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Abstract.  31 

The global methane pledge paves a fresh, critical way toward Carbon Neutrality. However, it remains largely invisible and 32 

highly controversial due to the fact that planet-scale and plant-level methane retrievals have rarely been coordinated. This has 33 

never been more essential within the narrow window to reach the Paris target. Here we present a two-tiered spaceborne 34 

architecture to address this issue. Using this framework, we focused on the United States, China, the Middle East, and North 35 

Africa, and simultaneously uncovered methane-abundant regions and plumes. These include new super-emitters, potential 36 

leakages, and unprecedented multiple plumes in a single source. More importantly, this framework is shown to challenge 37 

official emission reports that possibly mislead estimates from global, regional, to site scales, particularly by missing super-38 

emitters. Our results show that, in principle, the above framework can be extended to be multi-tiered by adding upcoming 39 

stereoscopic measurements and suitable artificial intelligence, and thus is sufficiently versatile for immediate and future 40 

monitoring of the global methane pledge.   41 
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1. Introduction  42 

Global methane pledges finalized at the COP26 (the 26th United Nations Climate Change Conference of the Parties) have 43 

been never more ambitious (Schellnhuber et al., 2016; Schurer et al., 2018; United Nations, 2021). More than 100 countries 44 

have promised 30% methane emission reductions by 2030. Also, energy giants (e.g., Shell and BP) have committed to clear 45 

targets of methane mitigation. Such pledges have never been more essential within the narrow window (< ten years) to reach 46 

the Paris target. The scientific context is that atmospheric methane is a powerful greenhouse gas second only to carbon dioxide 47 

(CO2),  trapping ~ 80 times more heat than the same amount of CO2 (per molecule) over a 20-year time horizon (Etminan et 48 

al., 2016; Saunois et al., 2016, 2020). Worse still, it has been rising since 2007 (Mikaloff and Hinrich, 2019), with a surge in 49 

2014 (Nisbet et al., 2019) and a record high in 2021 (National Oceanic and Atmospheric Administration, 2022). Fortunately, 50 

methane is short-lived (∼ ten years) (Shoemaker et al., 2013), and, particularly, that from human activities can be reduced in 51 

half using existing technologies by 2030 (Ocko et al., 2021).  52 

However, a classic dilemma emerges, dimming the hopes of scientists and policymakers (Masood and Tollefson, 2021). That 53 

is, on the eve of the Paris target, large uncertainties in emissions remain, and thus hinder effective mitigation. The main issue 54 

is the Paris framework relies on countries or corporate giants to report emissions (Allen et al., 2015; Alvarez, 2018; Ganesan 55 

et al., 2019). Moreover, the reports are based on indirect statistics, such as O&G inventories, rather than direct measurements 56 

(Deng et al., 2022). This leads to a broad consensus that prominent discrepancies exist between the reports. For example, field 57 

campaigns report nearly double official claims of methane emissions in the United States by detecting leak detection (Alvarez, 58 

2018).  59 

To this end, widespread super-emitters present a unique opportunity worldwide (Duren et al., 2019; Lauvaux et al., 2022; 60 

Pandey et al., 2019; Zavala-Araiza et al., 2015, 2017). Super-emitters can generally be defined as emission sources that 61 

comprise highly concentrated methane plumes and dominate localized methane budgets (~ 5 × 5 km2). In contrast to region-62 

scale hotspots (or area sources), they can be attributed to individual facilities (e.g., factories, chimneys, and pipelines), typically 63 

with dimensions varying from several meters to tens of meters depending on monitoring instruments. Super-emitters are 64 

typically responsible for the underestimates of methane emissions (Alvarez et al., 2018; Duren et al., 2019; Irakulis-Loitxate 65 

et al., 2021; Lauvaux et al., 2022; Thompson et al., 2016). Moreover, there is increasing evidence that methane emissions 66 

follow a heavy-tailed distribution (Duren et al., 2019; Frankenberg et al., 2016; Lauvaux et al., 2022), for which relatively 67 

small number of sources (so-called super-emitters) can account for a disproportionately large share of total emissions. In 68 

contrast to area sources (e.g., cities), super-emitters are typically coal mines, wells, gathering stations, storage tanks, pipelines, 69 

and flares, with diameters on the order of dozens of metres or less, but generating plums of high-concentrated methane (Allen 70 

et al., 2013; Miller et al., 2019; Subramanian et al., 2015; Varon et al., 2019). We thus anticipate that significant emission 71 

mitigation could be achieved by deploying well-designed systems to identify methane super-emitters. For instance, in support 72 

of the Paris agreement, the 17th World Meteorological Congress (2015) requested an Integrated Global Greenhouse Gas 73 
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Information System (IG3IS) that aimed to develop a measurement framework for methane emission reductions (Phil DeCola 74 

and WMO Secretariat, 2017).  75 

To date, a large body of field measurements (e.g., in situ and aircraft surveys) between 2012 and 2020 has been designed for 76 

methane super-emitters. Despite this, they are spatially limited (e.g., regionally) and temporally infrequent (e.g., a few weeks), 77 

missing many methane super-emitters (Alvarez, 2018; Conley et al., 2016; Duren et al., 2019; Marchese et al., 2015; Nisbet et 78 

al., 2020; Smith et al., 2017; Thompson et al., 2016; Thorpe et al., 2016). Today, substantial advances have been made towards 79 

detecting and quantifying methane super-emitters from space (Cusworth et al., 2019; Hu et al., 2018; Irakulis-Loitxate et al., 80 

2022; Jacob et al., 2016; Pandey et al., 2019; Thompson et al., 2016) (Table 1). Such advances, however, have rarely been 81 

expanded to measure the global methane pledge because wide swaths and high-resolution sampling have not been 82 

simultaneously available. Recently, global methane monitoring has become possible. A flagship satellite mission is the 83 

TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor satellite (Lauvaux et al., 84 

2022; Veefkind et al., 2012). It provides daily global methane columns, with a large swath width of ~ 2600 km, a moderate 85 

resolution of 7.0 × 5.5 km2 (since August 2019), and a high signal-to-noise ratio. However, its relatively coarse spatial sampling 86 

still limits its application to detect methane super-emitters (Lauvaux et al., 2022). Next-generation satellite missions, pioneered 87 

by the GHGSat constellation (three satellites at the moment), have emerged for mapping methane super-emitters (Cusworth et 88 

al., 2019), with a narrow swath (e.g., ~ 12 km) but a ground-breaking high-resolution spatial sampling (e.g., 25 ~ 50 m) (Jervis 89 

et al., 2021; Varon et al., 2020). Complementary to the GHGSat constellation, satellite-based hyperspectral imager 90 

spectrometers, such as PRISMA, GF-5, ZY1, Sentinel-2, and Worldview-3, have shown great potential (Guanter et al., 2021; 91 

Irakulis-Loitxate et al., 2021; Sánchez-García et al., 2021; Varon et al., 2021). They can resolve methane enhancements and 92 

attribute them to specific infrastructures via similar narrow swath and high-resolution sampling (e.g., 30 m). Note that the 93 

regions these satellites usually observed are already known to contain methane super-emitters. Narrow swath coverage thus 94 

remains a crucial limitation for global surveys of methane super-emitters. Collectively, existing studies still struggle to survey 95 

global methane super-emitters due to the fact that individual satellite missions, such as TROPOMI or PRISMA, do not both 96 

have a wide swath and high resolution sampling.  97 

To address this issue, we present a two-tiered, space-based framework that coordinates TROPOMI and PRISMA for both 98 

planet-scale and plant-level methane retrievals. The key is that ready-made satellite missions alone have the potential to initiate 99 

immediate monitoring of the global methane pledge. Using this framework, we focused on China, the United States, Iraq, 100 

Kuwait, and Algeria, and reveal both region-scale hotspots and plant-level super-emitters. We also monitored a single source 101 

to map multiple plumes and to look for possible methane leaks. These results can challenge national reports that possibly miss 102 

unexpected super-emitters or mislead emission magnitude. On the eve of the Paris target, at least while a global methane 103 

monitoring network is not in place, the two-tiered satellite constellation presented in this study has great potential for measuring 104 

progress towards global methane pledges. 105 
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2. Materials and Methods 106 

2.1 Two-tiered satellite constellation 107 

The two-tiered satellite constellation is designed to reconcile global-scale and high-resolution methane monitoring. First, 108 

TROPOMI offers a unique potential for global methane monitoring due to its large swath (i.e., ~ 2600 km), daily revisit time, 109 

moderate footprint (i.e., 5.5 × 7 km2 since August 2019), and excellent sounding precision and accuracy (i.e., < 1 %) (Veefkind 110 

et al., 2012). TROPOMI observes approximately a full swath per second, resulting in ∼ 216 spectra per second. This instrument 111 

comprises two spectrometer modules, the first consisting of near-infrared (NIR) spectral channels, and the second dedicated 112 

to the shortwave-infrared (SWIR) spectral channel. The NIR and SWIR channels are equipped with spectral resolutions of 113 

0.38 and 0.25 nm and spectral sampling ratios of 2.8 and 2.5, respectively. Since the NIR and SWIR detectors are incorporated 114 

in different instrument modules, the NIR spectra will be co-registered with the SWIR spectra before performing methane 115 

retrievals. The methane total column-averaged dry-air mole fraction (XCH4) is retrieved from near-infrared (NIR) (757 ~ 774 116 

nm) and shortwave-infrared (SWIR) (2305 ~ 2385 nm) spectral measurements for sunlight backscattered by Earth's surface 117 

and atmosphere (Hu et al., 2018). In this study, only high-quality measurements, retrieved under cloud-free and low aerosol 118 

load conditions, are used. These measurements are filtered, in addition, for solar zenith angle (< 70°), low viewing zenith angle 119 

(< 60°), and smooth topography ( the surface elevation of < 80 m within 5 km radius) as described in Hu et al. (28) (Hu et al., 120 

2018). 121 

Hyperspectral satellite missions serve as the second tier, responsible for mapping localized methane super-emitters due to their 122 

unprecedented resolution (i.e., 3m ~ 50m). Therein PRISMA, as an open-access representative, is specifically suitable for this 123 

work. It can image the solar radiation reflected by the Earth’s surface and atmosphere via hundreds of spectral channels 124 

between the visible and SWIR spectrum (~ 400 ~ 2500 nm). Measurements in the SWIR spectrum from 2000 to 2500 nm 125 

sample absorption features from water vapor, carbon dioxide, and methane. Therein the 2100 nm and 2450 nm windows are 126 

especially sensitive to methane. Furthermore, the signal-to-noise ratio is reported to be about 100 in the SWIR for a relatively 127 

dark vegetation pixel and increases up to above 200 for bright soil surfaces in oil and gas extraction sites. More importantly, 128 

it covers areas of 30 × 30 km2 with a 30 m spatial sampling. 129 

We collect dozens of daily measurements from the two-tiered satellite constellation. These measurements experimentally map 130 

regional methane hotspots and localize methane super-emitters across the United States, China, the Middle East (Iraq and 131 

Kuwait), and North Africa (Algeria). The acquisitions are mostly taken between April 2020 and January 2022.  132 

2.2 Two-tiered methane retrievals 133 

In the first tier of our framework, we employ the operational TROPOMI methane products onboard the Sentinel 5 satellite. 134 

The target product is the column-averaged dry-air volume mixing ratio of methane (XCH4), which is retrieved simultaneously 135 

with scattering properties of the atmosphere. The operational retrieval algorithm is based on RemoTeC (Butz et al., 2009; 136 

Hasekamp and Butz, 2008), which is originally developed for CO2 and methane retrievals from GOSAT observations (Butz et 137 



 

6 

 

al., 2011). It attempts to fit spectra observed by the TROPOMI-based NIR and SWIR channels. Its sensitivities to atmospheric 138 

scattering properties, atmospheric input data, and instrument calibration errors have been extensively evaluated (Sha et al., 139 

2021; Verhoelst et al., 2021). As a result, the operational products are proved to be critically stable, with a convergence rate 140 

of 99% and high significance as compared with both satellite-based (e.g., GOSAT) and ground-based (e.g., TCCON) 141 

measurements. The required accuracy and precision of < 1 % for the XCH4 product are met for clear-sky measurements over 142 

land surfaces and after appropriate filtering of difficult scenes. Moreover, the forward model error is less than 1 % for about 143 

95 % of the valid retrievals. Model errors in the input profile of water do not influence the retrieval outcome noticeably. The 144 

methane product is expected to meet the requirements if errors in input profiles of pressure and temperature remain below 0.3% 145 

and 2 K, respectively. Of all instrument calibration errors, the retrieval results are the most sensitive to an error in the instrument 146 

spectral response function of the shortwave infrared channel. 147 

In the second tier of our framework, we apply the matched-filter algorithm to calculate per-pixel methane enhancements with 148 

respect to background levels based on the SWIR sample spectrum (i.e., the 2100 - 2450 nm window) onboard the PRISMA 149 

(Foote et al., 2020; Guanter et al., 2021; Irakulis-Loitxate et al., 2021). In theory, the retrieval method can depend on 150 

physically-based or data-driven algorithms. The former aims to explicitly resolve the radiative transfer between the surface, 151 

the atmosphere, and the hyperspectral spectrometers. A key representative is the family of differential optical absorption 152 

spectroscopy (DOAS) methods (Cusworth et al., 2019, 2020, 2021b, 2021a). The latter seeks a methane absorption spectrum 153 

across a hyperspectral image using statistical methods. It is commonly based on the matched-filter and the singular vector 154 

decomposition concepts. These methods are both widely applied and evaluated, especially for observations from instruments 155 

deployed on satellite (e.g., PRISMA, GF-5, and ZY-1) and airborne (e.g., AVIRIS and AVIRIS-NG) platforms (Cusworth et 156 

al., 2020; Foote et al., 2020; Guanter et al., 2021; Irakulis-Loitxate et al., 2021; Thompson et al., 2016; Thorpe et al., 2016). 157 

In this study, the data-driven retrieval based on the matched-filter concept is used. The main reason is that it can implicitly 158 

account for potential radiometric and spectral errors in satellite-based imaging spectroscopy. For instance, vertical striping is 159 

prevalent in hyperspectral measurements due to detector inhomogeneity, thus substantially degrading methane retrievals. The 160 

matched-filter algorithm focuses on the individual columns rather than the whole scene to resolve methane enhancements. 161 

This means that the methane enhancement per column is calculated separately (i.e., methane enhancements were calculated 162 

on a per-column basis). More explanations can be found in Guanter et al. (2021). Besides, the physically-based method requires 163 

background concentrations that are difficult to determine around the super-emitters. In contrast, the data-driven method is 164 

independent of background levels and can directly seek methane enhancements. Finally, the data-driven method generally has 165 

a substantially superior computational efficiency compared to the physically-based method.  166 

The matched-filter retrieval used here is similar to the one used by Thompson et al. (2016) for the Hyperion imaging 167 

spectrometer onboard the EO-1 satellite. The calculation process of methane enhancements (ΔXCH4, ppb) is as follows. 168 

𝚫𝐗𝐂𝐇𝟒(�⃗� ) =
(�⃗� −�⃗⃗� )𝐓𝚺−𝟏𝐭 

𝐭 𝐓𝚺−𝟏𝐭 
 (Eq. 1). 169 
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The �⃗⃗�  denotes the spectrum under analysis. The �⃗⃗�  and 𝚺  represent the mean background radiance and corresponding 170 

covariance, respectively. The �⃗⃗�  and 𝚺 represent the mean value and covariance of the background radiance, respectively. To 171 

avoid any contamination of the target spectrum into these background parameters, we estimate them with an iterative approach 172 

by removing all gas enhancement signals. More technical details are reported in previous studies (Foote et al., 2020). Note 173 

that, owing to the non-uniform response of individual detectors in PRISMA, enhancements are calculated based on per-column 174 

spectrums in order to consider different responses of across-track sensors to radiance. The 𝒕  is the target spectrum that reflects 175 

the background radiance enhanced by the methane plume. It is generated by the elementwise multiplication of  �⃗⃗�  and  �⃗⃗� , This 176 

implicit parameter �⃗⃗�  represents a unit methane absorption spectrum derived from a look-up table simulated by the MODTRAN 177 

radiative transfer model. Similarly, the spectral convolution is also performed on a per-column basis.  178 

In principle, it would be more difficult to detect methane enhancements in pixels over low-albedo surfaces. Although methane 179 

absorption is independent of albedo, the resulting signal in absolute radiance is weakened with decreasing surface albedo. A 180 

major measure to compensate for the albedo effect is to scale the target spectrum 𝒕  by the pixel-specific albedo factor due to 181 

the fact that the Beer–Lambert absorption law depends on the initial radiance in the absence of the absorber. Here the pixel-182 

specific scalar 𝒇 is calculated based on the spectral average �⃗⃗�  and the analysis spectrum �⃗⃗�  as follows: 183 

𝒇 =
�⃗⃗� 𝑻𝝁

𝝁𝑇𝝁
. (Eq. 2) 184 

ΔXCH4 is then scaled by this pixel-specific scalar (𝒇) and thus normalized by the albedo term, similar to the per-pixel 185 

normalization in previous hyperspectral analysis (Kraut et al., 2005). The premise to launch the matched-filter algorithm is the 186 

accurate knowledge of the response of the instrument spectra to the methane absorption nature. To this end, the objective is to 187 

gain the best fit between the simulated and reference spectra. An initial step is thus conducted to update the spectral calibration 188 

for the channels within the 2100 - 2400 nm window, in which the channel wavelength centre and width are updated for each 189 

across-track position in each scene. Other details are illustrated in previous attempts (Foote et al., 2020; Guanter et al., 2021; 190 

Irakulis-Loitxate et al., 2022).  191 

2.3 Two-tiered attribution of methane hotspots and plumes 192 

In the first tier of our framework, we apply visual inspection to identify methane hotspots using the TROPOMI-based methane 193 

retrievals. The transformation from visual inspection to automatic recognition would significantly advance long-term, global 194 

methane monitoring. However, no satisfactory set of criteria was found that could be suitable for this study. This was mainly 195 

because, in localized regions, methane budgets respond to the changes in not only super-emitters but also complex external 196 

factors (e.g., meteorology, topography, and background concentrations). Similar compromises are also adopted in previous 197 

studies. Therefore, automatic recognition enabled by artificial intelligence would play an essential role in a versatile spaceborne 198 

architecture for long-term, global methane monitoring (Ouerghi et al., 2021; Paoletti et al., 2018; Yang et al., 2018; Yu et al., 199 

2017; Zhang et al., 2018).  200 
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Regarding the identified methane hotspots, we utilize a Boolean mask to select plume-influenced pixels downwind of the 201 

source. The background distribution (mean ± standard deviation) is defined by an upwind sample of the measured columns, in 202 

which the hourly wind field data come from the ERA5 reanalysis dataset produced by the European Centre for Medium-Range 203 

Weather Forecasts (ECMWF) (Hoffmann et al., 2019). We then sample the surrounding (5 × 5) pixels centred on each pixel 204 

and compare the corresponding distributions to the background distribution based on a Student’s t-test. Pixels with a 205 

distribution substantially higher than the background at a confidence level of 95% are assigned to the plume. More details in 206 

the Boolean plume mask can be found in previous studies (Pandey et al., 2019; Varon et al., 2018).  207 

Regarding the identified regional hotspots, we also apply visual inspection to search for plumes within their surrounding 30 208 

km scales (i.e., corresponding to the swath width of PRISMA) in the second tier of our framework (Irakulis-Loitxate et al., 209 

2021; Lauvaux et al., 2022; Martin et al., 2018; Varon et al., 2020). To date, it is still challenging to distinguish methane 210 

plumes in hyperspectral images using full physically-based algorithms. The main cause is potential methane retrieval artifacts 211 

from hyperspectral satellites that are spatially correlated to surface features. Specifically, we manually search for methane 212 

enhancement pixels with gas-plume-like shapes, i.e., high methane enhancements progressively decreasing downwind. The 213 

resulting pixels are subsequently compared to the spectral radiance data at the 2300 nm absorption feature sensitive to low 214 

surface albedos. In this way, the fake positives due to specific surface features are prevented. On this basis, the candidate pixels 215 

are overlaid over simultaneous (i.e., hourly) wind fields and high-resolution imageries in individual scenes. They would be 216 

considered to be true plumes if they roughly align with simultaneous wind direction and originate from explicit infrastructures. 217 

Here the high-resolution satellite imageries are taken from the Google Map. The hourly wind field data also come from the 218 

ERA5 reanalysis dataset. Finally, we manually draw polygons to mask such resulting plumes. As preparation for plume 219 

emission quantification, we remove the background using the threshold of the median values of the scenes. 220 

These satellite imageries allow us to categorize methane plumes within narrow spatial scales between 50 to 500 m2, such as 221 

O&G extraction platforms, storage tanks, and compressor stations. They even enable the attribution of plumes to specific 222 

emission ports in individual sources due to their very high resolution. Furthermore, we could name them based on points of 223 

interest in the Google Map. On this basis, such sources could be visually retrospected via long-term, high-resolution (i.e., 10 224 

m) satellite images from the Sentinel-2 mission (Ehret et al., 2021; Varon et al., 2021). Their key details, like ages and statuses 225 

(e.g., active or inactive), are thus collected reliably. Note that, regarding such information, national reports are typically 226 

credible but inaccessible, particularly in global missions. In addition, it should be highlighted that, in high source regions, such 227 

as megacities, there are likely super-emitters that are undetectable following our method. Other causes are discussed in 228 

uncertainty analysis in Supplement Information. 229 

2.4 Two-tiered quantification of methane emissions 230 

In our framework, we calculate the total excess mass of methane in kilograms in the detected hotspots (in the first tier) and 231 

plumes (in the second tier) using the so-called integrated mass enhancement (IME) model (Frankenberg et al., 2016; Varon et 232 

al., 2018). To make conservative estimates, we define the background levels as the 10% of the average methane concentrations 233 
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in the TROPOMI-based and PRISMA-based scenes (Figs. 1b ~ 1g) (Frankenberg et al., 2016; Varon et al., 2018). On this 234 

basis, we eliminate the interferences from the background concentrations and calculate IMEs as the methane masses of the 235 

masked hotspots and plumes. 236 

Overall, this method links the emission rate (𝑸) with the measured IME via the residence time of methane (𝑰𝑴𝑬/𝑸). This 237 

residence time relies on an effective wind speed (𝑼𝐞𝐟𝐟) and a characteristic plume size (𝑳) as follows: 238 

𝑸 =
𝑼𝐞𝐟𝐟⋅𝐈𝐌𝐄

𝑳
. (Eq. 3) 239 

Specifically, the 𝑰𝑴𝑬 and 𝑳 can be inferred from the observations of the hotspots or plumes. During this process, we carefully 240 

apply a Boolean plume mask that separates the pixels (𝒊) with notable signals (∆𝜴𝒊) from background pixels and thus defines 241 

the total areas (𝜮𝒊=𝟏
𝑵 𝑨𝒊) of the hotspots or plumes. The 𝑳 is defined as the square root of the total plume areas. Hence, the 𝑰𝑴𝑬 242 

is calculated as follows: 243 

𝐈𝐌𝐄 = 𝚺ⅈ=𝟏
𝐍 ∆𝛀ⅈ𝑨𝒊. (Eq. 4) 244 

In the first tier of our framework, the effective wind speed (𝑼𝐞𝐟𝐟) is defined as the 10-m wind speed 𝑼𝟏𝟎 obtained from the 245 

ERA5 reanalysis dataset. According to the detected hotspot, the value at the nearest hour and location are used.  246 

In the second tier of our framework, we apply an ensemble of large eddy simulations (LES) to establish an empirical, linear 247 

relationship between 𝑼𝐞𝐟𝐟 and the measured 10-m wind speed 𝑼𝟏𝟎 as follows (Fig. S8) 248 

𝑼𝐞𝐟𝐟 = 𝟎. 𝟖𝟔𝟎𝟐𝑰𝒏(𝑼𝟏𝟎) + 𝟏. 𝟏𝟓𝟏𝟑. (Eq. 5) 249 

The configurations of these simulations, such as spatial resolution and precision, are comparable to our PRISMA data. Other 250 

details in this methodology were described in Varon et al. (2018) (Varon et al., 2018).  251 

We estimate the uncertainties of 𝑸 by propagating the random errors in 𝑼𝟏𝟎 and 𝐈𝐌𝐄. This processes have been described in 252 

previous studies (Cusworth et al., 2019, 2021b; Irakulis-Loitxate et al., 2021). As shown in previous findings, the major error 253 

source come from the 𝑼𝟏𝟎 term, which typically has a random error of 50%. On this basis, this error is integrated quadratically 254 

with the standard error of the 𝐈𝐌𝐄, the result of which can be treated as the final random error of 𝑸. The intrinsic errors of the 255 

IME model are quantified in the following uncertain analysis. As demonstrated in the Supplementary Information, our 256 

comprehensive uncertainty analysis establishes the robustness of our estimates, with uncertainties being entirely controllable 257 

within a range of -70% (Table S1). Such uncertainties are also used and shown in Figs. 1 ~ 4. 258 

2.5 Uncertainty Analysis 259 

The objective of this work is to promote a two-tiered satellite constellation that can monitor global methane pledges. To better 260 

understand the performance of our framework, we conduct comprehensive uncertain analysis. Note that the protocol of the 261 

uncertain analysis on our framework we need to account for originates from previous studies (Irakulis-Loitxate et al., 2021; 262 

Varon et al., 2020). Specifically, we require to account for the uncertainties in the TROPOMI-based and PRISMA-based 263 

methane retrievals and subsequent emission estimates. Therein the operational TROPOMI-based methane retrieval products 264 

have been evaluated strictly and proved to be reliable globally (except in low- and high-albedo and snow-covered areas) 265 
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(Lorente et al., 2021; Sha et al., 2021). In this work, we thus focus on three main sources of uncertainties, specifically including 266 

(1) uncertainties in the PRISMA-based methane retrievals; (2) uncertainties in the TROPOMI-based methane emission 267 

estimates; and (3) uncertainties in PRISMA-based methane emission estimates. During the analysis for the latter two uncertain 268 

sources, we would further investigate the potential wind impacts on the methane emission estimates. Note that it remains 269 

challenging to directly quantify the uncertainties in the wind fields across our cases due to the lack of measurements. We would 270 

thus assess the variations in the methane emission estimates driven by distinct wind data. From such analysis, we could confirm 271 

the reliable performance of our framework. Details can be found in Supplementary Information. 272 

The detection limit of this framework depends mainly on the TROPOMI-based and PRISMA-based methane retrievals, which 273 

have been well discussed in previous studies (Guanter et al., 2021; Hu et al., 2018). As the robust relationship between the 274 

“minimum source” and the related methane enhancement developed by Jacob et al. (2016) and Guanter et al. (2021) shows, 275 

the detection threshold for the TROPOMI instrument is 4000 kg/h with a wind speed of 5 km/h. Following the same 276 

relationship for the PRISMA instrument, we estimate that a retrieval precision of 114 ppb (6.1% with the assumed background 277 

concentration of 1850 ppb), such as in the case of the Hassi Messaoud site (Fig. S10e1), would lead to a detection limit of 800 278 

kg/h for the same wind speed (analogous to the reported range of 500 ~ 900 kg/h) (Guanter et al., 2021; Irakulis-Loitxate et 279 

al., 2022). Similar instruments and detection limits are generally comparable to emissions from anthropogenic sectors, like 280 

O&G and coal mines in this study or landfills, agriculture, and waste management in previous studies (Lauvaux et al., 2022; 281 

Maasakkers et al., 2023; Sadavarte et al., 2021). However, no conclusive evidence shows by far that short-term (e.g., daily) 282 

satellite-based measurements with such detection limits can capture methane hotspots driven by natural sources (e.g., wetlands). 283 

In contrast, long-term (e.g., year-round) satellite-based measurements with much higher detection limits have shown potential 284 

for monitoring natural methane hotspots (Pandey et al., 2021).  285 

3 Results and discussions  286 

3.1 Two-tiered imaging of global methane hotspots and super-emitters 287 

Figure 1 presents representative sets of methane hotspots and associated super-emitters across the United States, China, the 288 

Middle East (Iraq and Kuwait), and North Africa (Algeria) via our two-tiered satellite constellation. Each group first clarifies 289 

a methane-abundant region and further focuses on explicit super-emitters. Among them, five methane-abundant regions are 290 

captured in Wattenberg (the United States), Yangquan (China), Rumaila (Iraq), Burgan (Kuwait), and Hassi Messaoud (Algeria) 291 

(Fig. 1a and Table S1). These account for 4805 ~ 46138 kg/h methane emissions based on our daily first-tiered (i.e., 292 

TROPOMI-based) monitoring. From the perspective of a state-of-the-art global methane emission inventory (i.e., 293 

EDGARv6.0), such high values rank among the top 1% regarding emission intensities per unit area (km2) (Fig. S1) (Crippa et 294 

al., 2020). The Rumaila field, for example, is known as the largest oil field in Iraq (in terms of both reserves and yields). In 295 

this work, it is found with a significant methane emission intensity exceeding 45000 kg/h (Fig. 1b). Besides the well-known 296 
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oil fields (Figs. 1c ~ 1f), methane hotspots have also emerged in developing coal mine fields such as the Yangquan field, which 297 

exhibit comparable emission levels (> 30000 kg/h) (Fig. 1g). 298 

We attribute these methane enhancements to specific methane plumes via the second-tiered (i.e., PRISMA-based) monitoring 299 

(Figs. 1b1 ~ 1g2). There are substantial variations in the methane plumes’ amounts, types, and magnitude, even in a single 300 

methane-abundant region. For instance, in the Burgan field, the second-tiered monitoring detects up to eight methane plumes 301 

in a handful of grids in the first-tiered monitoring (Figs. 1c1 ~ 1c4 and 1d1 ~ 1d4). Such intensive distributions are also found 302 

in previous region-oriented surveys in the Permian basin and California (Duren et al., 2019; Irakulis-Loitxate et al., 2021). 303 

Together with high-definition images (Fig. S2), we find that such plumes originate from various sources, such as flares, 304 

factories, and wells. A breakthrough is the capture of two distinctive plumes in an individual methane source with extremely 305 

high emissions (> 10000 kg/h), unprecedented in previous satellite-based exploration and only observable in aircraft surveys 306 

(Fig. 1b1). Such precise distinctions benefit from the high resolution of the second-tiered monitoring, despite being limited by 307 

the relatively higher detection threshold (~ 800 kg/h). Besides, factories and wells can also emit such evident plumes (Fig. 1c1 308 

and Figs. 1e1 and 1e2). By comparison, other plumes are typically more diffuse but with comparable emission magnitude (~ 309 

1000 ~ 7000 kg/h).  310 

Note that the above results represent only snapshots at the overpass moments of the satellites (i.e., TROPOMI and PRISMA) 311 

(Figure 1). Specifically, for a given set (including both a methane-abundant region and associated super-emitters), the overpass 312 

timing of TROPOMI can be nearly concordant with that of PRISMA in some cases. For instance, within only two days (August 313 

18th and 19th, 2021, November 15th and 17th, 2021), our two-tiered satellite constellation goes through the Hassi Messaoud 314 

field and the Yangquan coal mine and provides in-depth views of methane budgets, including methane-abundant regions and 315 

their drivers (Figs. 1e and 1g). Even, in just one day (July 7th, 2021), our two-tiered satellite constellation not only uncover 316 

methane enhancements in the Wattenberg field (Fig. 1f) but also track them back to explicit methane super-emitters (Figs. 1f1 317 

and 1f2). As expected, if we extend the monitoring window of our framework to years, more methane super-emitters are 318 

subsequently captured (Fig. S3). Moreover, our framework via two-tiered satellite constellation paves an in-time way for 319 

routine monitoring of global methane hotspots and associated super-emitters.  320 

3.2 Two-tiered verification of global methane super-emitters 321 

Four unexpected cases occur in Burgan (Iraq), Hassi Messaoud (Algeria), and Yangquan (China), potentially explainable if 322 

we take mutual verification of the first- and second-tiered monitoring into consideration. First, an anomalous methane plume 323 

is detected in the Burgan field (Fig. 1c4) of high emission magnitude (> 1500 kg/h), notably exceeding typical O&G facilities, 324 

from an elusive source (i.e., no clear source could be attributed) (Fig. S2). The long-term measurements of our two-tiered 325 

satellite constellation intermittently, rather than accidentally, observe this abnormal plume (Figs. S4). Furthermore, uncertain 326 

analysis (see Materials and Methods) helps to confirm this real plume. In particular, the methane plumes are clearly 327 



 

12 

 

uncorrelated with the surface brightness from space (Fig. S4). Consequently, the most likely hypothesis for this super-emitter 328 

is methane leakage from gigantic O&G pipelines as shown in the Google Map (Fig. S2).  329 

Second, we observe suspect trails of methane plumes above the storage tanks in the Burgan field (Fig. 1d4). Conceivably, the 330 

technical noise driven by albedo effects bore the brunt, although it is believed to be corrected reliably (See Materials and 331 

Methods). To this end, we apply a multi-spectral retrieval algorithm to eliminate this effect to a large extent. We utilize two 332 

spectral bands to launch the matched-filtered algorithm separately: one that is highly sensitive to methane absorption (i.e., 333 

2300 nm) and another that is much less sensitive (i.e., 1700 nm) but exhibit similar surface and aerosol reflectance properties. 334 

Figure S5 shows that the 2300 nm -driven matched-filtered algorithm result in noticeable methane vestiges above the storage 335 

tanks, while the 1700 nm-driven algorithm does not. Consequently, we provide evidence that un-negligible methane emissions 336 

(> 3500 kg/h) may very well be the only explanation, likely related to fugitive methane leaks from the storage tanks. This has 337 

previously only seen in aircraft-based surveys (Frankenberg et al., 2016). Therefore, our two-tiered outcomes indicate there 338 

are more widespread methane leaks than have been previously detected. Note that the multi-spectral retrieval algorithm cannot 339 

completely remove the albedo effects on our results. However, our methods could lead to targeted on-site re-inspection on 340 

O&G fields worldwide. 341 

Third, our framework detects a new methane super-emitter in the Hassi Messaoud field on December 7, 2021 (Fig. 1e4). By 342 

revisiting historical satellite images in the second-tiered monitoring (Fig. S6), we could confirm that this super-emitter arose 343 

between October 18th and November 12, 2021. These results indicate that monitoring of global methane super-emitters can 344 

attain monthly resolution via current satellite constellations alone. More satellites could capture changes during even shorter 345 

time windows. Fourth, a distinct methane plume appears in a coal mine in a mountainous area (in the Yangquan field, China), 346 

exceeding all of the detected O&G super-emitters regarding the emission rate (> 7000 kg/h) (Fig. 1g1).  347 

Figure 2 illustrates the extent to which the second-tier of our two-tiered satellite constellation explains the regional budget 348 

detected by the first tier. Overall, the share of the regional budget due to the plumes ranges from 8.2% (Hassi Messaud) to 53.8 349 

~ 65.9% (Rumaila, Burgan, and Wattenberg). Note that such contribution estimates might occasionally exceed 100% mainly 350 

owing to the different overpass time between the first- and second-tier monitoring. By comparison, the relatively low but still 351 

significant contributions in the Hassi Messaoud field (8.2%) and Yangquan coal mine (35.7%) are partly due to the technical 352 

limitation of our framework in detecting methane plumes on top of high background levels. Collectively, the heavy-tail law of 353 

methane plume distributions, early reported for regional O&G fields (like the Permian basin and California) (Duren et al., 354 

2019; Irakulis-Loitxate et al., 2021), is possibly applicable worldwide. To further explore such a hypothesis, we extend the 355 

temporal sample window of our two-tiered framework. Using year-round snapshots in the second tier of our framework, we 356 

inspect the identified super-emitters (Figs. 1b ~ 1g) repeatedly and find more methane plumes as expected (Fig. S3). This 357 

reinforces our hypothesis of the widespread occurrence of methane super-emitters.  358 

Note that there are differences in the order of magnitude between the TROPOMI-based and PRISMA-based results. The main 359 

cause is that the TROPOMI-based and PRIMSA-based results represent the methane emissions from different spatial scales. 360 

The former results represent region-scale methane budgets, while the latter ones resolve the emission magnitude from the 361 
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individual methane super-emitter therein (Fig. 1). Although the latter results can explain a large fraction of the former ones 362 

(Fig. 2), the gaps remain mainly due to different overpass time between the two-tiered results or sources still missed by the 363 

PRIMSA-based results. In other words, closing the temporal gaps between the two tiers or improving the detection ability of 364 

the second tier would help to reconcile the first- and second-tiered results. 365 

A regional survey in a California field provides some useful data for evaluating our results, owing to its utilization of systematic 366 

airborne measurements to detect and quantify methane super-emitters (Duren et al., 2019). The California survey aims to 367 

provide the first view of methane super-emitters across the state. This survey was conducted with the Next Generation Airborne 368 

Visible/Infrared Imaging Spectrometer (AVIRIS-NG), with 5 nm SWIR spectral sampling, 1.8 km view field, 3 m horizontal 369 

resolution, and 3 km cruise altitude, and included five campaigns over several months from 2016 to 2018. Moreover, this 370 

instrument is unique due to its high signal-to-noise ratio and is capable of characterizing methane super-emitters with emissions 371 

as small as 2 ~ 10 kg/h for typical surface winds of 5 m/s. The survey reports 1181 methane plumes, more than 500 times the 372 

number of plumes reported by previous aerial studies (Englander et al., 2018), with a median emission intensity of 170 kg/h. 373 

These results are thus used to directly evaluate the outcomes in the second tier (Fig. 3). Even though some regions of interest 374 

in our study are far less well known than the California fields, their emission intensities are much higher. Specifically, the 375 

plumes detected by the second-tiered monitoring have emission intensities (1142 ~ 11698 kg/h) that exceed the median value 376 

in the California field.  377 

Satellite observations taken over the Permian basin (one of the top O&G bases worldwide) from 2019 to 2020 (Irakulis-378 

Loitxate et al., 2021) provide additional comparison data (Fig. 3). The Permian survey took advantage of imaging spectroscopy 379 

technologies to provide the first spaceborne region-scale and high-resolution survey of methane super-emitters in the Permian 380 

basin. This survey acquired 30 hyperspectral images from three satellite missions, including Gaofen-5, ZY1, and PRISMA, 381 

and focuses on an area of roughly 200 × 150 km2 in the Delaware sub-basin of the Permian basin within several days (mostly 382 

on four different dates: 15 May 2019, 1 November 2019, 29 December 2019, and 8 February 2020). More technical details on 383 

these two surveys can be found in previous studies (Duren et al., 2019; Irakulis-Loitxate et al., 2021). Compared to the surveys 384 

in the California field, those in the Permian basin reported a much higher number of strong methane super-emitters, the median 385 

emission rates (1850 kg/h) much closer to ours (2888 kg/h). Collectively, although such comparisons are not quantitative due 386 

to many differences in measurement characteristics (e.g., spatial resolution and detection limit), they provide context for the 387 

emission magnitudes of the methane super-emitters we have identified and indicate that our results are within the range of 388 

values obtained from field campaigns. More importantly, these results highlight the urgent need for global monitoring of 389 

‘nameless’ O&G facilities that possibly emit as much methane as the California field and Permian basin. 390 

 3.3 Two-tiered challenges of national emission inventories 391 

Comparing emissions from our two-tiered approach with a state-of-the-art methane emission inventory (EDGARv6.0) for 392 

2018, (Fig. 4), we find that our emission estimates using TROPOMI data over methane hotspots are roughly consistent with 393 
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the inventory, with biases ranging from -49.9% to 91.8% with an average bias of 63.2%. The exception is the Hassi Messaoud 394 

field in Algeria where the O&G sector is in rapid development: here our estimate is 498.2% of the EDGARv6.0 inventory. On 395 

the other hand, our estimates using PRISMA data over plumes are orders of magnitude greater than the EDGARv6.0 emissions. 396 

This suggests that traditional emission inventories may have acceptable performance for methane abundant regions but may 397 

grossly underestimate emission from methane super-emitters. 398 

There are a number of possible explanations for the low estimates from EDGARv6.0. First, to establish bottom-up methane 399 

emission inventories, we need to allocate area sources to regular grids based on spatial information, like nighttime lights (so-400 

called spatial proxies) (Geng et al., 2017). Outdated spatial proxies might explain the large divergence between our plant-based 401 

estimates and the EDGARv6.0 (Fig. 1b1 and Fig. S7). Moreover, the EDGARv6.0 is designed for the year 2018, missing the 402 

newly established O&G plants with high methane emissions. Second, in principle, conventional inventories directly miss high 403 

emissions caused by abnormal operations (e.g., equipment failures) (Fig. 1c4 and Fig. S8) such as the O&G  blowout (Pandey 404 

et al., 2019). Generally, because of technical difficulties or safety risks, we have to compromise to measure such abnormal 405 

emissions downwind rather than on sites. (Alvarez, 2018). 406 

Third, the above divergence between our plant-based estimates and the EDGARv6.0 might also be explained by other causes 407 

such as outdated emission factors. Empirically, a bottom-up inventory, once optimized by direct measurements, can raise total 408 

methane emissions by ~ 60%, although source categories vary substantially (Alvarez, 2018). Besides, temporal variability 409 

might also explain top-down and bottom-up differences in methane emission estimates. For instance, the peak emission rate 410 

could exceed 40% higher than the average, which might occur in the middle afternoon due to specific processes, like episodic 411 

venting from manual liquid unloading (Vaughn et al., 2018). This aligns with the sampling time of the satellites, thus biasing 412 

bottom-up inventories. Collectively, it is necessary to carefully consider all factors affecting methane emissions, including 413 

emission factor updating and spatiotemporal variations, in order to develop effective strategies for mitigating methane 414 

emissions. 415 

3.4 Implications for global methane monitoring 416 

We have presented a two-tiered, space-based framework that can harmonize planet-scale and plant-level methane retrievals 417 

(Fig. 5). We have demonstrated this framework with examples from around the world, with synergistic, proactive detections 418 

on the methane-abundant regions and methane super-emitters across the United States, China, the Middle East (Iraq and 419 

Kuwait), and North Africa (Algeria). We have located new methane super-emitters, tracked potential methane leakages from 420 

storage tanks, and resolved multiple methane plumes from a single source. Such achievements are mostly unprecedented in 421 

satellite surveys and only observed in aircraft campaigns. On this basis, our results suggest inventories miss unknown super-422 

emitters and underestimate emission magnitudes, partly due to a surge in the number of oil and gas (O&G) facilities and 423 

widespread abnormalities in O&G operations. Our data prove that existing satellite missions can already lead to immediate, 424 

proactive monitoring of global methane pledges, in contrast to existing surveys that have to focus on a priori methane-abundant 425 
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regions. While window for achieving the Paris target is rapidly closing, our approach can provide improved methane emission 426 

estimates before the deployment of more advanced instruments, which can also be integrated into our system, like MethaneSAT 427 

and SBG in the United States, EnMAP in Germany, a new version of GF-5 in China, and, later, the European Space Agency’s 428 

CHIME from 2025 to 2030 (Cusworth et al., 2019).  429 

It should be noted that the multi-tiered framework is extremely flexible. (Fig. 5). First, it can harmonize multiple satellites. 430 

The potential representatives include upcoming official missions (e.g., the GF-5) (Irakulis-Loitxate et al., 2021), current private 431 

constellations (e.g., the GHGSat series) (Jervis et al., 2021; Varon et al., 2020), and explorable multispectral products (e.g., 432 

the Worldview-3 and Sentinel-2) (Sánchez-García et al., 2021). Second, the framework is not confined to satellites and can be 433 

expanded by integrating in situ (e.g., Global Atmosphere Watch Programme) (World Meteorological Organization, 2022), 434 

aircraft, and unmanned aerial vehicles (UAVs) (Cusworth et al., 2020; Gålfalk et al., 2021; Tuzson et al., 2020). Note that such 435 

a multi-tiered framework based on multiple satellites, aircrafts, and UAVs will provide greater spatial coverages and more 436 

frequent revisits. This flexibility will provide effective, efficient, and economic monitoring of global methane pledges, though 437 

this will require careful balancing of coverage and resolution between instruments. This will be the topic of our next study. 438 

Third, nighttime methane monitoring is important because abnormal leakages or pulses might also occur during nighttime 439 

(Plant et al., 2022; Poindexter et al., 2016). In these events, LIDAR instruments (e.g., MERLIN) (Ehret et al., 2017) can retrieve 440 

methane fluxes day and night at all latitudes, in all-seasons, and in all-weather. Fourth, better characterizing methane vertical 441 

profiles would help to optimize our analysis, by minimizing the uncertainties in tropospheric air mass factors and subsequent 442 

methane enhancements. Finally, rapid advances in artificial intelligence (AI) techniques can significantly speed up the 443 

detection of faint signals from methane enhancements, and to significantly optimize data-driven algorithms of methane 444 

emission estimates (Reichstein et al., 2019; Yuan et al., 2020). In principle, subsequent mitigation of such super-emitters via 445 

routine maintenances, leak detections, or emergent repairs can provide effective, efficient, and economic solutions toward the 446 

Paris target (Mayfield et al., 2017). 447 

These outcomes have important ramifications for low- and middle-income countries. World powers, like the United States and 448 

European Union, lead new national methane pledges. They are separately on the way to creating vast operational infrastructures 449 

to monitor ambitious climate goals. Still, large gaps remain in coverage. This is especially true for low- and middle-income 450 

countries, where tight budgets dim the hopes for filling these gaps by 2030, while methane emissions are likely to rise as 451 

countries continue to develop. In this context, the present framework can serve as a cost-effective component of the global 452 

methane monitoring network and thus support fair climate negotiations between countries.  453 

This framework harmonizes global-scale and high-resolution methane retrievals, with a dual focus on mapping region-scale 454 

and plant-level drivers. In this work, the framework reconciles the spacious swath of TROPOMI (i.e., ~ 2600 km) with the 455 

high resolution of PRISMA (i.e., 30 × 30 m2), in contrast to conventional satellite-based surveys that were of either insufficient 456 

samplings or narrow views. Looking forward, developments of Earth’s monitoring platforms (e.g., satellites, aircrafts, and 457 

UAVs) and AI will continue to strengthen the performance of methane plume retrievals and emission estimates. On eve of the 458 
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Paris target, at least while a super methane satellite with spacious swath, high resolution, and agile analysis is not in place, our 459 

multi-tiered satellite constellation has important implications for measuring global methane pledges.  460 
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Fig. 1. Methane hotspots and associated super-emitters across the United States, China, Iraq, Kuwait, and Algeria via 462 

the two-tiered daily satellite constellation. (a) Methane-abundant regions and associated super-emitters are captured by the 463 

TROPOMI and PRISMA, respectively. Their locations are marked by black rectangles and dots. Their names are obtained 464 

from the Google Map, and are usually the names of the nearest O&G fields and coal mines. (b ~ g) Each row presents a 465 

methane-abundant region and the super-emitters detected within it (b1 ~ b4, c1 ~ c4, d1 ~ d4, e1 ~ e4, f1 ~ f2, and g1 ~ g2). 466 

For each super-emitter (five-pointed stars), the overpass moments of the two-tiered satellite constellation and the consequent 467 

emission estimate are presented. The base maps were obtained from © Google Map. The second color bar for the PRISMA is 468 

suitable for the super-emitters in China, while the first applies for other countries. Plume sources in the PRISMA results are 469 

marked by red circles.  470 
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 471 

Fig. 2. High contributions of methane super-emitters to corresponding regional methane budgets. 472 

 473 

Fig. 3. Comparison of emission estimates of methane plumes between surveys. The surveys for the California field and 474 

Permian basin are selected as the references. They report 1181 and 39 methane plumes, while our second-tiered survey attempts 475 

29 plumes. Violin plots show statistical distributions of methane plume emission rates for these surveys. For each survey, the 476 

grey dots refer to the emission rates of the individual plumes and the red dot represents the median value. The shading 477 

represents the number distribution of the methane plumes with different emission rates.  478 

 479 
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 480 
Fig. 4. Two-tiered emission estimates versus bottom-up emission inventories. We first interpolate the bottom-up emission 481 

inventories into the resolution consistent with our two-tiered results. On this basis, the bottom-up emission rates in the grids 482 

that the detected hotspots and plumes cover are summed up to compare with the results. The detected hotspots (yellow dots) 483 

and plumes (blue dots) correspond to those as shown in Fig. 1. The 1:1 line is shown by grey dashes. 484 
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 485 

Fig. 5. Multi-tiered satellite framework for immediate global methane monitoring. The images of the TROPOMI, 486 

MethaneSAT, PRISMA, and EnMAP are obtained from http://www.tropomi.eu/, https://www.methanesat.org, 487 

https://www.asi.it/en/earth-science/prisma/, and https://www.enmap.org/, respectively. The methane maps from the 488 

TROPOMI and PRISMA refer to the results in Figs. 1e and 1b1. The grey marks indicate upcoming platforms (i.e., 489 

MethaneSAT and EnMAP) and techniques (e.g., AI techniques that can optimize the identification and quantification of 490 

methane super-emitters).   491 

http://www.tropomi.eu/
https://www.methanesat.org/
https://www.asi.it/en/earth-science/prisma/
https://www.enmap.org/
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 492 

Table 1. Spaceborne measurements for global methane monitoring. 493 

Satellite 
Coverage/ 

Swath 

Pixel Size 

(km2) 
SWIR (nm) 

Spectral 

Resolution 

(nm) 

Overpass 

(Local 

Time) 

Period Reference 

SCIAMACHY 960 km 30 × 60 1630–1670 1.4 10:00 2002–2012 
(Frankenberg et 

al., 2006) 

GOSAT 790 km 10 × 10 1630–1700 0.06 13:00 2009–present 
(Kuze et al., 

2016) 

GOSAT-2 1000 km 10 × 10 
1630–1700, 

2330–2380 
0.06 13:00 2018–present (Suto et al., 2021) 

TROPOMI 2600 km 
5.5 × 7, 

7 × 7 
2305–2385 0.25 13:30 2017–present (Butz et al., 2012) 

Sentinel-3 1420 km 0.5 × 0.5 
1580–1640, 

2230–2280 
0.025 10:00 2016–present 

(Pandey et al., 

2022) 

GHGSat 12 × 12 km2 0.05 × 0.05 1600–1700 0.3–0.7 9:30 2016–present 
(Varon et al., 

2018) 

PRISMA 30 × 30 km2 0.03 × 0.03 
1600–1700, 

2200–2500 
10 10:30 2019–present 

(Guanter et al., 

2021) 

GF-5 60 × 60 km2 0.03 × 0.03 2100–2400 10 13:30 2018–present 
(Irakulis-Loitxate 

et al., 2022) 

ZY1 60 × 60 km2 0.03 × 0.03 2100–2400 10 10:50  (Irakulis-Loitxate 

et al., 2022) 

Landsat-8 
185 × 185 

km2 
0.03 × 0.03 2300 200 10:50 2013–present 

(Ehret et al., 

2022) 

Sentinel-2 290 km 0.02 × 0.02 
1610, 

2190 
200 10:30 2015–present 

(Varon et al., 

2021) 

Worldview-3 
66.5 × 112 

km2 

0.0037 × 

0.0037 
2295–2365 50 10:30 2014–present 

(Sánchez-García 

et al., 2021) 

EnMAP 30 × 30 km2 0.03 × 0.03 
1600–1700,  

2200–2450 
10 11:00 2020–present 

(Cusworth et al., 

2019) 

EMIT 80 km 0.06 × 0.06 
1600–1700,  

2200–2510 
7.4  2022–present (EMIT, 2023) 

  494 
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