
 Interpretation of organic components from Positive Matrix Factorization of aerosol
 mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918,
 https://doi.org/10.5194/acp-9- 2891-2009, 2009.
- Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem. Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
- Wang, Y. Y., Liu, F. S., He, C. L., Bi, L., Cheng, T. H., Wang, Z. L., Zhang, H., Zhang,
 X. Y., Shi, Z. B., and Li, W. J.: Fractal dimensions and mixing structures of soot
 particles during atmospheric processing, Environ. Sci. Tech. Lett., 4, 487–493,
 https://doi.org/10.1021/acs.estlett.7b00418, 2017.
- Wu, Y. F., Xia, Y. J., Huang, R. J., Deng, Z. Z., Tian, P., Xia, X. G., et al.: A study of the
 morphology and effective density of externally mixed black carbon aerosols in
 ambient air using a size-resolved single-particle soot photometer (SP2), Atmos. Meas.
 Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019, 2019.
- Wu, Y., Wang, X., Tao, J., Huang, R., Tian, P., Cao, J., Zhang, L., Ho, K.-F., Han, Z.,
 and Zhang, R.: Size distribution and source of black carbon aerosol in urban Beijing
 during winter haze episodes, Atmos. Chem. Phys., 17, 7965–7975,
 https://doi.org/10.5194/acp-17-7965-2017, 2017.
- Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A.,
 and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban
 atmosphere of Beijing, China, during summertime, Atmos. Chem. Phys., 16, 1123–
 1174 1138, https://doi.org/10.5194/acp-16-1123-2016, 2016.
- Xue, H., Khalizov, A. F., Wang, L., Zheng, J., and Zhang, R.: Effects of dicarboxylic
 acid coating on the optical properties of soot, Phys. Chem. Chem. Phys., 11, 7869–
 7875, https://doi.org/10.1039/b904129j, 2009.
- Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., et al.: Changes in aerosol
 chemistry from 2014 to 2016 in winter in beijing: Insights from high-resolution
 aerosol mass spectrometry, J. Geophys. Res.-Atmos., 124, 1132–1147.

1181 https://doi.org/10.1029/2018jd029245, 2019.

- Xu, W., Fossum, K. N., Ovadnevaite, J., Lin, C., Huang, R.-J., O'Dowd, C., and
 Ceburnis, D.: The impact of aerosol size-dependent hygroscopicity and mixing state
 on the cloud condensation nuclei potential over the north-east Atlantic, Atmos. Chem.
 Phys., 21, 8655–8675, https://doi.org/10.5194/acp-21-8655-2021, 2021.
- Yuan, T., Li, Z., Zhang, R., and Fan, J.: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study, J. Geophys. Res.-Atmos., 113, 104201, https://doi.org/10.1029/2007JD008632, 2008.
- Yu, C., Liu, D., Broda, K., Joshi, R., Olfert, J., Sun, Y., Fu, P., Coe, H., Allan, J.D.:
 Characterising mass-resolved mixing state of black carbon in Beijing using a
 morphology-independent measurement method, Atmos. Chem. Phys., 20, 3645–
 3661. https://doi.org/10.5194/acp-20-3645-2020, 2020.
- Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. X., and McMurry, P. H.:
 Variability in morphology, hygroscopicity, and optical properties of soot aerosols
 during atmospheric processing, P. Natl. Acad. Sci. USA, 105, 10291–10296,
 https://doi.org/10.1073/pnas.0804860105, 2008.
- Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Kecorius, S., Wang, Z., Wu, Z., Hu, M., Zhu,
 T., Wiedensohler, A., and He, K.: Measuring the morphology and density of
 internally mixed black carbon with SP2 and VTDMA: new insight into the
 absorption enhancement of black carbon in the atmosphere, Atmos. Meas. Tech., 9,
 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, 2016.
- 1202 Zdanovskii, A.: New methods for calculating solubilities of electrolytes in
 1203 multicomponent systems, Zh. Fiz. Khim.C, 22, 1475–1485, 1948.
- Zhang, <u>F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., et al.: Uncertainty in</u> predicting CCN activity of aged and primary aerosols, J. Geophys. Res.-Atmos., 1206 122(21), 11723–11736, https://doi.org/10.1002/2017jd027058, 2017.
- Zhang, F., Ren, J., Fan, T., Chen, L., Xu, W., Sun, Y., et al.: Significantly enhanced
 aerosol CCN activity and number, J. Geophys. Res.-Atmos., 124, 14102–14113,
 https://doi.org/10.1029/2019jd031457, 2019.
- Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y., Zhao, J., Liu,
 C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang, A. L., Ji, Y., Wang, G., Hu, M.,
 Molina, M. J., Zhang, R.: An unexpected catalyst dominates formation and radiative
 forcing of regional haze, P. Natl. Acad. Sci. USA, 117(8), 3960-3966,
 https://doi.org/10.1073/pnas.1919343117, 2020a.
- Zhang, Y., Zhang, Q., Yao, Z., Li, H.: Particle Size and Mixing State of Freshly Emitted
 Black Carbon from Different Combustion Sources in China, Environ. Sci. Technol.,
 54(13): p. 7766-7774, https://doi.org/10.1021/acs.est.9b07373, 2020b.
- 1218 Zhang, F., Peng, J., Chen, L., Collins, D., Li, Y., Jiang, S., Liu, J., Zhang, R.: The effect
 1219 of Black carbon aging from NO2 oxidation of SO2 on its morphology, optical and
 1220 hygroscopic properties, Environ. Res., 212, 113238,
- 1221 https://doi.org/10.1016/j.envres.2022.113238, 2022.
- Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y.: Formation of urban
 fine particulate matter, Chemical Reviews, 115(10), 3803–3855,
 https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
- 225 Zhou, Y., Ma, N., Wang, Q., Wang, Z., Chen, C., Tao, J., Hong, J., Peng, L., He, Y.,

移动了(插入) [9]

下移了 [10]: Y., Zhang, Q., Yao, Z., Li, H.: Particle Size and Mixing State of Freshly Emitted Black Carbon from Different Combustion Sources in China, Environ. Sci. Technol., 54(13): p. 7766-7774, https://doi.org/10.1021/acs.est.9b07373,

删除了:2020

域代码已更改

上移了 [9]: F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., et al.: Uncertainty in predicting CCN activity of aged and primary aerosols, J. Geophys. Res.-Atmos., 122(21), 11723–11736,

https://doi.org/10.1002/2017jd027058, 2017

删除了: Zhang,

删除了:

删除了:2020

移动了(插入) [10] 域代码已更改

删除了: Zhou, Y.,

- 1243 Xie, L., Zhu, S., Zhang, Y., Li, G., Xu, W., et al.: Bimodal distribution of size-
- 1244 resolved particle effective density: results from a short campaign in a rural environ
- ment over the North China Plain, Atmos. Chem. Phys., 22, 2029–2047.
 https://doi.org/10.5194/acp-22-2029-2022, 2022.
- 1247 Zhao, G., Tan, T., Hu, S., Du, Z., Shang, D., Wu, Z., Guo, S., Zheng, J., Zhu, W., Li,
- M., Zeng, L., and Hu, M.: Mixing state of black carbon at different atmospheres in north and southwest China, Atmos. Chem. Phys., 22, 10861–10873,
- 1250 https://doi.org/10.5194/acp-22-10861-2022, 2022.