
1 

 

Reply to comments on “Toward a versatile spaceborne architecture 1 

for immediate monitoring of the global methane pledge”by Yuchen 2 

Wang et al. 3 

 4 

Reply to Reviewer #1: 5 

 6 

This paper proposes an interesting method to address the important issue of quantifying current methane emissions. The 7 

authors justifiably argue that no current satellite instrument provides both the coverage and the spatial resolution to accurately 8 

measure global methane concentrations; to address this lack they propose a two-step method that uses data from two very 9 

different instruments: the wide swath, coarse spatial resolution TROPOMI and narrow swath but very high spatial resolution 10 

PRISMA. The TROPOMI data are used to locate high methane emission regions and the methane hotspots within these regions, 11 

then the co-located PRISMA data are examined for the presence of plumes. Emissions over the hotspots and plumes are 12 

estimated by combining wind speed information with an integrated mass enhancement model.  13 

The approach is demonstrated for short periods over five small regions and the results are compared with surveys over 14 

two other regions. The median and range of the plume emissions are qualitatively consistent with those obtained using data 15 

from another (non-specified) satellite instrument over the Permian basin, and much higher than those from an aircraft campaign 16 

over California. The hotspot and plume emissions are also compared with emissions from the EDGAR_v6.0 inventory; the 17 

hotspot emissions were somewhat consistent with the inventory, while the plume emissions were much higher.  18 

Summarizing the above, this is an interesting method with very interesting results. The authors evidently put a great deal 19 

of effort and enthusiasm into this work. However, the paper presents several problems, principally lack of detail on how some 20 

of the results were obtained. I have listed the main technical issues below, which need to be addressed before the paper can be 21 

published. An overarching issue is English language usage. Verb tenses are frequently used incorrectly (e.g, past or conditional 22 

future for present), and nouns and adjectives are interchanged. Before resubmitting the authors should have either a native 23 

English speaker or someone with excellent English revise the paper. I will be happy to provide more specific wording changes 24 

once this been done, if they are still necessary. 25 

Response: We truly appreciate these positive responses and thorough summarizations. We are also very grateful for the 26 

valuable comments and suggestions and have addressed all of them in our revised manuscript. Particularly, we have 27 

supplemented more technical details to clarify the procedure of our framework. In addition, our co-authors (involving native 28 

English speakers) have carefully gone through the entire manuscript to improve the English level.  29 

The followings are our point-to-point responses to the reviewer’s comments. The responses are shown in brown font, 30 

while the added/rewritten parts are presented in blue font. All revised figures and tables are also included in the manuscripts. 31 

 32 
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1. The method for identifying high emission areas and plumes appears to be visual identification. The authors do mention 33 

a Boolean mask for identifying the former, but no details are provided and the reader is left wondering what this means. This 34 

needs to be clarified. Such an intensive method is feasible for a small analysis, such as presented in figures 1-3, but obviously 35 

not for long term, global emission estimates. Here the authors suggest a machine learning approach for further applications of 36 

their method, which is a reasonable suggestion. However, this issue makes the year long results presented in S3 and S4 37 

questionable. Were the TROPOMI maps obtained by applying the Sun oversampling method for an entire year over the original 38 

methane concentrations? If so which wind fields were used to obtain the emissions, both for the regional and plume estimates? 39 

How were the PRISMA data averaged over the year? Given the variability in wind direction, I don’t think it makes sense to 40 

look for plumes in averaged data. These plots need to either explained in much greater detail, or omitted entirely from the 41 

paper. If they are to be included, then the authors need to be clear which results (short term or annual) are used in all other 42 

plots. 43 

Response:  Thank you for these valuable comments and suggestions. First, we have supplemented more technical details 44 

to clarify the role of the Boolean mask method. As you pointed out, in the first tier of our framework, we apply visual inspection 45 

to identify methane hotspots using the TROPOMI-based methane retrievals. The transformation from visual inspection to 46 

automatic recognition would significantly advance long-term, global methane monitoring. However, no satisfactory set of 47 

criteria is found that could be suitable for this study. This was mainly because, in localized regions, methane budgets respond 48 

to the changes in not only super-emitters but also complex external factors (e.g., meteorology, topography, and background 49 

concentrations). Similar compromises are also adopted in previous studies. Therefore, automatic recognition enabled by 50 

artificial intelligence would play an essential role in the versatile spaceborne architecture for long-term, global methane 51 

monitoring (Ouerghi et al., 2021; Paoletti et al., 2018; Yang et al., 2018; Yu et al., 2017; Zhang et al., 2018).  52 

Regarding the identified methane hotspots, we utilize a Boolean mask to select plume-influenced pixels downwind of the 53 

source. The background distribution (mean ± standard deviation) is defined by an upwind sample of the measured columns, in 54 

which the hourly wind field data came from the ERA5 reanalysis dataset produced by the European Centre for Medium-Range 55 

Weather Forecasts (ECMWF) (Hoffmann et al., 2019). We then sample the surrounding (5 × 5) pixels centred on each pixel 56 

and compare the corresponding distributions to the background distribution based on a Student’s t-test. Pixels with a 57 

distribution substantially higher than the background at a confidence level of 95% are assigned to the plume. More details in 58 

the Boolean plume mask can be found in previous studies (Pandey et al., 2019; Varon et al., 2018).  59 

Second, we agree that it might make no sense to look for plumes in averaged data due to the variable wind direction and 60 

have thus omitted the oversampled methane maps in the first tier of our framework (Fig. S3). In turn, using year-round 61 

snapshots in the second tier of our framework, we inspect the identified super-emitters (Figs. 1b ~ 1g) repeatedly and find 62 

more methane plumes as expected (Fig. S4). This reinforces the above hypothesis for the widespread occurrence of methane 63 

super-emitters.  64 

Added/rewritten part in Sect. 2.3: In the first tier of our framework, we apply visual inspection to identify methane 65 

hotspots using the TROPOMI-based methane retrievals. The transformation from visual inspection to automatic recognition 66 
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would significantly advance long-term, global methane monitoring. However, no satisfactory set of criteria is found that could 67 

be suitable for this study. This was mainly because, in localized regions, methane budgets respond to the changes in not only 68 

super-emitters but also complex external factors (e.g., meteorology, topography, and background concentrations). Similar 69 

compromises are also adopted in previous studies. Therefore, automatic recognition enabled by artificial intelligence would 70 

play an essential role in the versatile spaceborne architecture for long-term, global methane monitoring (Ouerghi et al., 2021; 71 

Paoletti et al., 2018; Yang et al., 2018; Yu et al., 2017; Zhang et al., 2018). 72 

Regarding the identified methane hotspots, we utilize a Boolean mask to select plume-influenced pixels downwind of the 73 

source. The background distribution (mean ± standard deviation) is defined by an upwind sample of the measured columns, in 74 

which the hourly wind field data came from the ERA5 reanalysis dataset produced by the European Centre for Medium-Range 75 

Weather Forecasts (ECMWF) (Hoffmann et al., 2019). We then sample the surrounding (5 × 5) pixels centred on each pixel 76 

and compare the corresponding distributions to the background distribution based on a Student’s t-test. Pixels with a 77 

distribution substantially higher than the background at a confidence level of 95% are assigned to the plume. More details in 78 

the Boolean plume mask can be found in previous studies (Pandey et al., 2019; Varon et al., 2018).   79 

Added/rewritten part in Sect. 3.2: To further explore such a hypothesis, we extend the temporal sample window of our 80 

multi-tiered framework. Using year-round snapshots in the second tier of our framework, we inspect the identified super-81 

emitters (Figs. 1b ~ 1g) repeatedly and find more methane plumes as expected (Fig. S3). This reinforces the above hypothesis 82 

for the widespread occurrence of methane super-emitters.  83 

 84 

2. The plume maps would be more interesting if the plume source were clearly marked. 85 

Response: Thanks. We have marked all the plume sources in Fig. 1 and Fig. S3.  86 

 87 

3. How was the background vector used in equation 1 derived? 88 

Response: Thanks. We have supplemented brief descriptions for this issue. The 𝜇 and Σ represent the mean background 89 

radiance and corresponding covariance, respectively, calculated with their common formulas after subtracting the current 90 

signal estimates from the data. Specifically, the 𝜇 is calculated from the data with the removal of the most recent enhancement 91 

estimates, while the Σ is then calculated with updated 𝜇 and the most recent enhancement estimates. More technical details are 92 

reported in previous studies (Foote et al., 2020). Note that, owing to the non-uniform response of individual detectors in 93 

PRISMA, they are calculated based on per-column spectrums in order to consider different responses of across-track detectors 94 

to radiance.  95 

Added/rewritten part in Sect. 2.2: The 𝜇 and Σ represent the mean background radiance and corresponding covariance, 96 

respectively, calculated with their common formulas after subtracting the current signal estimates from the data. Specifically, 97 

the 𝜇 is calculated from the data with the removal of the most recent enhancement estimates, while the Σ is then calculated 98 

with updated 𝜇 and the most recent enhancement estimates. More technical details are reported in previous studies (Foote et 99 
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al., 2020). Note that, owing to the non-uniform response of individual detectors in PRISMA, they are calculated based on per-100 

column spectrums in order to consider different responses of across-track sensors to radiance.  101 

 102 

4. What does this sentence mean: methane enhancements detected in spectrometers generally exhibit sparsity, especially 103 

over low albedo surfaces. 104 

Response: Sorry for the confusion we caused. We have revised this sentence to clarify this issue. In principle, it would 105 

be more difficult to detect methane enhancements in pixels over low-albedo surfaces. Although methane absorption is 106 

independent of albedo, the resulting signal in absolute radiance is weakened with surface albedo decreasing.  107 

Added/rewritten part in Sect. 2.2: In principle, it would be more difficult to detect methane enhancements in pixels 108 

over low-albedo surfaces. Although methane absorption is independent of albedo, the resulting signal in absolute radiance is 109 

weakened with surface albedo decreasing. 110 

 111 

5. Please define the co-location criteria between the TROPOMI and PRISMA datasets.  112 

Response: Thanks. We have supplemented the definition the co-location criteria between the TROPOMI and PRISMA 113 

datasets. Regarding the identified regional hotspots, we also apply visual inspection to search for plumes within their 114 

surrounding 30 km scales (i.e., corresponding to the swath width of PRISMA) in the second tier of our framework.  115 

Added/rewritten part in Sect. 2.3: Regarding the identified regional hotspots, we also apply visual inspection to search 116 

for plumes within their surrounding 30 km scales (i.e., corresponding to the swath width of PRISMA) in the second tier of our 117 

framework (Irakulis-Loitxate et al., 2021; Lauvaux et al., 2022; Martin et al., 2018; Varon et al., 2020).  118 

 119 

6. The section on comparing the TROPOMI/PRISMA results with the California and Permian surveys needs to provide 120 

more detail on those surveys (instrument, time of year, temporal and spatial extent). It also needs to emphasize that these 121 

comparisons are basically tests of reasonableness, not true quantitative comparisons. 122 

Response: Thanks. We have supplemented more technical details on these surveys. The California survey aims to provide 123 

the first view of methane super-emitters across the state. This survey is conducted with the Next Generation Airborne 124 

Visible/Infrared Imaging Spectrometer (AVIRIS-NG), with 5 nm SWIR spectral sampling, 1.8 km view field, 3 m horizontal 125 

resolution, and 3 km cruise altitude, and contains five campaigns over several months from 2016 to 2018. Moreover, this 126 

instrument is unique due to its high signal-to-noise ratio and is capable of characterizing methane super-emitters with emissions 127 

as small as 2 ~ 10 kg/h for typical surface winds of 5 m/s.  128 

The Permian survey takes advantage of imaging spectroscopy technologies to provide the first spaceborne region-scale 129 

and high-resolution survey of methane super-emitters in the Permian basin. This survey is acquired by 30 hyperspectral images 130 

from three satellite missions, including Gaofen-5, ZY1, and PRISMA, and focuses on an area of roughly 200 × 150 km2 in the 131 

Delaware sub-basin of the Permian basin within several days (mostly on four different dates: 15 May 2019, 1 November 2019, 132 
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29 December 2019, and 8 February 2020). More technical details on these two surveys can be found in previous studies (Duren 133 

et al., 2019; Irakulis-Loitxate et al., 2021).  134 

Moreover, we agree that such comparisons are basically reasonableness test rather than stringently quantitative validations 135 

due to measurement divergencies between these datasets (e.g., spatial resolution and detection limit). Collectively, although 136 

such comparisons are not quantitative comparisons due to measurement divergencies between these datasets (e.g., spatial 137 

resolution and detection limit), they offer further context for the emission magnitude of the identified methane super-emitters 138 

and indicate the outstanding strength of our results that could be analogous to abundant outcomes from field campaigns. More 139 

importantly, this highlights the urgent need for global monitoring of ‘nameless’ O&G facilities that possibly emit methane as 140 

much as the California field and Permian basin.  141 

Added/rewritten part in Sect. 3.2: The California survey aims to provide the first view of methane super-emitters across 142 

the state. This survey is conducted with the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), 143 

with 5 nm SWIR spectral sampling, 1.8 km view field, 3 m horizontal resolution, and 3 km cruise altitude, and contains five 144 

campaigns over several months from 2016 to 2018. Moreover, this instrument is unique due to its high signal-to-noise ratio 145 

and is capable of characterizing methane super-emitters with emissions as small as 2 ~ 10 kg/h for typical surface winds of 5 146 

m/s.  147 

The Permian survey takes advantage of imaging spectroscopy technologies to provide the first spaceborne region-scale 148 

and high-resolution survey of methane super-emitters in the Permian basin. This survey is acquired by 30 hyperspectral images 149 

from three satellite missions, including Gaofen-5, ZY1, and PRISMA, and focuses on an area of roughly 200 × 150 km2 in the 150 

Delaware sub-basin of the Permian basin within several days (mostly on four different dates: 15 May 2019, 1 November 2019, 151 

29 December 2019, and 8 February 2020). More technical details on these two surveys can be found in previous studies (Duren 152 

et al., 2019; Irakulis-Loitxate et al., 2021).  153 

Collectively, although such comparisons are not quantitative comparisons due to measurement divergencies between 154 

these datasets (e.g., spatial resolution and detection limit), they offer further context for the emission magnitude of the 155 

identified methane super-emitters and indicate the outstanding strength of our results that could be analogous to abundant 156 

outcomes from field campaigns. More importantly, this highlights the urgent need for global monitoring of ‘nameless’ O&G 157 

facilities that possibly emit methane as much as the California field and Permian basin.  158 

 159 

7. The phrase “on a per column basis” is frequently used: what does this mean? 160 

Response: Sorry for the confusion we caused. We have supplemented some sentences to explain this phrase at its first 161 

appearance. The matched-filter algorithm focuses on the individual columns rather than the whole scene to resolve methane 162 

enhancements. This means that the methane enhancement per column is calculated separately (i.e., methane enhancements 163 

were calculated on a per-column basis). More explanations can be found in Guanter et al. (2021). 164 
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Added/rewritten part in Sect. 2.2: The matched-filter algorithm focuses on the individual columns rather than the whole 165 

scene to resolve methane enhancements. This means that the methane enhancement per column is calculated separately (i.e., 166 

methane enhancements were calculated on a per-column basis). More explanations can be found in Guanter et al. (2021). 167 

 168 

8. The detailed uncertainty analysis is confusing, disorganized and hard to follow. Please put some more thought in how 169 

to present this information. 170 

Response: Thank you very much for this constructive suggestion. We have reorganized and revised the detailed 171 

uncertainty analysis in Supplementary Information to clarify this issue, which has been explicitly divided into three sub-issues: 172 

(1) uncertainties in the PRISMA-based methane retrievals; (2) uncertainties in the TROPOMI-based methane emission 173 

estimates; and (3) uncertainties in PRISMA-based methane emission estimates. Note that operational TROPOMI-based 174 

methane retrieval products have been evaluated strictly and proved to be reliable globally (except in low- and high-albedo and 175 

snow-covered areas) (Lorente et al., 2021; Sha et al., 2021) and the related uncertainty analysis is thus omitted here. As a result, 176 

we could confirm the reliable performance of our framework. Comprehensive uncertainty analysis is illustrated in 177 

Supplementary Information.  178 

 179 
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