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Abstract.  31 

The global methane pledge paves a fresh, critical way toward Carbon Neutrality. However, it remains largely invisible and 32 

highly controversial due to the fact that planet-scale and plant-level methane retrievals have rarely been coordinated. This has 33 

never been more essential within a narrow window to reach the Paris target. Here we present a two-tiered spaceborne 34 

architecture to address this issue. Using this framework, we patrol the world, like the United States, China, the Middle East, 35 

and North Africa, and simultaneously uncover methane-abundant regions and plumes. These include new super-emitters, 36 

potential leakages, and unprecedented multiple plumes in a single source. More importantly, this framework is shown to 37 

challenge official emission reports that possibly mislead estimates from global, regional, to site scales, particularly by missing 38 

super-emitters. Our results show that, in principle, the above framework can be extended to be multi-tiered by adding upcoming 39 

stereoscopic measurements and suitable artificial intelligence, thus versatile for immediate and future monitoring of the global 40 

methane pledge.   41 
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1. Introduction  42 

Global methane pledges finalized at the COP26 (the 26th United Nations Climate Change Conference of the Parties) have 43 

been never more ambitious (Schellnhuber et al., 2016; Schurer et al., 2018; United Nations, 2021). More than 100 countries 44 

have promised 30% methane emission reductions by 2030. Also, energy giants (e.g., Shell and BP) have committed to clear 45 

targets of methane mitigation. Such pledges have never been more essential within a narrow window (< ten years) to reach the 46 

Paris target. The scientific context is that atmospheric methane is a powerful greenhouse gas second only to carbon dioxide 47 

(CO2),  trapping ~ 80 times more heat than the same amount of CO2 (per molecule) over a 20-year time horizon (Etminan et 48 

al., 2016; Saunois et al., 2016, 2020). Worse still, it is thought to rise since 2007 (Mikaloff and Hinrich, 2019), surge since 49 

2014 (Nisbet et al., 2019), and set another record in 2021 (National Oceanic and Atmospheric Administration, 2022). 50 

Fortunately, methane is short-lived (∼ ten years) (Shoemaker et al., 2013), and, particularly, that from human activities can be 51 

reduced in half using existing technologies by 2030 (Ocko et al., 2021).  52 

However, a classic dilemma emerges, dimming the hopes of scientists and policymakes (Masood and Tollefson, 2021). That 53 

is, on the eve of the Paris target, those targets and emissions remain largely invisible worldwide and thus hinder effective 54 

mitigation. The main issue is the Paris framework relies on countries or corporate giants to report emissions (Allen et al., 2015; 55 

Alvarez, Ramón A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt, 56 

Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb, 57 

Brian K. and Lauva, 2018; Ganesan et al., 2019). Moreover, the reports are based on indirect statistics, such as O&G inventories, 58 

rather than direct measurements (Deng et al., 2022). This leads to a broad consensus that prominent discrepancies exist between 59 

the reports. For example, field campaigns nearly double official claims of methane emissions in the United States by correcting 60 

leak detection (Alvarez, Ramón A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary 61 

R. and Brandt, Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric 62 

A. and Lamb, Brian K. and Lauva, 2018).  63 

To this end, widespread super-emitters present a unique opportunity worldwide (Duren et al., 2019; Lauvaux et al., 2022; 64 

Pandey et al., 2019; Zavala-Araiza et al., 2015, 2017). Super-emitters can generally be defined to be emission sources that 65 

comprise highly concentrated methane plumes and dominate localized methane budgets (~ 5 × 5 km2). In contrast to region-66 

scale hotspots (or area sources), they can be attributed to individual facilities (e.g., factories, chimneys, and pipelines), typically 67 

with side lengths varying from several meters to tens of meters depending on monitoring instruments. Super-emitters are 68 

typically responsible for the underestimates of methane emissions (Alvarez et al., 2018; Duren et al., 2019; Itziar et al., 2021; 69 

Lauvaux et al., 2022; Thompson et al., 2016). Moreover, there is increasing evidence that methane emissions follow a heavy-70 

tailed distribution (Duren et al., 2019; Frankenberg et al., 2016; Lauvaux et al., 2022), for which relatively small number of 71 

sources (so-called super-emitters) can account for a disproportionately large share of total emissions. In contrast to area sources 72 

(e.g., cities), super-emitters are typically coal mines, wells, gathering stations, storage tanks, pipelines, and flares, with even 73 

less than dozens of metres in diameter but high-concentrated methane plumes (Allen et al., 2013; Miller et al., 2019; 74 
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Subramanian et al., 2015; Varon et al., 2019). We thus anticipate that significant emission mitigation could be achieved by 75 

deploying well-designed systems to identify methane super-emitters. For instance, in support of the Paris agreement, the 17th 76 

World Meteorological Congress (2015) requested an Integrated Global Greenhouse Gas Information System (IG3IS) that 77 

aimed to develop a measurement framework for methane emission reductions (Phil DeCola and WMO Secretariat, 2017).  78 

To date, a large body of field measurements (e.g., in situ and aircraft surveys) between 2012 and 2020 has been designed for 79 

methane super-emitters. Despite this, they are spatially confined (e.g., regionally) and temporally infrequent (e.g., a few weeks), 80 

incapable of exploring global methane super-emitters (Alvarez, Ramón A. and Zavala-Araiza, Daniel and Lyon, David R. and 81 

Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel 82 

J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and Lauva, 2018; Conley et al., 2016; Duren et al., 2019; Marchese 83 

et al., 2015; Nisbet et al., 2020; Smith et al., 2017; Thompson et al., 2016; Thorpe et al., 2016). Today, substantial advances 84 

have been made towards detecting and quantifying methane super-emitters from space (Cusworth et al., 2019; Hu et al., 2018; 85 

Irakulis-Loitxate et al., 2022; Jacob et al., 2016; Pandey et al., 2019; Thompson et al., 2016) (Table 1). Such advances, however, 86 

have rarely been expanded to measure the global methane pledge because large-scale swath and high-resolution sampling have 87 

not been coordinated. First, global methane monitoring has become possible. A flagship satellite mission is the TROPOspheric 88 

Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor satellite (Lauvaux et al., 2022; Veefkind et 89 

al., 2012). It can offer daily global insights for methane column concentrations, with a large swath width of ~ 2600 km, a 90 

moderate resolution of 7.0 × 5.5 km2 (since August 2019), and high signal-to-noise ratios. However, its relatively coarse spatial 91 

sampling still limits its application to detect methane super-emitters (Lauvaux et al., 2022). Second, next-generation satellite 92 

missions, pioneered by the GHGSat constellation (three satellites at the moment), emerge for mapping methane super-emitters 93 

(Cusworth et al., 2019), with a narrow swath (e.g., ~ 12 km) but a ground-breaking high-resolution spatial sampling (e.g., 25 94 

~ 50 m) (Jervis et al., 2021; Varon et al., 2020). Complementary to the GHGSat constellation, satellite-based hyperspectral 95 

imager spectrometers, such as PRISMA, GF-5, ZY1, Sentinel-2, and Worldview-3, have shown great potentials (Guanter et 96 

al., 2021; Itziar et al., 2021; Sánchez-García et al., 2021; Varon et al., 2021). They can resolve methane enhancements and 97 

attribute them to specific infrastructures via similar narrow swath and high-resolution sampling (e.g., 30 m). Note that regions 98 

those satellites usually gazed at are originally well-known home to methane super-emitters. Narrow swath coverage thus 99 

remains a crucial limitation for global surveys of methane super-emitters. Collectively, existing studies still struggle to 100 

surveillance global methane super-emitters due to the fact that individual satellite missions, either TROPOIM or PRISMA, 101 

cannot coordinate large-scale swath and high-resolution sampling.  102 

To address this issue, we present a two-tiered, space-based framework that coordinates TROPOIM and PRISMA for both 103 

planet-scale and plant-level methane retrievals. The key is that ready-made satellite missions alone have the potential to initiate 104 

immediate monitoring of the global methane pledge. Using this framework, we patrol the world, with an experimental focus 105 

on China, the United States, Iraq, Kuwait, and Algeria, and reveal both region-scale hotspots and plant-level super-emitters. 106 

We can even gaze at a single source to map multiple plumes and inspect possible methane leakages. These results can challenge 107 

national reports that possibly miss unexpected super-emitters or mislead emission magnitude. On the eve of the Paris target, 108 
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at least while a global methane monitoring network is not in place, this multi-tiered satellite constellation presented in this 109 

study has important implications for measuring global methane pledges. 110 

2. Materials and Methods 111 

2.1 Multi-tiered satellite constellation 112 

The multi-tiered satellite constellation is designed to reconcile global-scale and high-resolution methane monitoring. First, 113 

TROPOMI offers a unique potential for global methane monitoring, depending on its large-scale (i.e., 2600 km) swath, daily 114 

revisit time, regional footprint (i.e., 5.5 × 7 km2 since August 2019), and sounding precision and accuracy (i.e., < 1 %) 115 

(Veefkind et al., 2012). Approximately, TROPOMI observes a full swath per second, resulting in ∼ 216 spectra per second. 116 

This instrument comprises two spectrometer modules, the first involving near-infrared (NIR) spectral channels, and the second 117 

dedicated to the shortwave-infrared (SWIR) spectral channel. The NIR and SWIR channels are equipped with spectral 118 

resolutions of 0.38 and 0.25 nm and spectral sampling ratios of 2.8 and 2.5, respectively. Since the NIR and SWIR detectors 119 

are incorporated in different instrument modules, the NIR spectra will be co-registered with the SWIR spectra before 120 

performing methane retrievals. The methane total column-averaged dry-air mole fraction (XCH4) is retrieved from near-121 

infrared (NIR) (757 ~ 774 nm) and shortwave-infrared (SWIR) (2305 ~ 2385 nm) spectral measurements for sunlight 122 

backscattered by Earth's surface and atmosphere (Hu et al., 2018). In this study, only high-quality measurements, retrieved 123 

under cloud-free and low aerosol load conditions, are used. These measurements are filtered, in addition, for solar zenith angle 124 

(< 70°), low viewing zenith angle (< 60°), and smooth topography ( the surface elevation of < 80 m within 5 km radius) as 125 

described in Hu et al. (28) (Hu et al., 2018). 126 

Hyperspectral satellite missions serve as the second tier, responsible for mapping localized methane super-emitters depending 127 

on their unprecedented resolution (i.e., 3m ~ 50m). Therein PRISMA, as an open-access representative, is specifically suitable 128 

for this work. It can image the solar radiation reflected by the Earth’s surface and atmosphere via hundreds of spectral channels 129 

between the visible and SWIR spectrum (~ 400 ~ 2500 nm). Measurements in the SWIR spectrum from 2000 to 2500 nm 130 

sample absorption features from water vapor, carbon dioxide, and methane. Therein the 2100 nm and 2450 nm windows are 131 

especially sensitive to methane. Furthermore, the signal-to-noise ratio is reported to be about 100 in the SWIR for a relatively 132 

dark vegetation pixel and increases up to above 200 for bright soil surfaces in oil and gas extraction sites. More importantly, 133 

it covers areas of 30 × 30 km2 with a 30 m spatial sampling. 134 

We collect dozens of daily measurements from the multi-tiered satellite constellation. These measurements experimentally 135 

map regional methane hotspots and localize methane super-emitters across the United States, China, the Middle East (Iraq and 136 

Kuwait), and North Africa (Algeria). The acquisitions are mostly taken between April 2020 and January 2022.  137 
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2.2 Multi-tiered methane retrievals 138 

In the first tier of our framework, we employ the operational methane products via TROPOMI onboard the Sentinel 5 satellite. 139 

The target product is the column-averaged dry-air volume mixing ratio of methane (XCH4), which will be retrieved 140 

simultaneously with scattering properties of the atmosphere. The operational retrieval algorithm is based on RemoTeC (Butz 141 

et al., 2009; Hasekamp and Butz, 2008), which is originally developed for CO2 and methane retrievals from GOSAT 142 

observations (Butz et al., 2011). It attempts to fit spectra observed by the TROPOMI-based NIR and SWIR channels. Its 143 

sensitivities to atmospheric scattering properties, atmospheric input data, and instrument calibration errors have been 144 

extensively evaluated (Sha et al., 2021; Verhoelst et al., 2021). As a result, the operational products are proved to be critically 145 

stable, with a convergence rate of 99% and high significance as compared with both satellite-based (e.g., GOSAT) and ground-146 

based (e.g., TCCON) measurements. The required accuracy and precision of < 1 % for the XCH4 product are met for clear-147 

sky measurements over land surfaces and after appropriate filtering of difficult scenes. Moreover, the forward model error is 148 

less than 1 % for about 95 % of the valid retrievals. Model errors in the input profile of water do not influence the retrieval 149 

outcome noticeably. The methane product is expected to meet the requirements if errors in input profiles of pressure and 150 

temperature remain below 0.3% and 2 K, respectively. Of all instrument calibration errors, the retrieval results are the most 151 

sensitive to an error in the instrument spectral response function of the shortwave infrared channel. 152 

In the second tier of our framework, we apply the matched-filter algorithm to calculate per-pixel methane enhancements with 153 

respect to background levels based on the SWIR sample spectrum (i.e., the 2100 - 2450 nm window) onboard the PRISMA 154 

(Foote et al., 2020; Guanter et al., 2021; Itziar et al., 2021). In theory, the retrieval method can depend on physically-based or 155 

data-driven algorithms. The former aims to explicitly resolve the radiative transfer between the surface, the atmosphere, and 156 

the hyperspectral spectrometers. A key representative is the family of differential optical absorption spectroscopy (DOAS) 157 

methods (Cusworth et al., 2019, 2020, 2021b, 2021a). The latter seeks a methane absorption spectrum across a hyperspectral 158 

image using statistical methods. It is commonly based on the matched-filter and the singular vector decomposition concepts. 159 

These methods are both widely applied and evaluated, especially onboard satellite (e.g., PRISMA, GF-5, and ZY-1) and 160 

airborne (e.g., AVIRIS and AVIRIS-NG) platforms (Cusworth et al., 2020; Foote et al., 2020; Guanter et al., 2021; Itziar et 161 

al., 2021; Thompson et al., 2016; Thorpe et al., 2016). In this study, the data-driven retrieval based on the matched-filter 162 

concept is used. The main reason is that it could implicitly account for potential radiometric and spectral errors in satellite-163 

based imaging spectroscopy. For instance, vertical striping is prevalent in hyperspectral measurements due to detector 164 

inhomogeneity, thus substantially degrading methane retrievals. The matched-filter algorithm focuses on the individual 165 

columns rather than the whole scene to resolve methane enhancements. This means that the methane enhancement per column 166 

is calculated separately (i.e., methane enhancements were calculated on a per-column basis). More explanations can be found 167 

in Guanter et al. (2021). Besides, the physically-based method has to consider background concentrations that are difficult to 168 

determine around the super-emitters. In contrast, the data-driven method is independent of background levels and can directly 169 
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seek methane enhancements. Finally, the data-driven method generally has a substantially superior computational efficiency 170 

compared to the physically-based method.  171 

The matched-filter retrieval used here is similar to the one used by Thompson et al. (2016) for the Hyperion imaging 172 

spectrometer onboard the EO-1 satellite. The calculation processes of methane enhancements (ΔXCH4, ppb) are as follows. 173 

𝚫𝐗𝐂𝐇𝟒(𝐱⃗ ) =
(𝐱⃗ −𝛍⃗⃗ )𝐓𝚺−𝟏𝐭 

𝐭 𝐓𝚺−𝟏𝐭 
 (Eq. 1). 174 

The 𝒙⃗⃗  denotes the spectrum under analysis. The 𝜇  and Σ  represent the mean background radiance and corresponding 175 

covariance, respectively, calculated with their common formulas after subtracting the current signal estimates from the data. 176 

Specifically, the 𝜇  is calculated from the data with the removal of the most recent enhancement estimates, while the Σ is then 177 

calculated with updated 𝜇  and the most recent enhancement estimates. More technical details are reported in previous studies 178 

(Foote et al., 2020). Note that, owing to the non-uniform response of individual detectors in PRISMA, they are calculated 179 

based on per-column spectrums in order to consider different responses of across-track sensors to radiance. The 𝒕  is the target 180 

spectrum that reflects the background radiance enhanced by the methane plume. It is generated by the elementwise 181 

multiplication of  𝝁⃗⃗  and  𝒌⃗⃗ , This implicit parameter 𝒌⃗⃗  represents a unit methane absorption spectrum derived from a look-up 182 

table simulated by the MODTRAN radiative transfer model. Similarly, the spectral convolution is also performed on a per-183 

column basis.  184 

In principle, it would be more difficult to detect methane enhancements in pixels over low-albedo surfaces. Although methane 185 

absorption is independent of albedo, the resulting signal in absolute radiance is weakened with surface albedo decreasing. A 186 

major measure to compensate for the albedo effect is to scale the target spectrum 𝒕  by the pixel-specific albedo factor due to 187 

the fact that the Beer–Lambert absorption law depends on the initial radiance in the absence of the absorber. Here the pixel-188 

specific scalar 𝒇 is calculated based on the spectral average 𝝁⃗⃗  and the analysis spectrum 𝒙⃗⃗  as follows: 189 

𝒇 =
𝒙⃗⃗ 𝑻𝝁

𝝁𝑇𝝁
. (Eq. 2) 190 

This solution makes ΔXCH4 normalized by the albedo term, similar to the per-pixel normalization in previous hyperspectral 191 

analysis (Kraut et al., 2005). The premise to launch the matched-filter algorithm is the accurate knowledge of the response of 192 

the instrument spectra to the methane absorption nature. To this end, the objective is to gain the best fit between the simulated 193 

and reference spectra. An initial step is thus conducted to update the spectral calibration for the channels within the 2100 - 194 

2400 nm window, in which the channel wavelength centre and width are updated for each across-track position in each scene. 195 

Other details are illustrated in previous attempts (Foote et al., 2020; Guanter et al., 2021; Irakulis-Loitxate et al., 2022).  196 

2.3 Multi-tiered attribution of methane hotspots and plumes 197 

In the first tier of our framework, we apply visual inspection to identify methane hotspots using the TROPOMI-based methane 198 

retrievals. The transformation from visual inspection to automatic recognition would significantly advance long-term, global 199 

methane monitoring. However, no satisfactory set of criteria was found that could be suitable for this study. This was mainly 200 
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because, in localized regions, methane budgets respond to the changes in not only super-emitters but also complex external 201 

factors (e.g., meteorology, topography, and background concentrations). Similar compromises are also adopted in previous 202 

studies. Therefore, automatic recognition enabled by artificial intelligence would play an essential role in the versatile 203 

spaceborne architecture for long-term, global methane monitoring (Ouerghi et al., 2021; Paoletti et al., 2018; Yang et al., 2018; 204 

Yu et al., 2017; Zhang et al., 2018).  205 

Regarding the identified methane hotspots, we utilize a Boolean mask to select plume-influenced pixels downwind of the 206 

source. The background distribution (mean ± standard deviation) is defined by an upwind sample of the measured columns, in 207 

which the hourly wind field data come from the ERA5 reanalysis dataset produced by the European Centre for Medium-Range 208 

Weather Forecasts (ECMWF) (Hoffmann et al., 2019). We then sample the surrounding (5 × 5) pixels centred on each pixel 209 

and compare the corresponding distributions to the background distribution based on a Student’s t-test. Pixels with a 210 

distribution substantially higher than the background at a confidence level of 95% are assigned to the plume. More details in 211 

the Boolean plume mask can be found in previous studies (Pandey et al., 2019; Varon et al., 2018).  212 

Regarding the identified regional hotspots, we also apply visual inspection to search for plumes within their surrounding 30 213 

km scales (i.e., corresponding to the swath width of PRISMA) in the second tier of our framework (Itziar et al., 2021; Lauvaux 214 

et al., 2022; Martin et al., 2018; Varon et al., 2020). To date, it is still challenging to distinguish methane plumes in 215 

hyperspectral images using full physically-based algorithms. The main cause is potential methane retrieval artifacts from 216 

hyperspectral satellites that are spatially correlated to surface features. Specifically, we manually search for methane 217 

enhancement pixels with gas-plume-like shapes, i.e., high methane enhancements progressively decrease downwind. The 218 

resulting pixels are subsequently compared to the spectral radiance data at the 2300 nm absorption feature sensitive to low 219 

surface albedos. In this way, the fake positives due to specific surface features are prevented. On this basis, the candidate pixels 220 

are overlaid over simultaneous (i.e., hourly) wind fields and high-resolution imageries in individual scenes. They would be 221 

considered to be true plumes if they roughly align with simultaneous wind direction and origin from explicit infrastructures. 222 

Here the high-resolution satellite imageries are taken from the Google Map. The hourly wind field data also come from the 223 

ERA5 reanalysis dataset. Finally, we manually draw polygons to mask such resulting plumes out. As preparation for plume 224 

emission quantification, we remove the background using the threshold of the median values of the scenes. 225 

These satellite imageries allow us to categorize methane plumes within narrow spatial scales between 50 to 500 m2, such as 226 

O&G extraction platforms, storage tanks, and compressor stations. They even enable the attribution of plumes to specific 227 

emission ports in individual sources due to their very high resolution. Furthermore, we could name them based on points of 228 

interest in the Google Map. On this basis, such sources could be visually retrospected via long-term, high-resolution (i.e., 10 229 

m) satellite images from the Sentinel-2 mission (Ehret et al., 2021; Varon et al., 2021). Their key details, like ages and statuses 230 

(e.g., active or inactive), are thus collected reliably. Note that, regarding such information, national reports are typically 231 

credible but inaccessible, particularly in global missions. In addition, it should be highlighted that, on top of considerably high 232 

budgets, like megacities, there must be super-emitters undetectable in our way. Other causes are discussed in uncertainty 233 

analysis in Supplement Information. 234 
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2.4 Multi-tiered quantification of methane emissions 235 

In our framework, we calculate the total excess mass of methane in kilograms in the detected hotspots (in the first tier) and 236 

plumes (in the second tier) using the so-called integrated mass enhancement (IME) model (Frankenberg et al., 2016; Varon et 237 

al., 2018). To make conservative estimates, we define the background levels as the 10% of the average methane concentrations 238 

in the TROPOMI-based and PRISMA-based scenes (Figs. 1b ~ 1g) (Frankenberg et al., 2016; Varon et al., 2018). On this 239 

basis, we eliminate the interferences from the background concentrations and calculate IMEs as the methane masses of the 240 

masked hotspots and plumes. 241 

Overall, this method links the emission rate (𝑸) with the measured IME via the residence time of methane (𝑰𝑴𝑬/𝑸). This 242 

residence time relies on an effective wind speed (𝑼𝐞𝐟𝐟) and a characteristic plume size (𝑳) as follows: 243 

𝑸 =
𝑼𝐞𝐟𝐟⋅𝐈𝐌𝐄

𝑳
. (Eq. 3) 244 

Specifically, the 𝑰𝑴𝑬 and 𝑳 can be inferred from the observations of the hotspots or plumes. During this process, we carefully 245 

apply a Boolean plume mask that separates the pixels (𝒊) with notable signals (∆𝜴𝒊) from background pixels and thus defines 246 

the total areas (𝜮𝒊=𝟏
𝑵 𝑨𝒊) of the hotspots or plumes. The 𝑳 is defined as the square root of the total plume areas. Hence, the 𝑰𝑴𝑬 247 

is calculated as follows: 248 

𝐈𝐌𝐄 = 𝚺ⅈ=𝟏
𝐍 ∆𝛀ⅈ𝑨𝒊. (Eq. 4) 249 

In the first tier of our framework, the effective wind speed (𝑼𝐞𝐟𝐟) is defined as the 10-m wind speed 𝑼𝟏𝟎 obtained from the 250 

ERA5 reanalysis dataset. According to the detected hotspot, the value at the nearest hour and location are used.  251 

In the second tier of our framework, we apply an ensemble of large eddy simulations (LES) to establish an empirical, linear 252 

relationship between 𝑼𝐞𝐟𝐟 and the measured 10-m wind speed 𝑼𝟏𝟎 as follows (Fig. S8) 253 

𝑼𝐞𝐟𝐟 = 𝟎. 𝟖𝟔𝟎𝟐𝑰𝒏(𝑼𝟏𝟎) + 𝟏. 𝟏𝟓𝟏𝟑. (Eq. 5) 254 

The configurations of these simulations, such as spatial resolution and precision, are comparable to our PRISMA data. Other 255 

details in this methodology were described in Varon et al. (2018) (Varon et al., 2018).  256 

We estimate the uncertainties of 𝑸 by propagating the random errors in 𝑼𝟏𝟎 and 𝐈𝐌𝐄. This processes are conducted in previous 257 

studies (Cusworth et al., 2019, 2021b; Itziar et al., 2021). As shown in previous findings, the major error source come from 258 

the 𝑼𝟏𝟎 term. Its random distributions typically correspond to the 50% random error. On this basis, this error is integrated 259 

quadratically with the standard error of the 𝐈𝐌𝐄, the result of which can be treated as the final random error of 𝑸. The intrinsic 260 

errors of the IME model are quantified in the following uncertain analysis.  261 

2.5 Uncertainty Analysis 262 

The objective of this work is to promote a multi-tiered satellite constellation that can monitoring global methane pledges. To 263 

better understand the performance of our framework, we conduct comprehensive uncertain analysis. Note that the protocol of 264 

the uncertain analysis on our framework origins from previous studies (Itziar et al., 2021; Varon et al., 2020). Specifically, we 265 

require to account for the uncertainties in the TROPOMI-based and PRISMA-based methane retrievals and subsequent 266 
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emission estimates. Therein the operational TROPOMI-based methane retrieval products have been evaluated strictly and 267 

proved to be reliable globally (except in low- and high-albedo and snow-covered areas) (Lorente et al., 2021; Sha et al., 2021). 268 

In this work, we thus focus on three main sources of uncertainties, specifically including (1) uncertainties in the PRISMA-269 

based methane retrievals; (2) uncertainties in the TROPOMI-based methane emission estimates; and (3) uncertainties in 270 

PRISMA-based methane emission estimates. During the analysis for the latter two uncertain sources, we would further 271 

investigate the potential wind impacts on the methane emission estimates. Note that it remains challenging to directly quantify 272 

the uncertainties in the wind fields across our cases due to the lack of measurements. We would thus assess the variations in 273 

the methane emission estimates driven by distinct wind data. From such analysis, we could confirm the reliable performance 274 

of our framework. Details can be found in Supplementary Information. 275 

The detection limit of this framework depends mainly on the TROPOMI-based and PRISMA-based methane retrievals, which 276 

have been well discussed in previous studies (Guanter et al., 2021; Hu et al., 2018). As the robust relationship between the 277 

“minimum source” and the related methane enhancement interpreted by Jacob et al. (2016) and Guanter et al. (2021), the 278 

detection threshold for the TROPOMI instrument is 4000 kg/h with a wind speed of 5 km/h. Following the same relationship 279 

in the PRISMA instrument, we estimate that a retrieval precision of 114 ppb (6.1% with the assumed background concentration 280 

of 1850 ppb), such as in the case of the Hassi Messaoud site (Fig. S10e1), would lead to a detection limit of 800 kg/h for the 281 

same wind speed (analogous to the reported range of 500 ~ 900 kg/h) (Guanter et al., 2021; Irakulis-Loitxate et al., 2022). 282 

Similar instruments and detection limits are generally comparable to emissions from anthropogenic sectors, like O&G and 283 

coal mines in this study or landfills, agriculture, and waste management in previous studies (Lauvaux et al., 2022; Maasakkers 284 

et al., 2023; Sadavarte et al., 2021). However, no conclusive evidence shows by far that short-term (e.g., daily) satellite-based 285 

measurements with such detection limits can capture methane hotspots driven by natural sources (e.g., wetlands). In contrast, 286 

long-term (e.g., year-round) satellite-based measurements with much higher detection limits have shown the potential (Pandey 287 

et al., 2021).  288 

3 Results and discussions  289 

3.1 Multi-tiered imaging of global methane hotspots and super-emitters 290 

Figure 1 presents representative sets of methane hotspots and associated super-emitters across the United States, China, the 291 

Middle East (Iraq and Kuwait), and North Africa (Algeria) via our multi-tiered satellite constellation. Each group first clarifies 292 

a methane-abundant region and further focuses on explicit super-emitters. Among them, five methane-abundant regions are 293 

captured in Wattenberg (the United States), Yangquan (China), Rumaila (Iraq), Burgan (Kuwait), and Hassi Messaoud (Algeria) 294 

(Fig. 1a and Table S1). These account for 4805 ~ 46138 kg/h methane emissions based on our daily first-tiered (i.e., 295 

TROPOMI-based) monitoring. From the perspective of a state-of-the-art global methane emission inventory (i.e., 296 

EDGARv6.0), such high values rank among the top 1% regarding emission intensities per unit area (km2) (Fig. S1) (Crippa et 297 
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al., 2020). The Rumaila field, for example, is known as the largest oil field in Iraq (in terms of both reserves and yields). In 298 

this work, it is found with a significant methane emission intensity exceeding 45000 kg/h (Fig. 1b). In addition to such well-299 

known oil fields (Figs. 1c ~ 1f), methane hotspots emerge in developing coal mines, like Yangquan, with comparable emission 300 

levels (> 30000 kg/h) (Fig. 1g).  301 

We attribute these methane enhancements to specific methane plumes via the second-tiered (i.e., PRISMA-based) monitoring 302 

(Figs. 1b1 ~ 1g2). There are substantial variations in the methane plumes’ amounts, types, and magnitude, even in a single 303 

methane-abundant region. For instance, in the Burgan field, the second-tiered monitoring detects up to eight methane plumes 304 

in a handful of grids in the first-tiered monitoring (Figs. 1c1 ~ 1c4 and 1d1 ~ 1d4). Such intensive distributions are also found 305 

in previous region-oriented surveys in the Permian basin and California (Duren et al., 2019; Itziar et al., 2021). Together with 306 

high-definition images (Fig. S2), we find that such plumes origin from various sources, such as flares, factories, and wells. A 307 

breakthrough is the capture of two distinctive plumes in an individual methane source with extremely high emissions (> 10000 308 

kg/h), unprecedented in previous satellite-based exploration and only observable in aircraft surveys (Fig. 1b1). Such precise 309 

distinctions benefit from the high resolution of the second-tiered monitoring, despite being limited by the relatively higher 310 

detection threshold (~ 300 kg/h) (Guanter et al., 2021). Besides, factories and wells can also emit such evident plumes (Fig. 311 

1c1 and Figs. 1e1 and 1e2). By comparison, other plumes are typically more diffuse but with comparable emission magnitude 312 

(~ 1000 ~ 7000 kg/h).  313 

Note that the above results represent only snapshots at the overpass moments of the satellites (i.e., TROPOMI and PRISMA) 314 

(Figure 1). Specifically, for a given set (including both a methane-abundant region and associated super-emitters), the overpass 315 

timing of TROPOMI can be nearly concordant with that of PRISMA. The temporal gaps could be frequently controlled within 316 

ten days (e.g., Figs. 1b and 1d), even two days (Figs. 1e, 1f, and 1g). For instance, within only two days (August 18th and 19th, 317 

2021, November 15th and 17th, 2021), our multi-tiered satellite constellation goes through the Hassi Messaoud field and the 318 

Yangquan coal mine and provides in-depth views of methane budgets, including methane-abundant regions and their drivers 319 

(Figs. 1e and 1g). Even, in just one day (July 7th, 2021), our multi-tiered satellite constellation not only uncover methane 320 

enhancements in the Wattenberg field (Fig. 1f) but also track them back to explicit methane super-emitters (Figs. 1f1 and 1f2). 321 

As expected, if we extend the monitoring window of our framework to years, more methane super-emitters are subsequently 322 

captured (Fig. S3). Moreover, our framework via multi-tiered satellite constellation paves an in-time way for routine 323 

monitoring of global methane hotspots and associated super-emitters.  324 

3.2 Multi-tiered verification of global methane super-emitters 325 

Four unexpected cases occur in Burgan (Iraq), Hassi Messaoud (Algeria), and Yangquan (China), potentially explainable if 326 

we take mutual verification of the first- and second-tiered monitoring into consideration. First, an anomalous methane plume 327 

is detected in the Burgan field (Fig. 1c4) of high emission magnitude (> 1500 kg/h), notably exceeding typical O&G facilities, 328 

from an elusive source (i.e., no clear source could be attributed) (Fig. S2). The long-term measurements of our multi-tiered 329 
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satellite constellation intermittently, rather than accidentally, observe this abnormal plume (Figs. S4). Furthermore, uncertain 330 

analysis (see Materials and Methods) helps to confirm this real plume. In particular, the methane plumes are clearly 331 

uncorrelated with the surface brightness from space (Fig. S4). Consequently, the most likely hypothesis for this super-emitter 332 

is methane leakage from gigantic O&G pipelines as shown in the Google Map (Fig. S2).  333 

Second, we observe suspect trails of methane plumes above the storage tanks in the Burgan field (Fig. 1d4). Conceivably, the 334 

technical noise driven by albedo effects bore the brunt, although it is believed to be corrected reliably (See Materials and 335 

Methods). To this end, we apply a multi-spectral retrieval algorithm to eliminate this effect to a large extent. The detailed 336 

illustrations are shown in Supplementary Information (Fig. S5). Consequently, we provide evidence that un-negligible methane 337 

emissions (> 3500 kg/h) may very well be the unique explanation, likely related to fugitive methane leaks from the storage 338 

tanks. This is only seen in previous aircraft-based surveys (Frankenberg et al., 2016). Therefore, our multi-tiered outcomes 339 

indicate even more widespread methane leaks than expected. Note that the multi-spectral retrieval algorithm cannot completely 340 

remove the albedo effects on our framework. As such, our framework could lead to efficient on-site re-inspection on worldwide 341 

and innumerable O&G fields.  342 

Third, our framework detect a new methane super-emitter in the Hassi Messaoud field on December 7, 2021 (Fig. 1e4). By 343 

revisiting historical satellite images in the second-tiered monitoring (Fig. S6), we could confirm that this super-emitter arose 344 

between October 18th and November 12, 2021. These results indicate that monitoring of global methane super-emitters can 345 

attain monthly resolution via current satellite constellation alone. Conceivably, more satellite observations would further close 346 

the time window. Fourth, a distinct methane plume appears in a coal mine in a mountainous area (Yangquan, China), exceeding 347 

all of the detected O&G super-emitters regarding the emission rate (> 7000 kg/h) (Fig. 1g1).  348 

Figure 2 illustrates that, in our multi-tiered satellite constellation, the extent to which the explicit plumes in the second tier 349 

explain the regional budget detected by the first tier. The overpass moments are explicitly shown Fig. 1, most of which are 350 

inconsistent between for the first- and second-tier monitoring. Overall, the plumes in the former are mostly responsible for 351 

large shares (> 8.2%) of regional budgets in the latter. In the Rumaila, Burgan, and Wattenberg fields, the detected methane 352 

plumes play a more critical role, with contributions up to 53.8 ~ 65.9%. Note that such contribution estimates might 353 

occasionally exceed 100% mainly owing to the inconsistent overpass moments between the first- and second-tier monitoring. 354 

By comparison, the relatively low but still significant contributions in the Hassi Messaoud field (8.2%) and Yangquan coal 355 

mine (35.7%) are partly due to the technical limitation of our framework in detecting methane plumes on top of high 356 

background levels. Collectively, the heavy-tail law of methane plume distributions, early reported for regional O&G fields 357 

(like the Permian basin and California) (Duren et al., 2019; Itziar et al., 2021), is possibly applicable worldwide. To further 358 

explore such a hypothesis, we extend the temporal sample window of our multi-tiered framework. Using year-round snapshots 359 

in the second tier of our framework, we inspect the identified super-emitters (Figs. 1b ~ 1g) repeatedly and find more methane 360 

plumes as expected (Fig. S3). This reinforces the above hypothesis for the widespread occurrence of methane super-emitters.  361 

Note that there are differences in the order of magnitude between the TROPOMI-based and PRISMA-based results. The main 362 

cause is that the TROPOMI-based and PRIMSA-based results represent the methane emissions from different special scales. 363 
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The former results represent region-scale methane budgets, while the latter ones resolve the emission magnitude from the 364 

individual methane super-emitter therein (Fig. 1). Although the latter results can explain a large fraction of the former ones 365 

(Fig. 2), the gaps remain mainly due to inconsistent overpass moments between the two-tiered results or sources still missed 366 

by the PRIMSA-based results. In other words, closing the temporal gaps between the two tiers or improving the detection 367 

ability of the second tier would help to reconcile the first- and second-tiered results. 368 

A regional survey in a California field is considered as the best reference, owing to its utilization of systematic airborne 369 

measurements to detect and quantify methane super-emitters (Duren et al., 2019). The California survey aims to provide the 370 

first view of methane super-emitters across the state. This survey is conducted with the Next Generation Airborne 371 

Visible/Infrared Imaging Spectrometer (AVIRIS-NG), with 5 nm SWIR spectral sampling, 1.8 km view field, 3 m horizontal 372 

resolution, and 3 km cruise altitude, and contains five campaigns over several months from 2016 to 2018. Moreover, this 373 

instrument is unique due to its high signal-to-noise ratio and is capable of characterizing methane super-emitters with emissions 374 

as small as 2 ~ 10 kg/h for typical surface winds of 5 m/s. They survey reports 1181 methane plumes, more than 500 times 375 

larger than previous aerial studies (Englander et al., 2018), with a median emission intensity of 170 kg/h. These results are 376 

thus used to directly evaluate the outcomes in the second tier (Fig. 3). Even though some regions of interest in this study are 377 

far less famous than the California field, their emission intensities are much higher. Specifically, these plumes detected by the 378 

second-tiered monitoring have emission intensities (1142 ~ 11698 kg/h) that exceed the median value in the California field.  379 

Satellite-based surveys are conducted repeatedly for the Permian basin (one of the top O&G bases worldwide) from 2019 to 380 

2020 (Fig. 3). The Permian survey takes advantage of imaging spectroscopy technologies to provide the first spaceborne 381 

region-scale and high-resolution survey of methane super-emitters in the Permian basin. This survey is acquired by 30 382 

hyperspectral images from three satellite missions, including Gaofen-5, ZY1, and PRISMA, and focuses on an area of roughly 383 

200 × 150 km2 in the Delaware sub-basin of the Permian basin within several days (mostly on four different dates: 15 May 384 

2019, 1 November 2019, 29 December 2019, and 8 February 2020). More technical details on these two surveys can be found 385 

in previous studies (Duren et al., 2019; Itziar et al., 2021). Compared to the surveys in the California field, those in the Permian 386 

basin achieves a much higher number of strong methane super-emitters, the median emission rates (1850 kg/h) much closer to 387 

ours (2888 kg/h). Collectively, although such comparisons are not quantitative comparisons due to measurement divergencies 388 

between these datasets (e.g., spatial resolution and detection limit), they offer further context for the emission magnitude of 389 

the identified methane super-emitters and indicate the outstanding strength of our results that could be analogous to abundant 390 

outcomes from field campaigns. More importantly, this highlights the urgent need for global monitoring of ‘nameless’ O&G 391 

facilities that possibly emit methane as much as the California field and Permian basin. 392 

 3.3 Multi-tiered challenges of national emission inventories 393 

These multi-tiered results challenge traditional methane emission inventories (Fig. 4). Here the conventional emission data is 394 

obtained from a state-of-the-art bottom-up emission inventory (i.e., EDGARv6.0) for the year 2018. Consequently, for the 395 
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methane hotspots, this inventory is mostly consistent with the present results (-49.9 ~ 91.8%), with a fine average bias (63.2%). 396 

The Hassi Messaoud field in Algeria is a unique exception, where the O&G sector is in rapid development, with a relatively 397 

larger bias (489.2%). By comparison, this inventory significantly undervalues the methane super-emitters (up to orders of 398 

magnitude). This indicates that traditional emission inventories might have acceptable performance for traditional methane-399 

abundant regions while incapable of tracking methane super-emitters.  400 

First, outdated spatial proxies might explain the large divergence between our plant-based estimates and the EDGARv6.0 (Fig. 401 

1b1 and Fig. S7). Moreover, the EDGARv6.0 is designed for the year 2018, missing the newly established O&G plants with 402 

high methane emissions. Second, in principle, conventional inventories directly miss high emissions caused by abnormal 403 

operations (e.g., equipment failures) (Fig. 1c4 and Fig. S8) such as the O&G  blowout shown in on-site surveys (Pandey et al., 404 

2019). A compromise is downwind measurements, yet insufficiently reliable as shown in previous findings (Alvarez, Ramón 405 

A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and 406 

Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and 407 

Lauva, 2018). 408 

In addition, the relatively low bias in the Rumaila and Hassi Messaoud fields might be explained by other causes (Figs. 1b2 409 

and 1e3) such as outdated emission factors. Empirically, a plant-level inventory, once optimized by direct measurements, can 410 

raise total methane emissions by ~ 60%, although source categories vary substantially (Alvarez, Ramón A. and Zavala-Araiza, 411 

Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and Davis, Kenneth J. and 412 

Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and Lauva, 2018). Besides, 413 

temporal variability might also explain top-down and bottom-up differences in methane emission estimates. For instance, the 414 

peak emission rate could exceed 40% higher than the average, which might occur in the middle afternoon due to specific 415 

processes, like episodic venting from manual liquid unloading (Vaughn et al., 2018). This aligns with the sampling time of the 416 

satellites, thus biasing bottom-up inventories. Collectively, it is necessary to carefully consider all factors affecting methane 417 

emissions, including emission factor updating and spatiotemporal variations, in order to develop effective strategies for 418 

mitigating methane emissions. 419 

3.4 Implications for global methane monitoring 420 

We present a multi-tiered, space-based framework that can harmonize planet-scale and plant-level methane retrievals (Fig. 5). 421 

Using this framework, we patrol the world, with synergistic, proactive detections on the methane-abundant regions and 422 

methane super-emitters across the United States, China, the Middle East (Iraq and Kuwait), and North Africa (Algeria). We 423 

even lock new methane super-emitters, track potential methane leakages from storage tanks, and distinguish multiple methane 424 

plumes in a single source. Such achievements are mostly unprecedented in satellite surveys and only observed in aircraft 425 

campaigns. On this basis, our results challenge national reports that possibly miss unexpected super-emitters or mislead 426 

emission magnitude, partly due to surges of oil and gas (O&G) facilities and widespread abnormal operations.  427 
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Our data prove that depending on ready-made satellite missions alone can initiate immediate, proactive monitoring of global 428 

methane pledges, in contrast to existing surveys that have to focus on a priori methane-abundant regions. As such, as the 429 

window for achieving the Paris target is rapidly closing, we will not need to sit back and wait for upcoming space missions, 430 

like MethaneSAT and SBG in the United States, EnMAP in Germany, a new version of GF-5 in China, and, later, the European 431 

Space Agency’s CHIME from 2025 to 2030 (Cusworth et al., 2019). In addition, while scientific communities persistently 432 

debates the drivers of the recent methane surge (Nisbet et al., 2014, 2019; Turner et al., 2019), the consequences of our 433 

outcomes are clear, not only holding clues but also facilitating mitigation.  434 

It should be noted that the multi-tiered framework is sustainable (Fig. 5). First, it can harmonize multiple satellites. The 435 

potential representatives include upcoming official missions (e.g., the GF-5) (Itziar et al., 2021), current private constellations 436 

(e.g., the GHGSat series) (Jervis et al., 2021; Varon et al., 2020), and explorable multispectral products (e.g., the Worldview-437 

3 and Sentinel-2) (Sánchez-García et al., 2021). Second, the framework is not confined to satellites and can be expanded by 438 

integrating in situ (e.g., Global Atmosphere Watch Programme) (World Meteorological Organization, 2022), aircraft, and 439 

unmanned aerial vehicles (UAVs) (Cusworth et al., 2020; Gålfalk et al., 2021; Tuzson et al., 2020). Note that such a multi-440 

tiered framework based on multifarious satellites, aircrafts, and UAVs keeps pursuing wider coverages and faster revisits. We 441 

would thus derive the next objective in this manner, i.e., how to achieve effective, efficient, and economic monitoring of global 442 

methane pledges, in which how to make better coverage-resolution balance between instruments is crucial. This will be the 443 

topic of the next separate study. Third, nighttime methane monitoring is important because abnormal leakages or pulses might 444 

also occur during nighttime (Plant et al., 2022; Poindexter et al., 2016). In these events, the LIDAR-equipped ones (involving 445 

satellites, e.g., MERLIN) can allow to retrieve methane fluxes at all-latitudes, all-seasons, and all-weather (involving nighttime) 446 

as they are not relying on sunlight. Third, better characterizing methane vertical profile would help to optimize our analysis, 447 

like minimizing the uncertainties in tropospheric air mass factors and subsequent methane enhancements. Finally, on the basis 448 

of our framework, rapid advances in artificial intelligence (AI) techniques are projected to completely replace manpower to 449 

seek faint signals of methane enhancements in Earth’s surface, and to significantly optimize data-driven algorithms of methane 450 

emission estimates (Reichstein et al., 2019; Yuan et al., 2020). In principle, subsequent mitigation of such super-emitters via 451 

routine maintenances, leak detections, or emergent repairs can provide effective, efficient, and economic solutions toward the 452 

Paris target (Mayfield et al., 2017). 453 

These outcomes have important ramifications for low- and middle-income countries. World powers, like the United States and 454 

European Union, lead new national methane pledges. They are separately on the way to creating vast operational infrastructures 455 

to monitor ambitious climate goals. Still, huge holes remain in coverage and authority, at least by the middle of this decade. 456 

This situation is especially worse for low- and middle-income countries, where the tight budget dims the hopes for filling up 457 

those holes by 2030, while methane emissions are likely to rise as countries develop. In this context, the present framework 458 

can at once serve as the cost-effective piece of the global methane monitoring network and thus support fair climate 459 

negotiations between countries.  460 

  461 
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Fig. 1. Methane hotspots and associated super-emitters across the United States, China, Iraq, Kuwait, and Algeria via 463 

the multi-tiered daily satellite constellation. (a) Methane-abundant regions and associated super-emitters are captured by 464 

the TROPOMI and PRISMA, respectively. Their locations are marked by black rectangles and dots. Their names are obtained 465 

from the Google Map, usually being the names of the nearest O&G fields and coal mines. (b ~ g) Each group clarifies a 466 

methane-abundant region and explicit super-emitters (b1 ~ b4, c1 ~ c4, d1 ~ d4, e1 ~ e4, f1 ~ f2, and g1 ~ g2). For each super-467 

emitter (five-pointed stars), the overpass moments of the multi-tiered satellite constellation and the consequent emission 468 

estimate are presented. Its base map is obtained from the Google Map. The second color bar for the PRISMA is suitable for 469 

the super-emitters in China, while the first is for other countries. Plume sources in the PRISMA results are marked by red 470 

circles.  471 
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 472 

Fig. 2. High contributions of methane super-emitters to corresponding regional methane budgets.  473 

 474 

Fig. 3. Comparison of emission estimates of methane plumes between surveys. The surveys for the California field and 475 

Permian basin are selected as the references. They report 1181 and 39 methane plumes, while our second-tiered survey attempts 476 

29 plumes. Violin plots show statistical distributions of methane plume emission rates for these surveys. For each survey, the 477 

grey dots refer to the emission rates of the individual plumes and the red dot represents the median value.  478 
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 479 
Fig. 4. Multi-tiered emission estimates versus bottom-up emission inventories. We first interpolate the bottom-up emission 480 

inventories into the resolution consistent with our multi-tiered results. On this basis, the bottom-up emission rates in the grids 481 

that the detected hotspots and plumes cover are summed up to compare with the results. The detected hotspots (yellow dots) 482 

and plumes (blue dots) correspond to those as shown in Fig. 1. The grey dashed line represents the ratio of the bottom-up 483 

emissions to the top-down ones of 1:1. 484 
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 485 

Fig. 5. Multi-tiered satellite framework for immediate global methane monitoring. This framework harmonizes global-486 

scale and high-resolution methane retrievals, with a dual focus on mapping region-scale and plant-level drivers. In this work, 487 

the framework reconciles the spacious swath of TROPOMI (i.e., ~ 2600 km) with the high resolution of PRISMA (i.e., 30 × 488 

30 m2), in contrast to conventional satellite-based surveys that were of either insufficient samplings or narrow views. Looking 489 

forward, developments of Earth’s monitoring platforms (e.g., satellites, aircrafts, and unmanned drones) and artificial 490 

intelligence will continue to strengthen the performance of methane plume retrievals and emission estimates. On eve of the 491 

Paris target, at least while a super methane satellite with spacious swath, high resolution, and agile analysis is not in place, our 492 

multi-tiered satellite constellation has important implications for measuring global methane pledges. The appearances of the 493 

TROPOMI, MethaneSAT, PRISMA, and EnMAP are obtained from http://www.tropomi.eu/, https://www.methanesat.org, 494 

https://www.asi.it/en/earth-science/prisma/, and https://www.enmap.org/, respectively. The methane maps from the 495 

TROPOMI and PRISMA refer to the results in Figs. 1e and 1b1. The grey marks indicate upcoming platforms (i.e., 496 

MethaneSAT and EnMAP) and techniques (e.g., AI techniques that can optimize the identification and quantification of 497 

methane super-emitters).   498 

http://www.tropomi.eu/
https://www.methanesat.org/
https://www.asi.it/en/earth-science/prisma/
https://www.enmap.org/
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 499 

Table 1. Spaceborne measurements for global methane monitoring. 500 

Satellite 
Coverage/ 

Swath 

Pixel Size 

 (km2) 

SWIR 

(nm) 

Spectral 

Resolution 

(nm) 

Overpass  

(Local 

Time) 

Period Reference 

SCIAMACH

Y 
960 km 30 × 60 1630–1670 1.4 10:00 2002–2012 

(Frankenberg et 

al., 2006) 

GOSAT 790 km 10 × 10 1630–1700 0.06 13:00 2009–present 
(Kuze et al., 

2016) 

GOSAT-2 1000 km 10 × 10 
1630–1700, 

2330–2380 
0.06 13:00 2018–present (Suto et al., 2021) 

TROPOMI 2600 km 
5.5 × 7, 

7 × 7 
2305–2385 0.25 13:30 2017–present (Butz et al., 2012) 

Sentinel-3 1420 km 0.5 × 0.5 
1580–1640, 

2230–2280 
0.025 10:00 2016–present 

(Pandey et al., 

2022) 

GHGSat 12 × 12 km2 0.05 × 0.05 1600–1700 0.3–0.7 9:30 2016–present 
(Varon et al., 

2018) 

PRISMA 30 × 30 km2 0.03 × 0.03 
1600–1700, 

2200–2500 
10 10:30 2019–present 

(Guanter et al., 

2021) 

GF-5 60 × 60 km2 0.03 × 0.03 2100–2400 10 13:30 2018–present 
(Irakulis-Loitxate 

et al., 2022) 

ZY1 60 × 60 km2 0.03 × 0.03 2100–2400 10 10:50  (Irakulis-Loitxate 

et al., 2022) 

Landsat-8 185 × 185 km2 0.03 × 0.03 2300 200 10:50 2013–present 
(Ehret et al., 

2022) 

Sentinel-2 290 km 0.02 × 0.02 
1610, 

2190 
200 10:30 2015–present 

(Varon et al., 

2021) 

Worldview-3 
66.5 × 112 

km2 

0.0037 × 

0.0037 
2295–2365 50 10:30 2014–present 

(Sánchez-García 

et al., 2021) 

EnMAP 30 × 30 km2 0.03 × 0.03 
1600–1700,  

2200–2450 
10 11:00 2020–present 

(Cusworth et al., 

2019) 

EMIT 80 km 0.06 × 0.06 
1600–1700,  

2200–2510 
7.4  2022–present (EMIT, 2023) 

  501 
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The operational TROPOMI product is available at https://scihub.copernicus.eu/, https://www.temis.nl/emissions/data.php. The 503 

PRISMA data are publicly available to registered users at https://prisma.asi.it/. The WRF-CHEM model code is available at 504 

https://ruc.noaa.gov/wrf/wrf-chem/. All Sentinel-2 satellite data are publicly available through the Copernicus Open Access 505 

Hub (https://scihub.copernicus.eu/). The HITRAN line spectra is publicly available through the HITRANonline database 506 

(https://hitran.org/). The ERA5 data come from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The 507 

EDGARv6.0 dataset comes from https://edgar.jrc.ec.europa.eu/gallery?release=v60ghg&substance=CH4&sector=TOTALS. 508 
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