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Abstract.

The global methane pledge paves a fresh, critical way toward Carbon Neutrality. However, it remains largely invisible and
highly controversial due to the fact that planet-scale and plant-level methane retrievals have rarely been coordinated. This has
never been more essential within a narrow window to reach the Paris target. Here we present a two-tiered spaceborne
architecture to address this issue. Using this framework, we patrol the world, like the United States, China, the Middle East,
and North Africa, and simultaneously uncover methane-abundant regions and plumes. These include new super-emitters,
potential leakages, and unprecedented multiple plumes in a single source. More importantly, this framework is shown to
challenge official emission reports that possibly mislead estimates from global, regional, to site scales, particularly by missing
super-emitters. Our results show that, in principle, the above framework can be extended to be multi-tiered by adding upcoming
stereoscopic measurements and suitable artificial intelligence, thus versatile for immediate and future monitoring of the global

methane pledge.



42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

1. Introduction

Global methane pledges finalized at the COP26 (the 26th United Nations Climate Change Conference of the Parties) have
been never more ambitious (Schellnhuber et al., 2016; Schurer et al., 2018; United Nations, 2021). More than 100 countries
have promised 30% methane emission reductions by 2030. Also, energy giants (e.g., Shell and BP) have committed to clear
targets of methane mitigation. Such pledges have never been more essential within a narrow window (< ten years) to reach the
Paris target. The scientific context is that atmospheric methane is a powerful greenhouse gas second only to carbon dioxide
(COy), trapping ~ 80 times more heat than the same amount of CO; (per molecule) over a 20-year time horizon (Etminan et
al., 2016; Saunois et al., 2016, 2020). Worse still, it is thought to rise since 2007 (Mikaloff and Hinrich, 2019), surge since
2014 (Nisbet et al., 2019), and set another record in 2021 (National Oceanic and Atmospheric Administration, 2022).
Fortunately, methane is short-lived (~ ten years) (Shoemaker et al., 2013), and, particularly, that from human activities can be
reduced in half using existing technologies by 2030 (Ocko et al., 2021).

However, a classic dilemma emerges, dimming the hopes of scientists and policymakes (Masood and Tollefson, 2021). That
is, on the eve of the Paris target, those targets and emissions remain largely invisible worldwide and thus hinder effective
mitigation. The main issue is the Paris framework relies on countries or corporate giants to report emissions (Allen et al., 2015;
Alvarez, Ramén A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt,
Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb,
Brian K. and Lauva, 2018; Ganesan et al., 2019). Moreover, the reports are based on indirect statistics, such as O&G inventories,
rather than direct measurements (Deng et al., 2022). This leads to a broad consensus that prominent discrepancies exist between
the reports. For example, field campaigns nearly double official claims of methane emissions in the United States by correcting
leak detection (Alvarez, Ramén A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary
R. and Brandt, Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric
A. and Lamb, Brian K. and Lauva, 2018).

To this end, widespread super-emitters present a unique opportunity worldwide (Duren et al., 2019; Lauvaux et al., 2022;
Pandey et al., 2019; Zavala-Araiza et al., 2015, 2017). Super-emitters can generally be defined to be emission sources that
comprise highly concentrated methane plumes and dominate localized methane budgets (~ 5 x5 km?). In contrast to region-
scale hotspots (or area sources), they can be attributed to individual facilities (e.g., factories, chimneys, and pipelines), typically
with side lengths varying from several meters to tens of meters depending on monitoring instruments. Super-emitters are
typically responsible for the underestimates of methane emissions (Alvarez et al., 2018; Duren et al., 2019; Itziar et al., 2021,
Lauvaux et al., 2022; Thompson et al., 2016). Moreover, there is increasing evidence that methane emissions follow a heavy-
tailed distribution (Duren et al., 2019; Frankenberg et al., 2016; Lauvaux et al., 2022), for which relatively small number of
sources (so-called super-emitters) can account for a disproportionately large share of total emissions. In contrast to area sources
(e.g., cities), super-emitters are typically coal mines, wells, gathering stations, storage tanks, pipelines, and flares, with even

less than dozens of metres in diameter but high-concentrated methane plumes (Allen et al., 2013; Miller et al., 2019;
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Subramanian et al., 2015; Varon et al., 2019). We thus anticipate that significant emission mitigation could be achieved by
deploying well-designed systems to identify methane super-emitters. For instance, in support of the Paris agreement, the 17th
World Meteorological Congress (2015) requested an Integrated Global Greenhouse Gas Information System (IG3IS) that
aimed to develop a measurement framework for methane emission reductions (Phil DeCola and WMO Secretariat, 2017).

To date, a large body of field measurements (e.g., in situ and aircraft surveys) between 2012 and 2020 has been designed for
methane super-emitters. Despite this, they are spatially confined (e.g., regionally) and temporally infrequent (e.g., a few weeks),
incapable of exploring global methane super-emitters (Alvarez, Ramdn A. and Zavala-Araiza, Daniel and Lyon, David R. and
Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel
J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and Lauva, 2018; Conley et al., 2016; Duren et al., 2019; Marchese
et al., 2015; Nisbet et al., 2020; Smith et al., 2017; Thompson et al., 2016; Thorpe et al., 2016). Today, substantial advances
have been made towards detecting and quantifying methane super-emitters from space (Cusworth et al., 2019; Hu et al., 2018;
Irakulis-Loitxate et al., 2022; Jacob et al., 2016; Pandey et al., 2019; Thompson et al., 2016) (Table 1). Such advances, however,
have rarely been expanded to measure the global methane pledge because large-scale swath and high-resolution sampling have
not been coordinated. First, global methane monitoring has become possible. A flagship satellite mission is the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor satellite (Lauvaux et al., 2022; Veefkind et
al., 2012). It can offer daily global insights for methane column concentrations, with a large swath width of ~ 2600 km, a
moderate resolution of 7.0 x<5.5 km? (since August 2019), and high signal-to-noise ratios. However, its relatively coarse spatial
sampling still limits its application to detect methane super-emitters (Lauvaux et al., 2022). Second, next-generation satellite
missions, pioneered by the GHGSat constellation (three satellites at the moment), emerge for mapping methane super-emitters
(Cusworth et al., 2019), with a narrow swath (e.g., ~ 12 km) but a ground-breaking high-resolution spatial sampling (e.g., 25
~ 50 m) (Jervis et al., 2021; Varon et al., 2020). Complementary to the GHGSat constellation, satellite-based hyperspectral
imager spectrometers, such as PRISMA, GF-5, ZY1, Sentinel-2, and Worldview-3, have shown great potentials (Guanter et
al., 2021; Itziar et al., 2021; S&nchez-Garc & et al., 2021; Varon et al., 2021). They can resolve methane enhancements and
attribute them to specific infrastructures via similar narrow swath and high-resolution sampling (e.g., 30 m). Note that regions
those satellites usually gazed at are originally well-known home to methane super-emitters. Narrow swath coverage thus
remains a crucial limitation for global surveys of methane super-emitters. Collectively, existing studies still struggle to
surveillance global methane super-emitters due to the fact that individual satellite missions, either TROPOIM or PRISMA,
cannot coordinate large-scale swath and high-resolution sampling.

To address this issue, we present a two-tiered, space-based framework that coordinates TROPOIM and PRISMA for both
planet-scale and plant-level methane retrievals. The key is that ready-made satellite missions alone have the potential to initiate
immediate monitoring of the global methane pledge. Using this framework, we patrol the world, with an experimental focus
on China, the United States, Iraq, Kuwait, and Algeria, and reveal both region-scale hotspots and plant-level super-emitters.
We can even gaze at a single source to map multiple plumes and inspect possible methane leakages. These results can challenge

national reports that possibly miss unexpected super-emitters or mislead emission magnitude. On the eve of the Paris target,
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at least while a global methane monitoring network is not in place, this multi-tiered satellite constellation presented in this

study has important implications for measuring global methane pledges.

2. Materials and Methods
2.1 Multi-tiered satellite constellation

The multi-tiered satellite constellation is designed to reconcile global-scale and high-resolution methane monitoring. First,
TROPOMI offers a unique potential for global methane monitoring, depending on its large-scale (i.e., 2600 km) swath, daily
revisit time, regional footprint (i.e., 5.5 x 7km? since August 2019), and sounding precision and accuracy (i.e., < 1 %)
(Veefkind et al., 2012). Approximately, TROPOMI observes a full swath per second, resulting in ~ 216 spectra per second.
This instrument comprises two spectrometer modules, the first involving near-infrared (NIR) spectral channels, and the second
dedicated to the shortwave-infrared (SWIR) spectral channel. The NIR and SWIR channels are equipped with spectral
resolutions of 0.38 and 0.25 nm and spectral sampling ratios of 2.8 and 2.5, respectively. Since the NIR and SWIR detectors
are incorporated in different instrument modules, the NIR spectra will be co-registered with the SWIR spectra before
performing methane retrievals. The methane total column-averaged dry-air mole fraction (XCHy) is retrieved from near-
infrared (NIR) (757 ~ 774 nm) and shortwave-infrared (SWIR) (2305 ~ 2385 nm) spectral measurements for sunlight
backscattered by Earth's surface and atmosphere (Hu et al., 2018). In this study, only high-quality measurements, retrieved
under cloud-free and low aerosol load conditions, are used. These measurements are filtered, in addition, for solar zenith angle
(< 709, low viewing zenith angle (< 609, and smooth topography ( the surface elevation of < 80 m within 5 km radius) as
described in Hu et al. (28) (Hu et al., 2018).

Hyperspectral satellite missions serve as the second tier, responsible for mapping localized methane super-emitters depending
on their unprecedented resolution (i.e., 3m ~ 50m). Therein PRISMA, as an open-access representative, is specifically suitable
for this work. It can image the solar radiation reflected by the Earth’s surface and atmosphere via hundreds of spectral channels
between the visible and SWIR spectrum (~ 400 ~ 2500 nm). Measurements in the SWIR spectrum from 2000 to 2500 nm
sample absorption features from water vapor, carbon dioxide, and methane. Therein the 2100 nm and 2450 nm windows are
especially sensitive to methane. Furthermore, the signal-to-noise ratio is reported to be about 100 in the SWIR for a relatively
dark vegetation pixel and increases up to above 200 for bright soil surfaces in oil and gas extraction sites. More importantly,
it covers areas of 30 <30 km? with a 30 m spatial sampling.

We collect dozens of daily measurements from the multi-tiered satellite constellation. These measurements experimentally
map regional methane hotspots and localize methane super-emitters across the United States, China, the Middle East (Iraq and

Kuwait), and North Africa (Algeria). The acquisitions are mostly taken between April 2020 and January 2022.
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2.2 Multi-tiered methane retrievals

In the first tier of our framework, we employ the operational methane products via TROPOMI onboard the Sentinel 5 satellite.
The target product is the column-averaged dry-air volume mixing ratio of methane (XCH.), which will be retrieved
simultaneously with scattering properties of the atmosphere. The operational retrieval algorithm is based on RemoTeC (Butz
et al., 2009; Hasekamp and Butz, 2008), which is originally developed for CO, and methane retrievals from GOSAT
observations (Butz et al., 2011). It attempts to fit spectra observed by the TROPOMI-based NIR and SWIR channels. Its
sensitivities to atmospheric scattering properties, atmospheric input data, and instrument calibration errors have been
extensively evaluated (Sha et al., 2021; Verhoelst et al., 2021). As a result, the operational products are proved to be critically
stable, with a convergence rate of 99% and high significance as compared with both satellite-based (e.g., GOSAT) and ground-
based (e.g., TCCON) measurements. The required accuracy and precision of < 1 % for the XCH. product are met for clear-
sky measurements over land surfaces and after appropriate filtering of difficult scenes. Moreover, the forward model error is
less than 1 % for about 95 % of the valid retrievals. Model errors in the input profile of water do not influence the retrieval
outcome noticeably. The methane product is expected to meet the requirements if errors in input profiles of pressure and
temperature remain below 0.3% and 2 K, respectively. Of all instrument calibration errors, the retrieval results are the most
sensitive to an error in the instrument spectral response function of the shortwave infrared channel.

In the second tier of our framework, we apply the matched-filter algorithm to calculate per-pixel methane enhancements with
respect to background levels based on the SWIR sample spectrum (i.e., the 2100 - 2450 nm window) onboard the PRISMA
(Foote et al., 2020; Guanter et al., 2021; Itziar et al., 2021). In theory, the retrieval method can depend on physically-based or
data-driven algorithms. The former aims to explicitly resolve the radiative transfer between the surface, the atmosphere, and
the hyperspectral spectrometers. A key representative is the family of differential optical absorption spectroscopy (DOAS)
methods (Cusworth et al., 2019, 2020, 2021b, 2021a). The latter seeks a methane absorption spectrum across a hyperspectral
image using statistical methods. It is commonly based on the matched-filter and the singular vector decomposition concepts.
These methods are both widely applied and evaluated, especially onboard satellite (e.g., PRISMA, GF-5, and ZY-1) and
airborne (e.g., AVIRIS and AVIRIS-NG) platforms (Cusworth et al., 2020; Foote et al., 2020; Guanter et al., 2021; Itziar et
al., 2021; Thompson et al., 2016; Thorpe et al., 2016). In this study, the data-driven retrieval based on the matched-filter
concept is used. The main reason is that it could implicitly account for potential radiometric and spectral errors in satellite-
based imaging spectroscopy. For instance, vertical striping is prevalent in hyperspectral measurements due to detector
inhomogeneity, thus substantially degrading methane retrievals. The matched-filter algorithm focuses on the individual
columns rather than the whole scene to resolve methane enhancements. This means that the methane enhancement per column
is calculated separately (i.e., methane enhancements were calculated on a per-column basis). More explanations can be found
in Guanter et al. (2021). Besides, the physically-based method has to consider background concentrations that are difficult to

determine around the super-emitters. In contrast, the data-driven method is independent of background levels and can directly
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seek methane enhancements. Finally, the data-driven method generally has a substantially superior computational efficiency
compared to the physically-based method.

The matched-filter retrieval used here is similar to the one used by Thompson et al. (2016) for the Hyperion imaging
spectrometer onboard the EO-1 satellite. The calculation processes of methane enhancements (AXCHa, ppb) are as follows.
AXCH, (%) = EB2 T (. 1)

The ¥ denotes the spectrum under analysis. The i and T represent the mean background radiance and corresponding
covariance, respectively, calculated with their common formulas after subtracting the current signal estimates from the data.
Specifically, the ji is calculated from the data with the removal of the most recent enhancement estimates, while the X is then
calculated with updated i and the most recent enhancement estimates. More technical details are reported in previous studies
(Foote et al., 2020). Note that, owing to the non-uniform response of individual detectors in PRISMA, they are calculated
based on per-column spectrums in order to consider different responses of across-track sensors to radiance. The £ is the target

spectrum that reflects the background radiance enhanced by the methane plume. It is generated by the elementwise

multiplication of z and k, This implicit parameter k represents a unit methane absorption spectrum derived from a look-up
table simulated by the MODTRAN radiative transfer model. Similarly, the spectral convolution is also performed on a per-
column basis.

In principle, it would be more difficult to detect methane enhancements in pixels over low-albedo surfaces. Although methane
absorption is independent of albedo, the resulting signal in absolute radiance is weakened with surface albedo decreasing. A
major measure to compensate for the albedo effect is to scale the target spectrum & by the pixel-specific albedo factor due to
the fact that the Beer—Lambert absorption law depends on the initial radiance in the absence of the absorber. Here the pixel-
specific scalar f is calculated based on the spectral average g and the analysis spectrum X as follows:

=2t (a.2)

This solution makes AXCH4 normalized by the albedo term, similar to the per-pixel normalization in previous hyperspectral
analysis (Kraut et al., 2005). The premise to launch the matched-filter algorithm is the accurate knowledge of the response of
the instrument spectra to the methane absorption nature. To this end, the objective is to gain the best fit between the simulated
and reference spectra. An initial step is thus conducted to update the spectral calibration for the channels within the 2100 -

2400 nm window, in which the channel wavelength centre and width are updated for each across-track position in each scene.

Other details are illustrated in previous attempts (Foote et al., 2020; Guanter et al., 2021; Irakulis-Loitxate et al., 2022).

2.3 Multi-tiered attribution of methane hotspots and plumes

In the first tier of our framework, we apply visual inspection to identify methane hotspots using the TROPOMI-based methane
retrievals. The transformation from visual inspection to automatic recognition would significantly advance long-term, global

methane monitoring. However, no satisfactory set of criteria was found that could be suitable for this study. This was mainly
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because, in localized regions, methane budgets respond to the changes in not only super-emitters but also complex external
factors (e.g., meteorology, topography, and background concentrations). Similar compromises are also adopted in previous
studies. Therefore, automatic recognition enabled by artificial intelligence would play an essential role in the versatile
spaceborne architecture for long-term, global methane monitoring (Ouerghi et al., 2021; Paoletti et al., 2018; Yang et al., 2018;
Yuetal., 2017; Zhang et al., 2018).

Regarding the identified methane hotspots, we utilize a Boolean mask to select plume-influenced pixels downwind of the
source. The background distribution (mean =standard deviation) is defined by an upwind sample of the measured columns, in
which the hourly wind field data come from the ERA5 reanalysis dataset produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Hoffmann et al., 2019). We then sample the surrounding (5 %< 5) pixels centred on each pixel
and compare the corresponding distributions to the background distribution based on a Student’s t-test. Pixels with a
distribution substantially higher than the background at a confidence level of 95% are assigned to the plume. More details in
the Boolean plume mask can be found in previous studies (Pandey et al., 2019; Varon et al., 2018).

Regarding the identified regional hotspots, we also apply visual inspection to search for plumes within their surrounding 30
km scales (i.e., corresponding to the swath width of PRISMA) in the second tier of our framework (ltziar et al., 2021; Lauvaux
et al., 2022; Martin et al., 2018; Varon et al., 2020). To date, it is still challenging to distinguish methane plumes in
hyperspectral images using full physically-based algorithms. The main cause is potential methane retrieval artifacts from
hyperspectral satellites that are spatially correlated to surface features. Specifically, we manually search for methane
enhancement pixels with gas-plume-like shapes, i.e., high methane enhancements progressively decrease downwind. The
resulting pixels are subsequently compared to the spectral radiance data at the 2300 nm absorption feature sensitive to low
surface albedos. In this way, the fake positives due to specific surface features are prevented. On this basis, the candidate pixels
are overlaid over simultaneous (i.e., hourly) wind fields and high-resolution imageries in individual scenes. They would be
considered to be true plumes if they roughly align with simultaneous wind direction and origin from explicit infrastructures.
Here the high-resolution satellite imageries are taken from the Google Map. The hourly wind field data also come from the
ERADS reanalysis dataset. Finally, we manually draw polygons to mask such resulting plumes out. As preparation for plume
emission quantification, we remove the background using the threshold of the median values of the scenes.

These satellite imageries allow us to categorize methane plumes within narrow spatial scales between 50 to 500 m?, such as
O&G extraction platforms, storage tanks, and compressor stations. They even enable the attribution of plumes to specific
emission ports in individual sources due to their very high resolution. Furthermore, we could name them based on points of
interest in the Google Map. On this basis, such sources could be visually retrospected via long-term, high-resolution (i.e., 10
m) satellite images from the Sentinel-2 mission (Ehret et al., 2021; Varon et al., 2021). Their key details, like ages and statuses
(e.g., active or inactive), are thus collected reliably. Note that, regarding such information, national reports are typically
credible but inaccessible, particularly in global missions. In addition, it should be highlighted that, on top of considerably high
budgets, like megacities, there must be super-emitters undetectable in our way. Other causes are discussed in uncertainty
analysis in Supplement Information.
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2.4 Multi-tiered quantification of methane emissions

In our framework, we calculate the total excess mass of methane in kilograms in the detected hotspots (in the first tier) and
plumes (in the second tier) using the so-called integrated mass enhancement (IME) model (Frankenberg et al., 2016; Varon et
al., 2018). To make conservative estimates, we define the background levels as the 10% of the average methane concentrations
in the TROPOMI-based and PRISMA-based scenes (Figs. 1b ~ 1g) (Frankenberg et al., 2016; Varon et al., 2018). On this
basis, we eliminate the interferences from the background concentrations and calculate IMEs as the methane masses of the
masked hotspots and plumes.

Overall, this method links the emission rate (Q) with the measured IME via the residence time of methane (IME/Q). This

residence time relies on an effective wind speed (U¢) and a characteristic plume size (L) as follows:
-IME

Q = "7 (Eq.3)

Specifically, the IME and L can be inferred from the observations of the hotspots or plumes. During this process, we carefully
apply a Boolean plume mask that separates the pixels (i) with notable signals (A£2;) from background pixels and thus defines
the total areas (2., 4;) of the hotspots or plumes. The L is defined as the square root of the total plume areas. Hence, the IME
is calculated as follows:

IME = N, AQ;A;. (Eq. 4)

In the first tier of our framework, the effective wind speed (U) is defined as the 10-m wind speed U4, obtained from the
ERADS reanalysis dataset. According to the detected hotspot, the value at the nearest hour and location are used.

In the second tier of our framework, we apply an ensemble of large eddy simulations (LES) to establish an empirical, linear
relationship between U¢ and the measured 10-m wind speed U, as follows (Fig. S8)

Ugss = 0.8602In(U4,) + 1.1513. (Eq. 5)

The configurations of these simulations, such as spatial resolution and precision, are comparable to our PRISMA data. Other
details in this methodology were described in Varon et al. (2018) (Varon et al., 2018).

We estimate the uncertainties of Q by propagating the random errors in U, and IME. This processes are conducted in previous
studies (Cusworth et al., 2019, 2021b; Itziar et al., 2021). As shown in previous findings, the major error source come from
the U4 term. Its random distributions typically correspond to the 50% random error. On this basis, this error is integrated
quadratically with the standard error of the IME, the result of which can be treated as the final random error of Q. The intrinsic

errors of the IME model are quantified in the following uncertain analysis.

2.5 Uncertainty Analysis

The objective of this work is to promote a multi-tiered satellite constellation that can monitoring global methane pledges. To
better understand the performance of our framework, we conduct comprehensive uncertain analysis. Note that the protocol of
the uncertain analysis on our framework origins from previous studies (Itziar et al., 2021; Varon et al., 2020). Specifically, we

require to account for the uncertainties in the TROPOMI-based and PRISMA-based methane retrievals and subsequent
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emission estimates. Therein the operational TROPOMI-based methane retrieval products have been evaluated strictly and
proved to be reliable globally (except in low- and high-albedo and snow-covered areas) (Lorente et al., 2021; Sha et al., 2021).
In this work, we thus focus on three main sources of uncertainties, specifically including (1) uncertainties in the PRISMA-
based methane retrievals; (2) uncertainties in the TROPOMI-based methane emission estimates; and (3) uncertainties in
PRISMA-based methane emission estimates. During the analysis for the latter two uncertain sources, we would further
investigate the potential wind impacts on the methane emission estimates. Note that it remains challenging to directly quantify
the uncertainties in the wind fields across our cases due to the lack of measurements. We would thus assess the variations in
the methane emission estimates driven by distinct wind data. From such analysis, we could confirm the reliable performance
of our framework. Details can be found in Supplementary Information.

The detection limit of this framework depends mainly on the TROPOM I-based and PRISMA-based methane retrievals, which
have been well discussed in previous studies (Guanter et al., 2021; Hu et al., 2018). As the robust relationship between the
“minimum source” and the related methane enhancement interpreted by Jacob et al. (2016) and Guanter et al. (2021), the
detection threshold for the TROPOMI instrument is 4000 kg/h with a wind speed of 5 km/h. Following the same relationship
in the PRISMA instrument, we estimate that a retrieval precision of 114 ppb (6.1% with the assumed background concentration
of 1850 ppb), such as in the case of the Hassi Messaoud site (Fig. S10el), would lead to a detection limit of 800 kg/h for the
same wind speed (analogous to the reported range of 500 ~ 900 kg/h) (Guanter et al., 2021; Irakulis-Loitxate et al., 2022).
Similar instruments and detection limits are generally comparable to emissions from anthropogenic sectors, like O&G and
coal mines in this study or landfills, agriculture, and waste management in previous studies (Lauvaux et al., 2022; Maasakkers
et al., 2023; Sadavarte et al., 2021). However, no conclusive evidence shows by far that short-term (e.g., daily) satellite-based
measurements with such detection limits can capture methane hotspots driven by natural sources (e.g., wetlands). In contrast,
long-term (e.g., year-round) satellite-based measurements with much higher detection limits have shown the potential (Pandey
etal., 2021).

3 Results and discussions

3.1 Multi-tiered imaging of global methane hotspots and super-emitters

Figure 1 presents representative sets of methane hotspots and associated super-emitters across the United States, China, the
Middle East (Irag and Kuwait), and North Africa (Algeria) via our multi-tiered satellite constellation. Each group first clarifies
a methane-abundant region and further focuses on explicit super-emitters. Among them, five methane-abundant regions are
captured in Wattenberg (the United States), Yangquan (China), Rumaila (Iraq), Burgan (Kuwait), and Hassi Messaoud (Algeria)
(Fig. 1la and Table S1). These account for 4805 ~ 46138 kg/h methane emissions based on our daily first-tiered (i.e.,
TROPOMI-based) monitoring. From the perspective of a state-of-the-art global methane emission inventory (i.e.,

EDGARV6.0), such high values rank among the top 1% regarding emission intensities per unit area (km?) (Fig. S1) (Crippa et
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al., 2020). The Rumaila field, for example, is known as the largest oil field in Iraq (in terms of both reserves and yields). In
this work, it is found with a significant methane emission intensity exceeding 45000 kg/h (Fig. 1b). In addition to such well-
known oil fields (Figs. 1c ~ 1f), methane hotspots emerge in developing coal mines, like Yangquan, with comparable emission
levels (> 30000 kg/h) (Fig. 19).

We attribute these methane enhancements to specific methane plumes via the second-tiered (i.e., PRISMA-based) monitoring
(Figs. 1b1 ~ 1g2). There are substantial variations in the methane plumes’ amounts, types, and magnitude, even in a single
methane-abundant region. For instance, in the Burgan field, the second-tiered monitoring detects up to eight methane plumes
in a handful of grids in the first-tiered monitoring (Figs. 1c1 ~ 1c4 and 1d1 ~ 1d4). Such intensive distributions are also found
in previous region-oriented surveys in the Permian basin and California (Duren et al., 2019; Itziar et al., 2021). Together with
high-definition images (Fig. S2), we find that such plumes origin from various sources, such as flares, factories, and wells. A
breakthrough is the capture of two distinctive plumes in an individual methane source with extremely high emissions (> 10000
kg/h), unprecedented in previous satellite-based exploration and only observable in aircraft surveys (Fig. 1b1). Such precise
distinctions benefit from the high resolution of the second-tiered monitoring, despite being limited by the relatively higher
detection threshold (~ 300 kg/h) (Guanter et al., 2021). Besides, factories and wells can also emit such evident plumes (Fig.
1cl and Figs. 1el and 1e2). By comparison, other plumes are typically more diffuse but with comparable emission magnitude
(~ 1000 ~ 7000 kg/h).

Note that the above results represent only snapshots at the overpass moments of the satellites (i.e., TROPOMI and PRISMA)
(Figure 1). Specifically, for a given set (including both a methane-abundant region and associated super-emitters), the overpass
timing of TROPOMI can be nearly concordant with that of PRISMA. The temporal gaps could be frequently controlled within
ten days (e.g., Figs. 1b and 1d), even two days (Figs. 1e, 1f, and 1g). For instance, within only two days (August 18th and 19th,
2021, November 15th and 17th, 2021), our multi-tiered satellite constellation goes through the Hassi Messaoud field and the
Yangquan coal mine and provides in-depth views of methane budgets, including methane-abundant regions and their drivers
(Figs. 1le and 1g). Even, in just one day (July 7th, 2021), our multi-tiered satellite constellation not only uncover methane
enhancements in the Wattenberg field (Fig. 1f) but also track them back to explicit methane super-emitters (Figs. 1f1 and 1f2).
As expected, if we extend the monitoring window of our framework to years, more methane super-emitters are subsequently
captured (Fig. S3). Moreover, our framework via multi-tiered satellite constellation paves an in-time way for routine

monitoring of global methane hotspots and associated super-emitters.

3.2 Multi-tiered verification of global methane super-emitters

Four unexpected cases occur in Burgan (lraq), Hassi Messaoud (Algeria), and Yangquan (China), potentially explainable if
we take mutual verification of the first- and second-tiered monitoring into consideration. First, an anomalous methane plume
is detected in the Burgan field (Fig. 1c4) of high emission magnitude (> 1500 kg/h), notably exceeding typical O&G facilities,

from an elusive source (i.e., no clear source could be attributed) (Fig. S2). The long-term measurements of our multi-tiered
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satellite constellation intermittently, rather than accidentally, observe this abnormal plume (Figs. S4). Furthermore, uncertain
analysis (see Materials and Methods) helps to confirm this real plume. In particular, the methane plumes are clearly
uncorrelated with the surface brightness from space (Fig. S4). Consequently, the most likely hypothesis for this super-emitter
is methane leakage from gigantic O&G pipelines as shown in the Google Map (Fig. S2).

Second, we observe suspect trails of methane plumes above the storage tanks in the Burgan field (Fig. 1d4). Conceivably, the
technical noise driven by albedo effects bore the brunt, although it is believed to be corrected reliably (See Materials and
Methods). To this end, we apply a multi-spectral retrieval algorithm to eliminate this effect to a large extent. The detailed
illustrations are shown in Supplementary Information (Fig. S5). Consequently, we provide evidence that un-negligible methane
emissions (> 3500 kg/h) may very well be the unique explanation, likely related to fugitive methane leaks from the storage
tanks. This is only seen in previous aircraft-based surveys (Frankenberg et al., 2016). Therefore, our multi-tiered outcomes
indicate even more widespread methane leaks than expected. Note that the multi-spectral retrieval algorithm cannot completely
remove the albedo effects on our framework. As such, our framework could lead to efficient on-site re-inspection on worldwide
and innumerable O&G fields.

Third, our framework detect a new methane super-emitter in the Hassi Messaoud field on December 7, 2021 (Fig. 1e4). By
revisiting historical satellite images in the second-tiered monitoring (Fig. S6), we could confirm that this super-emitter arose
between October 18th and November 12, 2021. These results indicate that monitoring of global methane super-emitters can
attain monthly resolution via current satellite constellation alone. Conceivably, more satellite observations would further close
the time window. Fourth, a distinct methane plume appears in a coal mine in a mountainous area (Yangquan, China), exceeding
all of the detected O&G super-emitters regarding the emission rate (> 7000 kg/h) (Fig. 1g1).

Figure 2 illustrates that, in our multi-tiered satellite constellation, the extent to which the explicit plumes in the second tier
explain the regional budget detected by the first tier. The overpass moments are explicitly shown Fig. 1, most of which are
inconsistent between for the first- and second-tier monitoring. Overall, the plumes in the former are mostly responsible for
large shares (> 8.2%) of regional budgets in the latter. In the Rumaila, Burgan, and Wattenberg fields, the detected methane
plumes play a more critical role, with contributions up to 53.8 ~ 65.9%. Note that such contribution estimates might
occasionally exceed 100% mainly owing to the inconsistent overpass moments between the first- and second-tier monitoring.
By comparison, the relatively low but still significant contributions in the Hassi Messaoud field (8.2%) and Yangquan coal
mine (35.7%) are partly due to the technical limitation of our framework in detecting methane plumes on top of high
background levels. Collectively, the heavy-tail law of methane plume distributions, early reported for regional O&G fields
(like the Permian basin and California) (Duren et al., 2019; Itziar et al., 2021), is possibly applicable worldwide. To further
explore such a hypothesis, we extend the temporal sample window of our multi-tiered framework. Using year-round snapshots
in the second tier of our framework, we inspect the identified super-emitters (Figs. 1b ~ 1g) repeatedly and find more methane
plumes as expected (Fig. S3). This reinforces the above hypothesis for the widespread occurrence of methane super-emitters.
Note that there are differences in the order of magnitude between the TROPOMI-based and PRISMA-based results. The main

cause is that the TROPOM I-based and PRIMSA-based results represent the methane emissions from different special scales.
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The former results represent region-scale methane budgets, while the latter ones resolve the emission magnitude from the
individual methane super-emitter therein (Fig. 1). Although the latter results can explain a large fraction of the former ones
(Fig. 2), the gaps remain mainly due to inconsistent overpass moments between the two-tiered results or sources still missed
by the PRIMSA-based results. In other words, closing the temporal gaps between the two tiers or improving the detection
ability of the second tier would help to reconcile the first- and second-tiered results.

A regional survey in a California field is considered as the best reference, owing to its utilization of systematic airborne
measurements to detect and quantify methane super-emitters (Duren et al., 2019). The California survey aims to provide the
first view of methane super-emitters across the state. This survey is conducted with the Next Generation Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS-NG), with 5 nm SWIR spectral sampling, 1.8 km view field, 3 m horizontal
resolution, and 3 km cruise altitude, and contains five campaigns over several months from 2016 to 2018. Moreover, this
instrument is unique due to its high signal-to-noise ratio and is capable of characterizing methane super-emitters with emissions
as small as 2 ~ 10 kg/h for typical surface winds of 5 m/s. They survey reports 1181 methane plumes, more than 500 times
larger than previous aerial studies (Englander et al., 2018), with a median emission intensity of 170 kg/h. These results are
thus used to directly evaluate the outcomes in the second tier (Fig. 3). Even though some regions of interest in this study are
far less famous than the California field, their emission intensities are much higher. Specifically, these plumes detected by the
second-tiered monitoring have emission intensities (1142 ~ 11698 kg/h) that exceed the median value in the California field.

Satellite-based surveys are conducted repeatedly for the Permian basin (one of the top O&G bases worldwide) from 2019 to
2020 (Fig. 3). The Permian survey takes advantage of imaging spectroscopy technologies to provide the first spaceborne
region-scale and high-resolution survey of methane super-emitters in the Permian basin. This survey is acquired by 30
hyperspectral images from three satellite missions, including Gaofen-5, ZY1, and PRISMA, and focuses on an area of roughly
200 %150 km? in the Delaware sub-basin of the Permian basin within several days (mostly on four different dates: 15 May
2019, 1 November 2019, 29 December 2019, and 8 February 2020). More technical details on these two surveys can be found
in previous studies (Duren et al., 2019; Itziar et al., 2021). Compared to the surveys in the California field, those in the Permian
basin achieves a much higher number of strong methane super-emitters, the median emission rates (1850 kg/h) much closer to
ours (2888 kg/h). Collectively, although such comparisons are not quantitative comparisons due to measurement divergencies
between these datasets (e.g., spatial resolution and detection limit), they offer further context for the emission magnitude of
the identified methane super-emitters and indicate the outstanding strength of our results that could be analogous to abundant
outcomes from field campaigns. More importantly, this highlights the urgent need for global monitoring of ‘nameless’ O&G

facilities that possibly emit methane as much as the California field and Permian basin.

3.3 Multi-tiered challenges of national emission inventories

These multi-tiered results challenge traditional methane emission inventories (Fig. 4). Here the conventional emission data is

obtained from a state-of-the-art bottom-up emission inventory (i.e., EDGARV6.0) for the year 2018. Consequently, for the
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methane hotspots, this inventory is mostly consistent with the present results (-49.9 ~ 91.8%), with a fine average bias (63.2%).
The Hassi Messaoud field in Algeria is a unique exception, where the O&G sector is in rapid development, with a relatively
larger bias (489.2%). By comparison, this inventory significantly undervalues the methane super-emitters (up to orders of
magnitude). This indicates that traditional emission inventories might have acceptable performance for traditional methane-
abundant regions while incapable of tracking methane super-emitters.

First, outdated spatial proxies might explain the large divergence between our plant-based estimates and the EDGARV6.0 (Fig.
1b1 and Fig. S7). Moreover, the EDGARV6.0 is designed for the year 2018, missing the newly established O&G plants with
high methane emissions. Second, in principle, conventional inventories directly miss high emissions caused by abnormal
operations (e.g., equipment failures) (Fig. 1c4 and Fig. S8) such as the O&G blowout shown in on-site surveys (Pandey et al.,
2019). A compromise is downwind measurements, yet insufficiently reliable as shown in previous findings (Alvarez, Ramén
A. and Zavala-Araiza, Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and
Davis, Kenneth J. and Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and
Lauva, 2018).

In addition, the relatively low bias in the Rumaila and Hassi Messaoud fields might be explained by other causes (Figs. 1b2
and 1e3) such as outdated emission factors. Empirically, a plant-level inventory, once optimized by direct measurements, can
raise total methane emissions by ~ 60%, although source categories vary substantially (Alvarez, Ramén A. and Zavala-Araiza,
Daniel and Lyon, David R. and Allen, David T. and Barkley, Zachary R. and Brandt, Adam R. and Davis, Kenneth J. and
Herndon, Scott C. and Jacob, Daniel J. and Karion, Anna and Kort, Eric A. and Lamb, Brian K. and Lauva, 2018). Besides,
temporal variability might also explain top-down and bottom-up differences in methane emission estimates. For instance, the
peak emission rate could exceed 40% higher than the average, which might occur in the middle afternoon due to specific
processes, like episodic venting from manual liquid unloading (Vaughn et al., 2018). This aligns with the sampling time of the
satellites, thus biasing bottom-up inventories. Collectively, it is necessary to carefully consider all factors affecting methane
emissions, including emission factor updating and spatiotemporal variations, in order to develop effective strategies for

mitigating methane emissions.

3.4 Implications for global methane monitoring

We present a multi-tiered, space-based framework that can harmonize planet-scale and plant-level methane retrievals (Fig. 5).
Using this framework, we patrol the world, with synergistic, proactive detections on the methane-abundant regions and
methane super-emitters across the United States, China, the Middle East (Iraq and Kuwait), and North Africa (Algeria). We
even lock new methane super-emitters, track potential methane leakages from storage tanks, and distinguish multiple methane
plumes in a single source. Such achievements are mostly unprecedented in satellite surveys and only observed in aircraft
campaigns. On this basis, our results challenge national reports that possibly miss unexpected super-emitters or mislead

emission magnitude, partly due to surges of oil and gas (O&G) facilities and widespread abnormal operations.
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Our data prove that depending on ready-made satellite missions alone can initiate immediate, proactive monitoring of global
methane pledges, in contrast to existing surveys that have to focus on a priori methane-abundant regions. As such, as the
window for achieving the Paris target is rapidly closing, we will not need to sit back and wait for upcoming space missions,
like MethaneSAT and SBG in the United States, EnMAP in Germany, a new version of GF-5 in China, and, later, the European
Space Agency’s CHIME from 2025 to 2030 (Cusworth et al., 2019). In addition, while scientific communities persistently
debates the drivers of the recent methane surge (Nisbet et al., 2014, 2019; Turner et al., 2019), the consequences of our
outcomes are clear, not only holding clues but also facilitating mitigation.

It should be noted that the multi-tiered framework is sustainable (Fig. 5). First, it can harmonize multiple satellites. The
potential representatives include upcoming official missions (e.g., the GF-5) (ltziar et al., 2021), current private constellations
(e.g., the GHGSat series) (Jervis et al., 2021; Varon et al., 2020), and explorable multispectral products (e.g., the Worldview-
3 and Sentinel-2) (S&chez-Garc & et al., 2021). Second, the framework is not confined to satellites and can be expanded by
integrating in situ (e.g., Global Atmosphere Watch Programme) (World Meteorological Organization, 2022), aircraft, and
unmanned aerial vehicles (UAVs) (Cusworth et al., 2020; Gafalk et al., 2021; Tuzson et al., 2020). Note that such a multi-
tiered framework based on multifarious satellites, aircrafts, and UAVs keeps pursuing wider coverages and faster revisits. We
would thus derive the next objective in this manner, i.e., how to achieve effective, efficient, and economic monitoring of global
methane pledges, in which how to make better coverage-resolution balance between instruments is crucial. This will be the
topic of the next separate study. Third, nighttime methane monitoring is important because abnormal leakages or pulses might
also occur during nighttime (Plant et al., 2022; Poindexter et al., 2016). In these events, the LIDAR-equipped ones (involving
satellites, e.g., MERLIN) can allow to retrieve methane fluxes at all-latitudes, all-seasons, and all-weather (involving nighttime)
as they are not relying on sunlight. Third, better characterizing methane vertical profile would help to optimize our analysis,
like minimizing the uncertainties in tropospheric air mass factors and subsequent methane enhancements. Finally, on the basis
of our framework, rapid advances in artificial intelligence (Al) techniques are projected to completely replace manpower to
seek faint signals of methane enhancements in Earth’s surface, and to significantly optimize data-driven algorithms of methane
emission estimates (Reichstein et al., 2019; Yuan et al., 2020). In principle, subsequent mitigation of such super-emitters via
routine maintenances, leak detections, or emergent repairs can provide effective, efficient, and economic solutions toward the
Paris target (Mayfield et al., 2017).

These outcomes have important ramifications for low- and middle-income countries. World powers, like the United States and
European Union, lead new national methane pledges. They are separately on the way to creating vast operational infrastructures
to monitor ambitious climate goals. Still, huge holes remain in coverage and authority, at least by the middle of this decade.
This situation is especially worse for low- and middle-income countries, where the tight budget dims the hopes for filling up
those holes by 2030, while methane emissions are likely to rise as countries develop. In this context, the present framework
can at once serve as the cost-effective piece of the global methane monitoring network and thus support fair climate

negotiations between countries.
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Fig. 1. Methane hotspots and associated super-emitters across the United States, China, Irag, Kuwait, and Algeria via
the multi-tiered daily satellite constellation. (a) Methane-abundant regions and associated super-emitters are captured by
the TROPOMI and PRISMA, respectively. Their locations are marked by black rectangles and dots. Their names are obtained
from the Google Map, usually being the names of the nearest O&G fields and coal mines. (b ~ g) Each group clarifies a
methane-abundant region and explicit super-emitters (b1 ~ b4, c1 ~ ¢4, d1 ~ d4, el ~ e4, f1 ~ f2, and g1 ~ g2). For each super-
emitter (five-pointed stars), the overpass moments of the multi-tiered satellite constellation and the consequent emission
estimate are presented. Its base map is obtained from the Google Map. The second color bar for the PRISMA is suitable for
the super-emitters in China, while the first is for other countries. Plume sources in the PRISMA results are marked by red

circles.
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475 Fig. 3. Comparison of emission estimates of methane plumes between surveys. The surveys for the California field and
476  Permian basin are selected as the references. They report 1181 and 39 methane plumes, while our second-tiered survey attempts
477 29 plumes. Violin plots show statistical distributions of methane plume emission rates for these surveys. For each survey, the
478 grey dots refer to the emission rates of the individual plumes and the red dot represents the median value.
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Fig. 4. Multi-tiered emission estimates versus bottom-up emission inventories. We first interpolate the bottom-up emission
inventories into the resolution consistent with our multi-tiered results. On this basis, the bottom-up emission rates in the grids
that the detected hotspots and plumes cover are summed up to compare with the results. The detected hotspots (yellow dots)
and plumes (blue dots) correspond to those as shown in Fig. 1. The grey dashed line represents the ratio of the bottom-up

emissions to the top-down ones of 1:1.
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Multi-tiered Satellite Constellation for Inmediate Global Methane Monitoring

TROPOMI
First-tiered Monitoring

PRISMA EnMAP
{. : . Second-tiered Monitoring
b super-emitter-resolve

‘ x =~ "5“} - Aircraft UAV

Grey marks denote upcoming platforms and techniques.

Al-derived Identification and Quantification

Fig. 5. Multi-tiered satellite framework for immediate global methane monitoring. This framework harmonizes global-
scale and high-resolution methane retrievals, with a dual focus on mapping region-scale and plant-level drivers. In this work,
the framework reconciles the spacious swath of TROPOMI (i.e., ~ 2600 km) with the high resolution of PRISMA (i.e., 30 x
30 m?), in contrast to conventional satellite-based surveys that were of either insufficient samplings or narrow views. Looking
forward, developments of Earth’s monitoring platforms (e.g., satellites, aircrafts, and unmanned drones) and artificial
intelligence will continue to strengthen the performance of methane plume retrievals and emission estimates. On eve of the
Paris target, at least while a super methane satellite with spacious swath, high resolution, and agile analysis is not in place, our
multi-tiered satellite constellation has important implications for measuring global methane pledges. The appearances of the
TROPOMI, MethaneSAT, PRISMA, and EnMAP are obtained from http://www.tropomi.eu/, https://www.methanesat.org,
https://www.asi.it/en/earth-science/prisma/, and https://www.enmap.org/, respectively. The methane maps from the
TROPOMI and PRISMA refer to the results in Figs. le and 1bl. The grey marks indicate upcoming platforms (i.e.,
MethaneSAT and EnMAP) and techniques (e.g., Al techniques that can optimize the identification and quantification of

methane super-emitters).
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500 Table 1. Spaceborne measurements for global methane monitoring.

. . Spectral Overpass
Satellite Coverage/ Pixel Sglze SWIR Resolution (Local Period Reference
Swath (km?) (nm) -
(nm) Time)
SCIAMACH 960 km 30x60  1630-1670 14 10:00 20022012  (Frankenberg et
Y al., 2006)
GOSAT 790 km 10 <10 1630-1700 0.06 13:00 2009—present (Kuzzgl%t)a"'
1630-1700, _
GOSAT-2 1000 km 10 x10 9330-2380 0.06 13:00 2018-present  (Suto et al., 2021)
TROPOMI 2600 km > Xl 23052385 0.25 13:30  2017-present (Butz etal., 2012)
. 1580-1640, . (Pandey et al.,
Sentinel-3 1420 km 0.5 x<0.5 29302280 0.025 10:00 2016-present 2022)
GHGSat 12 x12km?  0.05x0.05  1600-1700 0.3-0.7 9:30 2016-present (Vag%'lg al.,
1600-1700 (Guanter et al.
2 ’ . | y
PRISMA 30 X30km? 003 %0.03 oo ocns 10 10:30 2019-present 2021)
GF-5 60 x60 km?  0.03 x0.03  2100-2400 10 13:30 2018-present  (rakulis-Loitxate
etal., 2022)
zvY1 60 x60 km?  0.03 x0.03  2100-2400 10 10:50 (Irakulis-Loitxate
etal., 2022)
Landsat-8 185 x185km?  0.03 x0.03 2300 200 10:50 2013-present (Ehzrgtzezt)a"'
. 1610, . (Varonetal.,
Sentinel-2 290 km 0.02 %0.02 2190 200 10:30 2015—present 2021)
. 66.5 <112 0.0037 x . (Sachez-Garc k
Worldview-3 km? 0.0037 2295-2365 50 10:30 2014-present etal., 2021)
1600-1700 (Cusworth et al.
2 ’ . | ’
EnMAP 30 %30 km 0.03 =<0.03 22002450 10 11:00 2020—present 2019)
1600-1700,
EMIT 80 km 0.06 »<0.06 2200-2510 7.4 2022—present (EMIT, 2023)
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The operational TROPOMI product is available at https://scihub.copernicus.eu/, https://www.temis.nl/emissions/data.php. The

PRISMA data are publicly available to registered users at https://prisma.asi.it/. The WRF-CHEM model code is available at
https://ruc.noaa.gov/wrf/wrf-chem/. All Sentinel-2 satellite data are publicly available through the Copernicus Open Access
Hub (https://scihub.copernicus.eu/). The HITRAN line spectra is publicly available through the HITRANonline database
(https://hitran.org/). The ERA5 data come from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The
EDGARV6.0 dataset comes from https://edgar.jrc.ec.europa.eu/gallery?release=v60ghg&substance=CH4&sector=TOTALS.
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